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Real K-homology of complex projective spaces

By

Atsushi YAMAGUCHI

Introduction

The real K-homology theory is one of a few examples of generalized homol-
ogy theories which take values in the category of comodules over the associated
Hopf algebroid, which are not complex oriented in the sense of Adams [1],
namely the real K-cohomology of the infinite dimensional complex projective
space does not have a structure of formal group law induced by the group
structure m : CP* x CP* — CP*. However, the real K-homology of the
infinite dimensional complex projective space has the Pontrjagin ring structure
which is regarded as a virtual dual of non-existent structure of formal group law
([4]). From this point of view, the ring structure of the real K-homology of the
infinite dimensional complex projective space might be of some interest. The
aim of this paper is to determine the module structure of the real K-homology
of complex projective spaces over the coefficient ring KO, and to describe the
ring structure of the real K-homology of the infinite complex projective space.

In the first section, we prepare some necessary results in the following sec-
tions. Next, we determine the “conjugation map” on K, (CP') induced by the
map BU(n) — BU(n) which classifies the complex conjugate of the canoni-
cal bundle. We make some analysis on the conjugation map in section three
and define certain elements of K, (C P*) which generates the image of the com-
plexification map KO,(CP>) — K,(CP>). In section four, we determine the
K O,-module structure of K, (CP!) by using the Atiyah-Hirzebruch spectral se-
quence. It turns out that the complexification map ¢ : I?é*(CPl) — K.(CPY
is injective if [ is even or co. By virtue of this fact, we can describe the ring
structure of KO, (CP>) by examining the image of ¢ in the last section.

1. Preliminaries
We first recall the Bott periodicity

0~Q(Zx BO), OJ/U~Q0, U/Sp~Q0/U), Zx BSp=~QU/Sp)
Sp~Q(Z x BSp), Sp/U~QSp, U/O~Q(Sp/U), Z x BO ~QU/0O).
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Thus the KO-spectrum KO = (g, : SKO,, — KO, +1)nez is given as follows.

KOg, = Z x BO, KOgn+1 =U/O, KOgnyi2=5Sp/U, KOg,43 = Sp,
KOgpya = Z x BSp, KOgny5 =U/Sp, KOsgni6=0/U, KOguy7=0.

We also recall that K* = Z[t,t~ '], KO* = Z|a, z,y,y~ /2, o3, ax, 2% —
4y), where t, o, x and y are generators of K2 = my(K) =2 Z, KO™! =
m(KO) =2 Z/2Z, KO~ = m)(KO) =2 Z, KO8 = 73(KO) = Z. Note that
t, a are the homotopy classes of the inclusion maps S? = CP! — BU = K,
S = RP' — BO = KO, to the bottom cells.

Let us denote by hs : S® — S? the Hopf map, by j : S3 = Sp(1) — Sp,
i: 8% = Sp(1)/U(1) — Sp/U the inclusion maps of the bottom cells, and by
p:Sp — Sp/U the quotient map. Then

g3 ha g2

s [
Sp —2 Sp/U
commutes.

Lemma 1.1.  The homotopy class of iha = pj generates w3(Sp/U) =
Z/2Z. Hence ihs represents a € m1(KO) = w3(KO3).

Proof. By the commutativity of the above diagram, we have the following
commutative diagram.

m3(S3) —2 . g(S2?)

%lj* lz
m3(Sp) —=— m3(Sp/U)
Since p, : w3(Sp) — w3(Sp/U) is surjective, the assertion follows. O

Lemma 1.2.  Let s : §?*7! — §2572 = CP*~1/CP*~? be the attach-
ing map of the 2s-cell of CP*/CP*=2 (s > 2). Then, n, is null homotopic if s
is odd and it is homotopic to S>*~*hy if s is even.

Proof. Let g; (j = 2s—2,2s) be the generators of HI(CP*/CP*~2; Fy).
Since

Sq2g23_2 _ )92 5 is even 7
0 s1is odd

the assertion follows. O

Lemma 1.3. _ For integers n_and m such that n > 2, the composition of
the suspension o : KO, _1(S™) — KO, (S™1) and (S""2ha)s : KO, (S™H) —
KO,,,(S™) coincides with the multiplication map by a.
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Proof. Let f: S™T21 — KO,AS™ be a map which represents an element
& of KOy,—1(S™). Then

smra 2L VA KO, A ™ T2 KO, A SE A ST

lK()q/\Sn_2h2
N

= KO, nS" ! KO, A S™

represents (S"2hsy).0(£). Hence the following composition also represents

(8" 2hg) w0 (§).

S f 1g2ATALgn
gmrar2 21, g2 A g A KO, A ST 2

(€q+158q)/\Sn72hQ

S2KO0, A S A S™ KOg4a A S™

Choose ihg : S — Sp/U as a representative of a. Let (upq : KOp AN KOy —
KOpiq)p.qez be the product structure of KO and (¢, : SP — KO,)pez the
unit. Since i : S? — Sp/U = KO, is identified with ¢,

S2 A KO, 200 (Sp/U) A KO,

lSsq lﬂlq

SKO, 1 —2 KOy42

is homotopy commutative. Hence af is represented by the following composi-
tion.

