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Fujita’s approximation theorem in positive
characteristics
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Satoshi Takagi

Introduction

Let X be a projective variety of dimension n over an algebraically closed
field k.

For any line bundle L on X, we define the volume of L to be:

volX(L) := lim sup
m→∞

h0(X,L⊗m)
mn/n!

It is known that this function volX can be extended to a homogeneous, contin-
uous real valued function on N1(X)R.

The main theorem of this paper is as follows:

Theorem 0.1 (Fujita’s approximation theorem). Let ξ ∈ N1(X)Q be a
rational big class. Then, for an arbitrary small real number ε > 0, there exist
a birational morphism π : X ′ → X of projective varieties and a decomposition

π∗ξ = α+ e

in N1(X ′)Q, which satisfy the following conditions:
(i) α is an ample class and e is effective.
(ii) volX′(α) > volX(ξ) − ε.

Note that the characteristic of the base field k could be positive. The proof
of Fujita’s approximation theorem in the original paper [3] uses Hironaka’s
desingularization theorem. Other proofs, obtained by Lazardsfeld [11] and
Nakamaye [13], also uses the desingularization theorem. In this sense, Fujita’s
approximation theorem can be applied only to the case where characteristic is
zero. In this paper, we verified this theorem in positive characteristics. The
idea is to use de Jong’s alteration theorem (see Theorem 2.1) as a substitute
for Hironaka’s theorem.

This paper consists of 3 sections.
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In Section 1, we discuss the general facts about the divisorial sheaves. In
Section 2, we prove Fujita’s approximation theorem in arbitrary characteristic.
As an application of Fujita’s approximation theorem we discuss the behaviour
of the dimension of the space of global sections of line bundles on a polarized
projective variety in Section 3. The result in this chapter will be used in future
references.

I would like to thank Professor Moriwaki and Fujino for giving me helpful
advices.

Notation and conventions

In this paper, any scheme is seperated, of finite type over its base field. A
variety is a geometrically integral scheme. We use Snapper’s definition of the
intersection theory.

Since we mainly work on projective varieties, we use the notion of line
bundles and Cartier divisors interchangeably.

For a projective scheme X, we denote the Picard group by Pic(X), the
group of line bundles numerically equivalent to 0 by Num(X), and the Néron-
Severi group of X by N1(X): N1(X) = Pic(X)/Num(X). N1(X)Q (resp.
N1(X)R) is defined by N1(X)Q = N1(X)⊗Z Q (resp. N1(X)Q = N1(X)⊗Z R).
ρ(X) := rankN1(X) is the Picard number of X, which is finite (cf. [12]).
Similarly, we call the linear combination of 1-codimensional subvarieties with
rational (resp. real) coefficients “Q-divisor” (resp. “R”-divisor). We some-
times use the term“Z-divisor” for the usual Weil divisor (i.e. with integral
coefficients). Eff(X) ⊂ N1(X)R is the closure of the convex cone spanned by
the classes of effective Q-divisors. The elements in Eff(X) are called pseudo-
effective. If X is integral, then we denote the function field (or, the constant
sheaf associated to the function field) by Rat(X).

1. Behavior of divisorial sheaves

Throughout this section, X is an n-dimensional normal variety over an
algebraically closed field k.

First, let us summerize basic properties of divisorial sheaves.
Let F be an coherent sheaf on X. The dual of F is defined as F∨ :=

H omOX
(F,OX). Further, the double dual of F is F∧ := (F∨)∨. F is reflexive

if the natural map F → F∧ is an isomorphism. F is divisorial if F is reflexive
and of rank 1.

The set of isomorphism classes of divisorial sheaves has a natural group
structure by taking the multiplication as L ·M := (L⊗M)∧.

Let D =
∑

Γ nΓΓ be a Weil divisor on X, where Γ runs over all the prime
divisors on X, and nΓ ∈ Z are zero except finitely many Γ’s.

The divisorial sheaf OX(D) associated to D is defined as:

OX(D) : U �→ {f ∈ Rat(X) | vΓ(f) ≥ −nΓ (Γ ∩ U �= ∅)},
where U is any open subset of X, and vΓ is the valuation associated to Γ. Note
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that this definition coincides with that of the line bundle associated to a Cartier
divisor.

For any two Weil divisors D and E, We have:

(OX(D)⊗OX(E))∧ 
 OX(D + E).

Moreover, if either D or E is Cartier, then we need not take the double
dual:

OX(D)⊗OX(E) 
 OX(D + E).

We denote by WPic(X) the group of isomorphism classes of divisorial
sheaves on X. Given a dominant morphism π : Y → X of normal varieties,
define π! : WPic(X) → WPic(Y ) by π!L := (π∗L)∧.

Proposition 1.1. Let L be a divisorial sheaf on X. If π : X ′ → X
is a projective birational morphism of normal varieties, then the natural map
f : L → π∗π!L induced by L → π∗π∗L is an isomorphism. In particular,
H0(X ′, π!L) 
 H0(X,L).

Proof. LetX0 be the set of smooth points ofX such that π is isomorphism
on X.

This is an open subset of X, and X\X0 has codimension ≥ 2 via Zariski’s
main theorem. Since f is injective, f(L) is divisorial. On the other hand, f is
isomorphic on X0. Thus, f is surjective, since π∗π!L is torsion free.

Proposition 1.2. Let L and M be divisorial sheaves on X. If π :
X ′ → X is a projective birational morphism of normal varieties, then we have
a natural injection:

(π∗(L⊗M))∧ ↪→ (π!L⊗π!M)∧.

Proof. We have a natural map

π∗(L⊗M) → π!L⊗π!M.

Taking the double dual, we obtain

(π∗(L⊗M))∧ → (π!L⊗π!M)∧.

The above map is isomorphic on the generic point of X ′, so it is injective, since
the right hand side is torsion free.

Remark 1.3. Note that π! is not a group homomorphism in general.
Even worse, we cannot construct a map between π!((L⊗M)∧) and
(π!L⊗π!M)∧ in general.

Let S := {Li}i be a set of divisorial sheaves on X. A projective birational
morphism π : X ′ → X of normal varieties is a Cartierization of S if π!Li is an
invertible sheaf onX ′ and the natural map π∗Li → π!Li is surjective for all Li ∈
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S. If S consists of one divisorial sheaf L, then we simply say a Cartierization
of L instead. For a set of Weil divisors D := {Di}i, a Cartierization of D is
a Cartierization of {O(Di)}i. By virtue of Raynaud’s flattening theorem [14],
there exists a Cartierization of a divisorial sheaf. By repeating the operation,
there exists a Cartierization of finite set of divisorial sheaves.

