Note on formally projective modules*

By
Satoshi Suzuki

(Received April 7, 1966)
§1. Let R be a commutative ring with units and \mathfrak{m} an ideal of R. Let M be an R-module. For the simplicity we assume that \mathfrak{m} has a finite base. We consider the m-adic topology on both R and M. A. Grothendieck introduced the notion of formally projective modules which can simply be stated in our case as follows (19.2, Chap. 0_{IV} [1]).

Definition 1: M is called a formally projective module if $M / \mathrm{m}^{n} M$ is a projective R / m^{n}-module for every $n=1,2,3, \cdots$.

On the other hand the authur introduced the notion of m -adic free modules (Def. 1, 2, Part I, [2]), i.e.

Definition 2: M is called an \mathfrak{m}-adic free module if M is a Hausdorff m -adic module and contains a set of elements $\left\{\alpha_{i}\right\}_{i \in I}$ such that $M / \mathfrak{m}^{n} M$ is a free R / \mathfrak{m}^{n}-module with a free basis \{the residue clase of $\left.a_{i} \bmod . \mathfrak{m}^{n} M\right\}_{i \in I}$ for every $n=1,2,3, \cdots$. In this case we call $\left\{\alpha_{i}\right\}_{i \in I} \mathfrak{m}$-adic free basis of M.

We introduce here a generalized notion of \mathfrak{m}-adic free modules.
Definition 3: M is called a weakely m-adic free module if
(a) $M / \mathfrak{m}^{n} M$ is a free R / \mathfrak{m}^{n}-module for every $n=1,2,3, \cdots$, or equivalently
(b) the \mathfrak{m}-adic completion of M is isomorphic to the m -adic completion of a free R-module.

As for the equivalence of (a) and (b), we shall see it afterwards. \mathfrak{m}-adic free modules are weakly \mathfrak{m}-adic free modules.

[^0]Conversely, in case where R is a local ring every Hausdorff weakly \mathfrak{m}-adic free R-module is an \mathfrak{m}-adic free module (see Th. 1 , Part I, [2]).

We intend to show that there is some relationship between formally projective modules and \mathfrak{m}-adic free modules analogous to the one between projective modules and free modules, and to study some related problems.
\S 2. For the brevity we put $R_{n}=R / \mathfrak{m}^{n}$ and $M_{n}=M / \mathrm{m}^{n}$ for every $n=1,2, \cdots$. Assume that M is a formally projective module. Then M_{1} is a direct summand of a free R_{1}-module. Hence there exist a free R-module F and R_{1}-homorphisms $\varphi_{1}: M_{1} \rightarrow F_{1}$ and $\psi_{1}: F_{1} \rightarrow M_{1}$ such that $\psi_{1} \circ \varphi_{1}=i d_{M_{1}}$. (We put $F_{n}=F / \mathfrak{m}^{n} F$ for every $n=1,2,3, \cdots)$. Then by induction, we can construct R_{n}-homomorphisms $\varphi_{n}: M_{n} \rightarrow F_{n}$ and $\psi_{n}: F_{n} \rightarrow M_{n}$ for every $n=1,2,3, \cdots$ such that $\psi_{n} \circ \varphi_{n}=i d_{M_{n}}$ and the following commutative diagram holds:

where α_{n} and β_{n} are the natural homomorphisms of M_{n+1} and F_{n+1} onto M_{n} and F_{n} respectively. Actually, suppose that we have φ_{n} and ψ_{n} of the said properties. Then by the projectivity of M_{n+1} and F_{n+1} over R_{n+1} we see that there exist φ_{n+1} and ψ^{\prime} which satisfy the commutative diagram:

