Real K-homology of complex projective spaces

By

Atsushi Yamaguchi

Introduction

The real K-homology theory is one of a few examples of generalized homology theories which take values in the category of comodules over the associated Hopf algebroid, which are not complex oriented in the sense of Adams [1], namely the real K-cohomology of the infinite dimensional complex projective space does not have a structure of formal group law induced by the group structure $m: \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$. However, the real K-homology of the infinite dimensional complex projective space has the Pontrjagin ring structure which is regarded as a virtual dual of non-existent structure of formal group law ([4]). From this point of view, the ring structure of the real K-homology of the infinite dimensional complex projective space might be of some interest. The aim of this paper is to determine the module structure of the real K-homology of complex projective spaces over the coefficient ring KO_* and to describe the ring structure of the real K-homology of the infinite complex projective space.

In the first section, we prepare some necessary results in the following sections. Next, we determine the "conjugation map" on $K_*(\mathbb{C}P^l)$ induced by the map $BU(n) \to BU(n)$ which classifies the complex conjugate of the canonical bundle. We make some analysis on the conjugation map in section three and define certain elements of $K_*(\mathbb{C}P^\infty)$ which generates the image of the complexification map $KO_*(\mathbb{C}P^\infty) \to K_*(\mathbb{C}P^\infty)$. In section four, we determine the KO_* -module structure of $K_*(\mathbb{C}P^l)$ by using the Atiyah-Hirzebruch spectral sequence. It turns out that the complexification map $\mathbf{c}: \widetilde{KO}_*(\mathbb{C}P^l) \to \widetilde{K}_*(\mathbb{C}P^l)$ is injective if l is even or ∞ . By virtue of this fact, we can describe the ring structure of $KO_*(\mathbb{C}P^\infty)$ by examining the image of \mathbf{c} in the last section.

1. Preliminaries

We first recall the Bott periodicity

$$\begin{split} O &\simeq \Omega(\boldsymbol{Z} \times BO), & O/U \simeq \Omega O, & U/Sp \simeq \Omega(O/U), & \boldsymbol{Z} \times BSp \simeq \Omega(U/Sp) \\ Sp &\simeq \Omega(\boldsymbol{Z} \times BSp), & Sp/U \simeq \Omega Sp, & U/O \simeq \Omega(Sp/U), & \boldsymbol{Z} \times BO \simeq \Omega(U/O). \end{split}$$

Thus the KO-spectrum $KO = (\varepsilon_n : SKO_n \to KO_{n+1})_{n \in \mathbb{Z}}$ is given as follows.

$$KO_{8n} = \mathbf{Z} \times BO$$
, $KO_{8n+1} = U/O$, $KO_{8n+2} = Sp/U$, $KO_{8n+3} = Sp$, $KO_{8n+4} = \mathbf{Z} \times BSp$, $KO_{8n+5} = U/Sp$, $KO_{8n+6} = O/U$, $KO_{8n+7} = O$.

We also recall that $K^* = \mathbf{Z}[t,t^{-1}], KO^* = \mathbf{Z}[\alpha,x,y,y^{-1}]/(2\alpha,\alpha^3,\alpha x,x^2-4y),$ where t, α, x and y are generators of $K^{-2} = \pi_2(K) \cong \mathbf{Z}, KO^{-1} = \pi_1(KO) \cong \mathbf{Z}/2\mathbf{Z}, KO^{-4} = \pi_4(KO) \cong \mathbf{Z}, KO^{-8} = \pi_8(KO) \cong \mathbf{Z}.$ Note that t, α are the homotopy classes of the inclusion maps $S^2 = \mathbf{C}P^1 \to BU = K_0, S^1 = \mathbf{R}P^1 \to BO = KO_0$ to the bottom cells.

Let us denote by $h_2: S^3 \to S^2$ the Hopf map, by $j: S^3 = Sp(1) \to Sp$, $i: S^2 = Sp(1)/U(1) \to Sp/U$ the inclusion maps of the bottom cells, and by $p: Sp \to Sp/U$ the quotient map. Then

$$S^{3} \xrightarrow{h_{2}} S^{2}$$

$$\downarrow^{j} \qquad \qquad \downarrow^{i}$$

$$Sp \xrightarrow{p} Sp/U$$

commutes.

Lemma 1.1. The homotopy class of $ih_2 = pj$ generates $\pi_3(Sp/U) \cong \mathbb{Z}/2\mathbb{Z}$. Hence ih_2 represents $\alpha \in \pi_1(KO) \cong \pi_3(KO_2)$.

Proof. By the commutativity of the above diagram, we have the following commutative diagram.

$$\pi_{3}(S^{3}) \xrightarrow{h_{2*}} \pi_{3}(S^{2})$$

$$\cong \downarrow j_{*} \qquad \qquad \downarrow i_{*}$$

$$\pi_{3}(Sp) \xrightarrow{p_{*}} \pi_{3}(Sp/U)$$

Since $p_*: \pi_3(Sp) \to \pi_3(Sp/U)$ is surjective, the assertion follows.

Lemma 1.2. Let $\eta_s: S^{2s-1} \to S^{2s-2} = \mathbb{C}P^{s-1}/\mathbb{C}P^{s-2}$ be the attaching map of the 2s-cell of $\mathbb{C}P^s/\mathbb{C}P^{s-2}$ $(s \ge 2)$. Then, η_s is null homotopic if s is odd and it is homotopic to $S^{2s-4}h_2$ if s is even.

П

Proof. Let g_j (j = 2s - 2, 2s) be the generators of $H^j(\mathbb{C}P^s/\mathbb{C}P^{s-2}; \mathbb{F}_2)$. Since

$$Sq^2g_{2s-2} = \begin{cases} g_{2s} & s \text{ is even} \\ 0 & s \text{ is odd} \end{cases},$$

the assertion follows.

Lemma 1.3. For integers n and m such that $n \geq 2$, the composition of the suspension $\sigma: \widetilde{KO}_{m-1}(S^n) \to \widetilde{KO}_m(S^{n+1})$ and $(S^{n-2}h_2)_*: \widetilde{KO}_m(S^{n+1}) \to \widetilde{KO}_m(S^n)$ coincides with the multiplication map by α .

Proof. Let $f: S^{m+q-1} \to KO_q \wedge S^n$ be a map which represents an element ξ of $\widetilde{KO}_{m-1}(S^n)$. Then

$$S^{m+q} \xrightarrow{Sf} S^1 \wedge KO_q \wedge S^n \xrightarrow{T \wedge 1_{S^n}} KO_q \wedge S^1 \wedge S^n$$

$$= KO_q \wedge S^{n+1} \xrightarrow{1_{KO_q} \wedge S^{n-2}h_2} KO_q \wedge S^n$$

represents $(S^{n-2}h_2)_*\sigma(\xi)$. Hence the following composition also represents $(S^{n-2}h_2)_*\sigma(\xi)$.

$$S^{m+q+2} \xrightarrow{S^3 f} S^2 \wedge S^1 \wedge KO_q \wedge S^n \xrightarrow{1_{S^2} \wedge T \wedge 1_{S^n}}$$

$$S^2KO_q \wedge S^1 \wedge S^n \xrightarrow{(\varepsilon_{q+1}S\varepsilon_q)\wedge S^{n-2}h_2} KO_{q+2} \wedge S^n$$

Choose $ih_2: S^3 \to Sp/U$ as a representative of α . Let $(\mu_{p,q}: KO_p \wedge KO_q \to KO_{p+q})_{p,q \in \mathbb{Z}}$ be the product structure of KO and $(\iota_p: S^p \to KO_p)_{p \in \mathbb{Z}}$ the unit. Since $i: S^2 \to Sp/U = KO_2$ is identified with ι_2 ,

$$S^{2} \wedge KO_{q} \xrightarrow{i \wedge 1_{KO_{q}}} (Sp/U) \wedge KO_{q}$$

$$\downarrow S\varepsilon_{q} \qquad \qquad \downarrow \mu_{2,q}$$

$$SKO_{q+1} \xrightarrow{\varepsilon_{q+1}} KO_{q+2}$$

is homotopy commutative. Hence $\alpha\xi$ is represented by the following composition.

$$S^{m+q+2} = S^3 \wedge S^{m+q-1} \xrightarrow{h_2 \wedge f} S^2 \wedge KO_q \wedge S^n \xrightarrow{(\varepsilon_{q+1} S \varepsilon_q) \wedge 1_{S^n}} KO_{q+2} \wedge S^n$$

Since Sh_2 is order 2 in $\pi_4(S^3)$, $h_2 \wedge 1_{S^n}: S^{n+3} = S^3 \wedge S^n \to S^2 \wedge S^n = S^{n+2}$ is homotopic to $1_{S^n} \wedge h_2: S^{n+3} = S^n \wedge S^3 \to S^n \wedge S^2 = S^{n+2}$ for $n \geq 0$. This implies that

$$S^3 \wedge KO_q \wedge S^n \xrightarrow{h_2 \wedge 1_{KO_q} \wedge 1_{S^n}} S^2 \wedge KO_q \wedge S^n$$

is homotopic to

$$S^2 \wedge S^1 \wedge KO_q \wedge S^n \xrightarrow{1_{S^2} \wedge T \wedge 1_{S^n}} S^2 KO_q \wedge S^1 \wedge S^n \xrightarrow{1_{S^2 KO_q} \wedge S^{n-2}h_2} S^2 KO_q \wedge S^n,$$
 which shows $(S^{n-2}h_2)_* \sigma(\xi) = \alpha \xi$.

Let us denote by $u_i \in \widetilde{KO}_i(S^i)$ $(i \ge 0)$ the canonical generators, that is, u_i 's are given by $u_0 = 1$, $\sigma(u_i) = u_{i+1}$.

