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W. Feller [5, 6, 7] determined all the diffusion processes in one
dimension, since A. Kolmogorov introduced the diffusion equation
in 1931. Stimulated by his work, which is of analytic character,
followed the works of E. B. Dynkin, K. Ito, H. P. McKean, Jr., and
D. Ray, and completely determined one dimensional diffusion in a
satisfactory correspondence between probabilistic and analytic pro-
perties. The study of the Brownian motion by P. Lévy and the
rigorous set-ups for probabilistic treatment by J. L. Doob seem to
have had prepared a necessary background for these works.

Approaches to such a solution have been tried in the case of
multi-dimensional diffusion on the basis of these researches, though
it seems to be far from completion in any sense. A. D. Wentzell [36]

tried to find all the diffusions determined by the equation of type
(0.1) —g—zt‘(t,x)=Au(t, x), zED, te[0, ),

where D is a domain in a sufficiently smooth manifold of N dimen-
sions® and A is an elliptic operator on D, both D and A having

sufficient regularities. He proved that any sufficiently smooth function

1) Wentzell assumed that D is a domain in the N-dimensional Euclidean space R¥.
But the same treatment is possible in sufficiently smooth manifolds without any change.



530 Ken-iti Sato and Tadashi Ueno

« in the domain of the generator, which is a contraction of A, of
a strongly continuous semigroup of nonnegative linear operators
{T,,t>0} on C(D) with norm | T||<1 necessarily satisfies a boundary

condition of type®

(0.2) Lu(x)=0, xz€6D,
i ou
Lu(x)-@_a ()04 awe, (x)+za ()2 ()
(0. 3) +r(2)u(2) +5(z) lim xAu(y) + ()2 ()
+{ e —u@ - 5 2 @efuian s

Moreover, he proved that this type of boundary conditions are also
sufficient to determine all the rotation invariant diffusions on a solid
sphere in R® or a circular disc in R’

Here, in this paper, we will first prove that we can obtain the
semigroup {7%,#>0} on C(D) determined by the diffusion equation
(0.1) and Wentzell’s boundary condition (0.2), if the equation of
type

(a—A)ulx)=0, x=D

.4 (B—L)u(x)=¢(x), xz€6D

is solved for sufficiently many functions ¢ on the boundary 8D, where
L is taken to be an operator given by (0.3). This equation will

be reduced to an integro-differential equation on the boundary:*®

v (z)

pr(@) — ( D ) (1) + 58 (e, ) F

2) Precise assumptions on D and A and definitions of C(D), C(aD) and C*(D) etc.
are referred to §2. A is the closure of A in C(D), where A is considered to have
C%(D) as its domain.

3) Precise conditions on terms in (0.3) are referred to §4.

4) This method is an exension of Feller’s idea in [5], where D is an interval and
the integro-differential equation (0.5) is replaced by a system of two linear equations of
two unknowns.
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0.5 +rlaDp@+| ) —v@ £ (@)

v.(a, dy)) =¢(x), z€8D.

This type of equations are known to be solved in some special cases.

In constructing the semigroup on C(D), which is essentially
the diffusion on D), we make use of a certain class of semigroups
{S%, t>0}, a>0, of non-negative linear operators on C(@D) with
norm ||S?[|<{1. This means that there is a class of Markov processes
on the boundary 8D corresponding to these semigroups. Moreover,
there is a kind of duality in appearance between one of these semi-
groups, that is, {S¢, £>0}, and the semigroup {7}, £>>0} on C(D),
which corresponds to the diffusion on D. This duality naturally
leads to a conjecture that the Markov process on the boundary
corresponding to {S?, £>>0} is the trace on 8D of the diffusion on
D and other semigroups on C(8D) in the class are Markov procseses
of some such kind.” This probabilistic interpretation will be justified
in a special case (the reflecting diffusion), where L is given to be
the inward-directed normal derivative 8/6n, by introducing an additive
functional named the local time on the boundary, which plays, in
some respects, a similar réle to that of the local time of P. Lévy [20],
H. F. Trotter [31] and K. Ito-H. P. McKean, Jr. [16] in one dimen-
sion. In fact, it will be proved that the diffusion on D determined

by the equation (0.1) and the boundary condition of type
r(x)u(.r)+8(x) hm Au(y)+ (x) 0, xeoD,

can be constructed by a modification of the reflecting diffusion making
use of this local time on the boundary.