Proposition 1.4. Let H be an ample divisor on X, and D a Weil
divisor on X. Let π : X ′ → X be a Cartierization of D. Then we have

(Hn−1.D) = (π∗Hn−1 · π!O(D)).

Proof. Using the projection formula and the Proposition 1.1 above,

(π∗Hn−1 · π!O(D)) = (Hn−1 · π∗π!O(D))

= (Hn−1.O(D)) = (Hn−1.D).

Proposition 1.5. Let L be a diviorial sheaf on X, and π : X ′ → X a
Cartierization of L. Then, for any projective birational map f : Z → X ′ of
normal varieties, π ◦ f is a Cartierization of L.

Proof. From the surjective map π∗L → π!L → 0, we have a surjective
map (π ◦ f)∗L → f∗π!L → 0. Since f∗π!L is invertible, this gives another
surjective map (π ◦ f)!L→ f∗π!L→ 0. (π ◦ f)!L is torsion free, so that this is
an isomorphism.

Let L be a divisorial sheaf on X, and s ∈ H0(X,L) be a non-zero global
section of L. This induces a homomorphism OX → L. We denote by div(s)
the Weil divisor induced from s.

Let (L, s) and (L′, s′) be pairs of a divisorial sheaf and its global section,
respectively. We say that (L, s) and (L′, s′) are isomorphic if there exists an
isomorphism ϕ : L→ L′ which satisfies s′ = ϕ ◦ s : OX → L′:

OX

s

��

s′

����
��

��
��

L
ϕ �� L′

Note that in the above situation, (L, s) 
 (L′, s′) if and only if div(s) = div(s′).
Let D be an effective Weil divisor on X. O(D) can be regarded as a

OX -submodule of Rat(X) in a natural way. 1 ∈ Rat(X) defines a section
1D ∈ H0(X,OX(D)). We call this section canonical section of OX(D). Note
that if L is a divisorial sheaf, s ∈ H0(X,L)\{0}, and D := div(s), then:

(L, s) 
 (O(D), 1D).

Let L be a divisorial sheaf on X and s be a global section of L. Let
π : Y → X be a generically finite morphism of normal varieties. Then π!(s) ∈
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H0(X,π!L) is defined by the composition:

OY
π∗(s)−−−→ π∗L→ π!L.

π!(s) is not zero if and only if s is not zero. It is easy to see that if (L, s) 

(L′, s′), then (π!(L), π!(s)) 
 (π!(L′), π!(s′)). Therefore, for any effective Weil
divisor D = div(s), π!(D) := div(π!(s)) is well defined. We call this the naive
pull back of the Weil divisor D. Note that π!D is defined only for effective
divisors.

Proposition 1.6. Let D,D′ be two non-zero effective Weil divisors on
X, and let π : Y → X be a generically finite morphism of normal varieties.
Then the following holds:

(1) If π is proper, then π∗(π!(D)) = (deg π)D. Here, π∗ is the push out in
the sense of the intersection theory.

(2) If D and D′ are linearly equivalent, then so are π!(D) and π!(D′).
(3) If D′ is Cartier, then

π!(D +D′) = π!(D) + π∗(D′).

Proof. (1) Since X is normal, and π is generically finite, there exists an
Zariski open subset X0 ⊂ X which satisfies:

(a) The codimension of X\X0 is not less than 2.
(b) π0 : π−1(X0) → X0 is finite.
(c) X0 is smooth.

Then,

π∗(π!(D))|X0 = π0∗(π!(D)|π−1(X0)) = π0∗(π∗
0(D|X0)) = (deg π)D|X0 .

Condition (a) shows that, π∗(π!(D)) = (deg π)D.
(2) Since D and D′ are linearly equivalent, there exists a divisorial sheaf L

and its non-zero sections s, s′ which satisfies D = div(s), D′ = div(s′). Hence
div(π!(s)) is linearly equivalent to div(π!(s′)), which shows that π!(D) ∼ π!(D′).

(3) Let L := O(D) and L′ := O(D′), and s := 1D and s′ := 1D′ be the
canonical section of L, L′, respectively. Then π!(L⊗L′) = π!(L)⊗π!(L′) and

π!(D) + π!(D′) = div(π!(s)⊗π∗(s′))

π!(D +D′) = div(π!(s⊗ s′)).

Here, div(π!(s)⊗π∗(s′)), div(π!(s⊗ s′)) are both non-zero section of π!(L⊗L′)
= π!(L)⊗π∗(L), and they coincide on π−1(X0), where X0 is the smooth locus
of X. Since π!(L⊗L′) is torsion free, div(π!(s)⊗π∗(s′)) = div(π!(s⊗ s′)),
which shows that

π!(D +D′) = π!(D) + π!(D′).

In order to calculate the cohomology of divisorial sheaves, we must study
the property of the cokernel of the map between them:
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Proposition 1.7. Let D be a Weil divisor on X, and P a prime divisor.
Then we have:

(1) Q := coker(OX(D − P ) → OX(P )) is a coherent OP -module, and
torsion free as a OP -module. We denote this module Q by (OX(D);P ).

(2) If D′ is a Cartier divisor on X, then

(OX(D +D′);P ) = OX(D′)|P ⊗(OX(D);P ).

Proof. (1) The problem is local, so it is sufficient to check at each point
x on X. If x /∈ P , then the assertion is obvious, so that we may assume that
x ∈ P .

Step 1: Qx is a coherent OP -module.
It is sufficient to show that aϕ ∈ OX,x(D − P ) for all a ∈ OX,x(−P )

and ϕ ∈ OX,x(D). Let D =
∑

Γ nΓΓ. It is sufficient to check each valuation
associated to height 1 prime divisors: We have

vΓ(aϕ) = vΓ(a) + vΓ(ϕ) ≥ −nΓ

for all Γ �= P . Also,

vP (aϕ) ≥ 1 − nP ,

which shows that aϕ ∈ OX(D − P ). Coherency is obvious.
Step 2: Qx is a torsion free OP -module. It is sufficient to show that

aϕ ∈ OX,x(D − P ) ⇒ ϕ ∈ OX,x(D − P )

for any a ∈ OX,x\OX,x(−P ) and ϕ ∈ OX,x(D). This is again easily seen by
looking at each valuation associated to height 1 prime divisors.

(2) We have an exact sequence:

0 → OX(D − P ) → OX(D) → (OX(D);P ) → 0

Tensoring with OX(D′), we get:

0 → OX(D +D′ − P ) → OX(D +D′) → (OX(D);P )⊗OX(D′) → 0.

The last term equals to OX(D′)|P ⊗(OX(D);P ) since D′ is Cartier.