For $s \geq 2$, consider the cofiber sequence $\mathbb{C}P^{s-1}/\mathbb{C}P^{s-2} \xrightarrow{\iota} \mathbb{C}P^s/\mathbb{C}P^{s-2} \xrightarrow{\kappa} \mathbb{C}P^s/\mathbb{C}P^{s-1}$. We have the long exact sequences associated with this cofiber sequence.

$$\cdots \to \widetilde{KO}_{n+1}(\mathbb{C}P^s/\mathbb{C}P^{s-1}) \xrightarrow{\partial} \widetilde{KO}_n(\mathbb{C}P^{s-1}/\mathbb{C}P^{s-2}) \xrightarrow{\iota_*} \widetilde{KO}_n(\mathbb{C}P^s/\mathbb{C}P^{s-2})$$

$$\xrightarrow{\kappa_*} \widetilde{KO}_n(\mathbb{C}P^s/\mathbb{C}P^{s-1}) \to \cdots$$

The connecting homomorphism Lemma 1.4.

$$\partial: \widetilde{KO}_{n+1}(\mathbb{C}P^s/\mathbb{C}P^{s-1}) \to \widetilde{KO}_n(\mathbb{C}P^{s-1}/\mathbb{C}P^{s-2})$$

is given by

$$\partial(u_{2s}) = \begin{cases} \alpha u_{2s-2} & s \text{ is even} \\ 0 & s \text{ is odd} \end{cases}.$$

Proof. Since the composition

$$\widetilde{KO}_n(S^{2s-1}) \overset{\sigma}{\to} \widetilde{KO}_{n+1}(S^{2s}) = \widetilde{KO}_{n+1}(\boldsymbol{C}P^s/\boldsymbol{C}P^{s-1}) \overset{\partial}{\to} \widetilde{KO}_n(\boldsymbol{C}P^{s-1}/\boldsymbol{C}P^{s-2})$$

coincides with the map induced by the attaching map η_s , the first formula follows from Lemma 1.2 and 1.3.

The following result is known.

Proposition 1.1. The complexification map $\mathbf{c}: KO^*(X) \to K^*(X)$, the realization map $\mathbf{r}: K^*(X) \to KO^*(X)$ and the conjugation map $\Psi^{-1}:$ $K^*(X) \to K^*(X)$ are natural transformation of cohomology theories having the following properties.

- 1) c is a homomorphism of graded rings which maps $\alpha \in KO^{-1}$ to 0, $x \in KO^{-4} \text{ to } 2t^2 \text{ and } y \in KO^{-8} \text{ to } t^4.$
- 2) \boldsymbol{r} is a homomorphism of graded abelian groups which maps $t^{4i} \in K^{-8i}$ to $2y^i$, $t^{4i+1} \in K^{-8i-2}$ to α^2y^i and $t^{4i+2} \in K^{-8i-4}$ to xy^i for $i \in \boldsymbol{Z}$.

 3) Ψ^{-1} is a ring homomorphism which maps $t \in K^{-1}$ to -t.

 4) $\boldsymbol{rc} = 2id_{KO^*(X)}$, $\boldsymbol{cr} = id_{K^*(X)} + \Psi^{-1}$ and $\Psi^{-1}\Psi^{-1} = id_{K^*(X)}$ hold.

We denote by $B: \widetilde{K}_n(X) \to \widetilde{K}_{n+2}(X)$ the Bott periodicity map B(a) = taand by $\alpha: \widetilde{KO}_n(X) \to \widetilde{KO}_{n-1}(X)$, the multiplication map by $\alpha \in KO_1$. A fiber sequence $U/O \to BO \to BU$ gives a cofiber sequence $\Sigma KO \to KO \xrightarrow{c} K$ of spectra. The following result is known.

Proposition 1.2. There is a long exact sequence

$$\cdots \to \widetilde{K}_{n+1}(X) \xrightarrow{rB^{-1}} \widetilde{KO}_{n-1}(X) \xrightarrow{\alpha} \widetilde{KO}_n(X) \xrightarrow{c} \widetilde{K}_n(X) \xrightarrow{rB^{-1}} \widetilde{KO}_{n-2}(X) \xrightarrow{\alpha} \widetilde{KO}_{n-1}(X) \to \cdots$$

Let X be a space such that $K_1(X) = \{0\}$ $(X = \mathbb{C}P^l)$ Corollary 1.1. for example). There is an exact sequence

$$0 \to \widetilde{KO}_{2n-1}(X) \xrightarrow{\alpha} \widetilde{KO}_{2n}(X) \xrightarrow{c} \widetilde{K}_{2n}(X) \xrightarrow{rB^{-1}} \widetilde{KO}_{2n-2}(X) \xrightarrow{\alpha} \widetilde{KO}_{2n-1}(X) \to 0.$$

2. Conjugation in $K_*(\mathbb{C}P^l)$

Lemma 2.1. Let E be a ring spectrum and $\psi: E \to E$ be a map of ring spectra. For a space X, consider the Kronecker pairing $\langle , \rangle : E^*(X) \otimes_{E_*} E_*(X) \to E_*$. Then, $\psi(\langle \xi, a \rangle) = \langle \psi(\xi), \psi(a) \rangle$ for $\xi \in E^*(X)$ and $a \in E_*(X)$.

Proof. Let $g: X \to E_n$ be the map which represents $\xi \in E^*(X)$ and $f: S^{k+m} \to E_k \wedge X$ the map which represents $a \in E_m(X)$. Then, $\psi_n g: X \to E_n$ and $(\psi_k \wedge 1_X)f: f: S^{k+m} \to E_k \wedge X$ represent $\psi(\xi)$, $\psi(a)$, respectively. The assertion follows from the homotopy commutativity of the following diagram. Here $\mu_{k,n}: E_k \wedge E_n \to E_{k+n}$ denote the ring structure of E.

$$S^{k+m} \xrightarrow{f} E_k \wedge X \xrightarrow{1_{E_k} \wedge g} E_k \wedge E_n \xrightarrow{\mu_{k,n}} E_{k+n}$$

$$\downarrow \psi_k \wedge 1_X \qquad \qquad \downarrow \psi_k \wedge \psi_n \qquad \qquad \downarrow \psi_{k+n}$$

$$E_k \wedge X \xrightarrow{1_{E_k} \wedge \psi_n g} E_k \wedge E_n \xrightarrow{\mu_{k,n}} E_{k+n}$$

Let us denote by η_l the canonical complex line bundle over $\mathbb{C}P^l$. Put $\mu_l = \eta_l - 1 \in \widetilde{K}^0(\mathbb{C}P^l)$. Then, $K^*(\mathbb{C}P^l) = K^*[\mu_l]/(\mu_l^{l+1})$ and $\Psi^{-1}(\mu_l) = (1 + \mu_l)^{-1} - 1$. We denote by $\beta_i \in H_{2i}(\mathbb{C}P^l; \mathbb{Z})$ the dual of $u^i \in H^{2i}(\mathbb{C}P^l; \mathbb{Z})$. Then β_i generates $H_{2i}(\mathbb{C}P^l; \mathbb{Z})$ which is isomorphic to \mathbb{Z} . The Atiyah-Hirzebruch spectral sequence $E_{p,q}^2(K; \mathbb{C}P^l) = H_p(\mathbb{C}P^l; K_q) \Rightarrow K_{p+q}(\mathbb{C}P^l)$ collapses and $K_*(\mathbb{C}P^l)$ is a free K_* -module generated by $\beta_0, \beta_1, \ldots, \beta_l$, where $\beta_i \in K_{2i}(\mathbb{C}P^l)$ is the dual of $t^{-i}\mu_l^i \in K^{2i}(\mathbb{C}P^l)$ ([1]). In order to calculate $\Psi^{-1}(\beta_j)$, we use the following fact.

Lemma 2.2. For a positive integer i, the following equality holds in $\mathbb{Z}[[z]]$.

$$(1 - (1+z)^{-1})^i = \sum_{k=i}^{\infty} (-1)^{k-i} {\binom{k-1}{i-1}} z^k$$

Proof. By the Taylor expansion of $(1+z)^{-i}$, we have

$$(1-(1+z)^{-1})^i = z^i(1+z)^{-i} = z^i \sum_{s=0}^{\infty} (-1)^s \binom{i+s-1}{i-1} z^s = \sum_{k=i}^{\infty} (-1)^{k-i} \binom{k-1}{i-1} z^k.$$

Proposition 2.1. $\Psi^{-1}: K_*(\mathbb{C}P^l) \to K_*(\mathbb{C}P^l)$ is given as follows.

$$\Psi^{-1}(\beta_0) = \beta_0, \qquad \Psi^{-1}(\beta_j) = \sum_{k=1}^{j} {j-1 \choose k-1} t^{j-k} \beta_k \quad \text{if } j \ge 1$$

Proof. We put $\Psi^{-1}(\beta_j) = \sum_{k=0}^j c_{kj}\beta_k \ (c_{kj} \in K_{2j-2k})$. By Lemma 2.1, we have

$$\left\langle \Psi^{-1}\left(t^{-i}\mu_l^i\right), \Psi^{-1}(\beta_j)\right\rangle = \Psi^{-1}\left(\left\langle t^{-i}\mu_l^i, \beta_j\right\rangle\right) = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases} \cdots (1).$$

For i = 0, since $\langle 1, \Psi^{-1}(\beta_j) \rangle = \sum_{k=0}^{j} c_{kj} \langle 1, \beta_k \rangle = c_{0j}$, we have $c_{00} = 1$ and $c_{0j} = 0$ if j > 0. Suppose that i > 0. By Lemma 2.2,

$$\begin{split} \Psi^{-1}(t^{-i}\mu_l^i) &= (-t)^{-i}((1+\mu_l)^{-1}-1)^i \\ &= t^{-i}(1-(1+\mu_l)^{-1})^i \\ &= t^{-i}\sum_{s=i}^{\infty} (-1)^{s-i} \binom{s-1}{i-1} \mu_l^s. \end{split}$$

