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rational homology three spheres
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1. Introduction

The relation between a 3-manifold and the 4-manifolds which it bounds is
important in many aspects of low-dimensional topology. For example, under
the situation that Σ is a Q-homology 3-sphere and Σ → S3 is a cyclic branched
covering of degree pn (p: prime) branched over a knot K in S3, if K is slice,
then Σ bounds a Zp-homology 4-ball.

The application of gauge theory to homology cobordisms of homology 3-
spheres was initiated by Fintushel and Stern [FS1], and has been developed
into several directions by many authors ([FS2], [F], [M], [R]). In [FS1], Fin-
tushel and Stern defined a numerical invariant for Seifert fibred Z-homology
3-spheres, and showed that if the invariant is positive, then the Seifrt fibred
Z-homology 3-sphere can not bound a positive definite 4-manifold whose 1st
homology contains no 2-torsion.

In this paper, we treat the case where the 1st homology contains 2-torsion,
in other words, Q-homology cobordisms of Seifert fibred Q-homology 3-spheres
by applying the fundamental works of Fintushel-Stern [FS1] and Donaldson
[D2], [D3].

Let M3 be a Seifert fibred Q-homology 3-sphere with Seifert invariant
{0; (1,−b), (α1, β1), . . . , (αn, βn)}, where α1, . . . , αn are pairwise relatively
prime integers ≥ 2. (For Seifert invariants we use the definition in [NR].) We
assign to M3 the orientation as the link of an algebraic singularity. Then, by
plumbing, M3 bounds a simply connected, negative definite 4-manifold. Define
c = α1 · · ·αn(−b +

∑n
i=1(βi/αi)), and

R(M) =
2c

α
− 3 + n +

n∑
i=1

2
αi

αi−1∑
k=1

cot
παc∗i k

α2
i

cot
πk

αi
sin2 πk

αi
,

where α = α1 · · ·αn, and cic
∗
i ≡ 1 (mod αi) for i = 1, . . . , n. (Note that c > 0

and H1(M3; Z) = Zc.)
Then following is our main result.
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552 Takayuki Mukawa

Theorem 1.1. If R(M) > 0 and c/α < 4/αi (i = 1, . . . , n), then M3

cannot bound an oriented, compact, smooth, positive definite 4-manifold V 4.
In particular, any connected sum of M3 cannot bound a Q-homology 4-ball.

Note that when M3 is a Z-homology 3-sphere and H1(V 4; Z) contains no
2-torsion, our theorem coincides with Fintushel-Stern’s result ([FS1, Theorem
1.1]).

On the other hand, Yu ([Y]) showed that when M3 is a Z2-homology 3-
sphere and H1(V 4; Z) contains no 2-torsion Fintushel-Stern’s result still holds,
if we add the condition c/α < 4/αi (i = 1, . . . , n) ( , which corresponds to
compactness of moduli space).

Theorem 1.1 can be considered as a corollary of the following theorem
which concerns the non-existence of certain orbifolds:

Let X4 be a pseudofree orbifold in the sense of [FS1]. This means that
there is a smooth, fixed point free S1-action on a smooth 5-manifold Q5, and
its orbit space Q5/S1 is X4. Let E1, . . . , En be the exceptional orbits of the
S1-action on Q5, and let Zai

(resp. (ai; ri, si)) be the isotropy (resp. the slice
type) of Ei. (Here, we assume that a1, . . . , an are pairwise relatively prime.)
Ei corresponds with a singular point of X4, whose neighbourhood is a cone
on the lens space L(ai, bi). (Here, ris

−1
i ≡ bi (mod ai).) The quotient map

Q5 → Q5/S1 = X4 becomes a principal S1-bundle when it is restricted to
D(X4) = X4 \⋃n

i=1 int(cL(ai, bi)). Its Euler class e ∈ H2(D(X); Z) is called a
pseudofree Euler class of X4. Define

µ(e) := �[{π(f); f ∈ H2(D(X); Z), f2 = e2, f ≡ e(mod 2),
i∗j (f) = ±i∗j (e)∀j}/{v ∼ −v}]

(Here, π : H2(D(X); Z) → Fr H2(D(X); Z) is the projection onto the free part,
and ij : L(ai, bj) → D(X) is the inclusion (j = 1, . . . , n).) and

R(X, e) = −2e2 − 3 + n +
n∑

i=1

2
ai

ai−1∑
k−1

cot
πkri

ai
cot

πksi

ai
sin2 πk

ai
.

Then, we have

Theorem 1.2. There does not exist a pseudofree orbifold which satisfies
the following conditions :

(i) the intersection form on X4 is negative definite,
(ii) H1(D(X); R) = 0,
(iii) ι∗(TorH2(D(X); Z)) = 0 where ι : ∂D(X) → D(X) is the inclusion,
(iv) −e2 < 4/ai (i = 1, . . . , n),
(v) µ(e) = 1,
(vi) R(X, e) > 0.

Since both theorems are proved similarly, we will prove Theorem 1.1 only.
We briefly explain the difference between Fintushel-Stern’s result and ours.

In Fintushel-Stern’s case (also Yu’s case), the number of reducible self-dual con-
nections is a priori odd by Hodge theory. On the other hand, reducible connec-
tions correspond to singular points of moduli space. By using Z2-cohomology
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class, Fintushel-Stern concluded that the number of singular points must be
even ( , hence obtained a contradiction). In our case, since we allow H1(M3; Z)
and H1(V 4; Z) to contain 2-torsion, two difficulties arise. One is that other
types of reducible connections than S1 may exist. The other is that even if
reducible connections are all S1, the number of them is always even. For the
former, we will show that the anti-self-duality equation is transverse enough to
exclude such reducible connections in generic situation. In order to deal with
the latter, we use integral cohomology class of moduli space ( , which was intro-
duced by Donaldson [D2]). To carry out this we explicitly calculate orientation
of moduli space by extending Donaldson’s method ([D3]) to orbifold case.

The organization of this paper is as follows. In Section 2, we assembled
basic facts about orbifolds and gauge theory. There it is proved that the num-
ber of S1-reducible connections is always even, by computing the homology of
the orbifold. This fact is not used directly, but important for our approach
as mentioned above. In Section 3, it is proved that other types of reducible
connections than S1 are removed away by a generic perturbation. In Sections
4 and 5 we calculate orientation of the moduli space. Finally, in Section 6 we
prove Theorem 1.1.

The author would like to express his gratitude to Professors T. Ochiai,
K. Fukaya, M. Furuta and Dr’s Y. Hashimoto and H. Ohta for advice and
encouragement in preparing this paper.

2. Generalities

From now on, we suppose that a Seifert fibred Q-homology 3-sphere M3

with R(M) > 0 and c/α < 4/αi (i = 1, . . . , n) bounds an oriented, compact,
smooth, positive definite 4-manifold V 4. By surgering out the free part of
H1(V 4; Z) we can assume that H1(V 4; R) = 0.

