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§ 1 . Introduction

The purpose o f  this paper is to show some non-immersion
theorems for lens spaces. For the proof we shall use the theorem
of T . Kambe which determines the structure of K s -rings of the
lens space [6 ]  and the theorem of T. Kambe, H. Matsunaga and
H. Toda on stunted lens spaces [7 ].

Throughout this note p  is always an odd prime. Let S2"' 1

be the unit (2n+1)-sphere. A point of S '"  is represented by a
sequence (z o , •••, z„) o f  complex numbers z i  ( i  =0 , •-•, n )  with
E  r = 1 .  L e t  7  be the rotation of S '+ ' defined by

7(zo , •••, z„) (Nzo , •••, xz„), w h ere  x, = e u P,

and let r  be the topological transformation group o f S 2 0 ÷' of order
p  generated by 7 .  Then

Lx(p) s - - i i r

is  the lens space mod p .  I t  is  an (271+1)-dimensional compact,
connected differentiable manifold without boundary. Let {zo, •••,z„}

L n (p ) denote the equivalence class o f  (z0 , • • • , z o )ES 2 " " .  The
space Lk- i ( p )  is naturally embedded in  L k (p )  by identifying
{4, •••, z k _,} w ith  {z o , •••, z k _„ 0} . L e t  Lt(P) = {{zo, ••-, zk }

Lk(p)izk is real and zk ?,_01. Then Lk(p)—Lt(P)=e2k+1((2k+1)-cell)
and L(p)— Lk - '(p )—  ek  (2k-cell), k n .  T h u s  L . ( p )  has a  cell
structure given by

Ln(p) s lU e 2 Ue 3 U — U e 0 Uen+ 1 .

(cf. [6 ]  and [7 ]).
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Let M " be an n-dimensional differentiable manifold and R"
be the k-dimensional Euclidean space. By llIng_R* (respectively
M R * )  we mean that M" can be immersed (respectively cannot
be immersed) in Rh.

After some preparations in §2, we shall give in §3 a neces-
sary condition for immersibility of certain lens spaces (Theorem 3).
As applications, in §4 we shall prove some non-immersion theorems
for lens spaces. For example, we obtain the following result
(Theorem 4. (//)).

Let p  be a prime with p>._5. Let a and 3 be odd integers

such that 0< a(2p-1)/3  and 0<13 (p- 2)/3, and let 1 and k be

integers such that 1> k O  and 1>1 i f  a>1, or 1>k and 1>2
i f  a=1.

Then Ln(p) R 3 "+1 fo r n=a pt+Oph.

The method of the proof is similar to that o f J. Adem and
S. Gitler [1] with which they have given a simple proof for the
James' non-immersion theorem fo r  real projective spaces ([5],
Theorem 1. 1). In [1], they uses the twisted normal bundle and
the S-reducibility, while we shall use the ordinary normal bundle
and the Steenrod reduced power operations.

I thank Professors A . Komatsu and H . Toda fo r valuable
suggestions, and also Professors M. Sugawara and Y. Saito for
kind advice.

§ 2. Preliminaries

Let X  be a finite connected C W-complex. Let E (X ) denote
the set of equivalence classes of real vector bundles over X  and
let

0: E (X )— K O (X )

be a natural map, where K O (X ) is the associated Grothendieck
group. When we consider the complex vector bundles, the asso-
ciated Grothendieck group is denoted by K(X).

An element a e K 0 (X ) is said to be positive i f  there is an
element /3 E(X ) such that 0(/3)=a. We shall drop the symbol 0
and regard (an equivalence class of) a vector bundle as an element
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of both e(X ) and KO(X).
A  geometrical dimension of an element a E K O (X ) (written

g•clim a)  is  the least integer k such that a + k  is  positive, where
k is  the k-dimensional trivial bundle over X.

Let C P "  b e  the complex projective space o f  complex n-
dimension. L e t  (EK(CP")) denote the canonical line bundle over
C P" and r () (E K O (C P " )) denote the real restriction of L e t

: Ln(p)---.CP"

be the natural projection. Define

= 7r*  r(E) = r(n-* )EKO(L"(P)),

that is, n is  the induced bundle of r( ) b y  7r.
Let r  be the tangent bundle of O p ) .  Then the following

equality holds (cf. [6 ], Lemma (4, 7)), where e denotes the Whitney
sum.