Thus we have

$$\langle \Psi^{-1}(t^{-i}\mu_l^i), \Psi^{-1}(\beta_j) \rangle = \left\langle t^{-i} \sum_{s=i}^{\infty} (-1)^{s-i} \binom{s-1}{i-1} \mu_l^s, \sum_{k=0}^{j} c_{kj} \beta_k \right\rangle$$

$$= \sum_{s=i}^{\infty} \sum_{k=0}^{j} (-1)^{s-i} \binom{s-1}{i-1} t^{s-i} c_{kj} \left\langle t^{-s} \mu_l^s, \beta_k \right\rangle$$

$$= \sum_{k=i}^{j} (-1)^{k-i} \binom{k-1}{i-1} t^{k-i} c_{kj}$$

if $0 < i \le j$. It follows from (1) that $c_{jj} = 1$ and, if 0 < i < j,

$$\sum_{k=i}^{j-1} (-1)^{k-i} \binom{k-1}{i-1} t^{k-i} c_{kj} + (-1)^{j-i} \binom{j-1}{i-1} t^{j-i} = 0.$$

Therefore

$$c_{ij} = -\sum_{k=i+1}^{j-1} (-1)^{k-i} {\binom{k-1}{i-1}} t^{k-i} c_{kj} - (-1)^{j-i} {\binom{j-1}{i-1}} t^{j-i} \cdots (2).$$

We show $c_{ij} = \binom{j-1}{i-1} t^{j-i}$ by the induction on j-i. It can be easily verified from (2) that $c_{j-1\,j} = \binom{j-1}{j-2} t$. Assume that j-i=r and $c_{kj} = \binom{j-1}{k-1} t^{j-k}$ holds if j-k < r. Then,

$$c_{ij} = -\sum_{k=i+1}^{j-1} (-1)^{k-i} {k-1 \choose i-1} {j-1 \choose k-1} t^{j-i} - (-1)^{j-i} {j-1 \choose i-1} t^{j-i}$$

$$= -\sum_{k=i+1}^{j} (-1)^{k-i} {k-1 \choose i-1} {j-1 \choose k-1} t^{j-i}$$

$$= -\sum_{k=i+1}^{j} (-1)^{k-i} {j-1 \choose i-1} {j-i \choose k-i} t^{j-i}$$

$$= -{j-1 \choose i-1} t^{j-i} \sum_{k=i+1}^{j} (-1)^{k-i} {j-i \choose k-i}$$

Hence it remains to show that $\sum_{k=i+1}^{j} (-1)^{k-i} {j-i \choose k-i} = -1$. But this follows from

$$\sum_{p=0}^{j-i} (-1)^p \binom{j-i}{p} = ((-1)+1)^{j-i} = 0.$$

3. Eigen spaces of the conjugation map

We embed $K_*(\mathbb{C}P^l)$ into $K_*(\mathbb{C}P^{\infty})$. Then $K_*(\mathbb{C}P^l)$ is a submodule of $K_*(\mathbb{C}P^{\infty})$ spanned by $\beta_0, \beta_1, \ldots, \beta_l$.

Recall the Pontrjagin ring structure on $K_*(CP^\infty)$ ([1]). Let $m: CP^\infty \times CP^\infty \to CP^\infty$ be the product map and $\eta \in K^0(CP^\infty)$ the class of the canonical line bundle on CP^∞ . Put $\mu = \eta - 1 \in K^*(CP^\infty)$ and $\mu_1 = \mu \times 1, \mu_2 = 1 \times \mu \in K^*(CP^\infty \times CP^\infty)$. Since $m^*: K^*(CP^\infty) \to K^*(CP^\infty \times CP^\infty)$ maps μ to $\mu_1 + \mu_2 + \mu_1\mu_2$, we have

$$m^*\left((t^{-1}\mu)^k\right) = \sum_{i,j \geq 0, \ i+j \leq k} \frac{k!}{i!j!(k-i-j)!} t^{k-i-j} (t^{-1}\mu_1)^{k-j} (t^{-1}\mu_2)^{k-i}.$$

Thus we have

$$\langle m_*(\beta_i \otimes \beta_j), (t^{-1}\mu)^k \rangle = \frac{k!}{(k-i)!(k-j)!(i+j-k)!} t^{i+j-k}.$$

Hence the Pontrjagin ring structure $m_*: K_*(\mathbb{C}P^{\infty}) \otimes K_*(\mathbb{C}P^{\infty}) \to K_*(\mathbb{C}P^{\infty})$ is given by

$$m_*(\beta_i \otimes \beta_j) = \sum_{i,j \le k \le i+j} \frac{k!}{(k-i)!(k-j)!(i+j-k)!} t^{i+j-k} \beta_k.$$

For $x, y \in K_*(\mathbb{C}P^{\infty})$, we denote $m_*(x \otimes y)$ by xy for short below.

Since $K_*(\mathbb{C}P^{\infty})$ is torsion free, we can regard $K_*(\mathbb{C}P^{\infty})$ as a subalgebra of $K_*(\mathbb{C}P^{\infty}) \otimes \mathbb{Q}$. Put $\tilde{\beta}_i = i!t^{-i}\beta_i$ and $z = \tilde{\beta}_1$. Then, $\beta_i\beta_1 = (i+1)\beta_{i+1} + it\beta_i$ implies a recursive formula $\tilde{\beta}_{i+1} = (z-i)\tilde{\beta}_i$. Hence we have

$$\tilde{\beta}_i = z(z-1)\cdots(z-i+1).$$

We set

The above argument shows $\beta_i = t^i\binom{z}{i}$ and $K_*(\mathbb{C}P^{\infty}) \subset K_* \otimes \mathbb{Q}[z]$. This implies the following.

Proposition 3.1. $K_*(\mathbb{C}P^{\infty})\otimes \mathbb{Q}$ is a polynomial algebra $K_*\otimes \mathbb{Q}[z]$ over $K_*\otimes \mathbb{Q}=\mathbb{Q}[t,t^{-1}]$ and $K_*(\mathbb{C}P^{\infty})$ is the subalgebra of $K_*\otimes \mathbb{Q}[z]$ generated by $\binom{z}{i}$ for $i=1,2,3,\ldots$

Remark 3.1. 1) $K_0(\mathbb{C}P^{\infty}) \otimes \mathbb{Q}$ is a polynomial algebra $\mathbb{Q}[z]$. $K_0(\mathbb{C}P^{\infty})$ is the subalgebra of $\mathbb{Q}[z]$ generated by $\binom{z}{i}$ for $i=1,2,3,\ldots$

2) $\left\{ {z \choose i} \mid i = 0, 1, 2, 3, \dots \right\}$ is a basis of a free K_* -module $K_*(\mathbb{C}P^{\infty})$ (resp. a free abelian group $K_0(\mathbb{C}P^{\infty})$). Here we set ${z \choose 0} = 1$.

Put $\bar{\Psi} = \Psi^{-1} \otimes id_{\mathbf{Q}} : K_*(\mathbf{C}P^{\infty}) \otimes \mathbf{Q} \to K_*(\mathbf{C}P^{\infty}) \otimes \mathbf{Q}$. Since $\bar{\Psi}(\beta_1) = \beta_1$ by Proposition 2.1, we have $\bar{\Psi}(z) = \bar{\Psi}(t^{-1}\beta_1) = -t^{-1}\bar{\Psi}(\beta_1) = -t^{-1}\beta_1 = -z$. Thus $\bar{\Psi}$ is a ring homomorphism given by $\bar{\Psi}(t) = -t$ and $\bar{\Psi}(z) = -z$.

It is clear that 1 and -1 are eigen values of $\bar{\Psi}$. Let us denote by W_* and Z_* the eigen spaces of $\bar{\Psi}$ corresponding to eigen values 1 and -1 respectively. We set $W_n = W_* \cap (K_n(\mathbb{C}P^{\infty}) \otimes \mathbb{Q})$ and $Z_n = Z_* \cap (K_n(\mathbb{C}P^{\infty}) \otimes \mathbb{Q})$. The following assertion is straightforward.