Lemma 1.8. Let π : Y → X be a birational morphism of normal vari-
eties, and let Q be a torsion free OX-module, and Q′ a OY -module. Assume
that there exist a map h : π∗Q→ Q′ and a non-empty Zariski open set X0 ∈ X
which satisfies:

(a) π : π−1(X0) 
 X0.
(b) h is isomorphic on π−1(X0).

Then the natural map

H0(X,Q) → H0(Y,Q′)

is injective.
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Proof. Let s ∈ H0(X,Q) be the kernel of the above map. Then, by the
assumption, s|X0 = 0. Since Q is torsion free, we have s = 0.

Proposition 1.9. Let D be a Weil divisor on X, and P a prime divisor.
Then we have the following:

(1) There is a natural injection:

(OX(−D);P ) ↪→ HomOP
((OX(D);P ),OP ).

(2) Let π : P ′ → P be a proper birational morphism such that P ′ is normal
and π∗((OX(D);P ))/torsion is an invertible OP ′-module. Then, the above map
induces an injective map

π!(OX(−D);P ) ↪→ (π!(OX(D);P ))∨.

Here, π!(OX(−D);P ) := (π∗(OX(−D);P ))∧, and π!(OX(D);P ) :=
(π∗(OX(D);P ))∧, and we are taking the dual (resp. double dual) with respect
to OP ′ .

Proof. (1) By restricting the multiplication on Rat(X) to OX(D) and
OX(−D), we get the natural coupling

〈·, ·〉 : OX(D) ×OX(−D) → OX .

It is easy to see the followings:

ϕ ∈ OX(D − P ), ψ ∈ OX(−D) ⇒ 〈ϕ, ψ〉 ∈ OX(−P )
ϕ ∈ OX(D), ψ ∈ OX(−D − P ) ⇒ 〈ϕ, ψ〉 ∈ OX(−P ).

Therefore, the coupling 〈·, ·〉 induces

〈·, ·〉 : (OX(D);P ) × (OX(−D);P ) → OP .

Therefore we have the map

(OX(−D);P ) → HomOP
((OX(D);P ),OP ).

On the other hand, this map is isomorphic at the generic point of P . Since
(OX(−D);P ) is torsion free, it is injective.

(2) Note that

π!(OX(D);P ) = π∗(OX(D);P )/torsion,

since the right hand side is invertible. Pulling back the map of (1) induces

π∗(OX(−D);P ) → π∗ HomOP
((OX(D);P ),OP ).

On the other hand, we have the natural map

π∗ HomOP
((OX(D);P ),OP ) → HomOP ′ (π∗(OX(D);P ),OP ′)


 HomOP ′ (π∗(OX(D);P )/torsion,OP ′).
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Composing the above two, we have

π∗(OX(−D);P ) → HomOP ′ (π!(OX(D);P ),OP ′).

Note that the right hand side is equal to (π!(OX(D);P ))∨, in particular,
invertible. Taking the double dual, we obtain

π!(OX(−D);P ) → (π!(OX(D);P ))∨,

which is injective, since it is isomorphic on the generic point of P ′.

A complete linear system on X is defined as a set (may be empty) of
all effective Weil divisors linearly equivalent to some given Weil divisor D. It
is denoted by |D|. Just as in the case of Cartier divisors, |D| has a natural
structure of the set of closed points of the projective space P(H0(X,O(D))).
Define the base locus of |D| as:

Bs |D| :=
{
X if |D| = ∅
∩D′∈|D| Supp(D′) if |D| �= ∅.

Similarly, for a divisorial sheaf L on X, define the base locus of |L| as:

Bs |L| :=
{
X if H0(X,L) = 0
∩s∈H0(X,L)\{0} Supp(div(s)) if H0(X,L) �= 0.

Obviously, Bs |D| = Bs |OX(D)|.
Lemma 1.10. Let D be a Weil divisor on X, and P be a prime divisor.

If P is contained in the base locus of |D|, the the map

H0(X,OX(D − P )) → H0(X,OX(D))

is an isomorphism.

Proof. We have the short exact sequence

0 → OX(D − P ) → OX(D) → (OX(D);P ) → 0

and the deduced long exact sequence

0 → H0(X,OX(D − P )) → H0(X,OX(D)) → H0(P, (OX(D);P )).

Suppose that H0(X,OX(D−P )) → H0(X,OX(D)) is not surjective. Then we
have a section s ∈ H0(X,OX(D)) which does not vanish inH0(X, (OX(D);P )).
Since (OX(D);P ) is torsion free, s is not zero at the generic point of P . This
shows that div(s) does not contain P , which is a contradiction.

Proposition 1.11. Let D be a Weil divisor on X, and P a prime di-
visor. Fix a positive integer m ∈ Z>0. Let π : P ′ → P be a proper birational
morphism which satisifies:
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(a) P ′ is normal.
(b) L1 := π∗(OX(D);P )/torsion and L2 := π∗(OX(mD);P )/torsion are

both invertible.
Then L2 −mL1 is effective.

Proof. We have a natural map OX(D)⊗m → OX(mD). By this map, we
have a commutative diagram

OX(D)⊗ . . .⊗OX(D − P )⊗ . . .⊗OX(D) ��

��

OX(mD − P )

��
OX(D)⊗ . . .⊗OX(D)⊗ . . .⊗OX(D) �� OX(mD)

from which we obtain a well defined map (OX(D);P )⊗m → (OX(mD);P ).
Pulling back by π and dividing by torsion parts, we obtain

L⊗m
1 → L2.

This map is isomorphic at the generic point, so it is injective, because L⊗m
1 is

torsion free.

2. Big line bundles

Throughout this section, X is an n-dimensional projective variety defined
over an algebraically closed field k.

Let L be a line bundle on X. The volume of L is defined by

volX(L) := lim sup
m→∞

h0(X,L⊗m)
mn/n!

We will list basic properties of the volume function. We refer to [10, Chapter
2.2] for proofs. (Note that in the book [10], the auther assume that the base
field is the complex number field. However, the following properties hold in
any algebraically closed field.)

For a line bundle L on X,
(i) L is big if and only if volX(L) > 0.
(ii) If L is nef, then volX(L) = (Ln).
(iii) volX(aL) = an volX(L) holds for any line bundle L on X and any

positive integer a ∈ Z>0.
(iv) If two line bundles L, L′ are numerically equivalent, then volX(L) =

volX(L′).
By the properties (iii) and (iv), we can extend volX uniquely to a homogeneous
function on N1(X)Q. In this sense,

(v) volX is continuous on N1(X)Q.
By the property (v), we can extend volX uniquely to a continuous function on
N1(X)R.

(vi) Volume is a birational invariant, i.e: Let π : X ′ → X be a projective
birational morphism of varieties X ′. Then, volX′(π∗L) = volX(L).
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The following Theorem 2.1, Proposition 2.2, Proposition 2.3, and Propo-
sition 2.4 will be used to prove the main theorem.

