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Homological invariants associated to
semi-dualizing bimodules

By

Tokuji Araya, Ryo Takahashi and Yuji Yoshino

Abstract

Cohen-Macaulay dimension for modules over a commutative ring
has been defined by A. A. Gerko. That is a homological invariant
sharing many properties with projective dimension and Gorenstein di-
mension. The main purpose of this paper is to extend the notion of
Cohen-Macaulay dimension for modules over commutative noetherian
local rings to that for bounded complexes over non-commutative noethe-
rian rings.

1. Introduction

Cohen-Macaulay dimension for modules over a commutative noetherian
local ring has been defined by A. A. Gerko [10]. That is to be a homological
invariant of a module which shares a lot of properties with projective dimension
and Gorenstein dimension. The aim of this paper is to extend this invariant of
modules to that of chain complexes, even over non-commutative rings. We try
to pursue it in the most general context possible.

The key role will be played by semi-dualizing bimodules, which we in-
troduce in this paper to generalize semi-dualizing modules in the sense of
Christensen [5]. The advantage to consider an (R,S)-bimodule structure on
a semi-dualizing module C is in the duality theorem. Actually we shall show
that HomR(−, C) (resp. HomS(−, C)) gives a duality between subcategories of
R-mod and mod-S. We take such an idea from non-commutative ring theory,
in particular, Morita duality and tilting theory.

In Section 2 we present a precise definition of a semi-dualizing bimodule
and show several properties. Associated to a semi-dualizing (R,S)-bimodule
C, of most importance is the notion of the GC -dimension of an R-module and
the full subcategory RR(C) of R-mod consisting of all R-modules of finite GC -
dimensions. Under some special conditions the GC -dimension will coincide with
the Cohen-Macaulay dimension of a module.

In Section 3 we extend these notions to the derived category, hence to chain
complexes. We introduce the notion of the trunk module of a complex, and
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as one of the main results of this paper, we shall show that the GC -dimension
of a complex is essentially given by that of its trunk module (Theorem 3.1).
By virtue of this theorem, we can show that many of the assertions concerning
GC -dimensions of modules will hold true for GC -dimensions of complexes.

In Section 4 we shall show that a semi-dualizing bimodule, more generally
a semi-dualizing complex of bimodules, yields a duality between subcategories
of the derived categories. This second main result (Theorem 4.1) of this paper
gives the advantage from considering the bimodule structure of a semi-dualizing
module.

In Section 5 we shall apply the theory to the case where the base rings
are commutative. Surprisingly, if both rings R, S are commutative, then we
shall see that a semi-dualizing (R,S)-bimodule is nothing but a semi-dualizing
R-module, and actually R = S (Lemma 5.1). In this case, we are able to
apply this theory to the subcategories RR(C) and the Gorenstein dimension
of the dualizing complex to obtain (in Corollary 5.1) a new characterization of
Gorenstein rings.

2. GC-dimensions for modules

Throughout the present paper, we assume that R is a left noetherian ring.
Let R-mod denote the category of finitely generated left R-modules. We also
assume that S is a right noetherian ring and mod-S denotes the category of
finitely generated right S-modules. When we say simply an R-module (resp.
an S-module), we mean a finitely generated left R-module (resp. a finitely
generated right S-module).

In this section, we shall define the notion of GC -dimension of a module, and
study its properties. For this purpose, we begin with defining a semi-dualizing
bimodule.

Definition 2.1. We call an (R,S)-bimodule C a semi-dualizing bimod-
ule if the following conditions hold.

(1) The right homothety S-bimodule morphism S → HomR(C,C) is a
bijection.

(2) The left homothety R-bimodule morphism R → HomS(C,C) is a bi-
jection.

(3) ExtiR(C,C) = 0 for all i > 0.
(4) ExtiS(C,C) = 0 for all i > 0.

In the rest of this section, C always denotes a semi-dualizing (R,S)-
bimodule.

Definition 2.2. We say that an R-module M is C-reflexive if the fol-
lowing conditions are satisfied.

(1) ExtiR(M,C) = 0 for all i > 0.
(2) ExtiS(HomR(M,C), C) = 0 for all i > 0.
(3) The natural morphism M → HomS(HomR(M,C), C) is a bijection.
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One can of course consider the same for right S-modules by symmetry.

Definition 2.3. If the following conditions hold for N ∈ mod-S, we say
that N is C-reflexive.

(1) ExtiS(N,C) = 0 for all i > 0.
(2) ExtiR(HomS(N,C), C) = 0 for all i > 0.
(3) The natural morphism N → HomR(HomS(N,C), C) is a bijection.

Example 2.1.
(1) Both the ring R and the semi-dualizing module C are C-reflexive R-

modules. Similarly, S and C are C-reflexive S-modules.
(2) Let R be a finite dimensional algebra. Then every tilting R-module is

a semi-dualizing module (cf. [13, (4.1)]).
(3) Let R be a left and right noetherian ring. Then the ring R itself is a

semi-dualizing (R,R)-bimodule and the R-reflexive modules coincide with the
modules whose G-dimension is equal to 0 (cf. [1, Proposition 3.8]).

(4) Let R be a commutative Cohen-Macaulay local ring with dualizing
module K. Then K is a semi-dualizing module and the K-reflexive modules
coincide with the maximal Cohen-Macaulay modules (cf. [4, Theorem 3.3.10]).

Theorem 2.1.
(1) Let 0 → L1 → L2 → L3 → 0 be a short exact sequence either in R-mod

or in mod-S. Assume that L3 is C-reflexive. Then, L1 is C-reflexive if and
only if so is L2.

(2) If L is a C-reflexive module, then so is any direct summand of L. In
particular, any projective module is C-reflexive.

(3) The functors HomR(−, C) and HomS(−, C) yield a duality between the
full subcategory of R-mod consisting of all C-reflexive R-modules and the full
subcategory of mod-S consisting of all C-reflexive S-modules.