If we know that $\psi^{\prime} \circ \varphi_{n+1}$ is an isomorphism, φ_{n+1} and $\psi_{n+1}=$ $\left(\psi^{\prime} \circ \varphi_{n+1}\right)^{-1} \circ \psi^{\prime}$ satisfy the required properties. The surjectivity of
$\psi^{\prime} \circ \varphi_{n+1}$ follows from the fact that M_{n+1} is discrete in the \mathfrak{m}-adic topology and $M_{n+1}=\psi^{\prime} \circ \varphi_{n-1}\left(M_{n-1}\right)+\mathfrak{m}^{h} M_{n+1}$. Again by the projectivity of M_{n+1}, we see that there exists an R_{n+1}-homomorphism $\gamma: M_{n+1} \rightarrow M_{n+1}$ such that $\psi^{\prime} \circ \varphi_{n+1} \circ \gamma=i d_{M_{n+1}}$. The surjectivity of γ can be proved by the similar reasoning as above. Hence $\psi^{\prime} \circ \varphi_{n+1}$ is injective.

Remark: In the above description, if we assume that φ_{n} is surjective, we can show the surjectivity of φ_{n+1}, using the same reasoning as above again.
\S 3. We denote by \hat{M} and \hat{F} the m-adic completions of M and F. They are projective limits of the systems $\left\{M_{n}\right\}$ and $\left\{F_{n}\right\}$ respectively.

Proposition: The conditions (a) and (b) in the definition 3 are equivalent to each other.

Proof : $(\mathrm{b}) \Longrightarrow(\mathrm{a})$ is trivial. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ follows follows from the remark at the end of $\S 2$.

Theorem 1: M is a formally projective R-module if and only if M is a direct summand of a weakly m -adic free module.

Proof. The if part is obvious. Conversely, assume that M is a formally projective R-module. Then taking the projective limits of $\left\{\varphi_{n}\right\}$ and $\left\{\psi_{n}\right\}$ in $\S 2$, we see that there exists an R-module N such that $\hat{M} \oplus N=\hat{F}$. Put $F^{\prime}=M \oplus N$. Then the m-adic completion of F^{\prime} is $\hat{M} \oplus N$. Hence F^{\prime} is a weakly m -adic free R module.

Theorem 2: M is a weakly m -adic free R-module if and only if M is a formally projective R-module and $M / \mathrm{m} M$ is a free R / m module.

Proof. The only if part is trivial. The if part follows from the remark in $\S 2$, for by our assumption we see that all the φ_{n} in $\S 2$ are surjective, which shows that \hat{M} is isomorphic to a completion of a free module.

Corollary 1: Assume that R is a local ring and \mathfrak{m} is its
maximal ideal. Then the following three conditions are equivalent to each other:
(1) M is a formally projective R-module,
(2) M is a weakly m-adic free R-module
and
(3) the Hausdorffization $M / \bigcap_{n=1}^{\infty} \mathfrak{m}^{n} M$ of M is an \mathfrak{m}-adic free module.

Proof: This follows directly from Th. 2.
Corollary 2: Assume that R is a semi-local ring and \mathfrak{m} is its Jacobson radical. Let \hat{R} be the completion of R. Then M is formally projective if and only if the completion \hat{M} of M is \hat{R} isomorphic to the completion of a projective \hat{R}-module.

Proof: This follows directly from Corollary 1, because \hat{R} is a direct sum of a finite number of complete local rings.

Remark : In Corollary 2, it is impossible to replace our statement " \hat{M} is \hat{R}-isomorphic to the completion of a projetive \hat{R} module" by the statement " \hat{M} is \hat{R}-isomorophic to the completion of a projective R-module", except in the case where R is a local ring. This situation will be shown by the following example.

Example: Let R be a semi-local domain which is not a local ring. Let \mathfrak{P} be one of its maximal ideals. $R_{\mathfrak{B}}$ is a formally projective R-module, because of Corollary 2. On the other hand every projective R-module is a free R-module. Hence the completion of $R_{\mathfrak{B}}$ can not be expressed as a completion of a projective R-module.

REFERENCES

[1] A. Grothendieck, Eléments de Géométrie Algébrique IV, Publications Math., No. 20, 1964.
[2] S. Suzuki, Some results on Hausdorff \mathfrak{m}-adic modules and \mathfrak{m}-adic differentials, J. Math. Kyoto Univ. vol. 2, no. 2, 1963.

[^0]: * This works was supported by the U.S. National Science Foundation, Grant GP-4249.