Theorem 2.1 (de Jong, [8]). For any closed subset Z of X, There ex-
ists a projective, generically étale morphism π : Y → X from a non-singular
variety Y , with π−1(Z) a normal crossing divisor on Y .

Proof. [8, Theorem 4.1].

Proposition 2.2 (Hodge Index Theorem). Let H1, . . . , Hn ∈ N1(X)R

be nef classes of line bundles. Then we have:

(Hn
1 ) . . . (Hn

n ) ≤ (H1 · . . . · · ·Hn)n.

Proof. [10, Theorem 1.6.1].

Proposition 2.3. Let A ∈ N1(X)R be a nef class, and E ∈ N1(X)R

a pseudoeffective class. Assume that B := A + E is nef. Then the following
holds:

(i) (An) ≤ (An−1 ·B) ≤ (An−2 ·B2) ≤ . . . ≤ (A ·Bn−1) ≤ (Bn).
(ii) (An) = (Bn) holds if and only if (Ar+1 · Bn−r−1) = (Ar · Bn−r) for

some 0 ≤ r ≤ n− 1.

Proof. (i) Considering perturbation by a small ample divisor, we may
assume that E is represented by an effective Z-divisor.

Since nefness is preserved under pull backs, we have

(Ar ·Bn−r) − (Ar+1 ·Bn−r−1) = (Ar ·Bn−r−1 · E)

= ((A|E)r · (B|E)n−r−1) ≥ 0.

(ii) The “only if” part follows from (i). Let us prove the “if” part. It
suffices to show (An) ≥ (Bn).

Clearly, we may assume that A and B is represented by very ample Z-
divisors. Let Y be the subvariety of X, defined by a proper intersection of
n− r− 1 hyperplanes in |B|. Set Ā := A|Y and B̄ := B|Y . By Proposition 2.2,
we have

(Ār+1) = (Ār · B̄) ≥ (Ār+1)
r

r+1 · (B̄r+1)
1

r+1 ,

which shows that

(Ar+1 ·Bn−r−1) = (Ār+1) ≥ (B̄r+1) = (Bn).

By the same argument as above (define Y as a proper intersection of r hyper-
planes in |A|), we have (An) ≥ (Ar ·Bn−r). Thus,

(An) ≥ (Ar ·Bn−r) ≥ (Ar+1 ·Bn−r−1) ≥ (Bn).
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Proposition 2.4 (Kodaira’s Lemma). Let D be a big Cartier divisor
and F arbitrary effective Cartier divisor on X. Then

H0(X,OX(mD − F )) �= 0

for all sufficiently large m satisfying H0(X,OX(mD)) �= 0.

Proof. [10, Proposition 2.2.6].

The following is our main theorem.

Theorem 2.5 (Fujita’s approximation theorem, [3]). Let ξ ∈ N1(X)Q

be a rational big class. Then, for an arbitrary small real number ε > 0, there
exist a projective birational morphism π : X ′ → X of projective varieties and a
decomposition

π∗ξ = α+ e

in N1(X ′)Q, which satisfy the following conditions:
(i) α is an ample class, and e is effective.
(ii) volX′(α) > volX(ξ) − ε.

The rest of this section will be devoted to the proof of this theorem.

Lemma 2.6. Let ξ ∈ N1(X)Q be a big class. Then there exists a de-
composition π∗ξ = α+ e in N1(X)Q with α ample and e effective.

Proof. There exists a positive integer r ∈ Z>0 such that D := rξ is
represented by a Z-divisor. By Kodaira’s Lemma 2.4, for any ample Cartier
divisor A, there exists an positive integer s such that E := sD−A is effective.
Hence,

ξ = A/rs+ E/rs

is one of the decomposition satisfying the given condition.

Lemma 2.7. Let D, E be two effective Z-divisors on X. Then, there
exists a projective, generically étale morphism π : Y → X and effective Cartier
divisors F , D1, E1 on Y which satisfy the following:

(i) Y is non-singular.
(ii) π!D = F +D1, π!E = F + E1

(iii) SuppD1 ∩ SuppE1 = ∅.
Proof. By using Theorem 2.1, we may assume that X is non-singular and

Supp(D + E) is a normal crossing divisor.
We need some notation:
Let D :=

∑
i aiΓi and E :=

∑
i biΓi, where Γi runs through all prime

Cartier divisors, and ai, bi ∈ Z>0. Let G be the greatest common divisor of D
and E, i.e. G :=

∑
i min{ai, bi}Γi. Also, set

D̄ := D −G =
∑

i

āiΓi,

Ē := E −G =
∑

i

b̄iΓi.
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Define Z as the intersection of the support of D̄ and Ē. Let Z = ∪λZλ be the
decomposition of Z into irreducible components, and set

r(D,E) := sup
λ
{multZλ

(D̄) · multZλ
(Ē)}.

Note that r(D,E) = 0 is equivalent to Supp(D̄) ∩ Supp(Ē) = ∅, i.e.

D = G+ D̄

E = G+ Ē

is the required decomposition.
Set

S(D,E) := {λ | multZλ
(D̄) · multZλ

(Ē) = r(D,E)}
and m(D,E) := #S(D,E). We prove the lemma by induction on (r(D,E),
m(D,E)), with respect to the lexicographical order in (Z≥0)2.

Suppose r(D,E) �= 0. Take any element from S(D,E), say λ1, and let
µ : X ′ → X be the blow up along Zλ1 . Note that since Supp(D + E) is a
normal crossing divisor, Zλ1 is non-singular, hence X ′ is also non-singular. Set
D′ := µ∗D̄, and E′ := µ∗Ē.

Claim 2.8.

(r(D′, E′),m(D′, E′)) < (r(D,E),m(D,E)).

Let Γ′
i be the strict transform of Γi, and set R := µ−1Zλ1 . Also, let Z ′

λ

be the strict transform of Zλ, for all λ �= λ1. There exists a unique pair (j, l)
which satisfies Zλ1 = Γj ∩ Γl and āj �= 0, b̄l �= 0. Then we have:

D′ =
∑

i

āiΓ′
i + ājR,

E′ =
∑

i

b̄iΓ′
i + b̄lR.

Assume āj ≥ b̄l. Then the greatest common divisor G′ of D′ and E′ is b̄lR. Set

D̄′ := D′ −G′ =
∑

i

āiΓ′
i + (āj − b̄l)R,

D̄′ := D′ −G′ =
∑

i

b̄iΓ′
i.

Set Wi := R ∩ Γ′
i. Then,

Supp(D̄′) ∩ Supp(Ē′) =
(

∪
λ 
=λ1

Z ′
λ

)
∪
(

∪
i

bi �=0

Wi

)
.