Proof. (1) Let 0 → L1 → L2 → L3 → 0 be a short exact sequence in
R-mod. Suppose that L3 is C-reflexive. Applying the functor HomR(−, C) to
this sequence, we see that the sequence

0 → HomR(L3, C) → HomR(L2, C) → HomR(L1, C) → 0

is exact, and ExtiR(L2, C) ∼= ExtiR(L1, C) for i > 0. Now applying the functor
HomS(−, C), we will have an exact sequence

0 −−−−→ HomS(HomR(L1, C), C) −−−−→ HomS(HomR(L2, C), C)

−−−−→ HomS(HomR(L3, C), C) −−−−→ Ext1S(HomR(L1, C), C)

−−−−→ Ext1S(HomR(L2, C), C) −−−−→ 0

and the isomorphisms ExtiS(HomR(L1, C), C) ∼= ExtiS(HomR(L2, C), C) for i >
1. It is now easy to see from the diagram chasing that L1 is C-reflexive if and
only if L2 is C-reflexive.
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(2) Trivial.
(3) It is straightforward to see that both functors send C-reflexive modules

to C-reflexive modules (over the respective rings), and that the compositions
of them are the identity functors (for the respective categories).

Example 2.2. Let R be a left and right noetherian ring. We denote GR
the full subcategory of R-mod consisting of all R-reflexive (left) R-modules and
denote GRop the full subcategory of mod-R consisting of all R-reflexive (right)
R-modules. In this situation, Theorem 2.1.(3) says that HomR(−, R) gives a
duality between GR and GRop .

Lemma 2.1. The following conditions are equivalent for M ∈ R-mod
and n ∈ Z.

(1) There exists an exact sequence

0 → X−n → X−n+1 → · · · → X0 →M → 0

such that each Xi is a C-reflexive R-module.
(2) For any projective resolution

P • : · · · → P−m−1 → P−m → · · · → P 0 →M → 0

of M and for any m ≥ n, we have that Coker(P−m−1 → P−m) is a C-reflexive
R-module.

(3) For any exact sequence

· · · → X−m−1 → X−m → · · · → X0 →M → 0

with each Xi being a C-reflexive R-module, and for any m ≥ n, we have that
Coker(X−m−1 → X−m) is a C-reflexive R-module.

Proof. (1) ⇒ (2) : Since P • is a projective resolution of M , there is a
morphism σ• : P • → X• of complexes over R :

· · · −−−−→ P−n−1 −−−−→ P−n −−−−→ P−n+1 −−−−→ · · · −−−−→ P 0

σ−n−1

� σ−n

� σ−n+1

� σ0

�
0 −−−−→ X−n −−−−→ X−n+1 −−−−→ · · · −−−−→ X0

Taking the mapping cone of σ•, we see that there is an exact sequence

· · · −−−−→ P−m −−−−→ · · · −−−−→ P−n

−−−−→ P−n+1 ⊕X−n −−−−→ P−n+2 ⊕X−n+1 −−−−→ · · ·
−−−−→ P 0 ⊕X−1 −−−−→ X0 −−−−→ 0.

It follows from a successive use of Theorem 2.1.(1) that Coker(P−m−1 → P−m)
is a C-reflexive R-module for m ≥ n.



�

�

�

�

�

�

�

�

Homological invariants 291

(2) ⇒ (3) : Let m ≥ n, and set X = Coker(X−m−1 → X−m) and P =
Coker(P−m−1 → P−m). Since P • is a projective resolution of M , there is a
chain map σ• : P • → X• of complexes over R:

0 −−−−→ P −−−−→ P−m+1 −−−−→ P−m+2 −−−−→ · · · −−−−→ P 0

σ−m

� σ−m+1

� σ−m+2

� σ0

�
0 −−−−→ X −−−−→ X−m+1 −−−−→ X−m+2 −−−−→ · · · −−−−→ X0

Taking the mapping cone of σ•, we see that there is an exact sequence

0 → P → P−m+1 ⊕X → P−m+2 ⊕X−m+1 → · · · → P 0 ⊕X−1 → X0 → 0.

It then follows from Theorem 2.1.(1) and 2.1.(2) that X is a C-reflexive R-
module.

(3) ⇒ (1): Trivial.

Imitating the way of defining the G-dimension in [1, Theorem 3.13], we
make the following definition.

Definition 2.4. For M ∈ R-mod, we define the GC -dimension of M by

GC - dimRM = inf




there exists an exact sequence of finite length
n 0 → X−n → X−n+1 → · · · → X0 →M → 0,

where each Xi is a C-reflexive R-module.




Here we should note that we adopt the ordinary convention that inf ∅ = +∞.

Remark 2.1. First of all we should notice that in the case R = S = C,
the GC -dimension is the same as the G-dimension.

Furthermore, comparing with Theorem 5.1 below, we are able to see that
the GC -dimension extends the Cohen-Macaulay dimension over a commutative
ring R. More precisely, suppose that R and S are commutative local rings. If
there is a semi-dualizing (R,S)-bimodule, then R must be isomorphic to S as
we will show later in Lemma 5.1. Thus semi-dualizing bimodules are nothing
but semi-dualizing R-modules in this case. One can define the Cohen-Macaulay
dimension of an R-module M as

CM-dimM = inf{GC - dimRM | C is a semi-dualizing R-module}.

Let C1 and C2 be semi-dualizing R-modules. And suppose that an R-
module M satisfies GC1- dimM < ∞ and GC2- dimM < ∞. Then we can
show that GC1- dimM = GC2- dimM (= depthR − depthM) (c.f. Lemma
5.2). In other words, if the rings R and S are commutative, then the value
of the GC -dimension is constant for any choice of semi-dualizing modules C
whenever it is finite. But it follows the next example, if R is non-commutative,
this is no longer true.
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Example 2.3. Let Q be a quiver e1 −→ e2, and let R = kQ be the
path algebra over an algebraic closed field k. Put P1 = Re1, P2 = Re2,
I1 = Homk(e1R, k), and I2 = Homk(e2R, k). Then, it is easy to see that
the only indecomposable left R-modules are P1, P2 (∼= I1), and I2, up to
isomorphism. Putting C1 = P1 ⊕ P2 = R and C2 = I1 ⊕ I2, we note that
EndR(C1) = EndR(C2) = Rop (here, Rop is the opposite ring of R), and that
C1 and C2 are semi-dualizing (R,R)-bimodules. In this case we have that
GC1- dim I2(= G-dim I2) = 1 and GC2- dim I2 = 0, which take different finite
values.

