Note on formally projective modules*

By

Satoshi Suzuki

(Received April 7, 1966)

§1. Let R be a commutative ring with units and m an ideal of R. Let M be an R-module. For the simplicity we assume that m has a finite base. We consider the m-adic topology on both R and M. A. Grothendieck introduced the notion of formally projective modules which can simply be stated in our case as follows (19.2, Chap. 0_{IV} [1]).

Definition 1: M is called a formally projective module if $M/\mathfrak{m}^n M$ is a projective R/\mathfrak{m}^n -module for every $n=1, 2, 3, \cdots$.

On the other hand the authur introduced the notion of m-adic free modules (Def. 1, 2, Part I, [2]), i.e.

Definition 2: M is called an m-adic free module if M is a Hausdorff m-adic module and contains a set of elements $\{\alpha_i\}_{i\in I}$ such that $M/\mathfrak{m}^n M$ is a free R/\mathfrak{m}^n -module with a free basis {the residue clase of $a_i \mod \mathfrak{m}^n M$ } $_{i\in I}$ for every $n=1, 2, 3, \cdots$. In this case we call $\{\alpha_i\}_{i\in I}$ m-adic free basis of M.

We introduce here a generalized notion of m-adic free modules.

Definition 3: M is called a weakely m-adic free module if

(a) $M/\mathfrak{m}^n M$ is a free R/\mathfrak{m}^n -module for every $n=1, 2, 3, \cdots$, or equivalently

(b) the m-adic completion of M is isomorphic to the m-adic completion of a free R-module.

As for the equivalence of (a) and (b), we shall see it afterwards. m-adic free modules are weakly m-adic free modules.

 $[\]ast$ This works was supported by the U.S. National Science Foundation, Grant GP-4249.

Satoshi Suzuki

Conversely, in case where R is a local ring every Hausdorff weakly m-adic free R-module is an m-adic free module (see Th. 1, Part I, [2]).

We intend to show that there is some relationship between formally projective modules and m-adic free modules analogous to the one between projective modules and free modules, and to study some related problems.

§2. For the brevity we put $R_n = R/m^n$ and $M_n = M/m^n$ for every $n=1, 2, \cdots$. Assume that M is a formally projective module. Then M_1 is a direct summand of a free R_1 -module. Hence there exist a free R-module F and R_1 -homorphisms $\varphi_1 : M_1 \to F_1$ and $\psi_1 : F_1 \to M_1$ such that $\psi_1 \circ \varphi_1 = id_{M_1}$. (We put $F_n = F/m^n F$ for every $n=1, 2, 3, \cdots$). Then by induction, we can construct R_n -homomorphisms $\varphi_n : M_n \to F_n$ and $\psi_n : F_n \to M_n$ for every $n=1, 2, 3, \cdots$ such that $\psi_n \circ \varphi_n = id_{M_n}$ and the following commutative diagram holds:

$$\begin{array}{c}
\downarrow \\
M_{n+1} \xrightarrow{\varphi_{n+1}} F_{n+1} \xrightarrow{\psi_{n+1}} M_{n+1} \\
\downarrow \\
\downarrow \\
M_n \xrightarrow{\varphi_n} F_n \xrightarrow{\psi_n} M_n \\
\downarrow \\
\downarrow \\
M_1 \xrightarrow{\varphi_1} F_1 \xrightarrow{\psi_1} M_1
\end{array}$$

where α_n and β_n are the natural homomorphisms of M_{n+1} and F_{n+1} onto M_n and F_n respectively. Actually, suppose that we have φ_n and ψ_n of the said properties. Then by the projectivity of M_{n+1} and F_{n+1} over R_{n+1} we see that there exist φ_{n+1} and ψ' which satisfy the commutative diagram:

$$\begin{array}{cccc} M_{n+1} & \xrightarrow{\varphi_{n+1}} & F_{n+1} & \xrightarrow{\psi'} & M_{n+1} \\ \downarrow \alpha_n & & \downarrow \varphi_n & & \downarrow \alpha_n \\ M_n & \xrightarrow{\beta_n} & F_n & \xrightarrow{\psi_n} & M_n \end{array}$$