Looking at the multiplicity on each components, we have

multWi
(D̄′) · multWi

(Ē′) = (āj − b̄l) · b̄i < āj · b̄l
= r(D,E)
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and

multZ′
λ
(D̄′) · multZ′

λ
(Ē′) = multZλ

(D̄) · multZλ
(Ē)

for λ �= λ1, which shows that

(r(D′, E′),m(D′, E′)) < (r(D,E),m(D,E)).

For the case āj < b̄l is proven similarly.

By the induction hypothesis, we have π : Y → X ′ and decompositions

π∗D′ = F +D1

π∗E′ = F + E1

where Supp(D1) ∩ Supp(E1) = ∅. Then,

(µ ◦ π)∗D = ((µ ◦ π)∗G+ F ) +D1

(µ ◦ π)∗E = ((µ ◦ π)∗G+ F ) + E1

is the required decompositions.

Lemma 2.9. Assume X is normal. Let L be a Z-Weil divisor, and
E,G two effective Q-Weil divisors which has no common components. Assume
that H := L − E + G is nef and big Q-Cartier divisor, and (Hn−1.E) = 0.
Then the support of E is contained in the base locus of |L|.

Proof. We divide the proof into several steps.
Step 1: We may assume that E,G are effective Z-Weil divisors. Choose a

positive integer l ∈ Z > 0 such that lE, lG are Z-Weil divisors. Then we have

Supp(lE) = Supp(E) ⊂ Bs |lL| ⊂ Bs |L|.

Step 2: We may assume that L is an effective Cartier divisor, and L =
M+F , where M is base point free effective Cartier divisor and F is a fixed part
of F (We call M the moving part of L). Let ν1 : X1 → X be the Cartierization
of L, and ν2 : X2 → X1 be the blow up along the base point of |ν!

1L|. Set
ν := ν2 ◦ ν1. Then we have:

(a) ν!L is invertible, and
(b) ν!L = M + F , where M is the moving part and F the fixed part.

Let Ẽ, G̃ be the strict transform of E, G respectively. Then there exists effective
Weil divisors R1, R2 which satisfies:

(c) ν∗(H) − ν!(L) + Ẽ − G̃ = R1 −R2.
(d) R1 and R2 are exceptional with respect to ν, and they have no common

components.
Set E′ := Ẽ + R2, and G′ := G̃+ R1. Then ν∗(H) = ν!(L) − E′ +G′ and E′

and G′ has no common components. Moreover, we have

(ν∗(H)n−1 · E′) = (Hn−1 · ν∗E′) = (Hn−1 · E) = 0.
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So, by the hypothesis, Supp(E′) ⊂ Bs |ν!(L)|. Hence,

Supp(E) = ν(Supp(E′)) ⊂ ν(Bs |ν!L|).
On the other hand, ν∗(ν!(L)) = L, so that ν(Bs |ν!L|) is contained in the base
locus of |L|.

Step 3: Since E and G has no common components, it suffices to prove
that G+ F − E is effective as a Z-Weil divisor.

Assume G+ F − E is not effective.
Since H is nef and big, there exists an effective Cartier divisor D such

that H − (1/m)D is ample for any sufficiently large positive integer m ∈ Z>0.
Since G + F − E is not effective, there exists a positive integer m such that
(1/m)D+G+F −E is not effective and H − (1/m)D is ample. Also, we may
assume that mH is effective.

By Lemma 2.7, we have a generically étale projective morphism π : Y → X
which satisfies the following condition:

(i) Y is smooth.
(ii) There are effective divisors E0, E1, F1 on Y such that

π!(mE) = E0 + E1,

π!(D +mG+mF ) = E0 + F1

and Supp(E1) ∩ Supp(F1) = ∅.
Claim 2.10. π∗(E1) �= 0.

Assume that π∗(E1) = 0. Then we have

(deg π)mE = π∗(π!(mE)) = π∗(E0),

(deg π)(D +mG+mF ) = π∗(π!(D +mG+mF )) = π∗(E0) + π∗(F1).

Therefore, we obtain

D +mG+mF −mE =
1

deg π
π∗F1,

which contradicts to the assumption (1/m)D +G+ F − E is not effective.

Set A := (mH −D) +m(L− F ), and B := F1 + π∗A. Since (mH −D) is
ample and L− F is base point free, A is ample.

Claim 2.11. B ∼ E1 + 2mπ∗H.

Note that D and F are Cartier. Using Proposition 1.6, we obtain:

B − E1 − 2mπ∗H = π!(D +mG+mF ) − π!(mE) − π∗(mH)
− π∗(D) + π∗(mL) − π∗(mF )

= π!(mG) − π!(mE) − π∗(mH) + π∗(mL)

∼ π!(mG+mL) − π!(mH +mE)
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Note that mL+mG = mH +mE, so we obtain the result.

For any irreducible curve C on X ′, C �⊂ Supp(E1) or C �⊂ Supp(F1),
because Supp(E1) ∩ Supp(F1) = ∅. This means that either C · E1 ≥ 0 or
C ·F1 ≥ 0. Since π∗A and π∗H are nef, we have that C ·B ≥ 0, hence B is nef.

Since π∗H is nef, we have

0 = (deg π)(Hn−1 ·mE) = (π∗Hn−1 · π!(mE))

= (π∗H · E0) + (π∗Hn−1 · E1) ≥ (π∗Hn−1 · E1) ≥ 0

i.e. (π∗Hn−1 · E1) = 0. Thus, ((2mπ∗H)n) = ((2mπ∗H)n−1 · B). By Propo-
sition 2.3, we have (2mπ∗H · Bn−1) = (Bn), i.e. (Bn−1 · E1) = 0. Since
B = F1 + π∗A and π∗A is nef, Proposition 2.3 yields

0 = ((π∗A)n−1 · E1) = (deg π)(An−1 · π∗E1).

Note that π∗E1 is not zero, so this is a contradiction.

Let L be a line bundle on X. Define the ∆-genus of (X,L) as:

∆(X,L) := n+ (Ln) − h0(X,L).

It is well known that, if L is a nef and big line bundle, then we have ∆(X,L) ≥ 0
(cf. [4, §1]).

The following lemma is crucial for the proof of Fujita’s approximation
theorem.

Lemma 2.12. We assume that X is normal. Let B be a nef and big Z-
Cartier divisor on X, and E an effective Z-Cartier divisor on X. If A := B+E
is nef, then we have:

h0(X,O(A))− h0(X,O(B)) ≤ n((An) − (Bn)).