( 1 ) T e l  = (n+1)n.

Define a=77-2(EKO(Ln(p)), the stable c lass o f  72. The main
theorem of T. Kambe ([6], Theorem 2) is  as follows.

T h eo rem . Let p be an odd prim e, q -(p -1 )/  2 and n = s (p -1 )
+ r  (O r < p - 1 ) .  Then

(4,.1)Ertli (z p oq- [P.m ( i f  n * 0  mod 4)
Z2 + (Zps+1)E

r n i  ( Z )
q—  fr/2 1 ( i f  na- 0 mod 4)

and  th e  direct sum m and (Z p ,-1)['1 2 1 a n d  (Z p .)q- [ 2 ] a r e  generated
additively by •••, cf [ 4 2 )  a n d  a[ r121

4-1 ,•••, ag respectively. Moreover
its  ring structure is given by

-
(2q +1) (q +  i-1 ) c71,1121+1 = 0

f=1 2 i - 1 2 i-2

In the theorem, (Za )b indicates the direct sum of b-copies of
a cyclic group Z a  o f order a  and [ c ]  denotes the integral part
of c. Note that

( 2 ) p m  =  0

where 6 - 0  or 1 according as [r/2]--- 0 or [r/2 ] 1.

KO(Ln(p)).-,
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Then we can prove the following theorem.

Theorem 1. Let n and k be positive integers with 0<k2n +1

a n d  le t  a  be a positive integer such that 2aPs+e>4n+3. The

necessary and  sufficient condition for Ln(p)gR"+'+k is  that the

bundle {up"' —(n+1)}n has {2ap'+' —(2;: + k + 2 )} independent non-

zero cross-sections.

P ro o f.  I f  Ln(p) is immersed in /22 i+k, then we have a normal
bundle v of dimension k and

( 3  ) rev = 2n+ k +1 .

Hence, by (1), (2) and (3), we have

v — k =  tap"' — (n + 1)1 — 2 {aPs + !  — (n+ 1)} E  KO(Llp»  •

Thus we see

( 4 ) (2ap'' — (2n + k + 2)} = fap" 1 — (n +1)1n ,

since the dimension of the bundles of both sides is greater than
2n+1 (cf. [10], Lemma (1. 2)). The formula (4) implies that the
bundle {aP3 +'—(n+1)}n has 2aps-"— (2n + k + 2) inpependent non-
zero cross-sections.

Assume that there exists a vector bundle a  of dimension k
such that

( 5  ) {a ps +2 — (n + 1)} = a ED {2ap' — (2n + k +2)} .

Denote by T o the stable class of T . From (1), (2) and (5) we have
—  T o a —  k, and so g- dim (-7-0 ) 5k. Therefore, by the theorem of
Hirsch ([4], Theorem 6. 4 and [3], Proposition 3. 2) we have

L ( p )  R 2 .+ 1 + k

The cohomology algebra over Z I, of L"(p) is given as follows
(cf. [11], p. 68).

H *(0p); 4) is  the tensor product of the exterior algebra on

a generator yEtii(Ln(p); 4 )  and the truncated polynomial algebra

on a generator x e H 2 (L"(p); 4) with relations y2 =0, Ay= — x and

=0, where A  is  the Bockstein coboundary operator associated

with the exact coefficient sequence:
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§ 3. Stunted lens spaces

Let a  be a vector bundle over X and let X ' denote its Thom
complex. For a positive integer t and a space Y, denote by S' Y
the t-fold suspension of Y .  The following result is shown by
M. F. Atiyah ([2], Lemma (2. 4)).

There is a  natural homeomorphism:

S t(X )  X t .

Recently, T. Kambe, H. Matsunaga and H. Toda have proved
the following theorem on stunted lens spaces ([7 ], Theorem 1).

There exists a  natural honwonzorphiszn:

1-7 (P)1 1 -m - " - 1 (P) (L"(P)) ( m - n "
By making use of these theorems we have the following

result.