S lgn
Sm+q+2 — S?) A Sm+t]*1 haAf 52 A KOq Asn (E‘H’l EQ)/\ s KOqJ,—Q A S’n

Since Shy is order 2 in 74(S3), ho Algn : "3 = S3 A8 — §2 A S7 = §nt2
is homotopic to 1gn A hy : S"T3 = 8" A §3 — 8" A 8% = §7F2 for n > 0. This
implies that

h2/\1KOq/\15‘"
. N

S3ANKO, A S™ S2AKO, A S”

is homotopic to

n 1 AS™ 2R
S2ASTAKO NS 22PN g2 00 A g1 gn S0 * S2KO, NS,
which shows (8" 2hy).0(§) = af.
O

Let us denote by u; € I/(\éi(Si) (¢ > 0) the canonical generators, that is,
u;’s are given by ug = 1, o(u;) = wiy1.

For s > 2, consider the cofiber sequence CP*~!/CP*~2L CP*/CP*~2 %
CPs/CP*~1. We have the long exact sequences associated with this cofiber
sequence.

- = KOps(CPY/CP™Y) 2 KO, (CP~Y/CP~2) 25 KO, (CP*/CP*2)
L, KOn(CPY/CP*™ 1) — ...
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Lemma 1.4.  The connecting homomorphism
9: KO,41(CP?/CP* )= KO, (CP*'/CP*?)

1s given by

a(u )_ QUos_o S 1S €ven
)= 0 sis odd

Proof. Since the composition
KO, (8% 1) % K0n41(S%) = KO, 1 (CPY/CP) L KO, (CP*~Y/CP*?)

coincides with the map induced by the attaching map 75, the first formula
follows from Lemma 1.2 and 1.3. 1

The following result is known.

Proposition 1.1.  The complezification map ¢ : KO*(X) — K*(X),
the realization map r : K*(X) — KO*(X) and the conjugation map ¥~ :
K*(X) — K*(X) are natural transformation of cohomology theories having
the following properties.

1) ¢ is a homomorphism of graded rings which maps o € KO™! to 0,
€ KO to2t? andy € KO8 to t*.

2) 7 is a homomorphism of graded abelian groups which maps t* € K8
to 2y, ttl € K872 to o?y’ and t*+2 € K=8~% to xy’ foric Z.

3) U~ is a ring homomorphism which maps t € K~ to —t.

4) re = 2idgo-(x), er = idg-(x) + ¥ and WU = idg. ) hold.

We denote by B : K,(X) — Kp42(X) the Bott periodicity map B(a) = ta
and by a : KO, (X) — KO,_1(X), the multiplication map by o € KO;. A
fiber sequence U/O — BO — BU gives a cofiber sequence KO — KO % K
of spectra. The following result is known.

Proposition 1.2. There is a long exact sequence

oy rB~1 oy rB~1

= Ky (X) 2 KO, (X) S KOW(X) S K, (X) 22—
KO, 5(X) %5 KOp_1(X) — - -

Corollary 1.1.  Let X be a space such that K1(X) = {0} (X = CP!
for example). There is an exact sequence

0 — KOs_1(X) % KOon(X) S Kon(X) 725 KOgp_a(X) %

f/(?égn,l(X) — 0.
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2. Conjugation in K,(CP!)

Lemma 2.1. Let E be a ring spectrum and b : E — E be a map of
ring spectra. For a space X, consider the Kronecker pairing (, ) : E*(X) ®g,
E.(X) = E.. Then, $((€,0)) = (£(€), $(a)) for € € E*(X) and a € E.(X).

Proof. Let g: X — E, be the map which represents £ € E*(X) and f :
Sk+m . B, A X the map which represents a € E,,(X). Then, ¢,9: X — E,
and (Y Alx)f: f:SE¥™ — Ep A X represent 1(€), 1(a), respectively. The
assertion follows from the homotopy commutativity of the following diagram.
Here pg p : Ex A E,, — Ei, denote the ring structure of E.

1p, Ng

gem I pAX ELANE, 2 B,

lwk/\lx ld)k/\wn J/wk+1t.

1 /\wn
EnAX 220 BeAE, s B

Let us denote by 7; the canonical complex line bundle over CP!. Put
p =m —1€ K°(CP"). Then, K*(CP") = K*[w]/(1;™") and ¥~ (1) = (1+
)~ —1. We denote by 3; € Ha;(CP; Z) the dual of u* € H*(CP'; Z). Then
B; generates Hy;(CP!; Z) which is isomorphic to Z. The Atiyah-Hirzebruch
spectral sequence E (K;CP') = H,(CP';K,) = Kp14(CP") collapses and
K.(CP!)is a free K.-module generated by By, 81, . . ., 31, where 3; € Kz;(CP')
is the dual of t~fui € K2(CP') ([1]). In order to calculate ¥~1(3;), we use
the following fact.

Lemma 2.2.  For a positive integer i, the following equality holds in
Z[[z]]-

e (k=1
1 _ 1 —1\¢ — _1 k—i k
(- =300 (( )
Proof. By the Taylor expansion of (1 + 2z)~%, we have

(1—(142)" Y = 2" (1+2) "'= zi (iji1>zszi(—1)k—i<f:11>zk.