Proof. Set E =
∑

i µiEi, where Ei’s are mutually distinct prime divisors.
Let I+ := {i ∈ I | ((A+B)n−1 ·Ei) > 0} and mi := maxa+b=n−1(Aa. ·Bb ·Ei).
Note that since A and B are nef, i ∈ I+ if and only if mi > 0. Define a sequence
of effective Z-divisors {Sj}j inductively as follows:

(i) S0 := E.
(ii) Suppose Sj−1 =

∑
i νiEi is defined. Let rj := maxi νi/µi. Choose one

i(j) ∈ I such that νi(j)/µi(j) = rj . Also, choose i(j) from I+ if it is possible.
Then let Sj := Sj−1 − Ei(j).

Claim 2.13. h0(X,O(B + Sj−1)) − h0(X,O(B + Sj)) ≤ nmi(j).

We prove the claim by dividing into two cases.
Case i(j) /∈ I+: Let qj := maxi∈I+ νi/µi. Note that qj < rj . There

exist two effective Q-divisors F,G which have no common components and
Sj−1 − qjE = F −G. Let Hj := qjA+ (1 − qj)B(= B + qjE). This is nef and
big. Since

Sj−1 − qjE =
∑

i

µi(νi/µi − qj)Ei,
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if Ei is a component of SuppF , then i /∈ I+, which shows that (Hn−1
j ·Ei) = 0.

Since Hj = B + Sj−1 −F +G, we can apply Lemma 2.9 which shows that any
component of SuppF is contained in the fixed part of |B + Sj−1|. Since Ei(j)

is a component of SuppF , we have

h0(X,O(B + Sj−1)) = h0(X,O(B + Sj))

from the exact sequence

(*) 0 → OX(B + Sj) → OX(B + Sj−1) → (OX(B + Sj−1);Ei(j)) → 0.

Case i(j) ∈ I+:
Choose an positive integer m ∈ Z>0 such that mrj is an integer. Let

Q1 := (OX(B + Sj−1);Ei(j)) and Q2 := (OX(m(B + Sj−1));Ei(j)). These
are coherent OEi(j) -modules. There exists a projective birational morphism
π : Ẽ → Ei(j) which satisfies:

(a) Ẽ is normal.
(b) π!(Q1) := π∗Q1/torsion and π!(Q2) := π∗Q2/torsion are invertible OẼ-

modules, and π!(Q1) = H1 +F1, π!(Q2) = H2 +F2, where Hi’s are the moving
parts and Fi’s are the fixed parts respectively.

To obtain this, use the flattening ([14, Chap.4, Theorem 1]). Note that
Qi’s are torsion free rank 1 coherent OEi(j) -modules, hence the flattening of
Qi’s become invertible. From now on, we will identify π!(Qi) with a divisor
representing π!(Qi).

Claim 2.14. H2 −mH1 is effective.

From Proposition 1.11, we see that π!(Q2) −mπ!(Q1) is effective. Let H ′

be the moving part of mπ!Q1. Then H ′−mH1 is effective. On the other hand,
H2 −H ′ is effective, so we obtain the claim.

Let ρ : Ẽ → PN be the morphism induced by the linear system |H1|.
Let W be the image of ρ, and let d, ω be the dimension of W , the degree
of W , respectively. Let Y be a general fiber of Ẽ → W . Since i(j) ∈ I+,
A + B is nef and big on Ei(j), thus so is on Y . Therefore, there exists non-
negative integers a, b with a + b = n − 1 − d such that (Aa · Bb · Y ) > 0.
Here, so (Aa · Bb · Y ) ≥ 1 because the intersection number is an integer. Let
Pj := (rjA+ (1 − rj)B)|Ẽ(= (B + rjE)|Ẽ). This is nef.

Claim 2.15. Pj −H1 is effective.

By Proposition 1.9(2), we have a injective map

π!(OX(−m(B + Sj−1));Ei(j)) ↪→ π!(Q2)∨.

Tensoring with π∗OX(m(rjA+ (1 − rj)B))|Ei(j) , it yields

π∗OX(m(rjA+ (1 − rj)B))|Ei(j) ⊗π!(OX(−m(B + Sj−1));Ei(j))

↪→ π∗OX(m(rjA+ (1 − rj)B))|Ei(j) ⊗π!(Q2)∨.
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The left hand side equals to

π!(OX(m(rjA+ (1 − rj)B −B − Sj−1));Ei(j))

= π!(OX(m(
∑

i(µirj − νi)Ei));Ei(j)),

which contains OẼ , since µirj − νi ≥ 0. Note that A and B are Cartier. The
right hand side equals to OẼ(mPj − H2 − F2). Hence mPj − H2 is effective.
On the other hand, we have H2 −mH1 from the above Claim, so m(Pj −H)
is effective.

We have

ω ≤ ω · (Aa ·Bb · Y ) = (Aa ·Bb ·Hd · Ẽ) ≤ (Aa ·Bb · P d
j · Ẽ)

=
d∑

l=0

(
d
l

)
rl
j(1 − rj)d−l(Aa+l ·Bb+d−l · Ei(j))

≤
d∑

l=0

(
d
l

)
rl
j(1 − rj)d−lmi(j) = mi(j).

Since ∆(W,O(1)) ≥ 0, we have that

h0(Ei(j), π
!(Q1)) ≤ d+ ω ≤ n− 1 +mi(j) ≤ nmi(j).

Using Lemma 1.8, we have h0(Ei(j), Q1) ≤ h0(Ẽ, π!(Q1)) ≤ nmi(j).
Now the result follows along the long exact sequence arising from (*).

From the above claim, we see that

h0(X,O(A))− h0(X,O(B)) ≤
∑

j

(h0(X,O(B + Sj−1)) − h0(X,O(B + Sj)))

≤
∑

j

nmi(j) = n
∑

i

µimi

≤ n
∑

i

µi

( ∑
a+b=n−1

(Aa ·Bb · Ei)

)

= n
∑

a+b=n−1

(Aa ·Bb · E)

= n
∑

a+b=n−1

((Aa+1 ·Bb) − (Aa ·Bb+1))

= n((An) − (Bn)).

Proof of Theorem 2.5. We divide the proof into two steps.
Step 1: We may replace the statement “α is ample” by “α is nef and big”.
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We assume that there exist a projective birational morphism π : X ′ → X
of varieties and a decomposition

π∗ξ = α+ e

in N1(X)Q satisfying:
(i) α is nef and big, and e is effective.
(ii) volX′(α) > volX(ξ) − ε/2.

Since α is nef and big, there exists an effective class η ∈ Eff(X)Q such that
α−tη is ample for any sufficiently small t > 0. By the continuity of the volume,
there is a sufficiently small t0 > 0 which satisfies

volX′(α− t0η) > volX′(α) − ε/2.

