Non-immersion theorems for lens spaces

By

Teiichi KOBAYASHI

(Received September 28, 1966)

§ 1 . Introduction

The purpose of this paper is to show some non-immersion theorems for lens spaces. For the proof we shall use the theorem of T. Kambe which determines the structure of K_{λ} -rings of the lens space [6] and the theorem of T. Kambe, H. Matsunaga and H. Toda on stunted lens spaces [7].

Throughout this note p is always an odd prime. Let S^{2n+1} be the unit $(2n+1)$ -sphere. A point of S^{2n+1} is represented by a sequence (z_0, \dots, z_n) of complex numbers z_i $(i = 0, \dots, n)$ with $\sum |z_i|^2 = 1$. Let γ be the rotation of S^{2n+1} defined by

$$
\gamma(z_0,\,\cdots,\,z_n)=(\lambda z_0,\,\cdots,\,\lambda z_n)\ ,\qquad\text{where}\quad \lambda=e^{2\pi i/p}\ ,
$$

and let Γ be the topological transformation group of S^{2n+1} of order *generated by* γ *. Then*

$$
L^{n}(p)=S^{2n+1}/\Gamma
$$

is the lens space mod p . It is an $(2n+1)$ -dimensional compact, connected differentiable manifold without boundary. Let $\{z_0, \dots, z_n\}$ $\in L^{n}(p)$ denote the equivalence class of $(z_0, \dots, z_n) \in S^{2n+1}$. The space $L^{k-1}(p)$ is naturally embedded in $L^{k}(p)$ by identifying ${z_0, ..., z_{k-1}}$ with ${z_0, ..., z_{k-1}, 0}$. Let $L_0^k(p) = {z_0, ..., z_k}$ $L^{k}(p)|z_{k}$ is real and $z_{k} \ge 0$. Then $L^{k}(p) - L_{0}^{k}(p) = e^{2k+1}((2k+1)-cell)$ and $L_0^*(p) - L^{k-1}(p) = e^{2k}$ (2k-cell), $k \leq n$. Thus $L^*(p)$ has a cell structure given by

$$
L^{n}(p) = S^{1} \cup e^{2} \cup e^{3} \cup \cdots \cup e^{2n} \cup e^{2n+1}.
$$

(cf. $[6]$ and $[7]$).

Let M^* be an *n*-dimensional differentiable manifold and R^* be the k-dimensional Euclidean space. By $M^n \subseteq R^*$ (respectively $M^* \nsubseteq R^*$) we mean that M^* can be immersed (respectively cannot be immersed) in *Rh.*

After some preparations in §2, we shall give in §3 a necessary condition for immersibility of certain lens spaces (Theorem 3). As applications, in §4 we shall prove some non-immersion theorems for lens spaces. For example, we obtain the following result (Theorem 4. *(//)).*

Let p be a prime with $p \geq 5$ *. Let* α *and* β *be odd integers such that* $0 < \alpha \leq (2p-1)/3$ *and* $0 < \beta \leq (p-2)/3$, *and let l and k be integers such that* $l > k \ge 0$ *and* $l > 1$ *if* $\alpha > 1$ *, or* $l > k \ge 0$ *and* $l > 2$ *if* $\alpha = 1$.

Then $L^n(b) \not\equiv R^{3n+1}$ for $n = \alpha p^l + \beta p^k$.

The method of the proof is similar to that of J. Adem and S. Gitler [1] with which they have given a simple proof for the James' non-immersion theorem for real projective spaces ([5], Theorem 1. 1). In [1], they uses the twisted normal bundle and the S-reducibility, while we shall use the ordinary normal bundle and the Steenrod reduced power operations.

I thank Professors A. Komatsu and H. Toda for valuable suggestions, and also Professors M. Sugawara and Y. Saito for kind advice.

§2. Preliminaries

Let X be a finite connected CW -complex. Let $\varepsilon(X)$ denote the set of equivalence classes of real vector bundles over *X* and let

$$
\theta: \ \varepsilon(X) \to KO(X)
$$

be a natural map, where $KO(X)$ is the associated Grothendieck group. When we consider the complex vector bundles, the associated Grothendieck group is denoted by *K(X).*

An element $\alpha \in KO(X)$ is said to be *positive* if there is an element $\beta \in \mathcal{E}(X)$ such that $\theta(\beta) = \alpha$. We shall drop the symbol θ and regard (an equivalence class of) a vector bundle as an element of both $\varepsilon(X)$ and $KO(X)$.

A *geometrical dimension* of an element $\alpha \in KO(X)$ (written $g \cdot \dim \alpha$) is the least integer *k* such that $\alpha + k$ is positive, where *k* is the k-dimensional trivial bundle over *X.*

Let $\mathbb{C}P^{n}$ be the complex projective space of complex n dimension. Let $\xi(\in K(CP^*))$ denote the canonical line bundle over $\mathbb{C}P^*$ and $r(\xi)(\in KO(\mathbb{C}P^*))$ denote the real restriction of ξ . Let

$$
\pi: L^n(p) \to CP^n
$$

be the natural projection. Define

$$
\eta = \pi^* r(\xi) = r(\pi^* \xi) \in KO(L^n(p)),
$$

that is, η is the induced bundle of $r(\xi)$ by π .

Let τ be the tangent bundle of $L^{n}(p)$. Then the following equality holds (cf. [6], Lemma (4, 7)), where \oplus denotes the Whitney sum.

$$
\tau \oplus 1 = (n+1)\eta \, .
$$

Define $\sigma = \eta - 2 \in \widetilde{KO}(L^n(p))$, the stable class of η . The main theorem of T. Kambe (67) , Theorem 2) is as follows.