S=

Proposition 2.1. U~!: K, (CP') — K.(CP') is given as follows.

_1(ﬁ0> = 607 q]_l(ﬁ]> = Z (2:1>tj—k/8k Zf J > 1

k=1
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J
Proof. We put W=(3;) = Y ¢jBk (ckj € K2j_ax). By Lemma 2.1, we
k=0
have
1 i=j

(@ () () = v <<tm;‘,ﬂj>>—{0 2l .

J
For i = 0, since (1, U~1(8;)) = > cx;j(1, Br) = co;, we have coo = 1 and ¢g; = 0
k=0
if 7 > 0. Suppose that ¢ > 0. By Lemma 2.2,

) = ()7 )T 1)
== ()

- t—ii(—us—i (j:i)uf.

s=1

Thus we have

(U (), 0 (5) = <t-iz<1>s-"(j NG Zcmk>
= k=0

> fs—1 4

= Z Z(il)s_l (j 3 l)ts—zckj <t_sﬂ?aﬂk>
s=1i k=0
: —if k=1 ki

:kg(—nk (i_1>tk Chj

if 0 <i < j. It follows from (1) that ¢;; =1 and, if 0 < ¢ < j,

j-1 .
(k-1 w . (i—1 o
_1\k—1 k—i, . 1\t Jj—t
E (-1) (i_1>t ek +(—1) (i_1>t 0.

k=1

Therefore

o= 5 o (e - (e e

k=i+1

We show c¢;; = (1:11) t/=% by the induction on j —i. It can be easily verified

from (2) that ¢;_1; = (;:;)t Assume that j —i =7 and ¢x; = (ij)tj*k holds
if j — k <r. Then,
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e B () (e

R ()
- Zer ()
() e (i)

k=i+1

J o
Hence it remains to show that Y (=1)*7%({~%) = —1. But this follows from
k=i+1

S e = (-1 + 1y =0, 0

3. Eigen spaces of the conjugation map

We embed K.(CP') into K.(CP>). Then K,(CP') is a submodule of
K,.(CP®) spanned by By, b1, ..., 0.

Recall the Pontrjagin ring structure on K,(CP>°) ([1]). Let m : CP*> x
C P> — CP> be the product map and n € K°(CP°) the class of the canon-
ical line bundle on CP*®. Put p =n—1¢€ K*(CP®) and p3 = pu X 1, us =
1xpe K*(CP*® x CP*>). Since m* : K*(CP>®) — K*(CP*> x CP*) maps
pto p1 + p2 + pap2, we have

k! o , ,
* t71 kY _ tkrfzfj t71 k—j t71 kfz'
m* ((t~ ")) B E =i ) (™ )" (7 p2)
4,720, i+j<k
Thus we have

3
(k—i)(k— )i+ —Fk)

Hence the Pontrjagin ring structure m. : K,(CP*®)® K,(CP>) — K,.(CP>)
is given by

fiti—k

(ma(B; ® B;), (™)) =

A k! itj—k
m. (B ® Bj) i,j§;i+j (k_i)!(k—j)!(i+j—k)!t Br-

For z,y € K.(CP>), we denote m.(x ® y) by zy for short below.

Since K, (CP®) is torsion free, we can regard K,.(CP) as a subalgebra
of K*(CPOO)®Q Put /él = Z'tilﬂl and z = /5)1. Then, ﬂzﬂl = (Z+1)ﬂz+1 +’Ltﬂz
implies a recursive formula ;41 = (z — z)ﬁZ Hence we have

Bi=z(z—1) - (z—i+1).
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We set

z 1 )
(z) = Ez(z—l)-n(z—z—l—l).
The above argument shows 3; = ¢/(7) and K,(CP>) C K,®Q|[z]. This implies
the following.

Proposition 3.1. K,(CP*>)®Q is a polynomial algebra K,RQ[z] over
K. ®Q = Qlt,t7 '] and K.(CP>) is the subalgebra of K. ® Q|[z] generated by
(%) fori=1,2,3,....

Remark 3.1. 1) Ko(CP*) ® Q is a polynomial algebra Q[z].
Ko(CP>) is the subalgebra of Q[z] generated by () for i =1,2,3,.
2) { (f)| 1=0,1,2,3,... } is a basis of a free K,-module K*(CP°°) (resp.

a free abelian group Ko(CP>)). Here we set (5) = 1.

Put ¥ = V1 ®idg : K.(CP*®)®Q — K.(CP>*)®Q. Since U(3) =
by Proposition 2.1, we have W(z) = W(t7'f3;) = =t 1(f4y) = —t716 = —=.
Thus V¥ is a ring homomorphlsm given by U(t) = —t and ¥(z) = —2.

It is clear that 1 and —1 are eigen values of ¥. Let us denote by W, and
Z, the eigen spaces of ¥ corresponding to eigen values 1 and —1 respectively.
We set W, = W, N (K,(CP*)® Q) and Z,, = Z, N (K,(CP>*)® Q). The
following assertion is straightforward.

Proposition 3.2.  Basis of Wax, War_o, Zar, Zsp—o are given by the
following sets of monomials, respectively.