Theorem 2.2. If GC-dimRM <∞ for a module M ∈ R-mod, then

GC- dimRM = sup{ n | ExtnR(M,C) 	= 0 }.
Proof. We prove the theorem by induction on GC - dimRM .
Assume first that GC - dimRM = 0. Then M is a C-reflexive module, and

hence we have sup{ n | ExtnR(M,C) 	= 0 } = 0 from the definition.
Assume next that GC - dimRM = 1. Then there exists an exact se-

quence 0 → X−1 → X0 → M → 0 where X0 and X−1 are C-reflexive R-
modules. Then it is clear that ExtiR(M,C) = 0 for i > 1. We must show that
Ext1R(M,C) 	= 0. To do this, suppose Ext1R(M,C) = 0. Then we would have
an exact sequence

(1) 0 → HomR(M,C) → HomR(X0, C) → HomR(X−1, C) → 0.

Then, writing the functor HomS(HomR(−, C), C) as F , we get from this the
commutative diagram with exact rows

0 −−−−→ X−1 −−−−→ X0 −−−−→ M −−−−→ 0

∼=
� ∼=

� �
0 −−−−→ F (X−1) −−−−→ F (X0) −−−−→ F (M) −−−−→ 0,

hence the natural map M → F (M) is also an isomorphism. Furthermore, it
also follows from (1) that ExtiR(HomR(M,C), C) = 0 for i > 0. Therefore
we would have GC - dimRM = 0, a contradiction. Hence Ext1R(M,C) 	= 0 as
desired.

Finally assume that GC - dimRM = m > 1. Then there exists an exact
sequence 0 → X−m → X−m+1 → · · · → X0 → M → 0 such that each Xi is
a C-reflexive R-module. Putting M ′ = Coker(X−2 → X−1), we note that the
sequence 0 → M ′ → X0 → M → 0 is exact and GC - dimRM

′ = m − 1 > 0.
Therefore, the induction hypothesis implies that sup{ n | ExtnR(M ′, C) 	= 0 } =
m−1. Since ExtnR(X0, C) = 0 for n > 0, it follows that sup{ n | ExtnR(M,C) 	=
0 } = m as desired.

If R is a left and right noetherian ring and if R = S = C, then the equality
GR-dimRM = G-dim M holds by definition. We should remark that if R is
a Gorenstein commutative ring, then any R-module M has finite G-dimension
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and it can be embedded in a short exact sequence of the form 0 → F → X →
M → 0 with pdF < ∞ and G-dim X = 0. Such a short exact sequence is
called a Cohen-Macaulay approximation of M . For the details, see [2].

We can prove an analogue of this result. To state our theorem, we need
several notations from [2]. Now let C be a semi-dualizing (R,S)-bimodule
as before. We denote by GC the full subcategory of R-mod consisting of all
C-reflexive R-modules, and by RR(C) the full subcategory consisting of R-
modules of finite GC -dimension. And add(C) denotes the subcategory of all
direct summands of direct sums of copies of C. It is obvious that add(C) ⊆ GC
and that the objects of add(C) are injective objects in GC , indeed ExtiR(X,C) =
0 for X ∈ GC and i > 0. The following lemma says that C is an injective
cogenerator of GC .

Lemma 2.2. Suppose an R-module X is C-reflexive, hence X ∈ GC .
Then there exists an exact sequence 0 → X → C0 → X1 → 0 where C0 ∈
add(C) and X1 ∈ GC . In particular, we can resolve X by objects in add(C) as

0 → X → C0 → C1 → C2 → · · · , (Ci ∈ add(C)).

Proof. It follows from Theorem 2.1.(3) that Y = HomR(X,C) is a C-
reflexive S-module. Take an exact sequence 0 → Y ′ → S⊕n → Y → 0 to get
the the first syzygy S-module Y ′ of Y . Applying the functor HomS(−, C), we
obtain an exact sequence 0 → X → C⊕n → HomS(Y ′, C) → 0. Since Y ′ is
a C-reflexive S-module, we see that HomS(Y ′, C) is a C-reflexive R-module
again.

To state the theorem, let us denote

âdd(C) =




there is an exact sequence of finite length
F ∈ R-mod 0 → C−n → C−n+1 → · · · → C0 → F → 0

where each Ci ∈ add(C)


 .

Then it is easy to prove the following result in a completely similar way to the
proof of [2, Theorem 1.1].

Theorem 2.3. Let M ∈ R-mod, and suppose GC-dimRM <∞, hence
M ∈ RR(C). Then there exist short exact sequences

0 → FM → XM →M → 0(2)

0 →M → FM → XM → 0(3)

where XM and XM are in GC , and FM and FM are in âdd(C).

Remark 2.2. Let X be a C-reflexive R-module. Since Exti(X,C) = 0
for i > 0, it follows that Exti(X,F ) = 0 for F ∈ âdd(C) and i > 0. Hence,
from (2), we have an exact sequence

0 → HomR(X,FM ) → HomR(X,XM ) → HomR(X,M) → 0.
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This means that any homomorphism from any C-reflexive R-module X to M
factors through the map XM →M . In this sense, the exact sequence (2) gives
an approximation of M by the subcategory GC .

Remark 2.3. We can of course define GC - dimS N for an S-module N
as in the same manner as we define GC -dimension. And it is clear by symmetry
that it satisfies that GC - dimS N = sup{n| ExtnS(N,C) 	= 0} if the former is
finite etc.