The analytic construction of semigroups on C(D) and C(8D)

5) This duality will be naturally extended to the class of semigroups {S¢&, £>0},
a0, and the class of diffusions on D associated with semigroups {7%, >0}, 8>>0, where
T%? has boundary condition (L—8)«=0. Duality for their Green operators is expressed
by (5.8)—(5.9). A more intuitive explanation will be found in [33].
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will be treated in Chapter II (§4-§6), and probabilistic justifications
will be contained in Chapter III (§7-§9). Chapter I (§1-83) is de
voted to the preliminary results which are used in these chapters. The
main part of this paper consists of the rigorous proofs of the state-
ments in [28, 33] and a part of [30], while some developments in
details are added anew.

In two dimensions, the diffusion satisfying Wentzell’s boundary
condition was constructed by Wentzell himself [37] under some
additional conditions, and by N. Ikeda [12] using stochastic deffer-
ential equations. M. Fukushima and N. Ikeda investigated the con-
nection between diffusions and Markov processes on the boundary

> A decomposition of a

from a more probabilistic point of view.’
certain class of Markov processes to the minimal process and the
Markov process on the boundary will be made in [29]. A deeper
analysis of the Markov process on the boundary will be done by
M. Motoo in [24] and subsequent papers using the notion of the
sweeping-out of additive functionals. Under some conditions, he has
succeeded a probabilistic construction of diffusions from the minimal
process and the Markov process on the boundary. We remark that
M. I. Visik, in a series of papers including [34]. made an in-
vestigation for elliptic equations, which is similar to Wentzell [36]
and a part of this paper, in the Hilbert space set-up independently.
The authors wish to note here that early in 1957-8 K. Ito and
H. P. McKean, Jr. made a series of instructive lectures and discus-
sions, which, together with the book [14] of K. Ito, really brought
about the flavour of the new trends in the theory of Markov pro-
cesses at that time. Friends in the Seminar on Probability, especially
N. Ikeda, M. Motoo and H. Tanaka willingly joined in discussions
with the authors during the research of this problem. S. Ito and
A. Orihara kindly answered questions about differential equations
and Lie groups, respectively. The authors express their thanks to
them all.

6) Their results can be seen in [8].
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Chapter 1. Preliminary
§1. The Hille-Yosida theorem

First, we restate a version of the Hille-Yosida theorem [10, 39]
for our present use. Let K be a compact metric space and C(K)
be the space of all real valued continuous functions defined on K
with norm Hf[]zmaz( |f(x)|. We call a system of linear operators
{T,, t>0} acting :;n C(K), simply, a semigroup on C(K) if it
satisfies 71:1T.= Ti+., To=the identity, ||7T,]|<1, l‘irglllT,f—fH:O for
any feC(K), and T,f>0 for any f>0. Theq)generator S of a
semigroup is defined for such f that the right hand side of

Sf=lim——(T.f—f)"
t->0
exists. The domain of & is denoted by D(G).
Theorem 1.1. [f {7, t>0} is a semigrouwp on C(K), then
the generator & satisfies the following conditions.
(1.1)  D(®) is a dense subspace of C(K).
Let a>>0.

(1.2)  For any feC(K) there is a unique element u of D(®)
satisfying (a—8)u=f.

Hence, (a—®)™" is defined on C(K) for a>>0.

(L.3)  a—8)I<L/a.

(1.4)  (a—G)'f>0 for f>0.

Conversely, if & is a linear operator satisfying (1.1) and if
there is a non-negative number a, such that (1. 2)-(1.4) hold for
all a>ay, then & is the generator of a semigroup on C(K), which

is uniquely determined by .
(a—@)" is sometimes denoted by G. and is called the Green

7) By limun=u or up—u in C(K) we mean lim || —u||=0.
n->co n->co
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operator of the semigroup. It is given by
Gaf= S“'e-a' T, fdt.
0

Corollary. Let & be the generator of a semigroup on C(K).
If constant 1 is in D(®) and if 1 —c for some constant c, then
&' =B +c is the generator of a semigroup on C(K), where D(®)
=D(G").

Proof. Since & is a generator, {(a—c¢)—8} '={a— (O +c)}?
=(a—®')" is defined on C(K) and non-negative for any sufficiently
large «. Condition G1<—¢ implies (a—®&)1=(a— (B +c))1=
a—(®1l+c)>a, and hence ala—)'1<(a—&) N (a—®)1=1,
implying [[(«a—@®")"|<1/a. Thus, & is the generator of a semi-
group on C(K) by Theorem 1. 1.

Theorem 1.2.° 1) Let B be a linear operator defined on a
subspace D(B) of C(K) taking wvalues in C(K) and satisfy the

following conditions.

(1.5 DWB) is dense in C(K).