Proposition 3.2. Basis of W_{4k} , W_{4k-2} , Z_{4k} , Z_{4k-2} are given by the following sets of monomials, respectively.

$$\left. \left\{ \left. t^{2k}z^{2i} \right| \, i = 0, 1, 2, \dots \right\}, \qquad \left\{ \left. t^{2k-1}z^{2i-1} \right| \, i = 1, 2, 3, \dots \right\}, \\ \left. \left\{ \left. t^{2k}z^{2i-1} \right| \, i = 1, 2, 3, \dots \right\}, \qquad \left\{ \left. t^{2k-1}z^{2i} \right| \, i = 0, 1, 2, \dots \right\}$$

We define $F_k(z) \in \widetilde{K}_0(\mathbb{C}P^{\infty}) \subset \mathbb{Q}[z]$ for k = 1, 2, ... by

$$F_{2i-1}(z) = \sum_{j=i}^{2i-1} {i-1 \choose j-i} {z \choose j}, \quad F_{2i}(z) = \sum_{j=i}^{2i} \left({i \choose j-i} + {i-1 \choose j-i-1} \right) {z \choose j}.$$

Proposition 3.3.

$$F_{2i-1}(z) = {z+i-1 \choose 2i-1} = \frac{1}{(2i-1)!} z(z^2 - 1^2)(z^2 - 2^2) \cdots (z^2 - (i-1)^2)$$

$$F_{2i}(z) = \frac{z}{i} {z+i-1 \choose 2i-1} = \frac{2}{(2i)!} z^2 (z^2 - 1^2)(z^2 - 2^2) \cdots (z^2 - (i-1)^2)$$

Proof. Put $\widetilde{F}_{2i-1}(z)={z+i-1 \choose 2i-1}$, $\widetilde{F}_{2i}(z)=\frac{2}{i}{z+i-1 \choose 2i-1}$. It is easy to verify that $F_k(z)=\widetilde{F}_k(z)$ for k=1,2,3,4 and $\widetilde{F}_k(z+1)-2\widetilde{F}_k(z)+\widetilde{F}_k(z-1)=\widetilde{F}_{k-1}(z)$

for $k \ge 2$. Since $\binom{z+1}{i} - 2\binom{z}{i} + \binom{z-1}{i} = \binom{z-1}{i-2}$, we have

$$F_{2i-1}(z+1) - 2F_{2i-1}(z) + F_{2i-1}(z-1) = \sum_{j=i}^{2i-1} {i-1 \choose j-i} {z-1 \choose j-2}$$

$$= \sum_{k=i-1}^{2i-2} {i-1 \choose k-i+1} {z-1 \choose k-1}$$

$$= \sum_{k=i}^{2i-2} {i-2 \choose k-i} {z-1 \choose k-1} + \sum_{k=i-1}^{2i-3} {i-2 \choose k-i+1} {z-1 \choose k-1}$$

$$= \sum_{j=i-1}^{2i-3} {i-2 \choose j-i+1} {z-1 \choose j} + \sum_{j=i-1}^{2i-3} {i-2 \choose j-i+1} {z-1 \choose j-1}$$

$$= \sum_{j=i-1}^{2i-3} {i-2 \choose j-i+1} {z \choose j} = F_{2i-3}(z)$$

Assume $i \geq 3$ and $F_{2i-3}(z) = \widetilde{F}_{2i-3}(z)$. Then, $F_{2i-1}(z+1) - 2F_{2i-1}(z) + F_{2i-1}(z-1) = \widetilde{F}_{2i-1}(z+1) - 2\widetilde{F}_{2i-1}(z) + \widetilde{F}_{2i-1}(z-1)$.

Note that $F_{2i-1}(0) = F_{2i-1}(1) = F_{2i-1}(2) = 0$ if $i \geq 3$. Put $a_n = F_{2i-1}(n) - \widetilde{F}_{2i-1}(n)$ for $n = 0, 1, 2, \ldots$ Then $a_0 = a_1 = a_2 = 0$ and $a_{n+1} - a_n = a_n - a_{n-1}$ for $n = 1, 2, \ldots$ Hence $a_n - a_{n-1} = a_1 - a_0 = 0$ and $a_n = a_0 = 0$ for $n = 0, 1, 2, \ldots$ Therefore $F_{2i-1}(n) = \widetilde{F}_{2i-1}(n)$ for $n = 0, 1, 2, \ldots$ Since $F_{2i-1}(z)$ and $\widetilde{F}_{2i-1}(z)$ are polynomials of z, $F_{2i-1}(z) = \widetilde{F}_{2i-1}(z)$. Proof of $F_{2i}(z) = \widetilde{F}_{2i}(z)$ is similar.

By the above result, we see that $F_{2i}(-z) = F_{2i}(z)$ and $F_{2i-1}(-z) = -F_{2i-1}(z)$. Hence $F_{2i}(z) \in W_* \cap \widetilde{K}_0(\mathbb{C}P^{\infty})$ and $F_{2i-1}(z) \in Z_* \cap \widetilde{K}_0(\mathbb{C}P^{\infty})$. More precisely, the following result holds.

Corollary 3.1. Let e = 0 or 1. $\{t^{2k-e}F_{2i-e}(z) | i = 1, 2, ...\}$ is a basis of $W_* \cap \widetilde{K}_{4k-2e}(\mathbb{C}P^{\infty})$ over \mathbb{Z} . Similarly, $\{t^{2k-e}F_{2i+e-1}(z) | i = 1, 2, ...\}$ is a basis of $Z_* \cap \widetilde{K}_{4k-2e}(\mathbb{C}P^{\infty})$ over \mathbb{Z} .

Proof. Note that $F_{2i}(z)$ (resp. $F_{2i-1}(z)$) is a polynomial of degree 2i (resp. 2i-1) which is a linear combination of monomials z^2, z^4, \ldots, z^{2i} (resp. z, z^3, \ldots, z^{2i-1}). Hence z^{2i} (resp. z^{2i-1}) is a linear combination of

$$F_2(z), F_4(z), \dots, F_{2i}(z)$$
 (resp. $F_1(z), F_3(z), \dots, F_{2i-1}(z)$).

It follows that $\{F_{2i}(z)|i=1,2,3,\dots\}$ (resp. $\{F_{2i-1}(z)|i=1,2,3,\dots\}$) is a basis of $W_* \cap (\widetilde{K}_0(\mathbb{C}P^{\infty}) \otimes \mathbb{Q})$ (resp. $Z_* \cap (\widetilde{K}_0(\mathbb{C}P^{\infty}) \otimes \mathbb{Q})$) over \mathbb{Q} .

Suppose
$$\zeta \in W_* \cap \widetilde{K}_0(\mathbb{C}P^{\infty})$$
. Then, $\zeta = \sum_{i=1}^n m_i F_{2i}(z)$ for some $m_i \in \mathbb{Q}$

(i = 1, 2, ..., n). By the definition of $F_{2i}(z)$, we have

$$\zeta = \sum_{j=1}^{2n} \left(\sum_{\frac{i}{2} \le i \le j} \left(\binom{i}{j-i} + \binom{i-1}{j-i-1} \right) m_i \right) \binom{z}{j}.$$

Since $\{\binom{z}{i} | i \geq 1\}$ is a basis of a free abelian group $\widetilde{K}_0(\mathbb{C}P^{\infty})$,

$$m_j + \sum_{\frac{j}{2} \le i \le j-1} \left(\binom{i}{j-i} + \binom{i-1}{j-i-1} \right) m_i \in \mathbf{Z}.$$

Now, we can show that every m_j is an integer by induction on j. Hence $\{F_{2i}(z)|i=1,2,3,\ldots\}$ generates $W_* \cap \widetilde{K}_0(\mathbb{C}P^{\infty})$ over \mathbb{Z} .

Similarly, $\{F_{2i-1}(z)|i=1,2,3,\ldots\}$ generates $Z_* \cap \widetilde{K}_0(\mathbb{C}P^{\infty})$ over \mathbb{Z} .

Since the multiplication map $t \times : \widetilde{K}_n(\mathbb{C}P^{\infty}) \to \widetilde{K}_{n+2}(\mathbb{C}P^{\infty})$ by t maps $W_{-e} \cap \widetilde{K}_n(\mathbb{C}P^{\infty})$ isomorphically onto $W_{e-1} \cap \widetilde{K}_{n+2}(\mathbb{C}P^{\infty})$, the assertion follows from the above result.

Proposition 3.4. In Q[z], the following formula holds.

Here we set
$$\binom{j-2}{-1} = \begin{cases} 1 & j=1\\ 0 & j \neq 1 \end{cases}$$
.

Proof. Let q and m be positive integers. In Q[[z]], we have $(1-z)^{-q} = \sum_{k\geq 0} (-1)^k {-q \choose k} z^k = \sum_{k\geq 0} {k+q-1 \choose q-1} z^k$. Since $(1-z)^{m-q} = (1-z)^{-q} (1-z)^m = \left(\sum_{k\geq 0} {k+q-1 \choose q-1} z^k\right) \left(\sum_{r\geq 0} (-1)^r {m \choose m-r} z^r\right)$, the coefficient of z^p in $(1-z)^{m-q}$ is

$$\sum_{k\geq 0} (-1)^{p-k} {q+k-1 \choose q-1} {m \choose k+m-p}.$$

On the other hand, the coefficient of z^p in $(1-z)^{m-q}$ is $\binom{q-m+p-1}{q-m-1}$ if q>m, $(-1)^p\binom{m-q}{p}$ if $q\leq m$. Thus we have

$$\sum_{k>0} (-1)^k \binom{k+q-1}{q-1} \binom{m}{k+m-p} = \begin{cases} (-1)^p \binom{q-m+p-1}{q-m-1} & q > m \\ \binom{m-q}{p} & q \le m \end{cases}.$$

Apply this for (m, p, q) = (j - 1, 2j - 2i, i), (j - 1, 2j - 2i, i - 1), (j, 2j - 2i + 1, i), (j, 2j - 2i + 1, i - 1), (j - 1, 2j - 2i + 1, i), (j - 1, 2j - 2i + 1, i - 1), (j - 1, 2j - 2i + 1, i), (j - 1, 2j - 2i + 1,

1, 2j - 2i - 1, i), (j, 2j - 2i, i), (j - 1, 2j - 2i, i). We have the following formulas, where δ_{ij} denotes the Kronecker's delta $\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$.

$$\begin{split} \sum_{2i-1,j \leq k \leq 2j-1} (-1)^{k-1} \binom{k-i}{i-1} \binom{j-1}{k-j} &= \sum_{2i-1,j \leq k \leq 2j-1} (-1)^{k-1} \binom{k-i-1}{i-2} \binom{j-1}{k-j} &= \delta_{ij}, \\ \sum_{2i-1,j \leq k \leq 2j} (-1)^{k-1} \binom{k-i}{i-1} \binom{j}{k-j} &= 0, \sum_{2i-1,j \leq k \leq 2j} (-1)^{k-1} \binom{k-i-1}{i-2} \binom{j}{k-j} &= \delta_{ij}, \\ \sum_{2i-1,j \leq k \leq 2j} (-1)^{k-1} \binom{k-i}{i-1} \binom{j-1}{k-j-1} &= -\delta_{ij}, \\ \sum_{2i-1,j \leq k \leq 2j} (-1)^{k-1} \binom{k-i-1}{i-2} \binom{j-1}{k-j-1} &= 0, \sum_{2i,j \leq k \leq 2j-1} (-1)^k \binom{k-i-1}{i-1} \binom{j-1}{k-j} &= 0, \\ \sum_{k \geq 2j} (-1)^k \binom{k-i-1}{i-1} \binom{j}{k-j} &= \sum_{k \geq 2j} (-1)^k \binom{k-i-1}{i-1} \binom{j-1}{k-j-1} &= \delta_{ij}. \end{split}$$

Let A be a matrix whose (i,2j-1)-entry is $\binom{j-1}{i-j}$, (i,2j)-entry is $\binom{j}{i-j}+\binom{j-1}{i-j-1}$ and B a matrix whose (2i-1,j)-entry is $\frac{(-1)^{j-1}}{2}\binom{j-i}{i-1}+\binom{j-i-1}{i-2}$, (2i,j)-entry is $\frac{(-1)^{j}}{2}\binom{j-i-1}{i-1}$. Using the above equalities, it is straightforward to verify that BA is the unit matrix.