3. GC-dimensions for complexes

Again in this section, we assume that R (resp. S) is a left (resp. right)
noetherian ring. We denote by Db(R-mod) (resp. Db(mod-S)) the derived
category of R-mod (resp. mod-S) consisting of complexes with bounded finite
homologies.

For a complex M• we always write it as

· · · →Mn−1 ∂n
M−→Mn ∂n+1

M−→ Mn+1 ∂
n+2
M−→ Mn+2 → · · · ,

and the shifted complex M•[m] is the complex with M•[m]n = Mm+n and
∂nM [m] = (−1)m∂m+n

M .
According to Foxby [9], we define the supremum, the infimum and the

amplitude of a complex M• as follows;

s(M•) = sup{ n | Hn(M•) 	= 0 },
i(M•) = inf{ n | Hn(M•) 	= 0 },
a(M•) = s(M•) − i(M•).

Note that H(M•) = 0 ⇐⇒ s(M•) = −∞ ⇐⇒ i(M•) = +∞ ⇐⇒
a(M•) = −∞.

Suppose in the following that H(M•) = 0. A complexM• is called bounded
if s(M•) < ∞ and i(M•) > −∞ (hence a(M•) < ∞). And Db(R-mod) is, by
definition, consisting of bounded complexes with finitely generated homology
modules. (We remark that for each component Mn of M• ∈ Db(R-mod) is not
necessary finitely generated.) Thus, whenever M• ∈ Db(R-mod), we have

−∞ < i(M•) ≤ s(M•) < +∞.

and a(M•) is a non-negative integer.
We remark that the category R-mod can be identified with the full sub-

category of Db(R-mod) consisting of all the complexes M• ∈ Db(R-mod) with
s(M•) = i(M•) = a(M•) = 0 or otherwise M• ∼= 0. Through this identification
we always think of R-mod as the full subcategory of Db(R-mod).

For a complex P •, if each component P i is a finitely generated projective
module, then we say that P • is a projective complex. For any complex M• ∈
Db(R-mod), we can construct a projective complex P • and a chain map P • →
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M• that yields an isomorphism in Db(R-mod). We call such P • →M• a semi-
projective resolution of M•. If H(M•) 	= 0 and s = s(M•) is finite, then we
can take a semi-projective resolution P • of M• in the form;

· · · → P s−2 ∂
s−1
P−→ P s−1 ∂s

P−→ P s → 0 → 0 → · · · , (i.e. P i = 0 for i > s).

We call such a semi-projective resolution with this additional property a stan-
dard projective resolution of M•.

For a projective complex P •( 	∼= 0) and an integer n, we can consider two
kinds of truncated complexes:

τ
≤nP • = (· · · → Pn−2 ∂

n−1
P−→ Pn−1 ∂n

P−→ Pn → 0 → 0 → · · · )
τ≥nP • = (· · · → 0 → 0 → Pn

∂n+1
P−→ Pn+1 ∂n+2

P−→ Pn+2 → · · · )
Definition 3.1 (ω-operation). Let M• ∈ Db(R-mod), H(M•) 	= 0 and

s = s(M•). Taking a standard projective resolution P • of M•, we define the
projective complex ωP • by

(4) ωP • = (τ≤s−1P •)[−1].

Note from this definition that ωP • and P •[−1] share the same components
in degree ≤ s. We can also see from the definition that there is a triangle of
the form

(5) ωP • → P s[−s] →M• → ωP •[1].

Therefore, if M• is a module M ∈ R-mod, then ωP • is isomorphic to a first
syzygy module of M . Note that ωP • is not uniquely determined by M•. Ac-
tually it depends on the choice of a standard projective resolution P •, but is
unique up to a projective summand in degree s. It is easy to prove the following
lemma.

Lemma 3.1. Let M• ∈ Db(R-mod), H(M•) 	= 0 and let P • be a stan-
dard projective resolution of M•. Now suppose that a(M•) > 0. Then,

(1) i(ωP •) = i(M•) + 1,
(2) 0 ≤ a(ωP •) < a(M•).

Proof. Let s = s(M•). Since the complexes P • and ωP •[1] share the same
components in degree ≤ s − 1, we have that Hi(M•) = Hi(P •) = Hi+1(ωP •)
for i ≤ s− 2 and that Hs−1(M•) = Hs−1(P •) is embedded into Hs(ωP •). The
lemma follows from this observation.

It follows from this lemma that applying the ω-operation several times to
a given projective complex P •, we will have a complex with amplitude 0, i.e.
a shifted module.

Definition 3.2. Let M• and P • be as in the lemma. Then there is
the least integer b with ωbP • having amplitude 0. Thus there is a module
T ∈ R-mod such that ωbP • ∼= T [−c] for some c ∈ Z. We call such a module T
the trunk module of the complex M•.
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Remark 3.4. Let M• and P • be as in the lemma. Set i = i(M•), and
we see that the trunk module T is isomorphic to τ≤iP •[i] in Db(R-mod), hence
T ∼= Coker(P i−1 → P i). Note that the trunk module T is unique only in the
stable category R-mod.

Note that the integer b in Definition 3.2 is not necessarily equal to a(M•).
For instance, consider the complex M• = P • = R[2]⊕R. Then a(M•) = 2 and
T = ω1P •[−1] = R.

Now we fix a semi-dualizing (R,S)-bimodule C. Associated to it, we can
consider the following subcategory of Db(R-mod).

Definition 3.3. For a semi-dualizing (R,S)-bimodule C, we denote by
RR(C) the full subcategory of Db(R-mod) consisting of all complexes M• that
satisfy the following two conditions.

(1) RHomR(M•, C) ∈ Db(mod-S).
(2) The natural morphism M• → RHomS(RHomR(M•, C), C) is an iso-

morphism in Db(R-mod).