Theorem 2. L et n and k be positive integers with 0<k521:+1,
and  let it= s(p -1) -V <p  -1 ) . A ssume that a  is  a positive
integer such that 2aP3+e>4n+3 an d  that t=2aps÷'—(2n+k+ 2),
where E =10 o r 1 according as  [r/2]=0 or [r/2] 1. I f  Ln(p) is
immersed in  1?2' -fk with a norm al bundle v, then there exists a
natural homeomorphism:

SqLn(p)r L0 t's + ! _1(p)ILw + ' - n- 2 (p ).

P ro o f. As in the proof of Theorem 1, we see

v e t  = faps'— (n +1)1n .
Then we have

S t (1 -"(p) ) ( L n (P)) eEt =  (L n (p)) 1w + e - ( "+ " "
7- -. 1 - - 1 (P)1 1 -" 3 -" - n - 2 (P).

Let a=(E, p, X ) be an oriented vector bundle of dimension
k  with the total space E , the base space X  and the projection
p : E . X .  Here, w e assume that the base space X  is  a  finite
connected C W-complex. Denote by Eo the subspace o f E  which
consists of non-zero vectors. T h e n  the following diagram is
commutative (cf. [12]).
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E o ; Zp ) --, Hg(E ; Zp )

1-14 - *(X: Zp ) 12—* 11*(X; Zn ),

where j*  is a map induced by the injection, is  the Thom iso-
morphism and p  is defined by

it(y) = y• X fo r  ye fly - *(X; Zp),

where X  is the mod p  Euler class of a.
I f  p , is  an isomorphism, so is j * .  Therefore, if X :

is the inclusion map induced by the zero cross-section, then the
induced map

X*: II°(X°: Zp ) —.11g(X: Zi ,) f o r  k a dim X

is also an isomorphism.

Theorem 3 .  Let n  and  l be positive integers w ith 0< ln,

and let n=s(p-1)+ r (O r < p - 1 ) .  Assume that a  is a positive

integer such that 2ap 3+!>4n+3 and that t=2aP 5÷!-2(n+l+1),

where E=0 or 1  according as [ r /2 ]=  0  or [ r /2 ] ..1. If Ln(p) is

immersed in 122"4 4 +2 ' with a normal bundle y whose Euler class is

non-zero, then there is a  map

g: st(Ln(p)ILI - '(p))—). LaPg .41 ( p ) I L a P s 4 _n- 2 (p)

which induces isomorphisms o f  all cohomology groups with Z p

coefficients.

P ro o f. Since the mod p reduction induces an isomorphism :

T ri(L "(p ); z)  T r i( L " ( p ) ;  z „ , ) ,

the mod p  Euler class of y is non-zero. The group H"(Ln(p);

(= 4 ) is generated by x ', where x  is a generator of H2(L"(p); z p ).

Hence, 2 =  m x t for some m  with 0<m  < p , and so we have an
isomorphism :

p, = :  l i g - "(L n (P); Zp) H (L " (P )  ; Zp) f o r  21_5q 2n .

Therefore, if X : Ln(p) , (Ln(p))v  is the natural inclusion, X induces
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an isomorphism :

X*: Hgas(p))v ; i-P(Ln(p); zp ) f o r  21.. q.2n +1 .

Since (Ln(p) is (21— 1)-connected, there is a map f  such that the
following diagram is homotopy-commutative, where q:L n(p)--
L(p)/L' - '(p) is  the projection.

L (p ) (LAW

q\
L"(P)/L 11 13)

It is easily verified that the map f  induces an isomorphism :

f * :1 1 Q (Ln(A ) ; Zp) H A L " (P ) I Zp) fo r  0-5.q5.2n-i- 1 .

Let S tf  be the t-fo ld suspension of the map f  and let

99 : St(Ln(p))v Lafri + t - 1 (p)//.."' + ! - - 2 (p)

be a  homeomorphism given in Theorem 2 .  Since the complex
st(Lx(p)/u—(p)) has dimension 2aPm — 2 / -1 , the image of a
cellular approximation to  the map p o Sff is contained in the
(2aps -"— 21— 1)-dimensional skeleton o f  L ''''''( A lL aP ' + ' - n- 2 (p).
Thus there exists a  map g  such that the following diagram is
homotopy -commutative, where i  is the inclusion.