Corollary 3.2. The following equalities hold.

$$\begin{split} & \boldsymbol{cr}(t^{2k}\beta_{2j}) = \sum_{i=1}^{j} \binom{2j-i-1}{i-1} t^{2k+2j} F_{2i}(z) \\ & \boldsymbol{cr}(t^{2k-1}\beta_{2j-1}) = -\sum_{i=1}^{j-1} \binom{2j-i-2}{i-1} t^{2k+2j-2} F_{2i}(z) \\ & \boldsymbol{cr}(t^{2k-1}\beta_{2j}) = -\sum_{i=1}^{j} \left(\binom{2j-i}{i-1} + \binom{2j-i-1}{i-2} \right) t^{2k+2j-1} F_{2i-1}(z) \\ & \boldsymbol{cr}(t^{2k}\beta_{2j-1}) = \sum_{i=1}^{j} \left(\binom{2j-i-1}{i-1} + \binom{2j-i-2}{i-2} \right) t^{2k+2j-1} F_{2i-1}(z) \end{split}$$

Proof. By Proposition 3.4 and Corollary 3.1, we have

$$\Psi^{-1}\left(\binom{z}{j}\right) = -\sum_{1 \le i \le \frac{j+1}{2}} \frac{(-1)^{j-1}}{2} \left(\binom{j-i}{i-1} + \binom{j-i-1}{i-2}\right) F_{2i-1}(z) + \sum_{1 \le i \le \frac{j}{2}} \frac{(-1)^{j}}{2} \binom{j-i-1}{i-1} F_{2i}(z).$$

Hence

Substituting the above equalities into

$$\operatorname{\boldsymbol{cr}}(t^n\beta_j) = \operatorname{\boldsymbol{cr}}\left(t^{n+j}\binom{z}{j}\right) = t^{n+j}\left(\binom{z}{j} + (-1)^{n+j}\Psi^{-1}\left(\binom{z}{j}\right)\right),$$

the result follows.

For each positive integer n, we inductively define sequences of integers $(a(n,0),a(n,1),\ldots,a(n,n-1)), (c(n,0),c(n,1),\ldots,c(n,n-1)), (d(n,0),d(n,1),\ldots,d(n,n-1))$ by a(n,0)=1,c(n,0)=n,d(n,0)=1 and

$$\begin{split} a(n,j) &= -\sum_{i=0}^{j-1} \binom{n+j-2i-1}{n-j-1} a(n,i) \\ c(n,j) &= -(n-j) \sum_{i=0}^{j-1} \left(\left(\binom{n-2i+j-1}{n-j-1} + \binom{n-2i+j-2}{n-j-2} \right) c(n,i) \right. \\ & - \left. \left(\binom{n-2i+j}{n-j-1} + \binom{n-2i+j-1}{n-j-2} \right) d(n,i) \right) \\ d(n,j) &= -\sum_{i=0}^{j-1} \left(\left(\binom{n-2i+j-1}{n-j-1} + \binom{n-2i+j-2}{n-j-2} \right) c(n,i) \right. \\ & - \left(\binom{n-2i+j}{n-j-1} + \binom{n-2i+j-1}{n-j-2} \right) d(n,i) \right). \end{split}$$

The following result is a direct consequence of Corollary 3.2.

Proposition 3.5. The following equalities hold.

$$\operatorname{cr}\left(\sum_{j=0}^{n-1}a(n,j)t^{2j}\beta_{2n-2j}\right) = t^{2n}F_{2n}(z)$$

$$\operatorname{cr}\left(\sum_{j=0}^{n-1}\left(c(n,j)t^{2j}\beta_{2n-2j-1} + d(n,j)t^{2j-1}\beta_{2n-2j}\right)\right) = t^{2n-1}F_{2n-1}(z)$$

4. Real K-homology of complex projective spaces

Consider the Atiyah-Hirzebruch spectral sequence

$$E_{p,q}^2(KO; \mathbb{C}P^l) \cong H_p(\mathbb{C}P^l; KO_q) \Rightarrow KO_{p+q}(\mathbb{C}P^l).$$

 E^2 -term is a free KO_* -module generated by

$$\beta_0, \beta_1, \dots, \beta_l \quad (\beta_j \in E_{2j,0}^2(KO; \mathbb{C}P^l)).$$

Lemma 4.1. $d^2: E^2_{p,q}(KO; \mathbb{C}P^l) \to E^2_{p-2,q+1}(KO; \mathbb{C}P^l)$ is given by

$$d^2(\beta_j) = \begin{cases} \alpha \beta_{j-1} & \text{j is positive and even} \\ 0 & \text{otherwise} \end{cases}.$$

Proof. We first note that the *p*-skeleton $(\mathbb{C}P^l)^p$ is $\mathbb{C}P^{[\frac{p}{2}]}$ if $p \leq 2l$. Hence $E^1_{p,q}(KO,\mathbb{C}P^l)=0$ if p is odd and $E^2_{p,q}(KO;\mathbb{C}P^l)=E^1_{p,q}(KO;\mathbb{C}P^l)=0$ $\widetilde{KO}_{p+q}(\mathbb{C}P^{\frac{p}{2}}/\mathbb{C}P^{\frac{p}{2}-1})$ if p is positive and even. If p is even, $d_2: E^2_{p,q}(KO;\mathbb{C}P^l)$ $\rightarrow E_{p-2,q+1}^2(KO; \mathbb{C}P^l)$ coincides with the connecting homomorphism

$$\partial: \widetilde{KO}_{p+q}(\mathbb{C}P^{\frac{p}{2}}/\mathbb{C}P^{\frac{p}{2}-1}) \to \widetilde{KO}_{p+q-1}(\mathbb{C}P^{\frac{p}{2}-1}/\mathbb{C}P^{\frac{p}{2}-2})$$

of the long exact sequence associated with the cofibration

$$CP^{\frac{p}{2}-1}/CP^{\frac{p}{2}-2} \to CP^{\frac{p}{2}}/CP^{\frac{p}{2}-2} \to CP^{\frac{p}{2}}/CP^{\frac{p}{2}-1}.$$

Then, the result follows from Lemma 1.4.

By the above result, β_0 , β_{2i-1} $(1 \le i \le \frac{l+1}{2})$, $2\beta_{2i}$, $\alpha^2\beta_{2i}$, $x\beta_{2i}$ $(1 \le i \le \frac{l}{2})$ are cycles of the E^2 -term. We denote by $\beta_0 \in E^3_{0,0}(KO; \mathbb{C}P^l)$, $\beta_{2i-1,0} \in \mathbb{C}P^l$ $E^3_{4i-2,0}(KO; \mathbb{C}P^l), \ \beta_{2i,0} \in E^3_{4i,0}(KO; \mathbb{C}P^l), \ \beta_{2i-1,1} \in E^3_{4i,2}(KO; \mathbb{C}P^l), \ \beta_{2i,1} \in E^3_{4i,2}(KO; \mathbb{C}P^l)$ $E_{4i,4}^3(KO; \mathbb{C}P^l)$ the elements of the E^3 -term corresponding to $\beta_0, \beta_{2i-1}, 2\beta_{2i},$ $\alpha^2\beta_{2i}$, $x\beta_{2i}$, respectively. The next result follows from the definitions of these elements and Lemma 4.1.

Proposition 4.1. The following relations hold for $1 \leq i \leq \frac{l}{2}$ in the E^3 -term.

$$\alpha\beta_{2i-1,0} = \alpha\beta_{2i,0} = \alpha\beta_{2i-1,1} = \alpha\beta_{2i,1} = 2\beta_{2i-1,1} = x\beta_{2i-1,1} = 0,$$
$$x\beta_{2i,0} = 2\beta_{2i,1}, \quad x\beta_{2i,1} = 2y\beta_{2i,0}$$

By Lemma 4.1, the kernel of d^2 is generated by β_0 , β_{2i-1} $(1 \le i \le \frac{l+1}{2})$, $2\beta_{2i}, \alpha^2\beta_{2i}, x\beta_{2i} \ (1 \leq i \leq \frac{l}{2})$ over KO_* . Moreover, image of d^2 is generated by $\alpha\beta_{2i-1}$ $(1 \le i \le \frac{l}{2})$ over KO_* . Thus we have the following.

 E^3 -term is generated by the following set of elements Proposition 4.2.