(a) Pseudofree orbifolds
Let C denote the mapping cylinder of the Seifert fibration M → S2. Then

C is a 4-manifold with n singular points which have neighbourhood which are
cones on the lens spaces L(αi,−(αc∗i )/αi) and the boundary of C is M3. The
rational intersection form of C as a rational homology manifold is definite. We
choose an orientation of C so that its intersection form is negative definite. This
orientation is compatible with that of the boundary M3. Define the pseudofree
S1-action on M3 × D2 to be the diagonal action of the S1-action on M3 by
the action of the Seifert fibration and the S1-action on D2 as multiplication of
complex numbers. The orbit space (M3×D2)/S1 is identified with the mapping
cylinder C. This S1-action on M3 × D2 is compatible with the obvious S1-
action on V 4 × S1 via the S1-equivariant diffeomorphism ϕ : ∂(M3 × D2) =
M3 ×S1 → M3 ×S1 = ∂(V 4 ×S1) ((x, z) �→ (z−1 · x, z)), so these actions glue
together to give the pseudofree S1-action on Q5 := (M3 × D2) ∪ϕ (V 4 × S1),
and the orbit space Q5/S1 = C ∪M3 (−V 4) =: X4 can be naturally considered
as a negative definite V -manifold. (Note that this X4 corresponds to the one
in Theorem 1.2.)
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We compute the slice type of the S1-action on Q5. Let (αi; νi) denote the
slice type of the S1-action on M3 at the Zαi

-orbit, where βiνi ≡ 1 (mod αi).
By definition, c = α(−b +

∑n
j=1 βj/αj) and cc∗i ≡ 1 (mod αi), so 1 ≡ cc∗i ≡

α(βi/αi)c∗i (mod αi). Hence, νi ≡ (αc∗i )/αi (mod αi). The exceptional orbits
of the S1-action on Q5 are naturally in one to one correspondence with those
on M3 × D2. Hence, the S1-action on Q5 has n exceptional orbits with slice
type (αi; νi, 1) = (αi; (αic

∗
i )/αi, 1) (i = 1, . . . , n).

Let us compute the (co-)homology of X4. Define

W 4 := C \
n⋃

i=1

int
(

cL

(
αi,−αc∗i

αi

))
, and

D(X4) := X4 \
n⋃

i=1

int
(

cL

(
αi,−αc∗i

αi

))
= W 4 ∪M3 (−V 4).

By the exact sequences

· · · →H2

 
n[

i=1

L

„
αi,−αc∗i

α

«
; Z

!
→H2(W ; Z)→ H2

 
W,

n[
i=1

L

„
αi,−αc∗i

α

«
; Z

!
|| ||
0 Z

→H1

 
n[

i=1

L

„
αi,−αc∗i

α

«
; Z

!
→H1(W ; Z)→ H1

 
W,

n[
i=1

L

„
αi,−αc∗i

α

«
; Z

!
|| ||Mn

i=1
Zαi Z

n−1

→ eH0

 
n[

i=1

L

„
αi,−αc∗i

α

«
; Z

!
→ eH0(W ; Z)→H0

 
W,

n[
i=1

L

„
αi,−αc∗i

α

«
; Z

!
→ 0,

|| || ||
Z

n−1 0 0

and

· · · → H2(M ; Z) → H2(W ; Z) → H2(W, M ; Z)
|| ||
0 Z

→ H1(M ; Z) → H1(W ; Z) → H1(W, M ; Z)
|| ||
Zc 0

→ H̃0(M ; Z) → H̃0(W ; Z) → H0(W, M ; Z) → 0,
|| || ||
0 0 0

we see that H1(W 4; Z) = 0 and H2(W 4; Z) = Z. Hence H1(D(X4); R) = 0 and
i∗(TorH2(D(X4); Z)) = 0, where i : ∂D(X4) ↪→ D(X4) is the inclusion.

By definition, the pseudofree Euler class e ∈ H2(D(X4); Z) of X4 is the
Euler class of the principal S1-bundle Q5|D(X4) → D(X4). This lies in the
image of the inclusion

H2(W, M ; Z) = H2(D(X4), V 4; Z) ↪→ H2(D(X4); Z).
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Define the cross section s of the complex line bundle (Q5|W 4)×S1 C → W 4

associated to the principal S1-bundle Q5|W 4 → W 4 as follows:

s : W 4

(
⊂ C =

M3 × D2

S1

)
→ (Q5|W 4) ×S1 C ⊂ (M3 × D2) ×S1 C.

[(x, z)] �→ [((x, z), z)]

Then we have

H2(W, M ; Z)
∩[W,∂W ]→ H2

(
W, L

(
αi,−αc∗i

α

)
; Z
)

∼= H2(C; Z) ∼= Z.

e �→ [s−1(0)] �→
[
M × 0

S1

]
�→ 1

Thus we have

H2(W, M ; Z) = H2(D(X), V ; Z)(=Z) ⊂ H2(D(X); Z) .

1 �−→ e

We compute the rational self-intersection number e2 ∈ Q of e.
By the following diagrams

H1(∂W,M ; Z) → H2(W,∂W ; Z)
α·→ H2(W, M ; Z) → H2(∂W, M ; Z) → H3(W, ∂W ; Z)

|| || || || ||
0 Z Z ⊕n

i=1Zαi 0
1 = e �→ ⊕n

i=11
1 = f �→ α = αe

H1

„
∂W,∪n

i=1L

„
αi,−

αc∗i
α

«
; Z

«

||
0

→ H2(W, ∂W ; Z)
c·→ H2

„
W,∪n

i=1L

„
αi,−

αc∗i
α

«
; Z

«
→ H2

„
∂W,∪n

i=1L

„
αi,−

αc∗i
α

«
; Z

«

|| || ||
Z Z Zc

1 �→ 1
1 = f �→ c(:= f ′)

→ H3(W, ∂W ; Z)
||
0

H2

(
W,∪n

i=1L

(
αi,−αc∗i

α

)
; Z
)

∩[W,∂W ]→ H2(W, M ; Z)

|| ||
Z Z

1 �→ 1
c = f ′ �→ c = f ′ ∩ [W, ∂W ]
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H2(W, M ; Z) → Hom(H2(W, M ; Z), Z),
|| ||
Z Z

1 = e �→ (Z � 1 �→ 1 ∈ Z)

we have up to sign

e2 =
1
α
〈e ∪ f, [W, ∂W ]〉

=
1
α
〈e ∪ f ′, [W, ∂W ]〉

=
1
α
〈e, f ′ ∩ [W, ∂W ]〉

=
c

α
.

Since X4 is negative definite, it follows that e2 < 0.
Hence we have

Proposition 2.1. e2 = −c/α.

(b) The setting for gauge theory
The quotient map Q5 → Q5/S1 = X4 of the pseudofree S1-action on Q5

can be naturally considered as a principal S1-V -bundle. In fact, over each
L(αi,−(αc∗i )/α)

Q5|
L(αi,−αc∗

i
α )

= S3 ×Zαi
S1

↓ ↓
L

(
αi,−αc∗i

α

)
= S3/Zαi

,

and this extends naturally to the S1-V -bundle over cL(αi,−(αc∗i )/α)

D4 ×Zαi
S1

↓
D4/Zαi

= cL

(
αi,−αc∗i

α

)
.

Let L → X4 be the complex line V -bundle associated to Q5 → X4. L sta-
bilizes to an SO(3)-V -bundle E = L⊕R. Let adE be the V -bundle associated
to E by the adjoint representation (or equivalently the standard representa-
tion). Let AutE be the fibre bundle associated to E by the conjugate ac-
tion. Choose and fix a Riemannian V -metric on X4 and a smooth SO(3)-V -
connection ∇0 on E. Using ∇0 and the Levi-Civita connection of X4, we take
Sobolev completion of various function spaces.
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Notations:

CE := {L2
3-SO(3)-V -connections on E} = ∇0 + L2

3(Ω
1(adE))

GE := {L2
4-V -gauge transformations on E} = L2

4(Ω
0(AutE))

C∗
E := {∇ ∈ CE ;∇ is irreducible}

AE := {∇ ∈ CE ; F∇ + ∗F∇ = 0 (i.e. ∇ is anti-self-dual)}
A∗

E := AE ∩ C∗
E

BE := CE/GE

B∗
E := C∗

E/GE

ME := AE/GE

M∗
E := A∗

E/GE

Here and hereafter, L2
3 is the space of sections whose derivatives up to 3rd

order is of L2 class.
The moduli space which we will consider is ME .