Then

π∗ξ = (α− t0η) + (t0η + e)

is the decomposition we desired.
Step 2: Let d be the volume of ξ ∈ N1(X)Q. Assume that there exists a

positive number ε > 0 such that for any projective birational π : X ′ → X and
any decomposition π∗ξ = α + e in N1(X ′)Q (α is a nef and big class, and e is
effective), we have volX′(α) ≤ d− ε. Take the supremum value of the ε which
satisfies the above condition. Note that d − ε > 0 by Lemma 2.6. Then, for
arbitrary small δ > 0 (we assume that d− ε− δ > 0), there exists a projective
birational π0 : X0 → X and a decomposition π∗

0ξ = α0 + e0 in N1(X0)Q (α0 is
ample and e0 is effective), with volX0(α0) > d− ε− δ. We will identify ξ with
π∗

0ξ and X0 with X in the proceedings. There exists a positive integer r ∈ Z>0

such that A := rα0 and E := re0 are both represented by Z-divisors where A
is globally generated and E is effective. Then L := A+ E represents rξ.

For any positive integer s ∈ Z>0, let Xs → X be the blow up along the
base point of sL, and let Hs be the moving part of sL on Xs (Hs is nef). We
may assume that Xs is normal. Note that Hs − sA|Xs

is effective, because sA
is globally generated. By the previous condition, we have

(Hn
s ) = volXs

(Hs) ≤ snrn(d− ε).

By Lemma 2.12, we have:

h0(X,O(sL)) ≤ h0(Xs,O(Hs)) ≤ h0(Xs,O(sA)) + n((Hn
s ) − ((sA)n))

≤ h0(Xs,O(sA)) + nsnrn(d− ε− vol(α0))

< h0(Xs,O(sA)) + nsnrnδ.

Hence, volX(L) ≤ volXs
(A) + n · n!rnδ. Dividing both sides by rn, we have:

d = volX(ξ) ≤ volX(α0) + n · n!δ ≤ d− ε+ n · n!δ.

Taking δ → 0 leads us to a contradiction.
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Corollary 2.16. Let ξ ∈ N1(X)R be a big class. Then, for arbitrary
small ε > 0, there exists a projective birational morphism π : X ′ → X of
varieties and a decomposition

π∗ξ = α+ e

in N1(X ′)R, which satisfies:
(i) α is an ample class, and e is effective.
(ii) volX′(α) > volX(ξ) − ε.

Remark 2.17. ξ ∈ N1(X)R is big if volX(ξ) > 0. The set of big classes
form an open cone in N1(X)R. We call this the “big cone”.

ξ ∈ N1(X)R is effective if ξ is an R-linear combination of classes of effective
line bundles. Note that the cone generated by effective classes need not be
closed, i.e. there is a slight but crucial difference between the notion of effective
class and pseudoeffective class.

Lemma 2.18. Let V be a finite dimensional vector space over Q, and
let VR := V ⊗Q R. (we attach the usual topology to VR.) Let U be an open subset
of VR. Then, for all v ∈ U , there exist v1, . . . , vl ∈ U ∩ V and r1, . . . , rl ∈ R

which satisfy:
(i) 0 ≤ ri ≤ 1 for all i and

∑l
i=1 ri = 1.

(ii)
∑l

i=1 rivi = v.

Proof. Since V is dense in VR and U is open, there exist v1, v2, . . . , vl ∈
U ∩ V such that v is contained in the convex polytope the vertex of which is
v1, . . . , vl. Then it is easy to see that there exist r1, . . . rl ∈ R which satisfy the
above conditions.

Proof of 2.16. Since the volume function is continuous, Lemma 2.18 shows
that there exist rational big classes ξ1, . . . , ξl ∈ N1(X)Q satisfying:

(i) ξ =
∑l

i=1 riξi, where ri’s are real numbers satisfying 0 ≤ ri ≤ 1 and∑
i ri = 1.

(ii) volX(ξi) > volX(ξ) − ε/2 holds for all i.
Then we have a projective birational morphism π : X ′ → X and decompositions
π∗ξi = αi + ei which satisfies:

(iii) αi is nef and big, and ei is effective.
(iv) volX′(αi) > volX(ξi) − ε/2 for all i.

Note that this is possible, because nefness and bigness are preserved under pull
backs. Set α :=

∑
i riαi and e :=

∑
i riei. Then we have a decomposition

π∗ξ = α+ e. Since α is nef, we have (using the Hodge Index Theorem 2.2):

volX′(α) =
1
n!

(αn) ≥ 1
n!

min
i

(αn
i ) = min

i
volX′(αi) > volX(ξ) − ε.

Corollary 2.19. Let H ∈ N1(X)R be a nef and big class, and δ ∈
Eff(X) a pseudoeffective class. Then we have the following inequality:

volX(δ) ≤ (Hn−1.δ)n

(Hn)n−1
.
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Proof. The statement clearly holds if volX(δ) = 0. Suppose volX(δ) > 0.
Then for arbitrary small ε > 0, there exists an projective birational morphism
π : X ′ → X and a decomposition π∗δ = α+ e, where α is ample, e is effective,
and volX′(α) ≥ volX(δ) − ε. Then, by Proposition 2.2,

volX(δ) ≤ volX′(α) + ε = (αn) + ε

≤ (π∗Hn−1.α)n

(π∗Hn)n−1
+ ε ≤ (π∗Hn−1.π∗δ)n

(π∗Hn)n−1
+ ε

=
(Hn−1.δ)n

(Hn)n−1
+ ε.

Taking ε→ 0, the result follows.

3. Uniform convergence of cohomology

Throughout this section, (X,H) is an n-dimensional Q-polarized projective
variety over an algebraically closed field k.

Theorem 3.1 (Fujita’s Vanishing Theorem). For any coherent sheaf F
on X, there exists an integer c ∈ Z>0 such that

Hi(X,F ⊗L⊗O(cH)) = 0

for all i > 0 and all nef line bundle L, where degH L = (Hn−1.L).

Proof. [5, Theorem (1)].

Theorem 3.2. For arbitrary small ε > 0, there exists d0 > 0 such that

h0(X,L)
(degH L)n

<
1
n!

volX

(
L

degH L

)
+ ε

for all line bundle L satisfying degH L > d0.

This theorem tells us that the difference between the dimension of the
space of global sections and the volume can be ignored uniformly with respect
to the degree. Hence we call it “uniform convergence”.

The rest of this chapter is devoted for the proof of this theorem.