{22 i=0,1,2,...}, {£F127 i =1,2,3,...},
{2 i=1,2,3,...}, {#"'2¥]i=01,2,...}

We define Fj,(z) € Ko(CP>®) C Q[2] for k =1,2,... by
rat=X ()0 me=S((1) - (50))0)

Proposition 3.3.

Foi_1(2) = (22—:2_11> 2171 (22 =13 (22 =22 (22 = (i —1)?)

Fyi(# ):§<Z;Z_11> _wZQ(Z —1%)(z* =2 (2* = (i - 1)?)

Proof. Put Foi1(2) = (Z; 11) Foi(z) = 2(37:11) It is easy to verify

that Fj,(z) = Fy(2) for k = 1,2,3,4 and Fj,(z+1)—2F,(2)+Fp(2—1) = F_1(2)
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for k > 2. Since (ZJ.rl) - 2(2.) + (Z_.l) = (2_1), we have

J J J j—2
2i—1 .
Foma(241) = 2P (9) + Fama (2= 1) = 3 (2D (20)
Jj=t
21—2 ‘
= > ()G
k=1—1
2i-2 2i—3 _
= > GG+ X (WEGD
k=1 k=i—1
2i—3 ) 2i—3 ‘
= > (SR + X (SR)G0)
Jj=i—1 j=i—1
27—3 )
= > (52)0) = Faiss(2)
j=i—1

Assume i > 3 and ng_3(2) = ﬁgi_g,(Z). Ihen, ng_l(z + 1) — 2F2i_1(2> +
ng_l(z - 1) = ng_l(z + 1) - 2F2i_1(2) + ng_l(z - 1)

Note that FQi_l(O) = FQi_l(l) = ng_1(2) =0if i > 3. Put an —
ng_l(n)—fgi_l(n) forn=20,1,2,.... Thenay =a; = a2 =0and ap41—a, =
an — Gp_q forn =1,2,.... Hence a,, — a,_1 = a1 —ag =0 and a,, = ap =0
for n = 0,1,2,.... Therefore Fy;_1(n) = ﬁgi_l(n) forn = 0,1,2,.... Since
Fyi_1(z) and Fy;_1(z) are polynomials of z, Fy_1(2) = Fyi_1(z). Proof of
Fyi(z) = ﬁgl(z) is similar. O

By the above result, we see that Fy(—z) = Fy(2) and Fy_q1(—2) =
—F5_1(2). Hence Fy;(z) € W, N Ko(CP>®) and Fy;_1(2) € Z,. N Ko(CP>).
More precisely, the following result holds.

Corollary 3.1. Lete=0 orl. {t2k_ngi,e(z)| 1=1,2,... } 15 a basis
of W, N I?4k_26(CP°°) over Z. Similarly, {tzk*eF2i+C_1(z)| 1=1,2,... } 18
a basis of Z, N I~{4k_26(CP°°) over Z.

Proof. Note that Fp;(2) (resp. Fp;—1(2)) is a polynomial of degree 2i
(resp. 2i — 1) which is a linear combination of monomials 22, 2, ..., 2%* (resp
2,2%,...,2%7 1), Hence 2z?' (resp. z2'~1) is a linear combination of

FQ(Z), F4(Z), ceey FQZ(Z) (resp. F1(2)7F3(Z), ‘e 7F2i_1(2)).

It follows that {F%;(2)[i = 1,2,3,...} (vesp. {F2i-1(2)[i = 1,2,3,...}) is a
basis of W, N (Ko(CP>)® Q) (resp. Z, N (Ko(CP>®)® Q)) over Q.

Suppose ¢ € W, N I?O(CPOO). Then, ( = > m;Fy(z) for some m; € Q
i=1
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(i=1,2,...,n). By the definition of F;(z), we have
2n . ] .
(= Z Z ((]1—1) + (J:i1)> my (1)

Since { (j)| 1> 1} is a basis of a free abelian group I?O(CPOO),

m; + Z ((jii) + (ji;il)) mi € Z.
5<i<j—-1
Now, we can show that every m; is an integer by induction on j. Hence
{Fy(2)|i=1,2,3,...} generates W, N Ko(CP>) over Z.
Similarly, {Fy;_1(2)|i = 1,2,3,...} generates Z, N Ko(CP>) over Z.
Since the multiplication map tx : K,(CP>) — K,42(CP>) by t maps
W_eﬂf(n(CP‘”) isomorphically onto We_lﬂf(nJrg(CP‘X’), the assertion follows
from the above result. O

Proposition 3.4. In Qlz], the following formula holds.