Theorem. Let *p be* an odd *prime*, $q = (p-1)/2$ and $n = s(p-1)$ $+r$ $(0 \le r < p-1)$ *. Then*

$$
\widetilde{KO}(L^n(p)) \approx \begin{cases} (Z_{p^{s+1}})^{[r/2]} + (Z_{p^s})^{q-[r/2]} & (if \quad n \not\equiv 0 \mod 4) \\ Z_2 + (Z_{p^{s+1}})^{[r/2]} + (Z_{p^s})^{q-[r/2]} & (if \quad n \not\equiv 0 \mod 4) \end{cases}
$$

and the direct summand $(Z_{p^{s+1}})^{[r/2]}$ and $(Z_{p^s})^{q-[r/2]}$ are generated *additively by •••, cf [⁴ ²) a n d a[r 121 4-1 ,•••, ag respectively. Moreover its ring structure is given by*

$$
\sigma^{q+1} = \sum_{i=1}^q \frac{-(2q+1)}{2i-1} {q+i-1 \choose 2i-2} \sigma^i, \ \sigma^{[n/2]+1} = 0.
$$

In the theorem, $(Z_a)^b$ indicates the direct sum of *b*-copies of a cyclic group Z_a of order a and $[c]$ denotes the integral part of *c.* Note that

(2) *p m =* 0

where $\epsilon = 0$ or 1 according as $\lceil r/2 \rceil = 0$ or $\lceil r/2 \rceil \ge 1$.

Then we can prove the following theorem.

Theorem 1. Let *n* and *k* be positive integers with $0 < k \leq 2n + 1$ *and let a be a positive integer such that* $2ab^{s+t} > 4n+3$ *. The necessary and sufficient condition for* $L^{n}(b) \subseteq R^{2n+1+k}$ *is that the bundle* ${ab^{s+t} - (n+1)}\eta$ *has* ${2ab^{s+t} - (2n+k+2)}$ *independent nonzero cross-sections.*

Proof. If $L^n(p)$ is immersed in R^{2n+1+k} , then we have a normal bundle v of dimension *k* and

(3) rev = 2n+ *k +1 .*

Hence, by (1) , (2) and (3) , we have

$$
\nu - k = \{ap^{s+r} - (n+1)\}\eta - 2\{ap^{s+r} - (n+1)\} \in \widetilde{KO}(L^r(p)).
$$

Thus we see

$$
(4) \qquad \qquad \nu \bigoplus \{2ap^{s+t}-(2n+k+2)\}=\{ap^{s+t}-(n+1)\}\eta\ ,
$$

since the dimension of the bundles of both sides is greater than $2n+1$ (cf. [10], Lemma (1.2)). The formula (4) implies that the bundle $\{ap^{s+r}-(n+1)\}\eta$ has $2ap^{s+r}-(2n+k+2)$ inpependent nonzero cross-sections.

Assume that there exists a vector bundle α of dimension k such that

(5)
$$
\{ap^{s+t}-(n+1)\}\eta = \alpha \oplus \{2ap^{s+t}-(2n+k+2)\}.
$$

Denote by τ_0 the stable class of τ . From (1), (2) and (5) we have $-\tau_0 = \alpha - k$, and so $g \cdot \dim(-\tau_0) \leq k$. Therefore, by the theorem of Hirsch ([4], Theorem 6. 4 and [3], Proposition 3. 2) we have

 $L^{n}(b) \subseteq R^{2n+1+k}$.

The cohomology algebra over Z_{ρ} of $L^{m}(p)$ is given as follows (cf. [11], p. 68).

 $H^*(L^n(p); Z_p)$ *is the tensor product of the exterior algebra on a* generator $y \in H^1(L^n(p); Z_a)$ and the truncated polynomial algebra *on a* generator $x \in H^2(L^n(p))$; Z_p) with relations $y^2 = 0$, $\Delta y = -x$ and $x^{n+1} = 0$, *where* Δ *is the Bockstein coboundary operator associated with the exact coefficient sequence:* $0 \rightarrow Z_p \rightarrow Z_p \rightarrow Z_p \rightarrow 0$.

§3. Stunted lens spaces

Let α be a vector bundle over X and let X^{α} denote its Thom complex. For a positive integer t and a space Y , denote by $S' Y$ the t -fold suspension of Y . The following result is shown by M. F. Atiyah ([2], Lemma (2. 4)).

There is a natural homeomorphism:

$$
S'(X^{\sigma}) \approx X^{*\oplus t}.
$$

Recently, T. Kambe, H. Matsunaga and H. Toda have proved the following theorem on stunted lens spaces ([7], Theorem 1).

There exists a natural homeomorphism:

$$
L^{m}(p)/L^{m-n-1}(p) \approx (L^{n}(p))^{(m-n)n}.
$$

By making use of these theorems we have the following result.

Theorem 2. Let *n* and *k* be positive integers with $0 < k \leq 2n + 1$, *and* let $n = s(p-1) + r(0 \le r < p-1)$. Assume that a is a positive *integer such that* $2ab^{s+1} > 4n+3$ *and that* $t = 2ab^{s+1} - (2n+k+2)$, *where* $\varepsilon = 0$ *or* 1 *according as* $\lceil r/2 \rceil = 0$ *or* $\lceil r/2 \rceil \ge 1$. If $L^n(p)$ is *immersed in 1? 2 ' -fk with a norm al bundle v, then there exists a natural homeomorphism:*

$$
St(Ln(p))v \approx Laps+e-1(p)/Laps+e-n-2(p).
$$

Proof. As in the proof of Theorem 1, we see

$$
\nu \bigoplus t = \{ap^{s+\epsilon}-(n+1)\}\eta.
$$

Then we have

$$
S'(L^{n}(p))^{v} \approx (L^{n}(p))^{q}e^{i t} = (L^{n}(p))^{(ap^{s+t}-(n+1))\eta}
$$

\approx L^{ap^{s+t}-1}(p)/L^{ap^{s+t}-n-2}(p).