If R is a left and right noetherian ring and if R = S = C, then we should
note from the papers of Avramov-Foxby [3, (4.1.7)] and Yassemi [15, (2.7)] that
RR(R) = { M• ∈ Db(R-mod) | G-dim M• <∞}.

First of all we should notice the following fact.

Lemma 3.2. Let C be a semi-dualizing (R,S)-bimodule as above.
(1) The subcategory RR(C) of Db(R-mod) is a triangulated subcategory

which contains R, and is closed under direct summands. In particular, RR(C)
contains all projective R-modules.

(2) Let P • be a projective complex in Db(R-mod). Then, P • ∈ RR(C) if
and only if ωP • ∈ RR(C).

(3) Let M• ∈ Db(R-mod) and let T be a trunk module of M•. Then
M• ∈ RR(C) if and only if T ∈ RR(C).

Proof. The proof of (1) is standard, and we omit it. For (2) and (3), in
the triangle (5), noting that P [−s] ∈ RR(C) and that RR(C) is a triangulated
category, we see that P • ∈ RR(C) is equivalent to that ωP • ∈ RR(C). Since
T ∼= ωbP •[c] as in Definition 3.2, this is also equivalent to that T ∈ RR(C).

The following lemma says that R-modules in RR(C) form the subcategory
of modules of finite GC -dimension.

Lemma 3.3. Let M be an R-module. Then the following two conditions
are equivalent.

(1) GC-dimRM <∞,
(2) M ∈ RR(C).

Proof. (1) ⇒ (2): Note from the definition that every C-reflexive module
belongs to RR(C). Since GC - dimRM < ∞, there is a finite exact sequence
0 → X−n → X−n+1 → · · · → X0 → M → 0 where each Xi is C-reflexive.
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Since each Xi belongs to RR(C) and since RR(C) is closed under making
triangles, we see that M ∈ RR(C).

(2) ⇒ (1): Suppose that M ∈ RR(C) and let P • ∈ Db(R-mod) be a
(standard) projective resolution of M . Since RHomR(M,C) is a bounded
complex, it follows that s = s(RHomR(M,C)) is a (finite) non-negative in-
teger. Since the complexes HomR(ωsP •, C) and HomR(P •[−s], C) share the
same component in non-negative degree, we see that Hi(RHomR(ωsP •, C)) =
Hi+s(RHomR(P •, C)) = 0 for i ≥ 1. Noting that ωsP • is isomorphic to
the s-th syzygy module ΩsM of M , we see from this that Exti(ΩsM,C) = 0
for i > 0. It follows from above lemma, we have ωsP • ∈ RR(C) and the
natural map ΩsM → RHomS(HomR(ΩsM,C), C) is an isomorphism, equiv-
alently ΩsM ∼= HomS(HomR(ΩsM,C), C) and Exti(HomR(ΩsM,C), C) = 0
for i > 0. Consequently, we see that ΩsM is a C-reflexive R-module, hence
GC - dimRM ≤ s <∞.

Recall from Theorem 2.2 that if an R-module M has finite GC -dimension,
then we have GC - dimRM = s(RHomR(M,C)). Therefore it will be reason-
able to make the following definition.

Definition 3.4. Let C be a semi-dualizing (R,S)-bimodule and let M•

be a complex in Db(R-mod). We define the GC -dimension of M• to be

{
GC - dimRM

• = s(RHomR(M•, C)) if M• ∈ RR(C),
GC - dimRM

• = +∞ if M• 	∈ RR(C).

Note that this definition is compatible with that of GC -dimension for R-
modules in Section 2. Just noting an obvious equality

s(RHomR(M•[m], C)) = s(RHomR(M•, C)) +m

for M• ∈ Db(R-mod) and m ∈ Z, we have the following lemma.

Lemma 3.4. Let M• be a complex in Db(R-mod) and let m be an in-
teger. Then we have

GC-dimRM
•[m] = GC-dimRM

• +m.

Lemma 3.5. Let M• be a complex in Db(R-mod). Then the following
inequality holds:

GC-dimRM
• + i(M•) ≥ 0.

Proof. IfM• ∼= 0, then since i(M•) = +∞, the inequality holds obviously.
We may thus assume that H(M•) = 0. If M• 	∈ RR(C), then GC - dimRM

• =
+∞ by definition, and there is nothing to prove. Hence we assume M• ∈
RR(C). In particular, we have M• ∼= RHomS(RHomR(M•, C), C). Therefore
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we have that

i(M•) = i(RHomS(RHomR(M•, C), C))
≥ i(C) − s(RHomR(M•, C))
= −s(RHomR(M•, C))
= −GC - dimRM

•.

(For the inequality see Foxby [8, Lemma 2.1].)

Proposition 3.1. For a given complex M• ∈ Db(R-mod), suppose that
a(M•) > 0. Taking a standard projective resolution P • of M•, we have an
equality

GC-dimRM
• = GC-dimR ωP

• + 1.

Proof. Note from Lemma 3.2(2) that GC - dimRM
• < ∞ if and only if

GC - dimR ωP
• < ∞. Assume that n = GC - dimRM

• = s(RHomR(P •, C)) <
∞ and let s = s(M•). We should note from Lemma 3.5 that

n+ s = GC - dimRM
• + s(M•)

> GC - dimRM
• + i(M•)

≥ 0.

Since the complex HomR(ωP •, C) shares the components in degree ≥ −s
with HomR(P •, C)[1], we see that Hi(HomR(ωP •, C)) = Hi+1(HomR(P •, C))
for i > −s. Since n > −s as above, it follows that s(HomR(ωP •, C)) =
s(HomR(P •, C)) − 1.

As we show in the next theorem, the GC -dimension of a complex is es-
sentially the same as that of its trunk module. In that sense, every argument
concerning GC -dimension of complexes will be reduced to that of modules.

Theorem 3.1. Let T be the trunk module of a complex M• as in Defi-
nition 3.2. Then there is an equality

GC-dimRM
• = GC-dimR T − i(M•).