()= X B (0 +E)) B+ X SO )

Sy —
1<i< i 1<i<g

. 1 5=1
Here we set (3:12) = {0 ‘7 21
J

Proof. Let ¢ and m be positive integers. In Q[[z]], we have (1 — z)7¢ =
S (DR = 2 (RPN 2R Since (1—2)m 1 = (1 - 2)79(1 —2)™ =
k>0 k>0

q—1

(Z (k2311)2k> (Z (—1)T(mnir)zr>, the coefficient of 2P in (1 —2)™ 7 is

k>0 r>0

S EDPEEEE (g

k>0

On the other hand, the coefficient of 2z in (1 — 2)™ 9 is (%T;{f;l) if g > m,
(=1)? (mp_q) if ¢ < m. Thus we have

Nk (ktg=1y( m o\ _ (‘U%ﬁﬁﬁ]l) qg>m
Sy ><k+m_,,>{(mpq) -

Apply this for (m,p,q) = (j — 1,2j — 20,4), (j — 1,2j — 20,6 — 1), (j,2j — 2i +
172)7(]72J_2Z+172_1)7 (J_1a2]_2Z+17Z)7(j_172]_2Z+177’_1)7(]_
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1,25 —2i—1,4), (4,24 — 2i,1), (j — 1,25 — 2i,i). We have the following formulas,

where d;; denotes the Kronecker’s delta d;; = L Z B ]
0 i#J
> VTG = X COTHERNED) =6
2i—1,j<k<2j—1 2i—1,j<k<2j—1
Yo UML) =00 > GOMHEED (L) = 6
2i—1,j<k<2j 2i—1,j<k<2j
DR G Vi ) [Py St
2i—1,j<k<2j
> COMHERNGSI) =0 Y GDREENED) =0,
2i—1,j<k<2j 2i,j<k<2j—1
DN GL) = 20 DR () = 6
k>2i k>2j

:jl)a (i72j)_entry iS ('Lij) +

(Zij_il) and B a matrix whose (2i — 1, j)-entry is % ((Z:i) + (J:f;1)>,

Let A be a matrix whose (i,2j — 1)-entry is (Z

(2, j)-entry is #(] Zzl) Using the above equalities, it is straightforward

to verify that BA is the unit matrix. O

Corollary 3.2.  The following equalities hold.
I (25 —i—1 ,

2k—1 - 2] =1 =2\ optoj—2
C’!‘(t ﬁgjfl) = — i—1 t ng(z)
=1

2%—1p \ _ . 2j—1 2j—1—1 2t 2j—1
cr(t Boj) = — T + i o t Fo1(2)
i=1

er(t® B 1) = ((2];21— 1) + (2]2_22_ 2)) PRy, (2)

i=1

Proof. By Proposition 3.4 and Corollary 3.1, we have

v 0)=- X S (0 05)) o)

+ 3 G Fule),
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Hence

G+ (G )= L U

() - (@) = ( (12D + (ji;l)) Fyi1(2)

Substituting the above equalities into
cr(t"B;) = cr (t”” (j)) ="t ((j) + (=1)"Hg! ((j))) ,
the result follows. |
For each positive integer n, we inductively define sequences of integers

(a(n,0),a(n,1),...,a(n,n—1)), (c(n,0),c(n,1),...,c(n,n—1)),
(d(n,0),d(n,1),...,d(n,n—1)) by a(n,0) =1, ¢(n,0) =n, d(n,0) = 1 and

—

j_

a(naj) = - : (nzj_if_llil)a’(nal)

o) = —(n—)3 (7250 + (2257 ) elna)
=0
— (25 + (2 ) don))
d(n. ) = =3 (525027 + (2725%)) eln i)
—(O22) + (255 dons )
The following result is a direct consequence of Corollary 3.2.

Proposition 3.5.  The following equalities hold.

n—1

cr Za(naj)tzjﬁ%—% = 17" Fyp(2)
=0
n—1
D (e(n, )t Ban—sj—1 + d(n, ) Ban2;) | = 7" Fana(2)
7=0

4. Real K-homology of complex projective spaces
Consider the Atiyah-Hirzebruch spectral sequence

E. (KO;CP") = H,(CP'; KOy) = KO,.,(CP").
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E2%-term is a free KO,-module generated by
ﬁOaﬁlw")ﬁl (ﬁ] €E§J70(KO, CPZ))

Lemma 4.1. d*: E. (KO;CP')— E._, . ,(KO;CP') is given by

P2(8;) = afj_1 j is positive and even
R otherwise '

Proof. We first note that the p-skeleton (CP')? is CPlzl if p < 2.
Hence E} (KO, CP') =0if pis odd and E? (KO; CPY) = E} (KO; CP!) =
[f(\aerq(CP%/CP%_l) if p is positive and even. If pis even, dy : E2 (KO; CP')
— Ef,_zq +1(KO; CP') coincides with the connecting homomorphism

9: KO, o(CP%/CP?™ ") = KOy, 1(CP3~'/CP572)
of the long exact sequence associated with the cofibration
CcpP:~'/CP57? - CP%/CP?~% — CP%/CP> .
Then, the result follows from Lemma 1.4. ([

By the above result, 8y, Goi—1 (1 <i < HTl), 2B9i, &2 Bai, B2 (1 < < %)
are cycles of the E?-term. We denote by fy € Ejo(KO;CP'), fai_10 €
EZZ’—Q,O(KO; CPZ), ﬁgi)o S EZI)LO(KO; CPZ), ﬁ2i—1,1 S Ei’i’Q(KO; CPl), 621‘71 S
E3; 4(KO; CP') the elements of the E3-term corresponding to B9, B2i—1, 282,
a? B2, ©ai, respectively. The next result follows from the definitions of these
elements and Lemma 4.1.