Let $\alpha = (E, p, X)$ be an oriented vector bundle of dimension *k* with the total space *E,* the base space *X* and the projection $p: E \rightarrow X$. Here, we assume that the base space X is a finite connected *CW*-complex. Denote by E_0 the subspace of *E* which consists of non-zero vectors. Then the following diagram is commutative (cf. [12]).

96 *Teiichi Kobayashi*

$$
H^{q}(E, E_{o}; Z_{p}) \xrightarrow{j^{*}} H^{q}(E; Z_{p})
$$

$$
\approx \left[\phi \qquad \approx \left[p^{*}\right]
$$

$$
H^{q-k}(X; Z_{p}) \xrightarrow{\mu} H^{q}(X; Z_{p}),
$$

where i^* is a map induced by the injection, ϕ is the Thom isomorphism and μ is defined by

$$
\mu(y) = y \cdot \chi \quad \text{for} \quad y \in H^{q-\lambda}(X; Z_p) \,,
$$

where χ is the mod p Euler class of α .

If μ is an isomorphism, so is j^* . Therefore, if $\lambda : X \rightarrow X^{\mathfrak{a}}$ is the inclusion map induced by the zero cross-section, then the induced map

 λ^* : $H^q(X^a: Z_a) \rightarrow H^q(X; Z_a)$ for $k \leq q \leq \dim X$

is also an isomorphism.

Theorem 3. Let *n* and *l* be positive integers with $0 < l \leq n$, *and* let $n = s(p-1) + r$ ($0 \le r < p-1$). Assume that a is a positive *integer such that* $2ap^{s+t} > 4n+3$ *and that* $t = 2ap^{s+t} - 2(n+l+1)$, *where* $\varepsilon = 0$ *or* 1 *according as* $\lceil r/2 \rceil = 0$ *or* $\lceil r/2 \rceil \ge 1$. If $L^{n}(p)$ *is immersed in 12² " ⁴ ⁴ +² ' with a normal bundle y whose Euler class is non-zero, then there is a map*

$$
g: S^{t}(L^{n}(p)/L^{t-1}(p)) \to L^{a p^{s+t}-t-1}(p)/L^{a p^{s+t}-n-2}(p)
$$

which induces isomorphisms o f all cohomology groups with Z^p coefficients.

Proof. Since the mod *p* reduction induces an isomorphism:

$$
H^{2l}(L^{n}(p); Z) \approx H^{2l}(L^{n}(p); Z_{p}),
$$

the mod *p* Euler class $\overline{\chi}$ of *v* is non-zero. The group $H^{2}(L^{n}(p); Z_{p})$ $(=Z_p)$ is generated by x^{*i*}, where x is a generator of $H^2(L^{\prime\prime}(p); Z_p)$. Hence, $\bar{x} = mx'$ for some *m* with $0 < m < p$, and so we have an isomorphism :

$$
\mu = \overline{\chi} : H^{q-2l}(L^n(p); Z_p) \approx H^q(L^n(p); Z_p) \quad \text{for} \quad 2l \leq q \leq 2n+1.
$$

Therefore, if $\lambda : L^n(p) \rightarrow (L^n(p))^{\nu}$ is the natural inclusion, λ induces

an isomorphism :

 λ^* : $H^q((L^n(p))^{\circ}$; $Z_{\lambda}) \approx H^q(L^n(p); Z_{\lambda})$ for $2l \leq q \leq 2n+1$.

Since $(L^n(p)$ is $(2l-1)$ -connected, there is a map *f* such that the following diagram is homotopy-commutative, where $q: L^n(p) \rightarrow$ $L^{n}(p)/L^{n-1}(p)$ is the projection.

$$
L^{n}(p) \xrightarrow{\lambda} (L^{n}(p))^{n}
$$

\n
$$
q \searrow f
$$

\n
$$
L^{n}(p)/L^{1-1}(p)
$$

It is easily verified that the map *f* induces an isomorphism : f^* : $H^q(L^q(p))^*$; Z_p) \approx $H^q(L^q(p)/L^{1-q}(p); Z_p)$ for $0 \leq q \leq 2n+1$.

Let S^tf be the t-fold suspension of the map f and let

$$
\varphi : S^{t}(L^{n}(p))^{\circ} \simeq L^{ap^{s+\epsilon_{-1}}}(p)/L^{ap^{s+\epsilon_{-n-2}}}(p)
$$

be a homeomorphism given in Theorem 2. Since the complex $S'(L^{n}(p)/L^{1-1}(p))$ has dimension $2ap^{s+e}-2l-1$, the image of a cellular approximation to the map $\varphi \circ S'f$ is contained in the $(2ap^{s+t}-2l-1)$ -dimensional skeleton of $L^{ap^{s+t-1}}(p)/L^{ap^{s+t}-n-2}(p)$. Thus there exists a map *g* such that the following diagram is homotopy -commutative, where *i* is the inclusion.

$$
S'(L^{n}(p)/L^{t-1}(p)) \xrightarrow{S'f} S'(L^{n}(p))'
$$

\n
$$
g\downarrow \qquad \qquad \approx \downarrow \varphi
$$

\n
$$
L^{ap^{s+t} - t-1}(p)/L^{ap^{s+t} - n-2}(p) \xrightarrow{i} L^{ap^{s+t} - 1}(p)/L^{ap^{s+t} - n-2}(p)
$$

Then we can see that the map g induces isomorphisms of all cohomology groups with Z_{p} coefficients.

§4. Applications

In this section we apply Theorem 3 to get some non-immersion theorems for lens spaces. First, we recall the Pontrjagin class mod *p* of lens spaces $L^n(p)$ (cf. [9]).