- 1) If l is even, $\{\beta_{2i-1,0}, \beta_{2i,0}, \beta_{2i-1,1}, \beta_{2i,1} \mid 1 \leq i \leq \frac{l}{2}\} \cup \{\beta_0\}.$ 2) If l is odd, $\{\beta_{2i-1,0}, \beta_{2i,0}, \beta_{2i-1,1}, \beta_{2i,1} \mid 1 \leq i \leq \frac{l-1}{2}\} \cup \{\beta_0, \beta_{l,0}\}.$

Corollary 4.1.
$$E^3_{**}(KO; \mathbb{C}P^l) = E^{\infty}_{**}(KO; \mathbb{C}P^l)$$

Proof. Since $E_{p,q}^3(KO; \mathbb{C}P^l) = \{0\}$ if p+q is odd and 0 , thereis no possibility of non-trivial differentials.

Corollary 4.2. $\widetilde{KO}_n(\mathbb{C}P^l) = \{0\}$ if "l is even and n is odd." or "l is odd and $n \not\equiv 2l+1$ modulo 8."

Applying Corollary 1.1 to the above result, we have the following.

Corollary 4.3. $c: \widetilde{KO}_{2n}(\mathbb{C}P^l) \to \widetilde{K}_{2n}(\mathbb{C}P^l)$ is injective if l is even or $n \not\equiv l+1$ modulo 4. In particular, $\widetilde{KO}_{2n}(\mathbb{C}P^l)$ is \mathbb{Z} -torsion free if l is even or $n \not\equiv l+1$ modulo 4.

We define elements $\gamma_{i,s} \in KO_{2i+4s}(\mathbb{C}P^l)$ for $1 \leq i \leq 2 \left\lceil \frac{l}{2} \right\rceil$, s = 0, 1 by

$$\gamma_{2n,s} = \mathbf{r} \left(\sum_{j=0}^{n-1} a(n,j) t^{2j+2s} \beta_{2n-2j} \right),$$

$$\gamma_{2n-1,s} = \mathbf{r} \left(\sum_{j=0}^{n-1} \left(c(n,j) t^{2j+2s} \beta_{2n-2j-1} + d(n,j) t^{2j+2s-1} \beta_{2n-2j} \right) \right).$$

If l is odd, we define an element $\gamma_{l,0} \in \widetilde{KO}_{2l}(\mathbb{C}P^l)$ as follows. Since $\operatorname{cr}(t^{l-1}F_l(z)) = 0$ by Corollary 3.1 and $\operatorname{c}: \widetilde{KO}_{2l-2}(\mathbb{C}P^l) \to \widetilde{K}_{2l-2}(\mathbb{C}P^l)$ is injective by Corollary 4.3, we have $\operatorname{r}(t^{l-1}F_l(z)) = 0$. It follows from Corollary 1.1 that $t^lF_l(z)$ is in the image of $\operatorname{c}: \widetilde{KO}_{2l}(\mathbb{C}P^l) \to \widetilde{K}_{2l}(\mathbb{C}P^l)$ which is injective by Corollary 4.3. Hence there exists an unique element $\gamma_{l,0} \in \widetilde{KO}_{2l}(\mathbb{C}P^l)$ that maps to $t^lF_l(z)$ by c .

We put

$$\lambda_{2i-1} = t^{2i-1} F_{2i-1}(z) = \sum_{j=i}^{2i-1} \binom{i-1}{j-i} t^{2i-j-1} \beta_j \in \widetilde{K}_{4i-2}(\mathbb{C}P^l)$$

$$\lambda_{2i} = t^{2i} F_{2i}(z) = \sum_{j=i}^{2i} \left(\binom{i}{j-i} + \binom{i-1}{j-i-1} \right) t^{2i-j} \beta_j \in \widetilde{K}_{4i}(\mathbb{C}P^l).$$

Remark 4.1. 1) It follows from Proposition 3.3 that $\lambda_i \in K_*(\mathbb{C}P^{\infty}) \otimes \mathbb{Q} = \mathbb{Q}[t, t^{-1}, z]$ belongs to the subalgebra of $\mathbb{Q}[t, t^{-1}, z]$ generated by $\lambda_1 = tz$ and t^2 .

2) By Proposition 3.4, we have the following equality in $K_*(\mathbb{C}P^l) \otimes \mathbb{Q}$.

$$\beta_{j} = \sum_{1 \leq i \leq \frac{j+1}{2}} \frac{(-1)^{j-1}}{2} \left(\binom{j-i}{i-1} + \binom{j-i-1}{i-2} \right) t^{j-2i+1} \lambda_{2i-1} + \sum_{1 \leq i \leq \frac{j}{2}} \frac{(-1)^{j}}{2} \binom{j-i-1}{i-1} t^{j-2i} \lambda_{2i}$$

(3.5) implies the following.

Lemma 4.2.
$$c: KO_*(\mathbb{C}P^l) \to K_*(\mathbb{C}P^l)$$
 maps $\gamma_{i,s}$ to $t^{2s}\lambda_{i,s}$

Lemma 4.3. $2\beta_{2i} \in E_{4i,0}^2(KO; \mathbb{C}P^l), \ \alpha^2\beta_{2i} \in E_{4i,2}^2(KO; \mathbb{C}P^l) \ and \ x\beta_{2i} \in E_{4i,4}^2(KO; \mathbb{C}P^l) \ (1 \leq i \leq \frac{l}{2}) \ are \ permanent \ cycles \ corresponding \ to \ \gamma_{2i,0}, \ \gamma_{2i-1,1} \ and \ \gamma_{2i,1}, \ respectively. \ Hence \ \gamma_{2i,0} \in F_{4i,0} - F_{4i-1,1}, \ \gamma_{2i-1,1} \in F_{4i,2} - F_{4i-1,3} \ and \ \gamma_{2i,1} \in F_{4i,4} - F_{4i-1,5}.$

Proof. There is a map $\mathbf{r}^r: E^r_{p,q}(K; \mathbf{C}P^l) \to E^r_{p,q}(KO; \mathbf{C}P^l)$ of spectral sequences induced by $\mathbf{r}: K_*(\mathbf{C}P^l) \to KO_*(\mathbf{C}P^l)$. Since $\mathbf{r}^2(\beta_{2i}) = 2\beta_{2i}$, $\mathbf{r}^2(t\beta_{2i}) = \alpha^2\beta_{2i}$ and $\mathbf{r}^2(t^2\beta_{2i}) = x\beta_{2i}$ by 2) of (1.1), the result follows.

Lemma 4.4. $\gamma_{2i-1,0}$ belongs to the image $F_{4i-2,0}$ of the map

$$KO_{4i-2}(\mathbb{C}P^{2i-1}) \to KO_{4i-2}(\mathbb{C}P^l)$$

induced by the inclusion map for $1 \le i \le \frac{l+1}{2}$. On the other hand, $\gamma_{2i-1,0}$ does not belong to the image $F_{4i-3,1}$ of the map $KO_{4i-2}(\mathbb{C}P^{2i-2}) \to KO_{4i-2}(\mathbb{C}P^l)$.

Proof. Since $F_{2l,0} = KO_{2l}(\mathbb{C}P^l)$, it suffices to show $\gamma_{2i-1,0} \in F_{4i-2,0}$ for $1 \leq i \leq \frac{l}{2}$. Let us denote by $p: \mathbb{C}P^l \to \mathbb{C}P^l/\mathbb{C}P^{2i-1}$, $p': \mathbb{C}P^{2i} \to \mathbb{C}P^{2i}/\mathbb{C}P^{2i-1} = S^{4i}$ the quotient maps and $\iota: \mathbb{C}P^{2i} \to \mathbb{C}P^l$, $\iota': \mathbb{C}P^{2i}/\mathbb{C}P^{2i-1} \to \mathbb{C}P^l/\mathbb{C}P^{2i-1}$ the inclusion maps. We put

$$\tilde{\gamma}_{2i-1,0} = \sum_{j=0}^{n-1} \left(c(n,j) t^{2j} \beta_{2n-2j-1} + d(n,j) t^{2j-1} \beta_{2n-2j} \right).$$

 $\tilde{\gamma}_{2i-1,0}$ is regarded as an element of $K_{4i-2}(\mathbb{C}P^{2i})$ and $\gamma_{2i-1,0} \in KO_{4i-2}(\mathbb{C}P^l)$ is the image of $\tilde{\gamma}_{2i-1,0}$ by the composition $K_{4i-2}(\mathbb{C}P^{2i}) \stackrel{\iota_*}{\longrightarrow} K_{4i-2}(\mathbb{C}P^l) \stackrel{r}{\longrightarrow} KO_{4i-2}(\mathbb{C}P^l)$. Since $\beta_1, \beta_2, \dots, \beta_{2i-1} \in K_{4i-2}(\mathbb{C}P^{2i})$ are in the image of $K_{4i-2}(\mathbb{C}P^{2i-1}) \to K_{4i-2}(\mathbb{C}P^{2i}), p'_*: K_{4i-2}(\mathbb{C}P^{2i}) \to K_{4i-2}(S^{4i})$ maps $\tilde{\gamma}_{2i-1,0}$ to $t^{-1}u_{4i}$. It follows from (1.1) that $\mathbf{r}: K_{4i-2}(S^{4i}) \to KO_{4i-2}(S^{4i})$ maps $t^{-1}u_{4i}$ to zero. By the commutativity of the following diagram, $p_*(\gamma_{2i-1,0}) = p_*(\mathbf{r}(\iota_*(\tilde{\gamma}_{2i-1,0}))) = \iota'_*(\mathbf{r}(p'_*(\tilde{\gamma}_{2i-1,0}))) = \iota'_*(\mathbf{r}(t^{-1}u_{4i})) = 0$.