Proposition 4.1.  The following relations hold for 1 < i < % in the
E3-term.

afBri—1,0 = B0 = fri—1,1 = P = 2B2i—1,1 = Tf2i—1,1 = 0,
xf2i0 = 20821,  xP2i1 = 2yP2i0

By Lemma 4.1, the kernel of d? is generated by g, B2i—1 (1 <i < HTl),
2B9:, 02 Bai, B2 (1 < i < %) over KO,. Moreover, image of d? is generated by
afri—1 (1<i< %) over KO,. Thus we have the following.

Proposition 4.2.  E3-term is generated by the following set of elements
over KO,.

1) IfLis even, {B2i-1,0, 2,0, B2i—1,1, B2i1 |1 <i < 5} U{Bo}.
2) IfLis odd, {Bai—1,0: P20, B2im1,1: B2in | 1 < i < 51} U{Bo, Bro}

Corollary 4.1.  E? (KO;CP') = EX,(KO;CP')

Proof. Since Eg’q(KO; CPY) = {0} if p+ ¢ is odd and 0 < p < 2I, there
is no possibility of non-trivial differentials. O
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Corollary 4.2. I?én(CPl) = {0} of “1 is even and n is odd.” or “I
18 odd and n Z 2l + 1 modulo 8.”

Applying Corollary 1.1 to the above result, we have the following.

Corollary 4.3. ¢ : KOs,(CP') — Ky,(CPY) is injective if | is even
orn # 1 +1 modulo 4. In particular, KOs, (CP') is Z-torsion free if | is even
orn Z 1+ 1 modulo 4.

We define elements «; ; € KOg;14s(CP') for 1 <i <2 [%], s=0,1by

|
—

n

Yon,s =T a(naj)t2j+2862n—2j )
=0
n—1
Yon—1,s =T (C(naj)t2]+2562n—2j—1 + d(n,j)t%ﬁsfl@n—%)
=0

If [ is odd, we define an element 7,9 € KOy (CP') as follows. Since
cr(t1F(z)) = 0 by Corollary 3.1 and ¢ : I?éQI_Q(CPl) — Ky _o(CP) is
injective by Corollary 4.3, we have r(t!~1F;(z)) = 0. It follows from Corollary
1.1 that t' Fj(2) is in the image of ¢ : I?égl(CPl) — Ky (CP) which is injective
by Corollary 4.3. Hence there exists an unique element ~; ¢ € I?ézz(c P') that
maps to t'Fj(z) by c.

We put
A2io1 = t2i71F21—1(2) = 222_1 <Z 1) 21;3;1@ € I~(4i_2(CPl)
— \j — 1
2 o , 1 B
Moy = P Fy(2) = 3 ((j Z_ Z) + (j Z_ . 1)) 1218, € Ky(CPY).

Jj=t

Remark 4.1. 1) It follows from Proposition 3.3 that \; € K,(CP>)®
Q = Q[t,t7 1, 2] belongs to the subalgebra of Q[t,t71, 2] generated by \; = tz
and t2.

2) By Proposition 3.4, we have the following equality in K,(CP') ® Q.

= 3 S ()0 ) e

(=17 (G—i—=1\,; o
S 7 t7 1)\1,
+ 2 i—1 2

1<i<

WIS,

(3.5) implies the following.

Lemma 4.2. c¢: KO,(CP') — K.(CP) maps vi s to t>*);.
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Lemma 4.3. 20y € E} o(KO;CP'), o?fBy € E} ,(KO;CP') and

xfy € E}; 4(KO;CP') (1 < i‘ < L) are permanent cycles corresponding to
V2i,0, V2i—1,1 and 7ye;1, respectively. Hence 720 € Faio — Fai—1,1, Y2i-1,1 €

Fuio — Fyi—13 and 241 € Fysa — Fyi_15.

Proof. There is a map r" : B} (K; CcpP) — E} (KO; CP') of spectral
sequences induced by r : K,(CP') — KO,(CP'). Since r%(82) = 20,
72 (tB2;) = & Ba; and 12(t?B2;) = x32; by 2) of (1.1), the result follows. O

Lemma 4.4.  ~y;_1,0 belongs to the image Fy;_2 o of the map

KOyi_o(CP*™ 1) = KOy_o(CP)
induced by the inclusion map for 1 <1 < HTl On the other hand, vy2;—1,0 does
not belong to the image Fy;—31 of the map KOy;—2(CP*72) — KOy;_o(CP').

Proof. Since Fy g = KO (CP'Y), it suffices to show Yoi—1,0 € Fai—2,0
for 1 < i < % Let us denote by p : CP' — CP'/CP%~!, p/ : CP¥ —
C P?*/CP?~! = 8% the quotient maps and + : CP* — CP',// : CP%*/C P?*~!
— CP!/CP?*~! the inclusion maps. We put

n—1

Y2i—-1,0 = Z (c(n, )t Bon—2j—1 + d(n, j)t* 7 Ban_a;) .
j=0

J2i—1,0 is regarded as an element of Ky;_2(CP?) and 72,10 € KOy _2(CP")
is the image of J2;_10 by the composition Ky;_o(CP?%) 2 Ky o(CPH 5
KOy;_o(CP"). Since 1, 82,...,02i-1 € Kui_2(CP?) are in the image of
K4i—2(CP*71) — Ky o(CP?), pl, : Kyi—2(CP*) — Ky;—_2(5*) maps 2i—1,0
to t~lug;. It follows from (1.1) that » : Ky 2(S*) — KO4_2(S*) maps
t~Lluy; to zero. By the commutativity of the following diagram, p.(y2i_1,0) =

Pe(r(1s(F2i-1,0))) = LL(r(PL(F2i=1,0))) = th(r(t ™ ug;)) = 0.