Let $x \in H^2(L^n(p); Z_p)$ be a generator. The total Pontriagin

class mod *p* of $L^n(p)$ is given by the equation:

$$
p(L^{n}(p))=(1+x^2)^{n+1},
$$

and the dual Pontriagin class mod ϕ is given by the equation:

$$
\bar{p}(L^{n}(p)) = (1+x^{2})^{-n-1} = \sum_{i=0}^{(n/2)} (-1)^{i} {n+i \choose i} x^{2i}.
$$

Theorem 4. Let *p be a prime with* $p \geq 5$. Assume that either *o f the conditions (I) an d (II) below is satisfied.*

(I) α *and* β *are even integers such that* $0 \leq \alpha \leq (2b-2)/3$ *and* $0 < \beta \leq (2p-2)/3$, and *l* and *k* are *integers* such that $l > k \geq 0$ and $1 > 1$ *if* $\alpha > 0$, or $k > 1$ *if* $\alpha = 0$.

(*II*) α *and* β *are odd integers such that* $0 < \alpha \leq (2p - 1)/3$ *and* $0 < \beta \leq (p-2)/3$, and *l* and *k* are integers such that $1 > k \geq 0$ and $1>1$ *if* $\alpha > 1$, or $1 > k \ge 0$ and $1 > 2$ *if* $\alpha = 1$.

Then $L^n(p) \nsubseteq R^{3n+1}$ *for* $n = \alpha p^l + \beta p^k$.

Proof. First, we consider the case when the condition (I) is satisfied. Suppose that $L^n(b) \subseteq R^{3n-1}$ for $n = \alpha b^t + \beta b^k$. Let v be an oriented normal vector bundle of dimension n . The highest dimensional non-zero Pontrjagin class mod p of ν is

$$
\bar{p}_{n/2} = (-1)^{n/2} {n+n/2 \choose n/2} x^n \ (\in H^{2n}(L^n(p) \, ; \, Z_p))
$$

where *x* is a generator of $H^2(L^n(p); Z_p)$, since

$$
\binom{n+n/2}{n/2} = \left(\frac{\frac{3\alpha}{2}p' + \frac{3\beta}{2}p^*}{\frac{\alpha}{2}p' + \frac{\beta}{2}p^*}\right) \equiv \left(\frac{\frac{3\alpha}{2}}{\frac{\alpha}{2}}\right) \cdot \left(\frac{\frac{3\beta}{2}}{\frac{\beta}{2}}\right) \equiv 0 \pmod{p}^{\frac{1}{2}}.
$$

Let \bar{x} (\in *H*^{*n*}(L ^{*n*}(p); Z_p)) be the Euler class mod *p* of *v*. It is well known (e.g., [8], Theorem 31) that

$$
\bar{\chi}^2 = \bar{p}_{n/2} \, .
$$

1) If $a = \sum a_i p^i$ and $b = \sum b_i p^i$ are *p*-adic expansions, then $\begin{pmatrix} a_i \\ b_i \end{pmatrix}$ (mod *p*).

Thus we have $\bar{x} \neq 0$. Let *s* and *r* be integers given by the equation :

$$
\alpha p^t + \beta p^k = s(p-1) + r \qquad (0 \le r < p-1),
$$

and let $v(=s+\epsilon)$ be *s* or $s+1$ according as $\lceil r/2 \rceil = 0$ or $\lceil r/2 \rceil \ge 1$. respectively. Denote by *a* an integer with $2a p^v > 4n+3$.

Now, by Theorem 3, there exists a map

$$
g: S^{t}(L^{n}(p)/L^{(n-2)/2}(p))\to L^{ap^{v}-(n+2)/2}(p)/L^{ap^{v}-n-2}(p)
$$

which induces isomorphisms of all cohomology groups with Z_p coefficients, where *t* is a positive integer given by

$$
t=2ap^{\nu}-3n-2.
$$

Let

$$
E^t: H^{q-t}(L^n(p)/L^{(n-2)/2}(p); Z_p) \approx H^q(S^t(L^n(p)/L^{(n-2)/2}(p)); Z_p)
$$

be the t-fold suspension isomorphism and let $(E^t)^{-1} \circ g^* = G$. Since *E* and *g** commute with Steenrod reduced power operations respectively, so is *G.*

Define a positive integer *q* by the equation :

$$
q=2ap^{\circ}-n-2p^2
$$

and consider the following commutative diagram, where the two (P' are first Steenrod reduced power operations mod *p.*

$$
H^{q}(L^{ap^{p}-(n+1)/2}(p)/L^{ap^{p}-n-2}(p); Z_{p})
$$
\n
$$
\bigotimes \bigotimes_{\mathbb{Z}_{p}(L^{n}(p))/L^{(n-3)/2}(p); Z_{p})} H^{q-1}(L^{n}(p)/L^{(n-3)/2}(p); Z_{p})
$$
\n
$$
H^{q+2(p-1)}(L^{ap^{p}-(n+1)/2}(p)/L^{ap^{p}-n-2}(p); Z_{p}) \bigotimes \bigotimes_{\mathbb{Z}_{p}(L^{n}(p)/L^{(n-3)/2}(p); Z_{p})} G^{1}
$$
\n
$$
H^{q-1+2(p-1)}(L^{n}(p)/L^{(n-3)/2}(p); Z_{p})
$$

It is easily seen that each group in the diagram is non-zero. Note that

$$
q - \{2(ap^v - n - 2) + 1\} = \alpha p^l + \beta p^k - 2p^2 + 3 \ge 3
$$

by the assumption. Therefore, the two operations \mathcal{P}^1 on the left

and right in the diagram are equivalent to the following two operations respectively :

$$
\varphi^1: H^q(L^{ap^{p}-(n+2)/2}(p); Z_p) \to H^{q+2(p-1)}(L^{ap^{p}-(n+2)/2}(p); Z_p),
$$

$$
\varphi^1: H^{q-1}(L^n(p); Z_p) \to H^{q-t+2(p-1)}(L^n(p); Z_p).
$$

Let $k > 0$. For a generator $x^{q/2}$ of $H^q(L^{ap^{p}-(n+2)/2}(p); Z_p)$ we have $\mathcal{P}^1 x^{q/2} = 0$, since $q/2 \equiv 0 \pmod{p}^2$. On the other hand, for a generator $x^{(q-t)/2}$ of $H^{q-t}(L^{n}(p); Z_p)$ we have $\mathcal{P}^1 x^{(q-t)/2} \neq 0$, since $(a-t)/2 \not\equiv 0 \pmod{p}$.