(c) Compactness of the moduli space
By Uhlenbeck’s bubble theorem [U1], [U2], [D1], ends of ME correspond

to the “curvature concentration phenomenon.” Since p1(E) = e2 = −c/α >
−4/αi (i = 1, . . . , n), the curvature can not concentrate in the neighbourhood
of either a smooth point or a branched point [FS1], [FL].

Hence, we have

Proposition 2.2. ME is compact.

(d) Virtual dimension of the moduli space
Consider a connection ∇ ∈ AE . We then have the Atiyah-Hitchin-Singer

complex [AHS]

0 −→ Ω0(E) ∇−→ Ω1(E)
d∇
+−→ Ω2

+(E) −→ 0

which has cohomology groups H0
∇, H1

∇, H2
∇.

Let us compute

− dim H0
∇ + dim H1

∇ − dim H2
∇.

For g = e(2π
√−1k)/αi ∈ Zαi

, let ri(g) and si(g) denote the rotation angles
of the action of g on D4. Then ri(g) = (2παc∗i k)/α2

i and si(g) = (2πk)/αi,
because the slice type of the S1-action on Q5 at the Zαi

-orbit is (αi; (αc∗i )/αi, 1).
Also, the rotation angle of the action of g on S1 is ti(g) = (2πk)/αi.
By Kawasaki’s index theorem over V -manifolds [K], we have

− dim H0
∇ + dim H1

∇ − dim H2
∇

= −
〈

ch(E ⊗R C)
(

2 +
p1(TX)

3
+

e(T X)
2

)(
1 − p1(TX)

12

)
, [X]

〉
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+
n∑

i=1

1
αi

∑
g∈Z,g �=1

{
1
2

(
−1 − cot

ri(g)
2

cot
si(g)

2

)}(
3 − 4 sin2 ti(g)

2

)
.

Here, the first term is

− 2p1(E) − 3
2

(
p1(TX)

3
+ e(T X)

)

= −2e2 − 3
2

(σ(X) + χ(X)) −
n∑

i=1

1
αi

∑
g∈Z,g �=1

(σg(X) + χg(X))

 .

(Here, σ(X) is the signature of X, χ(X) is the Euler number of X, σg(X) =
cot(ri(g)/2) cot(si(g)/2), χg(X) = 1.)

= −2e2 − 3 +
3
2

n∑
i=1

1
αi

∑
g∈Z,g �=1

(
cot

ri(g)
2

cot
si(g)

2
+ 1

)
.

Thus, we have

− dim H0
∇ + dim H1

∇ − dim H2
∇

= −2e2 − 3 +
3
2

n∑
i=1

1
αi

∑
g∈Z,g �=1

(
cot

ri(g)
2

cot
si(g)

2
+ 1

)

+
1
2

n∑
i=1

1
αi

∑
g∈Z,g �=1

(
−1 − cot

ri(g)
2

cot
si(g)

2

)(
3 − 4 sin2 ti(g)

2

)

=
2c

α
− 3 + n +

n∑
i=1

2
αi

αi−1∑
k=1

cot
παc∗i k

α2
i

cot
πk

αi
sin2 πk

αi

= R(M).

As in [FS1, Corollary 6.3], R(M) turns out to be an odd integer ≥ −1.

(e) S1-reductions
Definition 2.1. We call ∇ ∈ CE an S1-reducible connection when the

following equivalent conditions are satisfied. (See [FU] for the proof of equiva-
lence.)

(1) (E,∇) admits a reduction of the structure group to S1 ⊂ SO(3).
(2) Γ∇ = {g ∈ GE ; g(∇) = ∇} is equal to S1.
(3) ∇ = ∇L1 ⊕ d, where ∇L1 is an SO(2)-V -connection on an SO(2)-V -

bundle L1 which satisfies L1 ⊕ R = E, and d is the exterior differentiation on
the trivial one-dimensional bundle R.

First we have a classification of topological S1-reductions of E.
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Lemma 2.1. L1 ⊕R is equivalent (as an SO(3)-V -bundle) to L⊕R if
and only if

(i) c1(L1)2 = c1(L)2,
(ii) c1(L1) ≡ c1(L)(mod 2), and
(iii) i∗jc1(L1) = ±i∗jc1(L) ∈ H2(L(αj ,−(αc∗j/αj); Z) for each j = 1, . . . , n.

(Here ij : L(αj ,−(αc∗j )/αj) ↪→ D(X) is the inclusion.)

Define

µ(e) := �[{π(f); f ∈ H2(D(X); Z), f2 = e2, f ≡ e(mod 2),
i∗j (f) = ±i∗j (e)∀j}/{v ∼ −v}],

where π : H2(D(X); Z) → Fr H2(D(X); Z) is the projection.
By Lemma 2.1, up to orientation, the number of topological S1-reductions

of E is just µ(e) · |H1(D(X); Z)|. As we remarked in Section 1, this number is
even when H1(V ; Z) has 2-torsion.

We compute µ(e). By the following diagrams

H1(M ; Z) → H2(W, M ; Z) → H2(W ; Z) → H2(M ; Z) → H3(W, M ; Z)
|| || || || ||
0 Z Z Zc Zn−1

1 �→ 1
e|(W,M) = 1 �→ c = e|W

and

Z = H2(W, M ; Z) = H2(D(X), V ; Z)
inj.→ H2(D(X); Z)

↓ c· ↓ inj.

Z = H2(W ; Z) ⊂ H2(W ; Z) ⊕ H2(V ; Z),

we have

H1(M ; Z) → H2(D(X); Z) → H2(W ; Z) ⊕ H2(V ; Z)
surj.→ H2(M ; Z)

|| ||
0 e �→ (c, 0) Zc

.

From this, it is easy to see that µ(e) = 1. Geometrically, this implies that the
free part of the 1st Chern classes (in H2(D(X); Z)) of topological S1-reductions
of E is unique up to orientation.

(f) Canonical isomorphisms between determinant lines associated to
addition of instantons

First, we define determinant line bundles. For a V -bundle ξ → X with
structure group SO(3) or U(N), let Cξ be the set of L2

3-V -connections on ξ,
Gξ be the set of L2

4-V -gauge transformations ob ξ, and Bξ be the orbit space
Cξ/Gξ.
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By assigning to each A ∈ Cξ the determinant line

Λ(DA) := det(KerDA) ⊗R det(CokerDA)∗

of the 1st order real elliptic operator

DA := −d∗A ⊕ d+
A : Ω1(adξ) → (Ω0 ⊕ Ω2

+)(adξ),

we obtain a real line bundle
∐

A∈Cξ
Λ(DA) → Cξ. The action of Gξ on Cξ lifts

to the determinant lines. We remark that, for any A ∈ Cξ, the action of the
isotropy group ΓA on Λ(DA) is trivial. Hence, the bundle

∐
A∈Cξ

Λ(DA) → Cξ

descends to form a bundle Λξ → Bξ, which we call the determinant line bundle
of Gξ.

Let E be a U(2)-V -bundle over X4, x be a smooth point in the V -manifold
X4, λ be a small positive number, and

ρ : (adE)x → Λ2
+ T∗

x X

be an isomorphism of SO(3)-spaces. For any U(2)-V -connection A on E, we
denote by Ã = A′�ρJλ a connection formed by flattening A over the annulus:

Ω = {y ∈ X; MN−1
√

λ < d(x, y) < MN
√

λ}
and attaching a “flattened instanton” Jλ of scale λ according to the glueing
parameter ρ ([D2]). Here N and M are fixed large numbers.

Ã is carried by a U(2)-V -bundle Ẽ → X with

c1(Ẽ) = c1(E) ∈ H2(D(X); Z),

c2(Ẽ) = c2(E) ∈ Q,

Ẽ|
cL(αi,−αc∗

i
αi

)
∼= E|

cL(αi,−αc∗
i

αi
)

(as V -bundles) (i = 1, . . . , n).

The following theorem is due to Donaldson [D3, Proposition (3.20)].