Ly

Kyi—2(5%) L Kyi—o(CP*) —_— Ky—2(CPY)

I I I

KOu_o(S%) <P~ KOy o(CP¥)  —“—  KOu_o(CP)

&2 |-

L

KO4Z__2(CP21‘/CP21’—1) —_— KO4i_2(CPl/CP2i—1)

Hence yo;_1,0 € Ker p, = Im(KOy;_2(CP*~1) — KOy _o(CP)).
2i-1 | o
By (42), e(v2i-10) = A2ic1 = X2 (;ili)tm_]_lﬁj € Fii20 — Fii-31.
j=i

Therefore Y2i—1,0 ¢ F4i_3,1. [l
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Lemma 4.5. (51 € E};_,((KO;CP') is the permanent cycle corre-
sponding to Y2i—1,0-

Proof. Since E};_, ((KO;CP') is isomorphic to Z generated by (21,
the above result implies that there exists m € Z such that mfs;_1 is the per-
manent cycle corresponding to y2;_1,0. Consider a map ¢" : E;’Q(KO; CP) —
Er (K;CP') of spectral sequences induced by ¢ : KO,(CP') — K,(CP').
Since €2(mBa;—1) = mf;_1 is the permanent cycle corresponding to ¢(y2;—1,0)
and C(’)’Qi_Lo) = )\Qi_l = 521'_1 modulo F4i_3,1, m62i_1 S E%i_l)o(K;CPl) is
the permanent cycle corresponding to B2;_1 € K4i,2(CPl). Therefore we have
m=1. [l

Let us denote by By € KOo(CP') the unique element corresponding to
Bo € E(?)),O(KOQ CP"). Clearly, c(8y) = Bo.

Theorem 4.1.  KO,(CP') is generated by the following set of elements
over KO,.

1) If 1 is even, {V2i—1,0,72i,0,V2i-1,1,72i1 | 1 4 < £} U{Bo}.
2) If L is odd, {Y2i—1,0,72i,0,V2i—1,1,V2i,1 ’ 1<:< 1771} U{Bo, .0 }-

By the definition of ~; s and the above result, we have the following.

Corollary 4.4.  The image of ¢ : KOz, (CP') — Ky, (CP') is spanned
over Z by
{tn=2xg; |1 <i < L} ifmois even, {2 Mgy |1 <i < LY ifn is odd.

We also have the following result from (1.1), (4.1) and (4.2).

Corollary 4.5.  The image of c®idg : KO,.(CP>®)®Q — K.(CP>®)®
Q is the subalgebra generated by tz and t2.

Theorem 4.2.  Relations ay; s = 0, 27,5 = 2y°vi1—s hold for 1 <i <
2[L] and s =0,1 in KO,(CP").

Proof. First, assume that [ is even. We have [%n(C’Pl) = {0} for odd
n. Hence ay; s = 0 for dimensional reason. By (4.2) and (1.1), c(zv;0) =
c(2vi1) = 2t2X\; and c(xvi1) = c(2yvi0) = 2t*)\;. Since ¢ : IN(Qn(CPl) —
I?(/)gn(CPl) is injective by (4.3), we have xv;,0 = 2v;1 and x7v;1 = 2yVi0-
If 1 is odd, since v;s € KO,(CP') (1 <i < 2[L], s = 0,1) are the images
of 7is € KO,(CP'!) by the map induced by the inclusion map, the same
relations holds in KO,(CP'). O

Proposition 3.4 enable us to describe the realization map 7 : IN(*(CPI) —
KO.(CPY).
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Proposition 4.3.

(")) = (=17 (2" ko
1<k<Z
+ (-1)/ (é;f’;)y"*’“wk_z,l
1<k<it2
(" Ig) OV Crp P P
1<k<d
+ (1) (é;f’;)y" M k2.0
1<k<it2
Pt B)) = (-1)~! ((%;E’;) + (J;;zzl)) TR ITY
1<k<itd
Y 0 () + G v s
1<k<iEE
(TG = (=17 ((%;E’;) + (J;;zzl)) y" M k10
1<k<itd
Y () + G) v s
1<k<idE

Proof. Since
er(t™ I B;) = t"TIB VT (AT B) =t (j) +¥ (tm (j)) =t (j)"_(_t)m(_jz)
and

O+ ()= ¥ COme

()= ()= X () +05Y) Bial)

. i+1
1<i< it

by Proposition 3.4, the result follows from the definition of ~; s’s and the injec-
tivity of c. O

Remark 4.2.  Let us denote by nr,ng : KO, — KO,KO be the left,
right unit of Hopf algebroid (K O., KO,KO). We denote by ¢ : KO,(CP*®) —
KO.KO ®ko, I/(\é*(CP‘X’) the KO, KO-comodule structure map and by v :
I?*(CP‘X’) — K.K Qk, IN{*(CP"O) the K, K-comodule structure map.