Proof. If M• 	∈ RR(C), then the both sides take infinity and the equality
holds. We assume that M• ∈ RR(C) hence GC - dimRM

• <∞.
We prove the equality by induction on a(M•). If a(M•) = 0 then M• ∼=

T [−i] for the trunk module T and for i = i(M•). Therefore it follows from
Lemma 3.4 GC - dimRM

• = GC - dimR T − i.
Now assume that a(M•) > 0, and let P • be a standard projective resolu-

tion ofM•. Noting from Lemma 3.1 that we can apply the induction hypothesis
on ωP •, we get the following equalities from the previous proposition.

GC- dimRM
• = GC - dimR ωP

• + 1
= GC - dimR T − i(ωP •) + 1
= GC - dimR T − i(P •)
= GC - dimR T − i(M•).



�

�

�

�

�

�

�

�

Homological invariants 299

As one of the applications of this theorem, we can show the following
theorem that generalizes Lemma 2.1 to the category of complexes.

Theorem 3.2. Let M• be a complex in Db(R-mod). Then the following
conditions are equivalent.

(1) GC-dimRM
• <∞,

(2) There is a bounded complex X• consisting of C-reflexive modules and
there is a chain map X• →M• that is an isomorphism in Db(R-mod).

Proof. (2) ⇒ (1): Note that every C-reflexive R-module belongs to
RR(C) and that RR(C) is closed under making triangles. Therefore any com-
plexes X• of finite length consisting of C-reflexive modules are also in RR(C),
hence GC- dimRX

• <∞.
(1) ⇒ (2): Assume that GC - dimRM

• <∞ hence M• ∈ RR(C). We shall
prove by induction on a(M•) that the second assertion holds. If a(M•) = 0,
then there is an R-module T such that M• ∼= T [−i] where i = i(M•). Since
GC - dimR T <∞, there is a complex

X• =
[

0 → X−m → · · · → X−2 → X−1 → X0 → 0
]

with each Xi being C-reflexive and a quasi-isomorphism X• → T . Thus the
complex X•[−s] is the desired complex for M•.

Now suppose a = a(M•) > 0 and take a standard projective resolution P •

of M•. As in (5), we have chain maps ϕ : P s[−s] →M• and ψ : ωP • → P s[−s]
that make the triangle

ωP • ψ−→ P s[−s] ϕ−→M• → ωP •[1].

Since a(ωP •) < a(M•), it follows from the induction hypothesis that there is
a chain map ρ : X• → ωP • that gives an isomorphism in Db(R-mod), where
X• is a complex of finite length with each Xi being C-reflexive. Thus we also
have a triangle

X• ψ·ρ−→ P s[−s] ϕ−→M• → X•[1].

Now take a mapping cone Y • of ψ · ρ. Then it is obvious that Y • has finite
length and each modules in Y • is C-reflexive, since Y i is a module Xi with at
most directly summing P s. Furthermore it follows from the above triangle that
there is a chain map Y • →M• that yields an isomorphism in Db(R-mod).

Also in the category Db(mod-S), we can construct the notion similar to
that in Db(R-mod).

Definition 3.5. Let C be a semi-dualizing (R,S)-bimodule. We denote
by RS(C) the full subcategory of Db(mod-S) consisting of all complexes N•

that satisfy the following two conditions.



�

�

�

�

�

�

�

�

300 Tokuji Araya, Ryo Takahashi and Yuji Yoshino

(1) RHomS(N•, C) ∈ Db(R-mod).
(2) The natural morphism N• → RHomR(RHomS(N•, C), C) is an iso-

morphism in Db(mod-S).

Definition 3.6. Let C be a semi-dualizing (R,S)-bimodule and let N•

be a complex in Db(mod-S). We define the GC -dimension of N• to be{
GC - dimS N

• = s(RHomS(N•, C)) if N• ∈ RS(C),
GC - dimS N

• = +∞ if N• 	∈ RS(C).

Note that all the properties concerning RR(C) and GC -dimension hold
true for RS(C) and GC -dimension by symmetry.

Lemma 3.6. Let C be a semi-dualizing (R,S)-bimodule as above. Then
the functors RHomR(−, C) and RHomS(−, C) yield a duality between the cat-
egories RR(C) and RS(C).

We postpone the proof of this lemma until Theorem 4.1 in the next section,
where we prove the duality in more general setting. Using this lemma we are
able to prove the following theorem, which generalizes Theorem 2.3. We recall
that add(C) is the additive full subcategory of R-mod consisting of modules
that are isomorphic to direct summands of finite direct sums of copies of C.

Theorem 3.3. Let M• ∈ Db(R-mod) and suppose that GC-dimRM
•

<∞. Then there exists a triangle

(6) F •
M → X•

M →M• → F •
M [1]

where X•
M is a shifted C-reflexive R-module, and F •

M is a complex that is
isomorphic to a complex of finite length consisting of modules in add(C).

Proof. Let N• = RHomR(M•, C) and let T be a trunk module of N• in
the category Db(mod-S). We have a triangle of the following type:

T [−i] → P • → N• → T [−i+ 1],

where i = i(N•) and P • is a projective S-complex of length a(N•). Note that
n = GC - dimS T is finite as well as GC - dimS N

• < ∞ by Lemma 3.6. Take
the n-th syzygy module of T , and we have a C-reflexive S-module U with the
triangle

U [−i− n] → Q• → N• → U [−i− n+ 1],

where Q• is again a projective S-complex of finite length. Applying the functor
RHomS(−, C), we have a triangle

RHomS(U,C)[i+ n− 1] →M• → RHomS(Q•, C) → RHomS(U,C)[i+ n].