Si
stu,n(p)ILI 

f
- (p )) 4 st(Ln(p))

Then we can see that the map g  induces isomorphisms o f all
cohomology groups with Z o coefficients.

§  4 .  Applications

In this section we apply Theorem 3 to get some non-immer-
sion theorems for lens spaces. First, we recall the Pontrjagin
class mod p of lens spaces L lp ) (cf. [9]).

Let xe/ f(L n (p ) 4 )  be a  generator. The total Pontrjagin
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class mod p  of L n(p) is given by the equation:

P(L n (P)) = (1+ x 2 )"+ 1  ,

and the dual Pontrjagin class mod p is given by the equation:

fi(Ln(p)) (1+ x2 ) - - - ' 

Theorem 4. Let p  be a prim e w ith p 5. A ssum e that either
o f  the conditions (I)  an d  (II)  below is satisfied.
(I) a  a n d  13 are  ev en integers such that O aS(2p-2)/3 and
0<les(2p-2)/3, and  1 and  k are integers such that 1 > k 0  and
1>1 i f  a>0, or k>1 i f  a=0.
(II) a  a n d  8 are  odd integers such that 0 <a S (2p - 1)/3 and
0<13._<_.(p - 2)/3, and  I  and k are  integers such that 1>k...0 and
1>1 i f  a>1, o r 1 > k 0  and 1>2 i f  a=1.

Then Ln(p)Z1?"' f o r n=c1P1 + fipk•

Pro o f . First, we consider the case when the condition ( I )  is
satisfied. Suppose that LN(p) R3 '  for n=apl-i-t3pk. Let y be
an oriented normal vector bundle of dimension n. The highest
dimensional non-zero Pontrjagin class mod p  of y is

( - 1)""(n +

/2

4 2 )x" (OE H 2 n(Ln(P); Zp))n

where x  is a generator of H2 (Ln(p); Z n ) ,  since

( n+n/2)

4_ 319 h
-2-1-1 2 1 =

3a
2 1 .

3/9
2 0

(mod p)l) .
n/2 ) p i+A p k A

2 2 2 2

Let (e .f -In (L "(p ); 4 )) be the Euler class mod p  of y. It is
well known (e.g., [8], Theorem 31) that

R2 ___ fin i 2

1 )  If and b=1,1 b,pi are p-ad ic expansions, then

(g) (mod p).
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Thus we have ,C *0 . L e t s  and r  be integers given by the
equation :

ap,  +Op ,  s ( p - 1 ) + r (0 _ r< p -1 ),

and let v(=s+E ) be s or s+1 according as [r/2]=0 or [r/2].1
respectively. Denote by a  an integer with 2apv>4n+3.

Now, by Theorem 3, there exists a map

g: St (1,"( p)ID" - "/2(p)) La Pv - , "+"1 2 ( p)I Le" 2 (P)

which induces isomorphisms o f  all cohomology groups with
coefficients, where t  is a positive integer given by

t = 2ap'-3n-2 .
Let

Et: Hq- i(L"(p)11,(" - - 2 1 2 (p );  4 ) Hq(St(Ln(p)IL(n - 2 ) 1 2 (p )); Z p )

be the t-fold suspension isomorphism and let (E frog*— G . Since
E and g* commute with Steenrod reduced power operations re-
spectively, so is G.

Define a positive integer q by the equation :

q 2 a p '— n -2 p 2

and consider the following commutative diagram, where the two
(P' are first Steenrod reduced power operations mod p.

I l q(Lae - ( " " ) 1 2 ( p )/Lae - - 2 (p ) ; Zp)

(Pi Hq- VAP)1 L i n - 3 1 2 ( p) ; Z )

G

G  

IH q.2.0,-.) ( L op— ,, „ ,,(p )/ L ap , „_2( p ) ;  zio6 3 ,

H " 1 2 (P- 0 (1,"(p)IL , " - 3 '1 2 (p) ; Zp )

It is easily seen that each group in the diagram is non-zero. Note
that

q— {2(apv— n-2)+1} apt + ii+pk — 2p2 + 3

by the assumption. Therefore, the two operations 6 ' on the left
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and right in  th e  diagram are equivalent to the following two
operations respectively :

: Hq(LaPr - cm- 2 ) 1 2 ( P ) ;  4 , ) H q +2 ( P- "(L° 9 - "+
2 )

P (P ) ;  Z,,)
Hq - , (L "(p); Z,,) 1-1°- , +2(1 — "(L n(p); Z p ) .