Therefore, in the diagram, \mathcal{P}' on the left is trivial, while \mathcal{P}' on the right is non-trivial. This is a contradiction.

If *k=* 0, consider the following commutative diagram, where the two \mathbb{Q}^p are p -th reduced power operations mod p .

$$
H^{q}(L^{ap^{n-(n+2)/2}}(p)/L^{ap^{n-n-2}}(p); Z_p)
$$
\n
$$
\bigotimes_{\mathcal{P}^p} H^{q-r}(L^n(p)/L^{(n-2)/2}(p); Z_p)
$$
\n
$$
H^{q+2(p-1)p}(L^{ap^{n}-(n+2)/2}(p)/L^{ap^{n-n-2}}(p); Z_p) \bigotimes_{\mathcal{P}^p} G
$$
\n
$$
H^{q-r+2(p-1)p}(L^n(p)/L^{(n-2)/2}(p); Z_p)
$$

As is easily seen, each group in the diagram is non-zero. Note that

$$
q - \{2(ap^v - n - 2) + 1\} = \alpha p^t + \beta - 2p^2 + 3 > 3
$$

by the assumption. Thus we carry the proof as in the above case. For a generator $x^{q/2}$ of $H^q(L^{ap^{p}-(n+2\lambda)^2}(p); Z_p)$ we have

$$
\Phi^p x^{q/2} = {q/2 \choose p} x^{q/2 + (p-1)p} = -x^{q/2 + (p-1)p} \neq 0,
$$

since $q/2 = (a-1)p^v + (p-1)p^{v-1} + \cdots + (p-1)p^{l+1} + (p-1-a/2)p^l$ $+(p-1)p^{i-1} + \cdots + (p-1)p^3 + (p-2)p^2 + (p-1)p + (p-\beta/2)$. On the other hand, for a generator $x^{(q-t)/2}$ of $H^{q-t}(L^{n}(p); Z_p)$ we have

 $\left(\frac{\rho}{x}r\right) = \binom{i}{x}r^i + (p-1)^i$

Non-immersion theorems for lens spaces 101

$$
\theta^p x^{(q-t)/2} = \binom{(q-t)/2}{p} x^{(q-t)/2 + (p-1)p} = 0,
$$

since $(a-t)/2 = (\alpha - 1)p^{t} + (p-1)p^{t-1} + \cdots + (p-1)p^{2} + (\beta + 1)$.

Therefore, in the diagram, \mathcal{P}^{ρ} on the left is non-trivial, while O^p on the right is trivial. This is a contradiction.

Next, we consider the case when the condition *(II)* is satisfied. Suppose that $L^{n}(p) \subseteq R^{3n+1}$ for $n = \alpha p^{i} + \beta p^{k}$. Let v be an oriented normal bundle of dimension n . The highest dimensional non-zero Pontrjagin class mod p of ν is $\bar{p}_{n/2}$ ($\in H^{2n}(L^n(p); Z_p)$), because

$$
\binom{n+n/2}{n/2} = \left(\frac{\frac{3\alpha-1}{2}p^t + \frac{p-1}{2}p^{t-1} + \dots + \frac{p-1}{2}p^{k+1} + \frac{p+3\beta}{2}p^k}{\frac{\alpha-1}{2}p^t + \frac{p-1}{2}p^{t-1} + \dots + \frac{p-1}{2}p^{k+1} + \frac{p+\beta}{2}p^k} \right)
$$

$$
= \left(\frac{\frac{3\alpha-1}{2}}{\frac{\alpha-1}{2}} \right) \cdot \left(\frac{\frac{p+3\beta}{2}}{\frac{p+\beta}{2}} \right) \equiv 0 \pmod{p}.
$$

The rest of the proof is similar to the above case (I) , so we omit the details.

Thus, the proof of the theorem is completed.

If the number of the non-zero terms of the p -adic expansions of n is greater than 2, there are many types of theorems corresponding to theorem 4. For example, we obtain the following result.

Theorem 4'. Let p be a prime with $p \geq 5$. Assume that either *of the conditions (I') and (II') below is satisfied.*

(I') m is an integer with $m>2$; α_i (*i*=1, 2, \cdots , *m*) *are even integers such that* $0 \lt \alpha_i \leq (2p-2)/3$; *and* k_i $(i=1, 2, \dots, m)$ *are integers such that* $k_m > k_{m-1} > \cdots > k_2 > k_1 \geq 0$.

(II') m is an even integer with $m>2$; α_i $(i=1, 2, \dots, m)$ are odd *integers such that* $0 < \alpha_i \leq (2p-1)/3$ *if i is even and* $0 < \alpha_i \leq (p-2)/3$ *if i is odd; and* k_i (*i*=1, 2, \cdots , *m*) *are integers such that* $k_m > k_{m-1}$ \cdots >k₂>k₁ \geq 0.

102 *Telichi Kobayashi*

Then $L^n(p) \nsubseteq R^{3n+1}$ *for* $n = \sum_{i=1}^n \alpha_i p^{ki}$.

The proof is quite similar to that of Theorem 4, so we shall omit the proof.