Note that RHomS(U,C) is isomorphic to a C-reflexive R-module and that
RHomS(Q•, C) is a complex of finite length, each component of which is a
module in add(C).
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4. GC•-dimensions for complexes

The notion of a semi-dualizing bimodule is naturally extended to that of
a semi-dualizing complex of bimodules. For this purpose, let C• be a complex
consisting of (R,S)-bimodules and (R,S)-bimodule homomorphisms. Then
for a complex M• ∈ Db(R-mod), take an R-projective resolution P • of M•,
and we understand RHomR(M•, C•) as the class of complexes of S-modules
that are isomorphic in Db(mod-S) to the complex HomR(P •, C•). In this
way, RHomR(−, C•) yields a functor Db(R-mod) → Db(mod-S). Likewise,
RHomS(−, C•) yields a functor Db(mod-S) → Db(R-mod).

Let s ∈ S. Then we see that the right multiplication ρ(s) : C• → C• is a
chain map of R-complexes. Take a projective resolution P • of C• as a complex
in Db(R-mod) and a chain map ψ : P • → C• of R-complexes. Combining
these two, we have a chain map h(s) = ρ(s) · ψ : P • → C•, which defines an
element of degree 0 in the complex HomR(P •, C•). In such a way, we obtain
the morphism h : S → RHomR(C•, C•) in Db(mod-S), which we call the
right homothety morphism. Likewise, we have the left homothety morphism
R → RHomS(C•, C•) in Db(R-mod).

Definition 4.1. Let C• be a complex consisting of (R,S)-bimodules
and (R,S)-bimodule homomorphisms as above. We call C• a semi-dualizing
complex of bimodules if the following conditions hold.

(1) The complex C• is bounded, that is, there are only a finite number of
i with Hi(C•) 	= 0.

(2) The right homothety morphism S → RHomR(C•, C•) is an isomor-
phism in Db(mod-S).

(3) The left homothety morphism R → RHomS(C•, C•) is an isomor-
phism in Db(R-mod).

Definition 4.2. We denote by RR(C•) the full subcategory consisting
of all complexes M• ∈ Db(R-mod) that satisfy the following conditions.

(1) The complex RHomR(M•, C•) of S-modules belongs to Db(mod-S).
(2) The natural morphism M• → RHomS(RHomR(M•, C•), C•) gives

an isomorphism in Db(R-mod).
Similarly we can define RS(C•) as the full subcategory consisting of all

complexes N• that satisfy the following conditions.
(1’) The complex RHomS(N•, C•) of R-modules belongs to Db(R-mod).
(2’) The natural morphism N• → RHomR(RHomS(N•, C•), C•) gives an

isomorphism in Db(mod-S).

Definition 4.3.
(1) For a complex M• ∈ Db(R-mod), we define the GC• -dimension of M•

as

GC• - dimRM
• =

{
s(RHomR(M•, C•)) if M• ∈ RR(C•),
+∞ otherwise.
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(2) Similarly we define the GC• -dimension of a complex N• ∈ Db(mod-S)
as

GC•- dimS N
• =

{
s(RHomS(N•, C•)) if N• ∈ RR(C•),
+∞ otherwise.

Theorem 4.1. Let C• be a semi-dualizing complex of (R,S)-bimodules.
Then the functors RHomR(−, C•) and RHomS(−, C•) give rise to a duality
between RR(C•) and RS(C•).

Proof. It is straightforward to see that both functors send complexes with
GC• -dimension finite (over the respective rings), and that the compositions of
them are the identity functors (for the respective categories).

5. GC•-dimension in the commutative case

In this final section of the paper, we shall observe several properties of GC -
dimension in the case when R and S are commutative local rings. We begin
with the following lemma.

Lemma 5.1. Let R and S be commutative noetherian rings. Suppose
that there exists a semi-dualizing (R,S)-bimodules C. Then R is isomorphic to
S.

Proof. Let φ : R → HomR(C,C) = S and ψ : S → HomS(C,C) = R be
the homothety morphisms. Since R and S are commutative, we see that they
are well-defined ring homomorphism and that ψφ (resp. φψ) is the identity
map on R (resp. S). Hence R ∼= S as desired.

In view of this lemma, we may assume that R coincides with S for our
purpose of this section. Thus we may call a semi-dualizing (R,S)-bimodule
simply a semi-dualizing module. For a semi-dualizing complex C•, we simply
write R(C•) for RR(C•). Note that GC•- dimM• (in this paper) is the same
as G-dimC•M• in [5] and GC• - dimM• in [10].

From now on, we assume that R is a commutative noetherian local ring
with unique maximal ideal m and residue class field k = R/m. It is known
that GC•- dimM• satisfies the Auslander-Buchsbaum-type equality as well as
G-dimRM

•.

Lemma 5.2. [5, Theorem 3.14] For M• ∈ R(C•),

GC•-dimM• = depthR − depthM• + s(C•),

where the depth depthM• of a complex M• is defined to be i(RHom(k,M•)).

We are now able to state the main result of this section.

Theorem 5.1. The following conditions are equivalent for a local ring
(R,m, k).
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(1) R is a Cohen-Macaulay local ring that is a homomorphic image of a
Gorenstein local ring.

(2) For any finitely generated R-module M , there exists a semi-dualizing
module C such that GC-dimRM <∞.

(3) There exists a semi-dualizing module C such that GC-dimR k <∞.
(4) For any M• ∈ Db(R-mod) there exists a semi-dualizing module C such

that GC-dimRM
• <∞.

(5) There exists a semi-dualizing module C such that R(C) = Db(R-mod).
(6) The dualizing complex D• exists and there exists a semi-dualizing mod-

ule C such that GC-dimRD
• <∞.

Proof. The implications (5) ⇒ (4) ⇒ (2) ⇒ (3) are trivial.
(3) ⇒ (1): Since GC - dimR k < ∞, we have ExtnR(k, C) = 0 for n  0.

Hence we see that the injective dimension of C is finite. Therefore R is Cohen-
Macaulay. (It is well-known that a commutative local ring which admits a
finitely generated module of finite injective dimension is Cohen-Macaulay. For
example, see [14].) Note that

depthC = −GC - dimR C + depthR+ s(C)
= depthR
= dimR.