Let k > 0 .  F o r a  generator xg/2 o f  l i g (L 0 9 -
 0 + 2 ) / 2 ( p )  ; we

have (P izgi 2 = 0 , since q/2 0 (mod p)2 '. On the other hand, for a
generator x " - ')/2 o f  //q - t(V (P ) ;  Z,,) w e  have (Pix ( q- ')/2 * 0 ,  since
(q — t)12$ 0  (mod p).

Therefore, in the diagram, (P ' on the left is trivial, while 63 1

on the right is non-trivial. This is a contradiction.
If k= 0, consider the following commutative diagram, where

the two V  are p - th  reduced power operations mod p.

Hq(LaPr - , "  2 v 2(p)I LaPv - "- 2 (p) ; Z,,)

G

P 1 1 ° - t ( L " ( p ) I L 0 - 2 1 2 ( p ) ;  Z p )

Hg f2 (

P- 1 ) P(La P v .  (
'H

2 1 2 (P)1L a P v - n - 2 (p ); 4 
G

I (PP

114 1 - " " - "P (L m(P) I L" - 2 3 1 2 (P), Z,,)

As is easily seen, each group in the diagram is non-zero. Note
that

irp

)

q— {2(apy — n— 2)+1} = api + /3— 2p2  + 3> 3

by the assumption. Thus we carry the proof as in the above case.
For a generator . r g h  of 1-17 (LaPv - 0 1 - 2 )1 2 (p ); Z p )  we have

eppx o  _ _x„7/2 - ( p - z ) p 0 ,

since q/2= (a -1 )pv± (p-1)p— ±  ••• +  (p— 1)p'' +(p — 1—  a/2)p'
+( p - 1 ) p 3 +( p - 2 ) p 2 +( p - 1 ) p +( p  —R/2). On the

other hand, for a generator x" - t /2 o f  Hq - t (L " (p ) ;  Z i , )  we have

r x i (P-1Y



3
"

- 11 ' p ± 312 2
$  oP+13 

2 2

(mod p).
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ODP x(q- tv z  = ( ( q — t ) 1 2 )x(q - t
)/ "'cP - ' =  0

since (q — t)/2= (a— i)p , + (p - i )p , - 1 + ...+ (p - 1 )p 2 +(/3+ 1).

Therefore, in the diagram, OPP on the left is non-trivial, while
0 "  on the right is trivial. This is a contradiction.

Next, we consider the case when the condition ( I I )  is satis-
fied. Suppose that L " (p )g R 3n±i fo r  n=apt-FRpk. Let v  be an
oriented normal bundle of dimension n .  The highest dimensional
non-zero Pontrjagin class mod p  o f v  i s  .-P,a2 (E 11 2"(Ln(P); Z n )),
because

3 —1 P
p -

••1+
20 1 +4 2

a  
) 2

n/2
2 2

▪ ph÷, + p+3R
2 2

▪ 4 p h+1+   P+R k

2 2

The rest of the proof is similar to the above case (I), so we
omit the details.

Thus, the proof of the theorem is completed.
If the number of the non-zero terms of the p-adic expansions

o f n  is greater than 2, there are many types of theorems corre-
sponding to theorem 4. For example, we obtain the following
result.

Theorem 4'. Let p be a prim e with // 5. A ssume that either
of  the conditions (I') and (II')  below is satisfied.
(I') m is an integer w ith m > 2 ; a, (i= 1, 2, • •• , m ) are even integers
such that 0<ct 1 (2 p -2 )/ 3  ;  and k i (i = 1, 2, •••, m ) are integers such
that k„,>k„,_,>
( I F )  m  is  an  ev en integer w ith m >2 ; a ;  ( i=1 , 2, •••, m ) are odd
integers such that 0 <a 1 (2 p -1 ) /3  if  i is even and 0 <a 1S(p—  2)/3
if  i is odd; and lei  ( i=1 , 2, •••, m ) are integers such that k„,>k„, >
••• >k z >k ,O .
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T h e n  L"(P) R 3 1f o r  n  = E  a i pkt .
The proof is quite similar to that of Theorem 4, so we shall

omit the proof.