Theorem 5 . *Let p be an odd prime. A ssume that either of the conditions (III) and (IV) below is satisfied.*

(III) α *is an even integer with* $0 \leq \alpha \leq (2b-2)/3$, β *is an odd* $int \left(\int_{0}^{x} e^{i(x)} \right) dx$ *and l and k are integers such that* $1 > k \geq 0$ and $1 > 1$ *if* $\alpha > 0$, or $k > 1$ *if* $\alpha = 0$.

 (IV) α *is an odd integer with* $0 < \alpha \leq (2p-1)/3$, *B is an even* $integer$ *with* $0 \leq \beta \leq (p-1)/3$, *and l and k are integers such that* $1 > k > 0$; $1 > 1$ *if* $k = 0$ *and* $\alpha > 1$; or $1 > 2$ *if* $k = 0$ *and* $\alpha = 1$.

Then $L^{n}(p) \nsubseteq R^{3n}$ *for* $n = \alpha p^{l} + \beta p^{k}$.

We are indebted to Professor Y. Saito for the proof of the theorem.

Proof. First, we consider the case when the condition *(III)* is satisfied. Suppose that $L^{n}(p) \oplus R^{3n}$ for $n = \alpha p^{l} + \beta p^{k}$. Let *v* be an oriented normal bundle of dimension $n-1$. The highest dimensional non-zero Pontrjagin class mod p of ν is

$$
\bar{p}_{(n-1)/2} = (-1)^{(n-1)/2} {n+(n-1)/2 \choose (n-1)/2} x^{n-1} \left(\in H^{2n-2}(L^n(p); Z_p) \right),
$$

where *x* is a generator of $H^2(L^n(p); Z_p)$, since

$$
\binom{n+(n-1)/2}{(n-1)/2} = \left(\frac{\frac{3\alpha}{2}p' + \frac{3\beta-1}{2}p^* + \frac{p-1}{2}p^{*-1} + \dots + \frac{p-1}{2}p + \frac{p-1}{2}}{\frac{\alpha}{2}p' + \frac{\beta-1}{2}p^* + \frac{p-1}{2}p^{*-1} + \dots + \frac{p-1}{2}p + \frac{p-1}{2}} \right)
$$

$$
= \left(\frac{\frac{3\alpha}{2}}{\frac{\alpha}{2}} \right) \cdot \left(\frac{\frac{3\beta-1}{2}}{\frac{\beta-1}{2}} \right) \equiv 0 \pmod{p}.
$$

Let \bar{x} (\in *H*ⁿ⁻¹(*L*ⁿ(p); *Z*_p)) be the Euler class mod *p* of *v*. Since $\bar{x}^2 = \bar{p}_{(n-1)/2}$, we have $\bar{x} \neq 0$. Let *s* and *r* be integers given by the equation:

$$
\alpha p' + \beta p^* = s(p-1) + r \qquad (0 \leq r < p-1),
$$

and let $v(=s+\epsilon)$ be *s* or $s+1$ according as $\lceil r/2 \rceil = 0$ or $\lceil r/2 \rceil \ge 1$ respectively. Denote by *a* an integer with $2a p'' > 4n+3$.

Now, by Theorem 3, there is a map

$$
g: S^{t}(L^{n}(p)/L^{(n-3)/2}(p)) \to L^{ap^{n}-(n+1)/2}(p)/L^{ap^{n}-n-2}(p)
$$

which induces isomorphisms of all cohomology groups with Z_p coefficients, where t is a positive integer given by

$$
t=2ap^v-3n-1.
$$

Let

$$
E': H^{q-1}(L^n(p)/L^{(n-3)/2}(p); Z_p) \approx H^q(S^1(L^n(p)/L^{(n-3)/2}(p)); Z_p)
$$

be the *t*-fold suspension isomorphism and let $(E^t)^{-1} \circ g^* = G$. Since *E* and *g** commute with the Steenrod reduced power operation respectively, so is *G.*

If $k>0$, we define a positive integer q by the equation:

$$
q=2ap^n-n-p^2,
$$

and consider the following commutative diagram.

$$
H^{q}(L^{ap^{p}-(n+2)/2}(p)/L^{ap^{p}-n-2}(p); Z_{p})
$$
\n
$$
\otimes \bigcup_{\mathfrak{B}^{q-1}(L^{n}(p)/L^{(n-2)/2}(p); Z_{p})} H^{q-1}(L^{n}(p)/L^{(n-2)/2}(p); Z_{p})
$$
\n
$$
H^{q+2(p-1)}(L^{ap^{p}-(n+2)/2}(p)/L^{ap^{p}-n-2}(p); Z_{p})
$$
\n
$$
\otimes \bigcup_{\mathfrak{B}^{q-1+2(p-1)}(L^{n}(p)/L^{(n-2)/2}(p); Z_{p})} \mathfrak{B}^{1}
$$

As in the proof of Theorem 4, we can show that \mathcal{P}^1 on the left is trivial and that \mathcal{P}^1 on the right is non-trivial. This is a contradiction.

If $k=0$, we can give the proof by defining $q=2ap^{\nu}-n-2p^2-1$ and using reduced power operations \mathcal{P}^{ρ} , similarly in the proof of Theorem 4. We omit the details here.

Secondly, we consider the case when the condition (IV) is satisfied. Suppose that $L^{n}(p) \subseteq R^{3n}$ for $n = \alpha p^{l} + \beta p^{k}$. Let ν be an oriented normal bundle of dimension $n-1$. The highest dimen-

sional non-zero Pontrjagin class mod *p* of *v* is $\bar{p}_{(n-1)/2}$ ($\in H^{2n-1}$ $(L^n(p); Z_p)$, because

$$
\binom{n+(n-1)/2}{(n-1)/2} =
$$
\n
$$
\left(\frac{3\alpha-1}{2}p^l + \frac{p-1}{2}p^{l-1} + \dots + \frac{p-1}{2}p^{k+1} + \frac{3\beta+p-1}{2}p^k + \frac{p-1}{2}p^{k-1} + \dots + \frac{p-1}{2}\right)
$$
\n
$$
\frac{\alpha-1}{2}p^l + \frac{p-1}{2}p^{l-1} + \dots + \frac{p-1}{2}p^{k+1} + \frac{\beta+p-1}{2}p^k + \frac{p-1}{2}p^{k-1} + \dots + \frac{p-1}{2}
$$
\n
$$
\equiv \left(\frac{\frac{3\alpha-1}{2}}{\frac{\alpha-1}{2}}\right) \cdot \left(\frac{\frac{3\beta+p-1}{2}}{\frac{\beta+p-1}{2}}\right) \equiv 0 \pmod{p}.
$$

The rest of the proof is similar to the above case *(III),* so we omit the details.