Since 1z (@) = nr(a) ([3]) and KO,(CP>) is a-torsion group, it follows

from (4.3) that KO, KO®gko, KO.(CP>)is Z-torsion free. Hence the vertical
maps of the following diagram is injective by (4.3) and the results on KO.KO
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KO,(CP®) —%— KO,KO ®ko. KO,(CP>)

lc J(c/\c)@c

K. (CP*) —Y  K.K®y K.(CP®)

If we set ¢(B;) = Z 05 @B (i € Koj_9,K), then cj; = 1 and a relation

(J+1)Bjs1 =016 — jtﬂ] implies a recursive formula on ay;’s.
(J+ Dagjp1 = (v — ju)ayj +ic—q; and o =1 for j>i>1

Here, we put u = nr,(t) and v = ng(t) for the left, right unit 97, nr : Ki — K. K
of Hopf algebroid (K., K, K). In particular, we have (j+1)aij41 = (v—ju)ou,
hence ay; = wov™! (";1”) for 7 > 1. It seems to be difficult to give a good
description of «;; for i > 2. Using (4.2), 2) of (4.1) and above observation, it
may be possible to determine 9 (v; s) for small 4.

5. Pontrjagin ring structure of KO,(CP>)

The relation 3;8; = > CEOIG k'),(H_ k)' i=k 3, implies the fol-
Lj<k<it -

lowing formula.

Proposition 5.1.

(> (]) -2 .(k—i)!(/f—?)!(iﬂ—k)! (k)

1, <k<i+j

We put

I S [ [ R (i}

p=t q=j p,q,2k<r<p+gq

zzz S [(ER I

DG Iy

= X E(C) ()
)

p=ti q=j p,q,2k<r<p+gq

G2 G5 GGG
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Proposition 5.2.  The following relations hold in K,(CP>).
i+j—1
Foi1(2)F2j-1(2) = Z Ai gk For(2),

i+j
Fai_1(2)Faj(z ZB,szk 1(2),

i+j
Foi(2) Fj(2 Zc,g Kok (2

Proof. Since Fa;_1(2)Fa;_1(2), Fa;(2)F2;(2) belong to W, N Ko(CP>)
and FQi_1<Z)F2j<Z) belongs to Z* N [?Q(CPOO), ng_l(Z)ng_l(Z), ng(Z)FQj(Z)
are linear combinations of Foi(2)’s and Fy;_1 (%) F»;(%2) is a linear combination of
F5,1(%)’s. The result follows from the definition of F;(z), (5.1) and Proposition
3.4. O

The above relations imply the next result which gives the product structure
of KO,(CP>).

Theorem 5.1.  The following relations hold in KO,(CP>).

S
Y2i—1,0725—-1,0 = E Ai,j,i+j—2s—ly V2i42j—45—2,0
0<s< i+é—2

S
+ g Aj jitj—25—2Y V2i42j—45—4,1,

0<ss g2

Y2i—-1,0725-1,1 = Z Ai,j,i+j—25—1y572i+2j—4s—2,1
0<s< HH =2
+ Z A; jiti—2s—2Y T Vai40j_45—4,0,
0<s< =S

V2i-1,172j—1,1 = Z Aijitj—2s—1Y T Y210 —as-2.0
0<ss HE=2
+ Z Ai,j,i+j—23—2y5+172i+2j—4s—4,17
0<s< I3

Y2i—-1,0725,0 = Z Bi7,j,i+j—2s9572z’+2j—4s—1,0
0<s< =t

S
+ E B jitj—2s—1Y V2i42j—4s-3,1,
0<s<HI=2

S
V2i—1,1724,0 = E B jivi—2sY V2i4+2j—4s—1,1
~
0<s< P

s+1
+ E Bijiti—2s—1Y"" V2it2j—4s-3,0,
0<s< iti=2
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VY2i—1,0Y24,1 = Z B jitj—25Y Y2i42j—45—1,1
0<s<
+ Z By ji+i—2s—1Y° T V21421530,
0<s< =2

Y2i—-1,1725,1 = Z Bi7,j,i+j—2sys+172z’+2j—43—1,0
0<s< iti=1

2

+1
+ E Bijivj—2e—1Y"" V2i42j—45—3,15

0<s< HI=2
S
Y2i,0725,0 = E Ci jitj—25Y° V2i42j—4s,0
0<s< it

S
+ g Ci jritj—2s—2Y° V2it2j—4s—2,1,

-,
0<s<iii=2

S
V2i,07245,1 = E Ci,j,i+j—2sy V2i+25—4s,1

it+j—1
0S5 <

+1
+ E Cijiti—2s—2Y° " Y2i42j—45-2,0

=,
0<s< iHL

Y2i,1Y25,1 = Z Cijiti—25Y T 12i42j—45.0
0SS
+ Z Cijitj—25—2Y T Y210 _45-21
0<s< 2
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