Theorem 2.1. There is a “canonical” isomorphism

jx : ΛE|[A] → ΛeE
|[ eA] ,

which is well-defined up to positive constants.

3. Non-existence of O(2)-reducible connections

When there is no 2-torsion in the 1st homology of the base space, the
structure group of an SO(3)-bundle may reduce to S1 only. So, it suffices
to consider S1-reducible A.S.D. connections for the singularity of the moduli
space. However, in our case, since H1(D(X); Z) may contain 2-torsion, other
types of reductions may happen.

The types to be considered are the following:
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homology 1 finite cyclic Z2 ⊕ Z2 S1 O(2) SO(3)
group subgroup
of ∇ of S1

isotropy SO(3) O(2) Z2 ⊕ Z2 S1 Z2 1
group or
of ∇ S1

Here,

Z2 =


1

1
1

 ,

−1
−1

1


 ,

Z2 ⊕ Z2 =


1

1
1

 ,

−1
−1

1

 ,

−1
1

−1

 ,

1
−1

−1


 ,

S1 =
{(

P
1

)
; P ∈ SO(2)

}
,

O(2) =
{(

P
1

)
; P ∈ SO(2)

}
∪
{(

Q
1

)
; Q ∈ O(2), detQ = −1

}
.

Since p1(E) = c1(L)2 = e2 < 0, E is not flat. Hence, the reductions whose
holonomy group is a finite group can not exist.

The reducible connection ∇ with holonomy group O(2) can be decomposed
as ∇ = ∇η ⊕∇ε corresponding to the splitting E ∼= η⊗ε of the bundle, where η
is a non-orientable O(2)-V -bundle and ε is a non-orientable real line V -bundle.
We call such a reducible connection to be O(2)-reducible. The isotropy group
of O(2)-reducible connection is Z2. So cobordism argument would fail if ME

had such a singularity. However, as we will show in Theorem 3.1, we can find
a generic perturbation such that no A.S.D. connection is O(2)-reducible.

Theorem 3.1. For a generic V -metric on X4, E = L ⊕ R has no
O(2)-reducible A.S.D. connections.

To prove Theorem 3.1, it suffices to prove Theorem 3.2.

Theorem 3.2. Let η be a non-orientable, non-flat O(2)-V -bundle over
X4. Then, for a generic V -metric on X4, η has no irreducible A.S.D. V -
connections.

The proof of Theorem 3.2 occupies the rest of this section.
(a) Index computations
Suppose that η → X has an A.S.D. connection.
First, by the following diagram

H1(D(X); Z2)
β−→ Tor H2(D(X); Z) ⊂ H2(D(X); Z)

i∗ ↓ i∗ ↓ i∗ ↓
H1(∂D(X); Z2)

β−→ TorH2(∂D(X); Z) ⊂ H2(∂D(X); Z),
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it is easy to see that i∗H1(D(X); Z2) = 0. (Here, i : ∂D(X) → D(X) is the
inclusion.) Hence, adη is trivial when restricted to ∂D(X).

Using this, the index of the Atiyah-Hitchin-Singer complex

0 −→ Ω0(adη) dD−→ Ω1(adη)
dD
+−→ Ω2

+(adη) −→ 0

is:

− dim H0
D + dim H1

D − dim H2
D

= −
〈

ch((adη) ⊗R C)
(

2 +
p1(TX)

3
+

e(TX)
2

)(
1 − p1(TX)

12

)
, [X]

〉
+

n∑
i=1

1
αi

∑
g∈Z,g �=1

{
1
2

(
−1 − cot

ri(g)
2

cot
si(g)

2

)}
· 1

= −1
2

{
(σ(X) + χ(X)) −

n∑
i=1

1
αi

αi−1∑
k=1

(
cot

ri(g)
2

cot
si(g)

2
+ 1

)}

+
n∑

i=1

1
αi

∑
g∈Z,g �=1

{
1
2

(
−1 − cot

ri(g)
2

cot
si(g)

2

)}
= −(1 − b1(X) + b+

2 (X))
= −1.

(b) Transversality
Notations:

X4 : as in Section 2

η : a non-orientable, non-flat O(2)-V -bundle over X4

adη : the V -bundle associated to η by the adjoint representation

C∗
η : the set of irreducible L2

3-V -connections on η

Gη : the set of L2
4-V -gauge transformations on η

B∗
η : the orbit space C∗

η/Gη

MetX := Ck(GL+(TX))
Here + means orientation-preserving. k � 4

metX := Ck(End(TX))

g : a base V -metric on X4

Ωi(adη)4−i : the L2
4−i-completion of the space of i-forms with

values in adη (i = 0, 1)

Ω2
+(adη)2 : the L2

2-completion of the space of self-dual 2-forms (with
respect to g ) with values in adη

ASD∗
3 := {(D, ϕ) ∈ C∗

η × MetX ; FD is anti-self-dual with respect to ϕ∗g}
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Proposition 3.1 (cf. [FU]). Define a map P by

P : C∗
η × MetX → Ω2

+(adη)2
(D, ϕ) �→ p+((ϕ−1)∗FD).

(Here, p+ : Ω2 → Ω2
+ is the projection onto the self-dual part.) Then, P is

smooth and 0(∈ Ω2
+(adη)2) is its regular value.

Proof. Smoothness is clear.
We will prove that (δP)(D,ϕ) is surjective.

(δP)(D,ϕ) : TD C∗
η ⊕ Tϕ MetX → Ω2

+(adη)2
|| ||

(δ1P)(D,ϕ) ⊕ (δ2P)(D,ϕ) : Ω1(adη)3 ⊕ metX → Ω2
+(adη)2

Here,

(δ1P)(D,ϕ) : Ω1(adη)3 → Ω2
+(adη)2,

A �→ p+((ϕ−1)∗dDA)

(δ2P)(D,ϕ) : metX → Ω2
+(adη)2.

r �→ p+((ϕ−1)∗(r∗FD))

It suffices to prove Coker(δP)(D,ϕ) = 0.
Choose and fix an element Φ ∈ Coker(δP)(D,ϕ).
For an arbitrary A ∈ Ω1(adη)3, we have

0 =
∫

X

(p+((ϕ−1)∗dDA), Φ)g

=
∫

X

(dDA, ϕ∗Φ)ϕ∗g

=
∫

X

(A, dD∗Φ̃)ϕ∗g,

where dD∗ is the formal adjoint of dD w.r.t. ϕ∗g, and ϕ∗Φ = Φ.
Hence,

dD∗Φ̃ = 0 (point wise).(3.1)

Similarly, for r ∈ metX , we have

0 =
∫

X

(p+((ϕ−1)∗(r∗FD)), Φ)g

=
∫

X

(r∗FD, Φ̃)ϕ∗g.

Hence,

(r∗FD, Φ̃)ϕ∗g = 0 (point wise) for all r ∈ metX .
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Hence, by [FU, Lemma 3.7], we have

(FD, Φ̃)adη = 0.(3.2)

P(D, ϕ) = 0 implies that FD is anti-self-dual with respect to ϕ∗g, so we
have

(dDdD∗ + dD∗dD)FD = 0.

By the elliptic regularity, FD is continuous.
Since D is not flat, there exists an open set U in X4 such that

FD �= 0 on U.(3.3)

Note that the fibres of adη are 1-dimensional, since the Lie algebra of O(2)
is 1-dimensional. Hence, (3.2) and (3.3) imply

Φ̃ = 0 on U.(3.4)

On the other hand, the anti-self-duality of Φ̃ (with respect to ϕ∗g) and
(3.1) imply

(dDdD∗ + dD∗dD)Φ̃ = 0.(3.5)

By the unique continuation theorem [A], (3.4) and (3.5) imply Φ̃ = 0.
Hence, Φ = 0. Thus, we have proved Coker(δP)(D,ϕ) = 0.