Hence $\gamma_{2i-1,0} \in \text{Ker } p_* = \text{Im}(KO_{4i-2}(\mathbb{C}P^{2i-1}) \to KO_{4i-2}(\mathbb{C}P^l)).$ By (4.2), $\mathbf{c}(\gamma_{2i-1,0}) = \lambda_{2i-1} = \sum_{j=i}^{2i-1} {i-1 \choose j-i} t^{2i-j-1} \beta_j \in F_{4i-2,0} - F_{4i-3,1}.$

 $\beta_{2i-1} \in E^2_{4i-2,0}(KO; \mathbb{C}P^l)$ is the permanent cycle corre-Lemma 4.5. sponding to $\gamma_{2i-1,0}$.

Proof. Since $E_{4i-2,0}^2(KO; \mathbb{C}P^l)$ is isomorphic to \mathbb{Z} generated by β_{2i-1} , the above result implies that there exists $m \in \mathbf{Z}$ such that $m\beta_{2i-1}$ is the permanent cycle corresponding to $\gamma_{2i-1,0}$. Consider a map $c^r: E^r_{p,q}(KO; \mathbb{C}P^l) \to$ $E_{p,q}^r(K; \mathbb{C}P^l)$ of spectral sequences induced by $c: KO_*(\mathbb{C}P^l) \to K_*(\mathbb{C}P^l)$. Since $c^2(m\beta_{2i-1}) = m\beta_{2i-1}$ is the permanent cycle corresponding to $c(\gamma_{2i-1,0})$ and $c(\gamma_{2i-1,0}) = \lambda_{2i-1} \equiv \beta_{2i-1}$ modulo $F_{4i-3,1}, m\beta_{2i-1} \in E^2_{2i-1,0}(K; \mathbb{C}P^l)$ is the permanent cycle corresponding to $\beta_{2i-1} \in K_{4i-2}(\mathbb{C}P^l)$. Therefore we have m=1.

Let us denote by $\beta_0 \in KO_0(\mathbb{C}P^l)$ the unique element corresponding to $\beta_0 \in E_{0,0}^3(KO; \mathbb{C}P^l)$. Clearly, $\mathbf{c}(\beta_0) = \beta_0$.

 $KO_*(\mathbb{C}P^l)$ is generated by the following set of elements Theorem 4.1. over KO_* .

- 1) If l is even, $\{\gamma_{2i-1,0}, \gamma_{2i,0}, \gamma_{2i-1,1}, \gamma_{2i,1} \mid 1 \leq i \leq \frac{l}{2}\} \cup \{\beta_0\}$. 2) If l is odd, $\{\gamma_{2i-1,0}, \gamma_{2i,0}, \gamma_{2i-1,1}, \gamma_{2i,1} \mid 1 \leq i \leq \frac{l-1}{2}\} \cup \{\beta_0, \gamma_{l,0}\}$.

By the definition of $\gamma_{i,s}$ and the above result, we have the following.

The image of $c: \widetilde{KO}_{2n}(\mathbb{C}P^l) \to \widetilde{K}_{2n}(\mathbb{C}P^l)$ is spanned Corollary 4.4. $\{t^{n-2i}\lambda_{2i} \mid 1 \le i \le \frac{l}{2}\}\ if\ n\ is\ even,\ \{t^{n-2i+1}\lambda_{2i-1} \mid 1 \le i \le \frac{l+1}{2}\}\ if\ n\ is\ odd.$

We also have the following result from (1.1), (4.1) and (4.2).

The image of $\mathbf{c} \otimes id_{\mathbf{Q}} : KO_*(\mathbf{C}P^{\infty}) \otimes \mathbf{Q} \to K_*(\mathbf{C}P^{\infty}) \otimes$ Corollary 4.5. Q is the subalgebra generated by tz and t^2 .

Relations $\alpha \gamma_{i,s} = 0$, $x \gamma_{i,s} = 2y^s \gamma_{i,1-s}$ hold for $1 \leq i \leq s$ Theorem 4.2. $2\left[\frac{l}{2}\right]$ and s=0,1 in $KO_*(\mathbb{C}P^l)$.

Proof. First, assume that l is even. We have $\widetilde{KO}_n(\mathbb{C}P^l) = \{0\}$ for odd n. Hence $\alpha \gamma_{i,s} = 0$ for dimensional reason. By (4.2) and (1.1), $c(x\gamma_{i,0}) =$ $c(2\gamma_{i,1}) = 2t^2\lambda_i$ and $c(x\gamma_{i,1}) = c(2y\gamma_{i,0}) = 2t^4\lambda_i$. Since $c: \widetilde{K}_{2n}(\mathbb{C}P^l) \to$ $\widetilde{KO}_{2n}(\mathbb{C}P^l)$ is injective by (4.3), we have $x\gamma_{i,0}=2\gamma_{i,1}$ and $x\gamma_{i,1}=2y\gamma_{i,0}$. If l is odd, since $\gamma_{i,s} \in KO_*(\mathbb{C}P^l)$ $(1 \leq i \leq 2 \lceil \frac{l}{2} \rceil, s = 0, 1)$ are the images of $\gamma_{i,s} \in KO_*(\mathbb{C}P^{l-1})$ by the map induced by the inclusion map, the same relations holds in $KO_*(\mathbb{C}P^l)$.

Proposition 3.4 enable us to describe the realization map $r: \widetilde{K}_*(\mathbb{C}P^l) \to$ $KO_*(\mathbb{C}P^l).$

Proposition 4.3.

$$\begin{split} \boldsymbol{r}(t^{4n-j}\beta_{j}) &= \sum_{1 \leq k \leq \frac{j}{4}} (-1)^{j} \binom{j-2k-1}{2k-1} y^{n-k} \gamma_{4k,0} \\ &+ \sum_{1 \leq k \leq \frac{j+2}{4}} (-1)^{j} \binom{j-2k}{2k-2} y^{n-k} \gamma_{4k-2,1} \\ \boldsymbol{r}(t^{4n+2-j}\beta_{j}) &= \sum_{1 \leq k \leq \frac{j}{4}} (-1)^{j} \binom{j-2k-1}{2k-1} y^{n-k} \gamma_{4k,1} \\ &+ \sum_{1 \leq k \leq \frac{j+2}{4}} (-1)^{j} \binom{j-2k}{2k-2} y^{n-k+1} \gamma_{4k-2,0} \\ \boldsymbol{r}(t^{4n+1-j}\beta_{j}) &= \sum_{1 \leq k \leq \frac{j+4}{4}} (-1)^{j-1} \left(\binom{j-2k}{2k-1} + \binom{j-2k-1}{2k-2} \right) y^{n-k} \gamma_{4k-1,1} \\ &+ \sum_{1 \leq k \leq \frac{j+3}{4}} (-1)^{j-1} \left(\binom{j-2k+1}{2k-2} + \binom{j-2k-1}{2k-2} \right) y^{n-k+1} \gamma_{4k-3,0} \\ \boldsymbol{r}(t^{4n+3-j}\beta_{j}) &= \sum_{1 \leq k \leq \frac{j+4}{4}} (-1)^{j-1} \left(\binom{j-2k+1}{2k-1} + \binom{j-2k-1}{2k-2} \right) y^{n-k+1} \gamma_{4k-3,0} \\ &+ \sum_{1 \leq k \leq \frac{j+3}{4}} (-1)^{j-1} \left(\binom{j-2k+1}{2k-1} + \binom{j-2k-1}{2k-2} \right) y^{n-k+1} \gamma_{4k-3,1} \end{split}$$

Proof. Since

$$\boldsymbol{cr}(t^{m-j}\beta_j) = t^{m-j}\beta_j + \Psi^{-1}(t^{m-j}\beta_j) = t^m\binom{z}{j} + \bar{\Psi}\left(t^m\binom{z}{j}\right) = t^m\binom{z}{j} + (-t)^m\binom{-z}{j}$$

and

$${z \choose j} + {-z \choose j} = \sum_{1 \le i \le \frac{j}{2}} (-1)^j {j-i-1 \choose i-1} F_{2i}(z)$$

$${z \choose j} - {-z \choose j} = \sum_{1 \le i \le \frac{j+1}{2}} (-1)^{j-1} \left({j-i \choose i-1} + {j-i-1 \choose i-2} \right) F_{2i-1}(z)$$

by Proposition 3.4, the result follows from the definition of $\gamma_{i,s}$'s and the injectivity of c.

Remark 4.2. Let us denote by $\eta_L, \eta_R : KO_* \to KO_*KO$ be the left, right unit of Hopf algebroid (KO_*, KO_*KO) . We denote by $\varphi : \widetilde{KO}_*(\mathbb{C}P^{\infty}) \to KO_*KO \otimes_{KO_*} \widetilde{KO}_*(\mathbb{C}P^{\infty})$ the KO_*KO -comodule structure map and by $\psi : \widetilde{K}_*(\mathbb{C}P^{\infty}) \to K_*K \otimes_{K_*} \widetilde{K}_*(\mathbb{C}P^{\infty})$ the K_*K -comodule structure map.