Lemma 3.3. Let C be a closed cone contained in the nef and big cone
of N1(X)R. Let M be a nef and big class. Then, for arbitrary small ε > 0,
there exists d0 > 0 such that

h0(X,L)
(Mn−1 · L)n

<
1
n!

volX

(
L

Mn−1 · L
)

+ ε

for all line bundles L with [L] ∈ C ∩ N1(X) and (Mn−1 · L) > d0, where [L] is
the class of L in N1(X).
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Proof. Fix a norm ‖ · ‖ on the finite dimensional space N1(X)R. By
Fujita’s vanishing Theorem 3.1, there exists an effective Z-Cartier divisor D
such that

Hi(X,L+D) = 0

for all [L] ∈ N1(X) ∩ C (From now on, a Cartier divisor is identified with
its associated line bundle, and the multiplication is denoted by +). Thus,
Grothendieck-Riemann-Roch shows that

h0(X,L+D) =
1
n!

(Ln) +O(‖L‖n−1)

for all L ∈ N1(X) ∩ C. Since C is in the nef and big cone, we have

0 < (Mn)n−1(Ln) ≤ (Mn−1 · L)n

for all L ∈ C−{0}. Since C is closed, {L ∈ C | (Ln) = 1} is compact, hence so
is {L ∈ C | (Mn−1 ·L) = 1}. Thus, there is a positive constant c > 0 such that

c−1‖L‖ ≤ (Mn−1 · L) ≤ c‖L‖,

i.e. (Mn−1 · ·) behaves like a norm on C. Combining this with the above
evaluation, we obtain

h0(X,L+D) =
1
n!

(Ln) +O((Mn−1 · L)n−1)

Since C is in the nef cone, we have volX(L) = (Ln) for all L ∈ C. Thus,

h0(X,L)
(Mn−1 · L)n

≤ h0(X,L+D)
(Mn−1 · L)n

=
1
n!

volX

(
L

(Mn−1 · L)

)
+O((Mn−1 · L)−1).

Taking (Mn−1 · L) → ∞, we obtain the result.

Let us start the proof of Theorem 3.2.
Assume that there exists a positive number ε > 0, and a infinite sequence

of effective line bundles L1, L2, . . . on X which satisifies:
(a) di := degH Li > 0 increases to the infinity.

(b)
h0(X,Li)

dn
i

− 1
n!

volX

(
Li

di

)
≥ ε for all i.

Let L̃i := L/di ∈ N1(X)Q. Since H is ample, Kleiman’s criterion implies that
Eff(X)∩{degH = 1} is compact. Hence, there is a subsequence of {L̃i}i which
converges. We may assume that {L̃i}i converges to L̃0 ∈ Eff(X)∩{degH = 1}.

Case 1: Assume that L̃0 is on the boundary of Eff(X). In this case,
volX(L̃0) = 0. Fix a sufficiently large integer t. Let π : X ′ → X be the blow
up along the base locus of Li + tH, and set π∗(Li + tH) = A+ E, where A is
the moving part and E the fixed part. Since we have taken sufficiently large t,
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we may assume A is big. Then, using the positivity of the ∆-genus,

h0(X,Li) ≤ h0(X,Li + tH)

= h0(X ′, A)
≤ n+ (An)
= n+ volX′(A)
≤ n+ volX(Li + tH).

Hence we have
h0(X,Li)

dn
i

≤ n

dn
i

+ volX

(
L̃i +

tH

di

)
.

Since L̃i +
tH

di
converges to L̃0 and volX is a continuous function, the right

hand side converges to 0 as i increases. This contradicts to the condition (b).
Case 2: Assume that L̃0 is in the interior of Eff(X). In this case, L̃0 is

big, i.e. volX(L̃0) > 0. Fix a sufficiently small δ > 0. Take M̃1, . . . , M̃n−1 ∈
Eff(X) ∩ {degH = 1} ∩ N1(X)Q which satisifies:

(c) Let C be the closed convex cone generated by the M̃i’s. Then L̃0 ∈ C.
(d) | volX(M̃i) − vol(L̃)| < δ for all i and all L̃ ∈ C ∩ {degH = 1}.
Fujita approximation theorem tells that there exists a projective birational

morphism π : X ′ → X and decompositions π∗M̃i = H̃i +Ei in N1(X)Q, which
satisfies:

(e) H̃i is nef, and Ei is effective.
(f) volX′(H̃i) ≥ volX(M̃i) − δ.

Since δ is sufficiently small, H̃i is big. We may assume volX(H1) is minimal
among volX(Hi)’s. There exists a positive integer r ∈ Z>0 such that Mi := rM̃i

and Hi := rH̃i are in N1(X). Set Γ := {∑miMi | mi ∈ Z≥0}.
Claim 3.4. There exists d0 > 0 such that

h0(X,L)
(degH L)n

<
1
n!

volX

(
L

degH L

)
+ ε/2

for all line bundle L with [L] ∈ Γ and degH L > d0.

Let L =
∑
miMi. Let π∗L = A+E, where A is the moving part of L and

E is the fixed part of L. Note that A− BL is effective, where BL :=
∑
miHi.

Then, by Lemma 2.12, we have

h0(X,L) ≤ h0(X ′, π∗L) = h0(X ′, A)

≤ h0(X ′, BL) + n((An) − (Bn
L))

≤ h0(X ′, BL) + n(volX(L) − (Bn
L)).

On the other hand,

(Bn
L) = (

∑
imiHi)

n ≥ (∑imi(Hn
i )1/n

)n
≥ (∑imi(Hn

1 )1/n
)n ≥ (

∑
imi)

n (Hn
1 )

= (degH L)n(H̃n
1 ).



Fujita’s approximation theorem 201

Hence,

h0(X,L)
(degH L)n

≤ h0(X ′, BL)
(degH L)n

+ n

(
volX

(
L

degH L

)
− (Bn

L)
(degH L)n

)

≤ h0(X ′, BL)
(π∗Hn−1.BL)n

+ n

(
volX

(
L

degH L

)
− volX′(H̃1)

)

≤ h0(X ′, BL)
(π∗Hn−1.BL)n

+ 2nδ.

By Lemma 3.3, we have

lim sup
degH L→∞

h0(X ′, BL)
(π∗Hn−1.BL)n

≤ 1
n!

(
volX

(
L

degH L

)
+ δ

)
.

Since we have taken δ sufficiently small, the claim follows.

Let us go back to the proof of Theorem 3.2. Since Γ is a lattice in C, there
is a finite set S of effective Cartier divisors such that for all L ∈ C, there exists
D ∈ S such that L+D ∈ Γ. If degH L > d0 (d0 is the positive number of the
above claim),

h0(X,L)
(degH L)n

≤ h0(X,L+D)
(degH L)n

≤ h0(X,L+D)
(degH(L+D))n

· (degH(L+D))n

(degH L)n

≤ 1
n!

(
volX

(
L+D

degH(L+D)

)
+
ε

2

)
· (degH(L+D))n

(degH L)n
.

Since S is finite, (degH(L +D))n/(degH L)n converges uniformly to 1 as
degH L→ ∞. This contradicts to (b).
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