If we know that $\psi' \circ \varphi_{n+1}$ is an isomorphism, φ_{n+1} and $\psi_{n+1} = (\psi' \circ \varphi_{n+1})^{-1} \circ \psi'$ satisfy the required properties. The surjectivity of

194

 $\psi' \circ \varphi_{n+1}$ follows from the fact that M_{n+1} is discrete in the m-adic topology and $M_{n+1} = \psi' \circ \varphi_{n-1}(M_{n-1}) + \mathfrak{m}^n M_{n+1}$. Again by the projectivity of M_{n+1} , we see that there exists an R_{n+1} -homomorphism $\gamma: M_{n+1} \rightarrow M_{n+1}$ such that $\psi' \circ \varphi_{n+1} \circ \gamma = id_{M_{n+1}}$. The surjectivity of γ can be proved by the similar reasoning as above. Hence $\psi' \circ \varphi_{n+1}$ is injective.

REMARK: In the above description, if we assume that φ_n is surjective, we can show the surjectivity of φ_{n+1} , using the same reasoning as above again.

§3. We denote by \hat{M} and \hat{F} the m-adic completions of M and F. They are projective limits of the systems $\{M_n\}$ and $\{F_n\}$ respectively.

Proposition: The conditions (a) and (b) in the definition 3 are equivalent to each other.

Proof: (b) \implies (a) is trivial. (a) \implies (b) follows follows from the remark at the end of §2.

Theorem 1: M is a formally projective R-module if and only if M is a direct summand of a weakly m-adic free module.

Proof. The if part is obvious. Conversely, assume that M is a formally projective R-module. Then taking the projective limits of $\{\varphi_n\}$ and $\{\psi_n\}$ in §2, we see that there exists an R-module N such that $\hat{M} \oplus N = \hat{F}$. Put $F' = M \oplus N$. Then the m-adic completion of F' is $\hat{M} \oplus N$. Hence F' is a weakly m-adic free R-module.

Theorem 2: M is a weakly m-adic free R-module if and only if M is a formally projective R-module and M/mM is a free R/mmodule.

Proof. The only if part is trivial. The if part follows from the remark in §2, for by our assumption we see that all the φ_n in §2 are surjective, which shows that \hat{M} is isomorphic to a completion of a free module.

Corollary 1: Assume that R is a local ring and m is its

maximal ideal. Then the following three conditions are equivalent to each other:

- (1) M is a formally projective R-module,
- (2) *M* is a weakly m-adic free *R*-module
- and

(3) the Hausdorffization $M/\bigcap_{n=1}^{\infty} \mathfrak{m}^n M$ of M is an \mathfrak{m} -adic free module.

Proof: This follows directly from Th. 2.

Corollary 2: Assume that R is a semi-local ring and m is its Jacobson radical. Let \hat{R} be the completion of R. Then M is formally projective if and only if the completion \hat{M} of M is \hat{R} -isomorphic to the completion of a projective \hat{R} -module.

Proof: This follows directly from Corollary 1, because \hat{R} is a direct sum of a finite number of complete local rings.

Remark : In Corollary 2, it is impossible to replace our statement " \hat{M} is \hat{R} -isomorphic to the completion of a projetive \hat{R} -module" by the statement " \hat{M} is \hat{R} -isomorphic to the completion of a projective *R*-module", except in the case where *R* is a local ring. This situation will be shown by the following example.

Example: Let R be a semi-local domain which is not a local ring. Let \mathfrak{P} be one of its maximal ideals. $R_{\mathfrak{P}}$ is a formally projective R-module, because of Corollary 2. On the other hand every projective R-module is a free R-module. Hence the completion of $R_{\mathfrak{P}}$ can not be expressed as a completion of a projective R-module.

REFERENCES

- A. Grothendieck, Éléments de Géométrie Algébrique IV, Publications Math., No. 20, 1964.
- [2] S. Suzuki, Some results on Hausdorff m-adic modules and m-adic differentials, J. Math. Kyoto Univ. vol. 2, no. 2, 1963.