Since $\eta_L(\alpha) = \eta_R(\alpha)$ ([3]) and $\widetilde{KO}_*(\mathbb{C}P^{\infty})$ is α -torsion group, it follows from (4.3) that $KO_*KO\otimes_{KO_*}\widetilde{KO}_*(\mathbb{C}P^{\infty})$ is \mathbb{Z} -torsion free. Hence the vertical maps of the following diagram is injective by (4.3) and the results on KO_*KO

([3]).

$$\widetilde{KO}_*(CP^{\infty}) \xrightarrow{\varphi} KO_*KO \otimes_{KO_*} \widetilde{KO}_*(CP^{\infty})$$

$$\downarrow c \qquad \qquad \downarrow (c \wedge c) \otimes c$$

$$\widetilde{K}_*(CP^{\infty}) \xrightarrow{\psi} K_*K \otimes_{K_*} \widetilde{K}_*(CP^{\infty})$$

If we set $\psi(\beta_j) = \sum_{i=1}^j \alpha_{ij} \otimes \beta_i \ (\alpha_{ij} \in K_{2j-2i}K)$, then $\alpha_{jj} = 1$ and a relation $(j+1)\beta_{j+1} = \beta_1\beta_j - jt\beta_j$ implies a recursive formula on α_{ij} 's.

$$(j+1)\alpha_{ij+1} = (iv - ju)\alpha_{ij} + i\alpha_{i-1j}$$
 and $\alpha_{ii} = 1$ for $j \ge i \ge 1$

Here, we put $u = \eta_L(t)$ and $v = \eta_R(t)$ for the left, right unit $\eta_L, \eta_R : K_* \to K_*K$ of Hopf algebroid (K_*, K_*K) . In particular, we have $(j+1)\alpha_{1j+1} = (v-ju)\alpha_{1j}$, hence $\alpha_{1j} = u^j v^{-1} \binom{u^{-1}v}{j}$ for $j \geq 1$. It seems to be difficult to give a good description of α_{ij} for $i \geq 2$. Using (4.2), 2) of (4.1) and above observation, it may be possible to determine $\psi(\gamma_{i,s})$ for small i.

5. Pontrjagin ring structure of $KO_*(\mathbb{C}P^{\infty})$

The relation $\beta_i\beta_j=\sum\limits_{i,j\leq k\leq i+j}\frac{k!}{(k-i)!(k-j)!(i+j-k)!}t^{i+j-k}\beta_k$ implies the following formula.

Proposition 5.1.

$${z \choose i} {z \choose j} = \sum_{i,j \le k \le i+j} \frac{k!}{(k-i)!(k-j)!(i+j-k)!} {z \choose k}$$

We put

$$A_{i,j,k} = \sum_{p=i}^{2i-1} \sum_{q=j}^{2j-1} \sum_{p,q,2k \le r \le p+q} \frac{(-1)^r}{2} \binom{i-1}{p-i} \binom{j-1}{q-j} \binom{r}{p} \binom{p}{r-q} \binom{r-k-1}{k-1},$$

$$B_{i,j,k} = \sum_{p=i}^{2i-1} \sum_{q=j}^{2j} \sum_{p,q,2k \le r \le p+q} \frac{(-1)^{r-1}}{2} \binom{i-1}{p-i} \binom{j-1}{q-j} + \binom{j-1}{q-j-1},$$

$$\times \binom{r}{p} \binom{p}{r-q} \binom{r}{k-1} + \binom{r-k-1}{k-2},$$

$$C_{i,j,k} = \sum_{p=i}^{2i} \sum_{q=j}^{2j} \sum_{p,q,2k \le r \le p+q} \frac{(-1)^r}{2} \binom{i}{p-i} + \binom{i-1}{p-i-1},$$

$$\times \binom{j}{q-j} + \binom{j-1}{q-j-1} \binom{r}{p} \binom{p}{r-q} \binom{r-k-1}{k-1}.$$

Proposition 5.2. The following relations hold in $K_*(\mathbb{C}P^{\infty})$.

$$F_{2i-1}(z)F_{2j-1}(z) = \sum_{k=1}^{i+j-1} A_{i,j,k}F_{2k}(z),$$

$$F_{2i-1}(z)F_{2j}(z) = \sum_{k=1}^{i+j} B_{i,j,k}F_{2k-1}(z),$$

$$F_{2i}(z)F_{2j}(z) = \sum_{k=1}^{i+j} C_{i,j,k}F_{2k}(z).$$

Proof. Since $F_{2i-1}(z)F_{2j-1}(z)$, $F_{2i}(z)F_{2j}(z)$ belong to $W_* \cap \widetilde{K}_0(\mathbb{C}P^{\infty})$ and $F_{2i-1}(z)F_{2j}(z)$ belongs to $Z_* \cap \widetilde{K}_0(\mathbb{C}P^{\infty})$, $F_{2i-1}(z)F_{2j-1}(z)$, $F_{2i}(z)F_{2j}(z)$ are linear combinations of $F_{2k}(z)$'s and $F_{2i-1}(z)F_{2j}(z)$ is a linear combination of $F_{2k-1}(z)$'s. The result follows from the definition of $F_i(z)$, (5.1) and Proposition 3.4.

The above relations imply the next result which gives the product structure of $KO_*(\mathbb{C}P^{\infty})$.

Theorem 5.1. The following relations hold in $KO_*(\mathbb{C}P^{\infty})$.

$$\begin{split} \gamma_{2i-1,0}\gamma_{2j-1,0} &= \sum_{0 \leq s \leq \frac{i+j-2}{2}} A_{i,j,i+j-2s-1} y^s \gamma_{2i+2j-4s-2,0} \\ &+ \sum_{0 \leq s \leq \frac{i+j-3}{2}} A_{i,j,i+j-2s-2} y^s \gamma_{2i+2j-4s-4,1}, \\ \gamma_{2i-1,0}\gamma_{2j-1,1} &= \sum_{0 \leq s \leq \frac{i+j-2}{2}} A_{i,j,i+j-2s-1} y^s \gamma_{2i+2j-4s-2,1} \\ &+ \sum_{0 \leq s \leq \frac{i+j-3}{2}} A_{i,j,i+j-2s-2} y^{s+1} \gamma_{2i+2j-4s-4,0}, \\ \gamma_{2i-1,1}\gamma_{2j-1,1} &= \sum_{0 \leq s \leq \frac{i+j-3}{2}} A_{i,j,i+j-2s-1} y^{s+1} \gamma_{2i+2j-4s-2,0} \\ &+ \sum_{0 \leq s \leq \frac{i+j-3}{2}} A_{i,j,i+j-2s-2} y^{s+1} \gamma_{2i+2j-4s-4,1}, \\ \gamma_{2i-1,0}\gamma_{2j,0} &= \sum_{0 \leq s \leq \frac{i+j-1}{2}} B_{i,j,i+j-2s} y^s \gamma_{2i+2j-4s-1,0} \\ &+ \sum_{0 \leq s \leq \frac{i+j-2}{2}} B_{i,j,i+j-2s-1} y^s \gamma_{2i+2j-4s-3,1}, \\ \gamma_{2i-1,1}\gamma_{2j,0} &= \sum_{0 \leq s \leq \frac{i+j-2}{2}} B_{i,j,i+j-2s} y^s \gamma_{2i+2j-4s-1,1} \\ &+ \sum_{0 \leq s \leq \frac{i+j-2}{2}} B_{i,j,i+j-2s-1} y^{s+1} \gamma_{2i+2j-4s-3,0}, \end{split}$$

$$\begin{split} \gamma_{2i-1,0}\gamma_{2j,1} &= \sum_{0 \leq s \leq \frac{i+j-1}{2}} B_{i,j,i+j-2s}y^s \gamma_{2i+2j-4s-1,1} \\ &+ \sum_{0 \leq s \leq \frac{i+j-2}{2}} B_{i,j,i+j-2s-1}y^{s+1} \gamma_{2i+2j-4s-3,0}, \\ \gamma_{2i-1,1}\gamma_{2j,1} &= \sum_{0 \leq s \leq \frac{i+j-1}{2}} B_{i,j,i+j-2s}y^{s+1} \gamma_{2i+2j-4s-1,0} \\ &+ \sum_{0 \leq s \leq \frac{i+j-2}{2}} B_{i,j,i+j-2s-1}y^{s+1} \gamma_{2i+2j-4s-3,1}, \\ \gamma_{2i,0}\gamma_{2j,0} &= \sum_{0 \leq s \leq \frac{i+j-1}{2}} C_{i,j,i+j-2s}y^s \gamma_{2i+2j-4s,0} \\ &+ \sum_{0 \leq s \leq \frac{i+j-2}{2}} C_{i,j,i+j-2s-2}y^s \gamma_{2i+2j-4s-2,1}, \\ \gamma_{2i,0}\gamma_{2j,1} &= \sum_{0 \leq s \leq \frac{i+j-1}{2}} C_{i,j,i+j-2s-2}y^s \gamma_{2i+2j-4s-2,0}, \\ \gamma_{2i,1}\gamma_{2j,1} &= \sum_{0 \leq s \leq \frac{i+j-1}{2}} C_{i,j,i+j-2s-2}y^{s+1} \gamma_{2i+2j-4s-2,0}, \\ \gamma_{2i,1}\gamma_{2j,1} &= \sum_{0 \leq s \leq \frac{i+j-1}{2}} C_{i,j,i+j-2s-2}y^{s+1} \gamma_{2i+2j-4s-2,1} \\ &+ \sum_{0 \leq s \leq \frac{i+j-2}{2}} C_{i,j,i+j-2s-2}y^{s+1} \gamma_{2i+2j-4s-2,1} \end{split}$$

OSAKA PREFECTURE UNIVERSITY 1-1 GAKUEN-CHO, NAKAKU, SAKAI, OSAKA 599-8531 JAPAN e-mail: yamaguti@las.osakafu-u.ac.jp

References

- [1] J. F. Adams, Stable Homotopy and Generalised Homology, Chicago Lectures in Math., Univ. of Chicago (1974).
- [2] M. Karoubi, *K-theory*, Grundlehren der mathematischen Wissenshaften 226, Springer-Verlag (1978).
- [3] R. M. Switzer, Algebraic Topology Homotopy and Homology, Grundlehren der mathematischen Wissenshaften **212**, Springer-Verlag, (1975).
- [4] A. Yamaguchi, Real K-cohomology of complex projective spaces, to appear.
- [5] ______, The structure of the Hopf algebroid associated with the elliptic homology theory, Osaka J. Math. **33**-1 (1996), 57–68.