Thus the proof of the theorem is completed.

As an example of a corresponding result to Theorem 5 in case when the number of non-zero terms of the p -adic expansion of n is greater than 2, we have the following

Theorem 5'. Let *p be an odd prime.* Assume that the condi*tion (III') below is satisfied.*

(III') m is an integer with $m>2$; r is an integer with $1 \le r \le m$; α_i (i=1,2,…,r-1) are even integers with $0<\alpha_i \leq (p-1)/3$, α_r is an odd integer with $0<\alpha_r \leq (2p-1)/3$ and α_i (i=r+1, ..., m) are *even integers with* $0 < \alpha_i \leq (2p-2)/3$; *and* k_i $(i = 1, 2, \dots, m)$ *are integers such that* $k_m > k_{m-1} > \cdots > k_2 > k_1 \geq 0$.

Then $L^{n}(p) \neq R^{3n}$ *for* $n = \sum_{i=1}^{n} a_{i} p^{k_{i}}$.

We can prove this theorem by the similar way to Theorem 5, so we omit the proof.

In the end, we shall discuss the exceptional case $p=3$.

Theorem 6. Let *k* be *a* positive integer. If $n = 3^k$, $L^n(3) \nsubseteq R^{3^n}$.

Proof. If $k > 1$, the assertion is true by Theorem 5. We consider the case $k=1$. Suppose that $L^3(3) \subseteq R^9$. Let v be an oriented normal bundle of dimension 2. The highest dimensional non-zero Pontriagin class mod 3 of ν is

$$
\bar{p}_1 = -x^2 \left(\in H^4(L^3(3); Z_3) \right),
$$

where x is a generator of $H^2(L^3(3); Z_3)$.

Let \overline{X} (\in *H*²(*L*³(3); *Z*,)) be the Euler class mod 3 of v. Then we have $\overline{X}^2 = \overline{p}_1 = -x^2$. But, this is impossible. Therefore, $L^3(3) \not\equiv R^9$.

Theorem 7. Let *l* and *k* be integers with $l-1 > k \geq 0$. If $n = 3^t + 3^k$, $L^n(3) \nsubseteq R^{3n-1}$.

Proof. Suppose that $L^n(3) \subseteq R^{3n-1}$. Let ν be an oriented normal bundle of dimension $n-2$. The highest dimensional nonzero Pontrjagin class mod 3 of y *is*

$$
\bar{p}_{(n-2)/2}=(-1)^{n/2}x^{n-2} \ (\in H^{2n-4}(L^n(3);Z_3))
$$

because

$$
\binom{n+n/2}{n/2}\equiv 0\pmod{3}\quad\text{and}\quad\binom{n+(n-2)/2}{(n-2)/2}\equiv -1\pmod{3}.
$$

Let \bar{x} (\in *H*ⁿ⁻²(*L*ⁿ(3); *Z*₃)) be the Euler class mod 3 of v. Since $\bar{x}^2 = \bar{p}_{(n-2)/2}$, we get $\bar{x} \neq 0$. Note that $\varepsilon = 0$ (i.e., $v = s$) and that $2 \cdot 3^s > 4n + 3$ for $n \ge 10$, where $s = n/2$.

Therefore, by Theorem 3, there is a map

$$
g: St(Ln(3)/L(n-t)/2(3)) \to L3s-n/2(3)/L3s-n-2(3)
$$

which induces isomorphisms of all cohomology groups with $Z₃$ coefficients, where *t* is a positive integer given by

$$
t=2\cdot 3^s-3n.
$$

Let

$$
E^*: H^{q-1}(L^n(3)/L^{(n-4)/2}(3); Z_3) \approx H^q(S^*(L^n(3)/L^{(n-4)/2}(3)); Z_3)
$$

be the *t*-fold suspension isomorphism and let $(E')^{-1} \circ g^* = G$. Since *E* and *g** commute with the reduced power operations respectively, so is *G.*

Define a positive integer *q* by the equation :

$$
q = 2 \cdot 3^{s} - n - 2 \cdot 3^{k+2}
$$

106 *Teiichi Kobayashi*

and consider the following commutative diagram, where the two $\mathcal{P}^{3^{k+1}}$ are 3^{k+1} -th Steenrod reduced power operations mod 3.

$$
H^{q}(L^{3^{s}-n/2}(3)/L^{3^{s}-n-3}(3); Z_{3}) \xrightarrow{\underset{\approx}{G}} H^{q-t}(L^{n}(3)/L^{(n-4)/2}(3); Z_{3})
$$
\n
$$
\downarrow \mathcal{P}^{3^{k+1}} \qquad \qquad \downarrow \mathcal{P}^{3^{k+1}}
$$
\n
$$
H^{q+\iota_{3}k+1}(L^{3^{s}-n/2}(3)/L^{3^{s}-n-2}(3); Z_{3}) \xrightarrow{\underset{\approx}{G}} H^{q-t+\iota_{3}k+1}(L^{n}(3)/L^{(n-4)/2}(3); Z_{3})
$$
\nIf $l > k+2$,
\n $q - \{2(3^{s}-n-2)+1\} = 3^{l}+3^{k}-2 \cdot 3^{k+2}+3 \ge 13.$