Theorem 5 .  Let p  be an odd prime. A ssum e that either of
the conditions ( I I I )  and (IV ) below is satisf ied.
(III) a  i s  an ev en integer w ith 0._.< aS (2p -2 )/ 3 , 13 i s  an odd
integer w ith 0< # 5(2p-1)/3 , and 1 and k are integers such that
1>k .0  and I>1 i f  a > 0 , or k> 1 if a=0.
(IV) a  i s  an odd integer w ith 0 < (2p — 1)/3, 13 i s  an even
integer w ith 0 5 / 3 (p -1 )/ 3 , and 1 and k are integers such that
1>k>0; I>1 i f  k=0 and a>1; or 1>2 i f  k=0 and a=1.

Then L"(p).1?'" for n=ap'-Fsph.
W e are indebted to Professor Y. Saito for the proof of the

theorem.

Pro o f . First, we consider the case when the condition ( I I I )
is satisfied. Suppose that L'i(p) R 3 "  fo r  n=api+/3pk. L e t I)

be an oriented normal bundle of dimension n - 1 .  The highest
dimensional non-zero Pontrjagin class mod p  o f y  is

fic.-0/2 = (-1)c" - 1 v 2 (
n + ( n - 1 ) 1

)

2 )

x" _1 (e1-1 2- 2 (L"(p); Zp ) ) ,
(11- 1

where x  is a generator o f H 2 (L "(p); 4 ),  since

3a p , ± 313-1 p ),± p—i p „_, ± . . . + p—i p + p - 1
(n + (n -1 )/ 2 ) 2 2 2 2 2

(n - 1)/2 ) a I pk + P -1  p k -i ± . .. ± p— i p + p - 1p_ +
2 2 2 2 2

3a 3 8 - 1
2 2

p - 1
* 0 (mod p ) .

2 2

Let ( EH" - J(L,"(p); 4 ) )  be the Euler class mod p  o f  P.

Since X2 = An-in2, we have Let s and r  be integers given
by the equation:

a p ,  +pp* =  s ( p - 1 )+ r (0 r<p - 1),
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and let v(= s+ 6 ) be s  or s+1 according as [r/2]=0 or [r/2] 1
respectively. Denote by a  an integer with 2ap">4n+3.

Now, by Theorem 3, there is a map

g : S , (Ln(p)1L 0 - 3 2 (p)) LaPP - 0 - 1)/2(p) I L0 ot - m- 2 (p )

which induces isomorphisms o f  all cohomology groups with Zp

coefficients, where t is a positive integer given by

t  = 2apv-3n-1 .
Let

E ':  11° -  t(L"(p) ID" -  
3 1 '2(p) ; Z,)H q  (Si (L"( p) I L " - 3 /2(p)) ; 0)

be the t-fold suspension isomorphism and let (E t)iog -* = G .  Since
E  and g* commute with the Steenrod reduced power operation
respectively, so is G.

I f  k>0, we define a positive integer q  by the equation :

q = 2apv— n— p 2  ,

and consider the following commutative diagram.

Hg (Lae -  ("+2)12(P)/ 1 -" v -
 " -  

2
(  p) ;  zp)

( p i  1 Hq- t(L"(p)I L 0 - 2  I2( p ) ;  p)

H „ , 0 _, ; ( L apv_ (.4.2)12(p)1 LaPv- — 2(p) ; Z  

G
Hq-t-2(P- i)(L"(p)1L 0 - 2 )1 2 (p ); Z,,)

As in the proof o f Theorem 4, we can show that (P1 on the left
is  trivial and that CF" on  the right is non-trivial. This is  a
contradiction.

If k= 0, we can give the proof by defining q=2apv — n-2p 2
 — 1

and using reduced power operations (PP , similarly in the proof of
Theorem 4. W e omit the details here.