Proposition 3.2. ASD∗
3/G ⊂ B∗

η × MetX is a submanifold.

Proof. This is proved just as in [FU, Theorem 3.16].

Proof of Theorem 3.2.

P−1(0) = ASD∗
3 ⊂ C∗

η × MetX
P→ Ω2

+(adη)
↓ ↓

ASD∗
3/Gη ⊂ B∗

η × MetX
↓ π̄ ↓ π

MetX = MetX

Just as in the proof of [FU, Theorem 3.17], π̄ turns out to be a Fredholm
map. Hence, by the Sard-Smale theorem [FU], there exists a Baire subset
Met′X in MetX such that Met′Xconsists of regular values of π̄.

Now, we suppose that π̄−1(ϕ) �= φ for some ϕ ∈ Met′X .
Let [(D, ϕ)] be an element of π̄−1(ϕ). Then, D is an irreducible A.S.D.

V -connection on η w.r.t. ϕ∗g and its Atiyah-Hitchin-Singer complex

0 −→ Ω0(adη) dD

−→ Ω1(adη)
dD
+−→ Ω2

+(adη) −→ 0
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has an index equal to −1, since by Section 3 (a) we have

− dim H0
D + dim H1

D − dim H2
D = −1.(3.6)

Since D is irreducible and the center of O(2) is Z2, we have

H0
D = 0.(3.7)

Just as in the proof of [FU, Theorem 3.17], we have

dim Coker(δπ̄)[(D,ϕ)] = dim H2
D,(3.8)

dim Ker(δπ̄)[(D,ϕ)] = dim H1
D.(3.9)

Moreover, since ϕ is a regular value of π̄, we have

dim Coker(δπ̄)[(D,ϕ)] = 0.(3.10)

(3.6) through (3.8) and (3.10) imply dim H1
D = −1. This is a contradiction.

Hence, it is concluded that π̄−1(ϕ) = φ for all ϕ ∈ Met′X .
Thus, we have proved Theorem 3.2.

From now on, we assume that X4 is equipped with a generic V -metric
which satisfies Theorem 3.1.

4. Orientability of ME

Since the maximal exterior power Λtop TM∗
E of the tangent bundle of M∗

E

is the restriction of the determinant line bundle ΛE to M∗
E , in order to prove

that M∗
E is orientable it suffices to show that ΛE is trivial.

The adjoint bundle of the U(2)-V -bundle L ⊕ C is E = L ⊕ R, and BE is
naturally considered as the quotient space of the following action of H1(D(X);
Z2) on BL⊕C :

H1(D(X); Z2) × BL⊕C → BL⊕C.

(ρ, [∇L⊕C ]) �→ [∇L⊕C ⊗∇ρ]

Here ∇ρ is the flat connection on Lρ, where Lρ is the S1-V -bundle over
X4 whose 1st Chern class c1(Lρ|D(X)) is the image of ρ by the Bockstein
homomorphism:

β : H1(D(X); Z2) → H2(D(X); Z).

This action naturally lifts to the action on ΛL⊕C → BL⊕C, and its quotient
is ΛE → BE . Hence it suffices to prove the following two Lemmas:

Lemma 4.1. ΛL⊕C → BL⊕C is trivial.

Lemma 4.2. H1(D(X); Z2) acts trivially on each fibre of ΛL⊕C →
BL⊕C.
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(a) The proof of Lemma 4.1
Let ζ → X be an U(n)-V -bundle and l → X be an U(1)-V -bundle. Choose

and fix a U(1)-V -connection ∇l. A natural map ι : Bζ → Bζ⊕l ([∇ζ ] �→
[∇ζ ⊕∇l]) is then defined.

Corresponding to the bundle splitting

ad(ζ ⊕ l) = adζ ⊕ R ⊕ ζ ⊗ l∗,

the operator

D∇ζ⊕∇l = −d∗∇ζ⊕∇l ⊕ d+
∇ζ⊕∇l : Ω1(ad(ζ ⊕ l)) → (Ω0 ⊕ Ω2

+)(ad(ζ ⊕ l))

splits as follows:

Ω1(ad(ζ ⊕ l))
D∇ζ⊕∇l−→ (Ω0 ⊕ Ω2

+)(ad(ζ ⊕ l))
|| ||

Ω1(adζ)
D∇ζ−→ (Ω0 ⊕ Ω2

+)(adζ)
⊕ ⊕
Ω1 −d∗⊕d+−→ Ω0 ⊕ Ω2

+

⊕ ⊕
Ω1(ζ ⊗ l∗)

D∇ζ⊕∇l∗−→ (Ω0 ⊕ Ω2
+)(ζ ⊗ l∗).

It follows that

ι∗Λζ⊕l
∼= Λζ ⊗R R ⊗R (

top

Λ (complex vector bundle)).

Hence, for an arbitrary loop φ : S1 → Bζ , we have

〈w1(Λζ⊕l), ι∗[φ]〉 = 〈w1(ι∗Λζ⊕l), [φ]〉
= 〈w1(Λζ), [φ]〉.

Hence, in order to prove Λζ → Bζ is trivial it suffices to show Λζ⊕l → Bζ⊕l

is trivial. Hence, in order to prove Lemma 4.1, it suffices to show Λ(L⊕L∗)⊕m⊕C

→ B(L⊕L∗)⊕m⊕C is trivial for a large m ∈ Z.
Let x0 be a smooth point in X4. We define

Gx0,(L⊕L∗)⊕m⊕C = {g ∈ G(L⊕L∗)⊕m⊕C; g = id. at x0} and

B̃(L⊕L∗)⊕m⊕C = C(L⊕L∗)⊕m⊕C/Gx0,(L⊕L∗)⊕m⊕C .

The determinant line bundle is clearly defined over B̃(L⊕L∗)⊕m⊕C, too. In
order to prove Λ(L⊕L∗)⊕m⊕C → B(L⊕L∗)⊕m⊕C is trivial, it suffices to show
Λ(L⊕L∗)⊕m⊕C → B̃(L⊕L∗)⊕m⊕C is trivial.

As an auxiliary tool we introduce the following V -bundle F → X and its
gauge group:

The bundle (L ⊕ L∗)⊕m ⊕ C|D(X) → D(X) is trivializable. So, choose
and fix a trivialization of (L ⊕ L∗)⊕m ⊕ C|D(X) → D(X). We restrict it to
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∂D(X) = ∪n
i=1L(αi,−(αc∗i )/αi) and extend it to ∪n

i=1cL(αi,−(αc∗i )/αi) by
the trivialization. Thus we have a V -bundle F → X. Define

Gx0,F = {g ∈ GF ; g = id. at x0},

G′
x0,(L⊕L∗)⊕m⊕C

=
{

g ∈ Gx0,(L⊕L∗)⊕m⊕C; g = id. at the cone point

of cL

(
αi,−αc∗i

αi

)
for 1 ≤ i ≤ n

}
,

G′
x0,F =

{
g ∈ Gx0,F ; g = id. at the cone point

of cL

(
αi,−αc∗i

αi

)
for 1 ≤ i ≤ n

}
.

Lemma 4.3.
(i) Gx0,(L⊕L∗)⊕m⊕C/G′

x0,(L⊕L∗)⊕m⊕C
∼= ∏n

i=1 Gαi
,

where Gαi
=

{
U(m) × U(m) if αi �= 2,

U(2m) if αi = 2.

(ii) Gx0,F /G′
x0,F

∼= ∏n
i=1 SU(2m + 1),

(iii) G′
x0,(L⊕L∗)⊕m⊕C

is homotopy equivalent to G′
x0,F .