That is to say, C is a maximal Cohen-Macaulay module. Since the isomorphism
ExtdR(ExtdR(k, C), C) ∼= k, where d = dimR, holds, one can show that C is the
dualizing module of R. The existence of the dualizing module of R implies
that R is a homomorphic image of a Gorenstein local ring. (See Reiten [12,
Theorem (3)] or Foxby [6, Theorem 4.1].)

(1) ⇒ (6): It follows from the condition (1) that R admits the dualizing
module KR. Note that KR is a semi-dualizing module and isomorphic to the
dualizing complex in Db(R-mod). Hence GKR

- dimKR = 0 <∞.
(6) ⇒ (5): We may assume that i(D•) = 0. Then note that depthD• =

dimR. It follows from Lemma 5.2 that

GC - dimRD
• = depthR− depthD• + s(C)

= depthR− dimR

≤ 0.

On the other hand, from Lemma 3.5 we have that

GC - dimRD
• = GC - dimRD

• + i(D•) ≥ 0.

Consequently, we have dimR = depthR. Hence R is Cohen-Macaulay. And
this implies that D• is isomorphic to the dualizing module KR of R. It is ob-
vious that KR is a semi-dualizing module and every maximal Cohen-Macaulay
module is KR-reflexive. As a result, every R-module has finite GKR

-dimension,
hence R(KR) contains all R-modules. Then it follows from Theorem 3.1 that
R(KR) contains all complexes in Db(R-mod), hence R(KR) = Db(R-mod).
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Similarly to the above theorem, we can get a result for semi-dualizing
complexes.

Theorem 5.2. The following conditions are equivalent for a local ring
(R,m, k).

(1) R is a homomorphic image of a Gorenstein local ring.
(2) For any M ∈ R-mod, there exists a semi-dualizing complex C• such

that GC•-dimM <∞.
(3) There exists a semi-dualizing complex C• such that GC•-dim k <∞.
(4) For any M• ∈ Db(R-mod), there exists a semi-dualizing complex C•

such that GC•-dimM <∞.
(5) There exists a semi-dualizing complex C• such that R(C•) =

Db(R-mod).
(6) The dualizing complex D• exists.

Proof. It is easy to prove the implications (1) ⇒ (6) ⇒ (5) ⇒ (4) ⇒
(2) ⇒ (3) ⇒ (6). The remaining implication (6) ⇒ (1) that is the most
difficult to prove follows from [11, Theorem 1.2].

As final part of the paper we discuss a kind of uniqueness property of
semi-dualizing complexes.

Theorem 5.3. Let C•
1 and C•

2 be semi-dualizing complexes. Suppose
that C•

1 ∈ R(C•
2 ) and C•

2 ∈ R(C•
1 ). Then C•

1
∼= C•

2 [a] for some a ∈ Z. In
particular, we have R(C•

1 ) = R(C•
2 ).

For the proof this theorem we need the notion of Poincare and Bass series
of a complex.

Remark 5.5. Let (R,m, k) be a commutative noetherian local ring. For
a complex M• ∈ Db(R-mod), consider two kinds of formal Laurent series in
the variable t;

PM•(t) =
∑
n∈Z

dimk H−n(M• L⊗ k) · tn,

IM
•
(t) =

∑
n∈Z

dimk Hn(RHom(k,M•)) · tn.

These series are called respectively the Poincare series and the Bass series of
M•. As it is shown in Foxby [8, Theorem 4.1(a)], the following equality holds
for M•, N• ∈ Db(R-mod).

(7) IRHom(M•,N•)(t) = PM•(t) · IN•
(t)

Proof of 5.3. Since C•
1 ∈ R(C•

2 ), we have C•
1
∼= RHom(RHom(C•

1 , C
•
2 ),

C•
2 ). Hence, we have from (7) that

IC
•
1 (t) = PRHom(C•

1 ,C
•
2 )(t) · IC

•
2 (t).
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Likewise, it follows from C•
2
∼= RHom(RHom(C•

2 , C
•
1 ), C•

1 ) that

IC
•
2 (t) = PRHom(C•

2 ,C
•
1 )(t) · IC

•
1 (t).

Since H(C•
1 ) 	= 0, one can check that IC

•
1 (t) 	= 0. Therefore we have

PRHom(C•
1 ,C

•
2 )(t) · PRHom(C•

2 ,C
•
1 )(t) = 1.

Since PRHom(C•
1 ,C

•
2 )(t) and PRHom(C•

2 ,C
•
1 )(t) are formal Laurent series with

non-negative coefficients, we have

order(PRHom(C•
1 ,C

•
2 )(t)) + order(PRHom(C•

2 ,C
•
1 )(t))

= order(PRHom(C•
1 ,C

•
2 )(t) · PRHom(C•

2 ,C
•
1 )(t))

deg(PRHom(C•
1 ,C

•
2 )(t)) + deg(PRHom(C•

2 ,C
•
1 )(t))

= deg(PRHom(C•
1 ,C

•
2 )(t) · PRHom(C•

2 ,C
•
1 )(t))

Therefore we have PRHom(C•
1 ,C

•
2 )(t) = ta and PRHom(C•

2 ,C
•
1 )(t) = t−a for

some integer a. Thus it follows that

C•
1
∼= RHom(RHom(C•

1 , C
•
2 ), C•

2 )
∼= RHom(R[−a], C•

2 )
∼= C•

2 [a],

as desired.

Finally we have an interesting corollary of this theorem.

Corollary 5.1. Suppose that R admits the dualizing complex D•. Then
R is a Gorenstein ring if and only if G-dim D• <∞.

Proof. If R is Gorenstein then D• ∼= R thus G-dim D• = G-dim R = 0.
Conversely, assume G-dimD• < ∞. Then we have D• ∈ R(R). On the other
hand, we have R ∈ R(D•), more generally R(D•) contains all R-modules by
the definition of dualizing complex. Hence it follows from the theorem that
D• ∼= R[a] for some a ∈ Z, which means R is a Gorenstein ring.
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