Secondly, we consider the case when the condition (IV )  is
satisfied. Suppose that Ln(p)gle" for n = g p k .  Let I. be an
oriented normal bundle of dimension n - 1 .  The highest dimen-

G
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sional non-zero Pontrjagin class mod p  o f v  is A,,..,,/, (el-P" - 2

(L,"(p); Zp)), because

(n + (n -1 )/ 2 )
(n -1 )/ 2

=

3a2—  1p 1+ P - 1± ...+  p -2 ±3R +p - i p k + p - i p k _,± . . . ± p -  1
2 2

a-1  p+ P -1 ,0 ,--,+ ... + P - l p h,i+  3 +p - 1  pk+p;1
P

„_,
± - ±

p -

2

1
2 2 2 2

3a-1 3 0 + p -1
2

a - 1
•

2
g+p - 1 0 (mod p).

2 2

The rest of the proof is similar to the above case (I I I ) , so
we omit the details.

Thus the proof of the theorem is completed.
As an example of a corresponding result to Theorem 5 in case

when the number of non-zero terms of the p-adic expansion of n
is greater than 2, we have the following

Theorem 5'. Let p be an odd prim e. Assume that th e  condi-
tion (III') below is satisfied.
( I I I ')  in  is  an  integer w ith m > 2 ; r  is  an  integer w ith 1 r 5 i i i ;
a i  ( 1=1, 2, •••, r - 1 )  a re  even integers w ith 0 < a 1 ( p -1 )/ 3 ,  a,. is
a n  odd integer w ith 0 < a r

-S .(2 P -1 )/ 3  and  a i  ( i= r+ 1 ,• • • ,m )  are
ev en integers w ith 0 < a i Lç_(2p-2)/3 ; a n d  lei  (1= 1, 2, •••, n i )  are
integers such that k„,>k„,_,>•••>k,>k, O.

T h e n  1,"(p) 1?3 " f o r  n = E  a i pki .

We can prove this theorem by the similar way to Theorem 5,
so we omit the proof.

In the end, we shall discuss the exceptional case p=3.

Theorem 6. Let k be a positive in teger. I f n=3*, L"(3) R 3 ".

Pro o f . If k>1, the assertion is true by Theorem 5 .  We
consider the case k = 1 .  Suppose that L 3(3)g.R 9 . L e t  v  be an
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oriented normal bundle of dimension 2. The highest dimensional
non-zero Pontrjagin class mod 3 of y is

P, = — x2 (e 1 1 4(12(3); Z ,)),

where x is a generator o f 112 (L 3(3); Z,).
Let g (E 1-12(L 3(3); Z 3)) be the Euler class mod 3 of v. Then we

have g'="fi, = - x 2 .  But, this is impossible. Therefore, 12(3).1e.

Theorem 7 .  L e t 1  and k  be in tegers w ith  / - 1 > k 0 .  I f
n=3/ +3k, L"(3) 1?3" - 1 .

Pro o f . Suppose that L"(3)gR 3 "- 1 . Let y  b e  an  oriented
normal bundle of dimension n - 2 .  The highest dimensional non-
zero Pontrjagin class mod 3 of y  is

( -1 )" 1 2 x " ' ( H 2 M4(Ln(3); Z 3 ))

because

( n ± n 1 2 ) 0  (mod 3 )  an d  (n + (n - 2)12) Fa — 1 (mod 3) .
n/2 \  (n - 2)/2

Let -g (E H" - 2 (L"(3); Z 3)) be the Euler class mod 3 o f v. Since
w e  g e t  X * 0 .  Note that &=O (i.e., v =s )  and that

2-3s>4n+ 3 for n 10, where s=n/2.
Therefore, by Theorem 3, there is a map

g: S t(L n(3)1L (' - ' ) /2(3))—* L's - "/2(3 )/ L '''(3 )

which induces isomorphisms o f all cohomology groups with Z,
coefficients, where t  is a positive integer given by

t 2.3s— 3n .
Let

Et : 11"(L"(3)11-rn - 4 )1 2 (3); Z ,) Hg(St(L"(3)IL 0 - 4 "(3)) ; Z a )

be the 1—fold suspension isomorphism and let (E i)o g *  = G .  Since
E  and g*  commute with the reduced power operations respectively,
so is G.