Proof. The proof of (ii) and (iii) are easy. So, we prove (i) only.
Gαi

is the set of values which a V -gauge transformation of (L ⊕ L∗)⊕m ⊕
C → X can take at the cone point of cL(αi,−(αc∗i )/αi). Hence we have

Gαi
= {P ∈ SU(2m + 1); P · diag (h, h−1, h, h−1, . . . , h, h−1, 1)

= diag(h, h−1, h, h−1, . . . , h, h−1, 1) · P for ∀h ∈ Zαi
}

∼=
{

U(m) × U(m) if αi �= 2,

U(2m) if αi = 2.

Here,

diag(h, h−1, h, h−1, . . . , h, h−1, 1) =



h
h−1

h
h−1

. . .
h

h−1

1


.
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By the homotopy exact sequence of the fibration C(L⊕L∗)⊕m⊕C →
B̃(L⊕L∗)⊕m⊕C, we have

1 = π1(C(L⊕L∗)⊕m⊕C) → π1(B̃(L⊕L∗)⊕m⊕C)→∼= π0(G(L⊕L∗)⊕m⊕C)

→ π0(C(L⊕L∗)⊕m⊕C) = 1.
(4.1)

By the homotopy exact sequence of the fibrations

Gx0,(L⊕L∗)⊕m⊕C → Gx0,(L⊕L∗)⊕m⊕C

G′
x0,(L⊕L∗)⊕m⊕C

and Gx0,F → Gx0,F

G′
x0,F

,

we have

π1

(
Gx0,(L⊕L∗)⊕m⊕C

G′
x0,(L⊕L∗)⊕m⊕C

)
→ π0(G′

x0,(L⊕L∗)⊕m⊕C
) →

onto
π0(Gx0,(L⊕L∗)⊕m⊕C)

↓∼=
1 = π1

(
Gx0,F

G′
x0,F

)
→ π0(G′

x0,F ) →∼= π0(Gx0,F )

→ π0

(
Gx0,(L⊕L∗)⊕m⊕C

G′
x0,(L⊕L∗)⊕m⊕C

)
= 1

→ π0

(
Gx0,F

G′
x0,F

)
= 1.

(4.2)

Moreover, we have

π0(Gx0,F ) = [X4, SU(2m + 1)]∗
= [X4, K(Z, 3)]∗
∼= H3(X4; Z)

= H1(D(X4); Z).

(4.3)

By (4.1) through (4.3), we see that an arbitrary loop in B̃(L⊕L∗)⊕m⊕C

can be represented by φγ(t) = [(A∗�ρ(t)Jλ) ⊕ θ′] (t ∈ S1) for some [γ] ∈
H1(D(X4); Z), where A∗ is a V -connection on a U(2)-V -bundle over X4, θ′

is a V -connection on a U(2m − 1)-V -bundle over X4, and ρ is a lift of γ to
Hom(adE, Λ2

+ T∗ X). (See [D3])
On the other hand, Λ(L⊕L∗)⊕m⊕C → B̃(L⊕L∗)⊕m⊕C is trivial over φγ by

Theorem 2.1.
Hence, Λ(L⊕L∗)⊕m⊕C → B̃(L⊕L∗)⊕m⊕C is trivial.
The proof of Lemma 4.1 is complete.

(b) The proof of Lemma 4.2
An orientation αX of detH1(X)⊗det(H0(X)⊕H2

+(X)) is called a homol-
ogy orientation of X4. Note that since b+

2 (X) = b1(X) = 0, αX is uniquely
determined by the orientation of X4.
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Let (∇L ⊕ d) ⊗ ∇ρ (resp. ∇L ⊕ d) be a reducible connection on L ⊕ C,
compatible with a decomposition

L ⊕ C ∼= (L ⊕ C) ⊗ Lρ (resp. L ⊕ C ∼= (L ⊕ C) ⊗ C).

A homology orientation αX of X4 and the complex structure of L naturally
determine an orientation o[(∇L⊕d)⊗∇ρ](L, Lρ, αX) (resp. o[∇L⊕d](L, C, αX)) of
the determinant line ΛL⊕C|[(∇L⊕d)⊗∇ρ] (resp. ΛL⊕C|[∇L⊕d]) corresponding to
[(∇L ⊕ d) ⊗∇ρ] (resp. [∇L ⊕ d]) ([D3]).

In order to prove Lemma 4.2, it suffices to show that o[∇L⊕d](L, C, αX)
and o[(∇L⊕d)⊗∇ρ](L, Lρ, αX) assign the same orientation to the trivial bundle
ΛL⊕C → BL⊕C.

By Wu’s theorem [W], for a sufficiently large l ∈ N, X̂4 = X4�l(S2 × S2)
becomes an almost complex V -manifold whose almost complex structure is
compatible with the orientation of X4. (Here the connected sum is formed in
the smooth part of X4.)

Two operators

−d∗ ⊕ d+ : Ω1
X̂

→ Ω0
X̂
⊕ Ω2

+X̂
and − ∂̄∗ ⊕ ∂̄ : Ω0,1

X̂
→ (Ω0

X̂
)C ⊕ Ω0,2

X̂

have the same symbol under a natural identification, so there exists a canonical
isomorphism between det ind(−d∗ ⊕ d+) and det ind(−∂̄∗ ⊕ ∂̄). (Here (Ω0

X̂
)C =

Ω0
X̂
⊕Ω0

X̂
·ω, and ω is the fundamental 2-form of X̂4). Ω0,1

X̂
and Ω0,2

X̂
are complex

vector spaces by the almost complex structure of X̂4. We make (Ω0
X̂

)C into a
complex vector space by:

I · ω = −1, I · 1 = ω.(4.4)

Then −∂̄∗ ⊕ ∂̄ is complex linear. We define the homology orientation
αX̂ of X̂4 to be the orientation of det ind(−d∗ ⊕ d+) induced by the complex
orientation of det ind(−∂̄∗ ⊕ ∂̄).

We assume that X̂4 = (X4 \ B4
X) ∪ (l(S2 × S2) \ B4

l(S2×S2)), where B4
X

and B4
l(S2×S2) are open 4-balls in X4 and l(S2 × S2). Note that L → X

(resp. Lρ → X) is trivial in B̄4
X . We choose and fix its trivialization, restrict it

to ∂B̄4
X , and extend it to l(S2 × S2) \ B4

l(S2×S2). Thus we have a line bundle

L̂ → X̂ (resp. L̂ρ → X̂).
As in the proof of Lemma 4.1, ΛL̂⊕C

→ BL̂⊕C
turns out to be trivial.

Let A(L⊕C)⊗Lρ
(resp. AL⊕C) be a reducible connection on L ⊕ C which is

compatible with a decomposition

L ⊕ C ∼= (L ⊕ C) ⊗ Lρ (resp. L ⊕ C ∼= (L ⊕ C) ⊗ C),

and is trivial over B̄4
X with respect to the trivialization fixed above. Extend

A(L⊕C)⊗Lρ
(resp. AL⊕C) to l(S2 × S2) \ B4

l(S2×S2) trivially. Then we get a

reducible connection Â(L̂⊕C)⊗L̂ρ
(resp. ÂL̂⊕C

) on L̂ ⊕ C, compatible with a
decomposition

L̂ ⊕ C ∼= (L̂ ⊕ C) ⊗ L̂ρ (resp. (L̂ ⊕ C) ⊗ C).
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Let o[Â(L̂⊕C)⊗L̂ρ
](L̂, L̂ρ, αX̂) (resp. o[ÂL̂⊕C

](L̂, C, αX̂)) be an orientation of the

determinant line ΛL̂⊕C
|[Â(L̂⊕C)⊗L̂ρ

] (resp. ΛL̂⊕C
|[ÂL̂⊕C

]) which is determined by

αX̂ and the complex structure of L̂.
Then, by the excision argument ([D3, Lemma (3.26)]) we see that

o[AL⊕C](L, C, αX)
o[A(L⊕C)⊗Lρ ](L, Lρ, αX)