Hence, we see that the two operations \mathcal{P}^{3k+1} on the left and on the right in the diagram are equivalent to the following two operations respectively :

$$
\vartheta^{s^{k+1}}: H^q(L^{s^2-n/2}(3); Z_3) \to H^{q+t+3^{k+1}}(L^{s^2-n/2}(3); Z_3),
$$

$$
\vartheta^{s^{k+1}}: H^{q-t}(L^n(3); Z_3) \to H^{q-t+t+3^{k+1}}(L^n(3); Z_3).
$$

For a generator $x^{q/2}$ of $H^q(L^{3^2-n/2}(3); Z_3)$ we have

$$
\theta^{3^{k+1}} x^{q/2} = \binom{q/2}{3^{k+1}} x^{q/2+2\cdot 3^{k+1}} = x^{q/2+2\cdot 3^{k+1}} \neq 0,
$$

since $q/2 = 2 \cdot 3^{s-1} + \cdots + 2 \cdot 3^l + 3^{l-1} + \cdots + 3^{k+3} + 3^{k+1} + 3^k$. On the other hand, for a generator $x^{(q-i)}/2}$ of $H^{q-i}(L^{\pi}(3); Z_3)$ we have

$$
\mathcal{P}^{3^{k+1}}x^{(q-t)/2} = \binom{(q-t)/2}{3^{k+1}}x^{(q-t)/2+2\cdot 3^{k+1}} = 0,
$$

since $(q-t)/2 = 2 \cdot 3^{t-1} + \dots + 2 \cdot 3^{k+2} + 3^k$

Therefore, \mathcal{P}^{N+1} on the left in the above diagram is nontrivial, while $\mathcal{P}^{s^{k+1}}$ on the right is trivial. This is a contradiction.

If $l = k + 2$, $n/2 = 3^{k+1} + 2 \cdot 3^k \equiv 1 \pmod{2}$. Then we have $p_{(n-2)/2}$ $= -x^{n-2}$. But, this is inconsistent with the fact that $\bar{X}^2 = \bar{p}_{(n-2)/2}$. Thus the proof of the theorem is completed.

§ 5. Remarks

T. Kambe has proved in [6] the following non-immersion theorem for lens spaces.

Let p be an odd prime. Then $L^{n}(p) \oplus R^{2n+2L(n,p)}$, where $L(n, p)$

is the integer defined by

$$
L(n, p) = \max\left\{i \leq \lfloor n/2 \rfloor \middle| \binom{n+i}{i} \equiv 0 \mod p^{1 + \lfloor (n-2i)/(p-1) \rfloor} \right\}
$$

From this theorem, the following results are obtained.

- 1) Let *p* be a *prime with* $p \geq 5$, α and β are integers defined in
- *(I) or (II)*, *and l and k are integers such that* $l > k \ge 0$. *Then* $L^n(b) \not\subseteq R^{3n}$ *for* $n = \alpha p^t + \beta p^k$.
- *2) Let p be an odd prime.* α *and* β *are integers defined in* (*III*)
- *or* (IV), and *l* and *k* are integers such that $l > k \geq 0$. *Then* $L^n(b) \not\subseteq R^{3n-1}$ *for* $n = \alpha p^l + \beta p^k$.
- 3) Let *l* and *k* be integers with $l \ge k \ge 0$. *Then* $L^{n}(3) \nsubseteq R^{3n-2}$ *for* $n = 3^{l} + 3^{k}$.

These results 1), 2) and 3) are also obtained from the well known theorem :

Let M^n *be an n-dimensional manifold. If* $M^n \subseteq R^{n+k}$, *then* $f_n(M^n) = 0$ except 2-torsions for $i > [k/2]$, where $p_i(M^n) \in H^{4i}(M^n)$; *Z)) is the i-th normal Pontrjagin class.*

As for the immersion theorem for lens spaces, recently F. Uchida has proved in [13] the following result :

Let p be an odd prime,

- *1) If n is odd*, $L^{n}(p) \subseteq R^{3n+3}$.
- *2) If n is even*, $L^{n}(b) \subseteq R^{3n+4}$.

Yoshida College, Kyoto University

REFERENCES

- J. Adem and S. Gitler, *Non-immersion theorems fo r real projective spaces,* Bol. Soc. Mat. Maxicana, 9 (1964), 37-50.
- M. F. Atiyah, *Thom complexes,* Proc. London Math. Soc., 11 (1961), 291-310.
- M. F. Atiyah, *Immersions and embeddings o f manifolds,* Topology 1 (1961), 125-132.
- [4] M. W. Hirsch, *Immersions of manifolds*, Trans. Amer. Math. Soc., 93 (1959), 242-276.
- I. M. James, *On the immersion problem fo r real projective spaces,* Bull. Amer. Math. Soc., 69 (1963), 231-238.
- $[6]$ T. Kambe, *The structure of* K_A -rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135–146.
- T. Kambe, H. Matsunaga and H. Toda, *A note on stunted lens space, J.* Math. Kyoto Univ., 5 (1966), 143-149.
- [8] J. Nliinor, *Lectures on characteristic classes,* (mimeographed notes), Princeton University, 1957.
- [9] R. Nakagawa and T. Kobayashi, *Non-embeddability of lens spaces mod 3*, J. Math. Kyoto Univ., 5 (1966), 313-324.
- [10] B. J. Sanderson, *Immersions and embeddings of projective spaces,* Proc. London Math. Soc., 14 (1964), 137-153.
- [11] N. E. Steenrod, *Cohomology Operations*, Princeton University Press, 1962.
- [12] R. T h om , *Espaces fibres en spheres et carres de Steenrod,* Ann. Sci. Ecole Norm. Sup., 69 (1952), 109-182.

 \overline{a}

[13] F . Uchida, *Immersions o f lens spaces.*