Define a positive integer q  by the equation :

q = 2.33— n - 2 .3 2
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and consider the following commutative diagram, where the two
0?3k+1 a re  31" - i-th Steenrod reduced power operations mod 3.

G
H I  (L ' n / 2( 3 ) 1 1 7 ' 3(3) ; Z 3) Hg t(Ls (3) I L 0 - 4 ) 1 2 (3) ; Z3)

16)3k+,

I (p30+1

N-Hg +
"

3 " - 1 (L 3 s - 4 / 2 (3)/L3 s - n - 2 (3) ; Z3) -
G  H e -  t - 4 . 3 k + I (Ln (3)/D " - " 1 2 (3) ; Z 3)

If 1> k  +2,

q  {2(3s— n — 2) + 1} = 3' + 3k— 2.3'g- 2 +  3  l3 .

Hence, we see that the two operations 15)  3 k + on the left and on the
right in  the diagram are equivalent to the following two opera-
tions respectively :

p k + i H g( L 3_n1 ( 3 ) ;  z 3 ) ,  H ,„..4.3k+i ( L o _ . , 2 ( 3 ) ;  z 3 ) ,

Hq - s(L "(3); Z 3) —> 1-1° - ' 3 k + i (L n(3); 2.
3) .

For a generator x 0 2  o f lig(L 3" 2(3); Z 3)  we have

Si 3k+ 1 q/2 /q12\ x  q p + 2 .3 k +  =  xgr,  2.3 fr+ i * 0 ,
3k,-1

since q / 2 = 
2 . 3 3 - 1 + + 2 . 3 /  +  3 / - 1 + 3k-1-3 +  3 k - 1 - 1 +  

s' .1 ;
 On the

other hand, for a generator .VC " i 2  o f Hq - t(Ln(3); Z3)  we have

(3,30+1 = ((q—  0/2) x ( q _0 /2+ 23k÷i =
3k÷i

since (q— t)/ 2  =  2. W
- 1 +  + 2 3 + 3 k .

Therefore, P ' t h e  left in  th e  above diagram is non-
trivial, while (Psk ± i on the right is triv ial. This is a contradiction.

If 1= k +2, n12=
3 k 4 1 ± 2 . 3 k 1 (mod 2). Then we have h(n. 3)/'

= — e- 2 .  But, this is inconsistent with the fact that X2 =(.-2)/2•
Thus the proof of the theorem is completed.

§ 5. Remarks

T . Kambe has proved in  [6 ]  th e  following non-immersion
theorem for lens spaces.

L et p  be an  odd p rim e . Then L n (p ) R 2 - 2 u ' ,  where L(n,
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is  the integer defined by

L(n,p) m a x  _Ç[n12] 1(n t i )s  0  m od  p i+ [ (n -2 i )/ (p  -1)] }

From this theorem, the following results are obtained.
1) L et p  be a prim e w i t h  p 5 .  a an d  g are integers defined in
(I) o r (II), and I  and k are integers such that 1>k..O.

Then Lk(p) R3" f o r n=aP'+I3e.
2) L et p  be an  odd p rim e . a an d  1.3 are  integers defined in (III)
or (IV ), and I  and k are  integers such that 1>k_0.

Then Lk(p) R3"- 1 f o r n=api+gpk.
3 ) L et I  and k be integers w ith l k 0.

Then L"(3) R 3 7 1 - 2  f o r n=T+  3k.
These results 1), 2) and 3) are  also obtained from the well

known theorem :
L et M n b e  a n  n-dimensional m an if o ld . I f  M "cR"÷k, then

,(M ")=0  except 2-torsions for i >[k12], where P,(Mn)(Œ1-1 4 i (Mn;
Z ) )  is  the i-th norm al Pontrjagin class.

As for the immersion theorem for lens spaces, recently F.
Uchida has proved in  [13] the following result :

L et p  be an odd prime,
1) I f  n is odd, Ln(p) R " 3 .
2) I f  n is even, L (p ) R " .

Yoshida College,
Kyoto University
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