=
o[ÂL̂⊕C

](L̂, C, αX̂)

o[Â(L̂⊕C)⊗L̂ρ
](L̂, L̂ρ, αX̂)

.(4.5)

On the other hand, since αX and the complex structure of X4 “unifor-
mally” determine orientations of the determinant lines corresponding to re-
ducible connections on L ⊕ C which are compatible with a decomposition

L ⊕ C ∼= (L ⊕ C) ⊗ Lρ (resp. L ⊕ C ∼= (L ⊕ C) ⊗ C),

it follows that o[(∇L⊕d)⊗∇ρ](L, Lρ, αX) (resp. o[∇L⊕d](L, C, αX)) and
o[A(L⊕C)⊗Lρ ](L, Lρ, αX) (resp. o[AL⊕C](L, C, αX)) assign the same orientation to
ΛL⊕C → BL⊕C. Hence we have

o[∇L⊕d](L, C, αX)
o[(∇L⊕d)⊗∇ρ](L, Lρ, αX)

=
o[AL⊕C](L, C, αX)

o[A(L⊕C)⊗Lρ ](L, Lρ, αX)
.(4.6)

By (4.5) and (4.6), we have

o[∇L⊕d](L, C, αX)
o[(∇L⊕d)⊗∇ρ](L, Lρ, αX)

=
o[ÂL̂⊕C

](L̂, C, αX̂)

o[Â(L̂⊕C)⊗L̂ρ
](L̂, L̂ρ, αX̂)

.(4.7)

We want to prove that the left hand side of (4.7) is equal to 1. We consider
the right hand side of (4.7).

Let IX̂ be the complex structures on Ω1
X̂

(R⊕ L̂) and (Ω0
X̂
⊕Ω2

+X̂
)(R⊕ L̂)

which are defined by the almost complex structure of X̂4 and (4.4). Define

DÂL̂⊕C

= −d∗
ÂL̂⊕C

⊕ d+

ÂL̂⊕C

: Ω1
X̂

(R ⊕ L̂) → (Ω0
X̂
⊕ Ω2

+X̂
)(R ⊕ L̂) and

Dt
ÂL̂⊕C

= (1 − t)DÂL̂⊕C

− tIX̂DÂL̂⊕C

IX̂

(
0 ≤ t ≤ 1

2

)
.

Since D
1/2

ÂL̂⊕C

commutes with IX̂ , det indD
1/2

ÂL̂⊕C

inherits an orientation in-

duced by IX̂ .
In the following decomposition

D
1
2

ÂL̂⊕C

: Ω1
X̂

(R ⊕ L̂) −→ (Ω0
X̂
⊕ Ω2

+X̂
)(R ⊕ L̂)

|| || ||
−∂̄∗ ⊕ ∂̄ : Ω0,1

X̂
−→ (Ω0

X̂
)C ⊕ Ω0,2

X̂⊕ ⊕ ⊕
(−∂̄∗ ⊕ ∂̄)L̂ : Ω0,1

X̂
⊗C L̂ −→ ((Ω0

X̂
)C ⊕ Ω0,2

X̂
) ⊗C L̂

⊕ ⊕ ⊕
(−∂̄∗ ⊕ ∂̄)L̂−1 : Ω0,1

X̂
⊗C L̂−1 −→ ((Ω0

X̂
)C ⊕ Ω0,2

X̂
) ⊗C L̂−1,
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the complex structures defined by L̂ and by the base space X4 agree on the
second term and are opposite on the third term. Similarly, for the first term,
our homology orientation αX̂ uses the same complex structure as that defined
by IX̂ . So the orientation of det indD

1/2

Â(L̂⊕C)⊗L̂ρ

defined by αX̂ and the complex

structure of L̂ compares with the orientation of det indD
1/2

Â(L̂⊕C)⊗L̂ρ

defined by

IX̂ with the sign

(−1)ind(−∂̄∗⊕∂̄)L̂−1 .

Similarly, the orientation of det indD
1/2

Â(L̂⊕C)⊗L̂ρ

defined by αX̂ and the com-

plex structure of L̂ compares with the orientation of det indD
1/2

Â(L̂⊕C)⊗L̂ρ

defined

by IX̂ with the sign

(−1)ind(−∂̄∗⊕∂̄)L̂−1 .

On the other hand, we can give det indD1/2 → BL̂⊕C
a trivialization by

orientations of fibres defined by IX̂ .
Hence, by continuity in a parameter t ∈ [0, 1/2], we see that

o[ÂL̂⊕C
](L̂, C, αX̂)

o[Â(L̂⊕C)⊗L̂ρ
](L̂, L̂ρ, αX̂)

= 1.

Hence, we have proved Lemma 4.2.

Theorem 4.1. M∗
L̂⊕R

is orientable.

5. Comparison of orientations at reducible connections

Let ∇L ⊕ d be an S1-reducible A.S.D. V -connection on E = L⊕R, where
∇L is an A.S.D. V -connection on L and d is the exterior differentiation. Let
∇L′ ⊕ d be another reducible A.S.D. V -connection on E, compatible with a
decomposition

E ∼= L′ ⊕ R.

Let o(L) (resp. o(L′)) be an orientation of ΛE |[∇L⊕d] (resp. ΛE |[∇L′⊕d])
defined by αX and the complex structure of L (resp. L′).

Theorem 5.1. The orientation which o(L) assigns to the trivial bundle
ΛE → BE and the one which o(L′) assigns to ΛE → BE compare with the sign

(−1)ind(−∂̄∗⊕∂̄)L−1−ind(−∂̄∗⊕∂̄)
L′−1 .
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Proof. This is proved by a similar argument as in Section 4. So for
simplicity we assume that X4 is a Kähler V -manifold.

Moreover, we assume that the homology orientation αX of X4 coincides
with the orientation of det ind(−∂̄∗ ⊕ ∂̄) : Ω0,1

X → (Ω0
X)C ⊕Ω0,2

X ) defined by the
complex structure of X4.

In the following decomposition

D∇L⊕d : Ω1
X(R ⊕ L) → (Ω0

X ⊕ Ω2
+X)(R ⊕ L)

|| || ||
−∂̄∗ ⊕ ∂̄ : Ω0,1

X → (Ω0
X)C ⊕ Ω0,2

X

⊕ ⊕ ⊕
(−∂̄∗ ⊕ ∂̄)L : Ω0,1

X ⊗C L → ((Ω0
X)C ⊕ Ω0,2

X ) ⊗C L
⊕ ⊕ ⊕

(−∂̄∗ ⊕ ∂̄)L−1 : Ω0,1
X ⊗C L−1 → ((Ω0

X)C ⊕ Ω0,2
X ) ⊗C L−1,

the complex structures defined by L and by X4 agree on the second term and
are opposite on the third term. Similarly, for the first term, our homology
orientation αX uses the same complex structure as that defined by −∂̄∗ ⊕ ∂̄.
Hence, the orientation of ΛE |[∇L⊕d] defined by the complex structure of X4

compares with o(L) with the sign

(−1)ind(−∂̄∗⊕∂̄)L−1 .

Similarly, the orientation of ΛE |[∇L′⊕d] defined by the complex structure of X4

compares with o(L′) with the sign

(−1)ind(−∂̄∗⊕∂̄)
L′−1 .

On the other hand, orientations of fibres of ΛE → BE defined by the
complex structure of X4 determine a trivialization of ΛE → BE .

Hence, o(L) and o(L′) compare with the sign

(−1)ind(−∂̄∗⊕∂̄)L−1−ind(−∂̄∗⊕∂̄)
L′−1 .

Now, recall that µ(e) = 1. Hence, if {Li ⊕ R}ν
i=1 ∪ {L−1

i ⊕ R}ν
i=1 are the

set of all topological S1-reductions of E = L ⊕ R ( , where L = L1), we may
assume that

c1(L) − c1(Li) ∈ Tor H2(D(X); Z) (i = 1, . . . , ν).

Then, c1(L)|L(αj ,(αc∗j )/αj) = c1(Li)|L(αj ,(αc∗j )/αj), because

ι∗(Tor H2(D(X); Z)) = 0 (j = 1, . . . , n).

(Here, ι : ∂D(X) → D(X) is the inclusion.)
Hence, by the index theorem [K], we see that

ind(−∂̄∗ ⊕ ∂̄)L−1 = ind(−∂̄∗ ⊕ ∂̄)L−1
i

.

Thus, we have
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Theorem 5.2. In the situation above, the orientation which o(L) as-
signs to ΛE → BE and the one which o(Li) assigns to ΛE → BE coincide
(i = 1, . . . , ν).

This is translated in terms of an orientable manifold M∗
E as follows.

Theorem 5.3. We assume that the singular points ME \ M∗
E of the

moduli space ME is {[∇Li ⊕ d]}ν
i=1, where ∇Li ⊕ d is an S1-reducible A.S.D.

V -connection on E, compatible with a decomposition

E ∼= Li ⊕ R,

which satisfies

c1(L) − c1(Li) ∈ Tor H2(D(X); Z) (i = 1, . . . , ν).

Then, we have the following :
(i) The 1st cohomology of the Atiyah-Hitchin-Singer complex (modulo the

S1-action) associated to ∇Li ⊕d is identified with a neighbourhood Ui of [∇Li ⊕
d] in ME , and Ui \ [∇Li ⊕ d] is equipped with an orientation naturally induced
by the complex structure of Li. Moreover, {Ui \ [∇Li ⊕ d]}ν

i=1 with these ori-
entations belong to an oriented local coordinate system of M∗

E.
(ii) Ui is the open cone on CP(R(M)−1)/2. If we remove these cones from

ME , we obtain a compact manifold M̂E whose boundary consists of ν disjoint
copies of CP(R(M)−1)/2. Then, the orientations of the boundary components
CP(R(M)−1)/2’s which are induced by an orientation of M∗

E coincide.

6. Proof of Theorem 1.1

As we have shown in Sections 2 through 5, ME has the following properties:
(1) M∗

E has a natural structure of R(M)-dimensional smooth manifold,
where R(M) is a positive odd integer.

(2) ME is compact.
(3) Singular points of ME correspond to the set of gauge equivalence classes

of S1-reducible A.S.D. V -connections on E, which is non-empty and finite.
Each singular points has a neighbourhood of the cone on CP(R(M)−1)/2.

(4) M∗
E is orientable. If we choose and fix an orientation of M∗

E , then
the orientations of boundary components CP(R(M)−1)/2’s which are induced by
that of M∗

E coincide.
If R(M) ≡ 1(mod 4), this is a contradiction. For, by Tom’s theorem,

Ω∗ ⊗ Q = Q[CP2, CP4, CP6, . . . ],

where Ω∗ is the oriented cobordism ring.
In general, we argue as follows.
Let Σ be an oriented closed surface in D(X). Fix a spin structure on Σ

and let V+ and V− be the complex spinor bundles of ±(1/2)-spinors on Σ.
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For any connection on A on L⊗R|Σ → Σ, we can define the twisted Dirac
operator

DΣ,A : Γ(V+ ⊗R (L ⊕ R)|Σ) → Γ(V− ⊗R (L ⊕ R)|Σ).

We can construct the determinant index bundle det indDΣ → B∗
Σ, where B∗

Σ is
the set of gauge equivalence classes of irreducible connections on L ⊕ R|Σ.

Pulling this back by the restriction map r : M∗
E → B∗

Σ, we obtain a complex
line bundle r∗(det indDΣ) → M∗

E , which we denote as det indDΣ → M∗
E , for

simplicity.
Let {[∇Li ⊗ d]}ν

i=1 be the set of singular points of ME . Here ∇Li ⊗ d is
an S1 reducible A.S.D. V -connection on E, compatible with a decomposition

E ∼= Li ⊕ R.

We may assume

c1(L) − c1(Li) ∈ Tor H2(D(X); Z) (i = 1, . . . , ν).

Proposition 6.1 (cf. [D2, Lemma 2.28]). When we restrict det indDΣ

→ M∗
E to a link CP(R(M)−1)/2 of [∇Li ⊕ d], we have

c1((det indDΣ)|
CP

R(M)−1
2

) = 2〈c1(Li), [Σ]〉 · h,

where h ∈ H2(CP(R(M)−1)/2; Z) is the 1st Chern class of Hopf line bundle over
CP(R(M)−1)/2.

Proof. Complex line bundle over CP(R(M)−1)/2 are in one-to-one corre-
spondence with S1-equivariant complex line bundles over C(R(M)+1)/2, where
the 1st Chern class of a line bundle over CP(R(M)−1)/2 corresponds to the
weight of the S1-action on the fibre 0×C of CP(R(M)+1)/2 ×C → C(R(M)+1)/2

over 0 ∈ C(R(M)+1)/2. So, the 1st Chern class of (det indDΣ)|CP(R(M)−1)/2 →
CP(R(M)−1)/2 corresponds to the weight of the S1-action on 0 × C, which is
nothing but the weight of the action of Γ∇Li⊕d on det indDΣ,∇Li⊕d|Σ .

Since Γ∇Li⊕d
∼= S1 acts on Li with weight 1, Γ∇Li⊕d acts on

V± ⊗R (Li ⊕ R)|Σ = V± ⊗C (Li ⊕ L−1
i ⊕ C)|Σ

= V± ⊗C Li ⊕ V± ⊗C L−1
i ⊕ V± ⊗C C|Σ

with weight 1, −1 and 0, respectively.
Hence, Γ∇Li⊕d acts on

det indDΣ,∇Li⊕d|Σ = det indDΣ,Li
⊗C det indDΣ,L−1

i
⊗C det indDΣ

with weight indexDΣ,Li
− indexDΣ,L−1

i
. By the index theorem,

indexDΣ,Li
− indexDΣ,L−1

i
= 〈ch(Li)Â(Σ), [Σ]〉 − 〈ch(L−1

i )Â(Σ), [Σ]〉
= 2〈c1(Li), [Σ]〉.
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Hence, we have

c1((det indDΣ)|
CP

R(M)−1
2

) = 2〈c1(Li), [Σ]〉 · h.

Recall that

c1(L) − c1(Li) ∈ Tor H2(D(X); Z) (i = 1, . . . , ν).

So, if we choose Σ to be an oriented closed surface which represents the ho-
mology class dual to c1(L) ∈ H2(D(X); Z), then for each boundary component
CP(R(M)−1)/2 of M̂E we have

c1((det ind DΣ)|
CP

R(M)−1
2

) = 2 · h,

which is independent of the choice of boundary components.
Thus we have

〈c1(det indDΣ)
R(M)−1

2 |∂M̂E
, [∂M̂E ]〉

=
ν∑

i=1

〈c1(det indDΣ)
R(M)−1

2 |
CP

R(M)−1
2

, [CP
R(M)−1

2 ]〉

=
ν∑

i=1

〈2R(M)−1
2 h

R(M)−1
2 , [CP

R(M)−1
2 ]〉

= ν · 2R(M)−1
2 > 0.

On the other hand, by the general theory of algebraic topology, we have

〈c1(det indDΣ)
R(M)−1

2 |∂M̂E
, ∂[M̂E ]〉 = 〈i∗c1(det ind DΣ)

R(M)−1
2 , ∂[M̂E ]〉,

where i; ∂M̂E ↪→ M̂E is the inclusion,

= 〈c1(det ind DΣ)
R(M)−1

2 , i∗∂[M̂E ]〉
= 0, since i∗∂ = 0.

This is a contradiction.
Hence, we have proved Theorem 1.1.
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