(1.6) If f in D(B) takes a positive maximum at x in K,
then there is a point x' in K such that f(x')=f(x)
and Bf(2')<0, where Ky is a fixed open and dense
subset of K.

Then, there is a closed extension of B, and hence there is the
smallest closed extension B. B also satisfies (1.6).
ii) Let B satisfy (1.5) and the following two conditions.
.7 If f in D(B) takes a positive maximum at x in K,
then there is a point x' in K such that f(x')=f(x)
and Bf(2")<0;
(1.8)  The range of ay—DB is dense in C(K) for some a,=>0.

8) This has been proved essentially by Wentzell [36, Lemma 1 and Theorem 2]
and K. Ito [14, Theorem 39.1].
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Then, B is the generator of a semigroup on C(K), which is uniquely
determined by B.

Proof. 1) Let {u,} be a sequence in D(A) such that limeu,=0

n->»oc0

and lim Bu, exists. In order to show that 3 has a closed extension,

n->»co

it is sufficient to prove limBu,=0. Assume that lim Bu, takes a

n=»oo u->o0

positive value. K, being dense in K, there is an x,&K, such that
lim Bu,(x,)>>0. Since K, is open and the convergence in C(K) is
L:iform, there are an open neighbourhood U of x, contained in
K, and positive numbers e and », such that Bu,(x)>z for xe U
and n>n,. By (1.5) we can take an he®D(B) such that A(x)>1
and A(x)<<0 for x&€K—-U. Put wu,=wu,+e(1+|Bh|)h. Since
limu,=0, u.,(x,) is positive and greater than u«,(x) for all xeK—-U
;_r):i sufficiently large n, and hence, u, takes a positive maximum
at some ponit in U, and never in K—U. By (1.6), there is a point
X, at which u, takes the positive maximum and Bu,(x,)<0. But,

since
Bui(x) = Bu,(x) +e(1+ || BL|) 7 Bh(x) >Bu,(x) —e=>0

for x€ U and n>ny, x, is not contained in U, which is absurd.
Therefore, lim Bu, can take a positive value nowhere. Similarly, we

Nn->c0

can prove that —limBu, can not take a positive value, and hence
lim Bu,=0. o

o Now, we prove that Bu(x,)<0 when u=D(3) takes a positive
maximum at point z, in K,. Assume Bu(x,)>0, take a sequence
{un} in D(B) such that limu,=z and lim Bu,=Bu, and put u,=u,
+e(1+||BA|Dh by takir::gme, U and h"—)i; the same way as above.
Using limu,=u« and u(xo)=m'2(1xu(x) in place of lim#,=0, we can
make a:_);milar argument as X;boove, leading to a C(;;:radiction.

ii) We prove that f >0 and (@—B)u=f imply «>0. By (1.8)
we can take vED(B) and g such that g>1 and (a—B)v=g.
Since (ay—B) (u+ev) =f+eg>0 for any e>0, —(u+ev) does not
take positive maximum by (1.7), and hence u«+ev>0, which implies
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#>0. Thus, (ap—B)u=0 implying #=0, ay—B maps D() one to
one and onto the range R(ay—B). Then, (a;—B)™' is defined on
R(ay— B), linear and non-negative. Moreover, it is bounded because
—lfle<f<Iflg and (a—B)"'>0 imply —I[fl(a—B)"g<
(ao—B) ' f<IfI(o— B) g, that is, [[(a—B)fII<I|(ao— B) gl [ £1I-
R(ay—B) being dense by (1.8) and (ay—B)™' being bounded,
(av—B)u=f has a solution « for any f€C(K). By the former
half of the proof with K, replaced by K, B satisfies (1.7). Thus,
(ao—B)! is defined on C(K), non-negative, and maps C(K) one
to one and onto D(B). Clearly, [[(aov—B)"Y=](ao—B)[<oo.
Write G, for (a—B)".

Let a; satisfy 0<<(ay—ay)||Ga,||<<1. For any feC(K) and «
satisfying ay<<a<la; the Neumann series u=Gaof+§}(a'o—a)”G&’:1f
is a solution of u+ (a—ay)Gaytt=Ga, f- But, applyinn;(ao—g) to the
both hand sides, we know that « is also a solution of (a—B)u=f.
Besides, B satisfying (1.7), « is the unique solution, and hence
(a—B)™is defined on C(K), and maps ©(B) one to one and onto
C(K). It is also non-negative and bounded. We write G, for
(a—B)™. Moreover, [|G«||<1/a. In fact, if u=(a—B)'f takes a
positive value, there is an x,& K such that max u(x) =u(x,) and

Bu(x,)<0, and hence
max u(x) =ulx,) <-% (a—B)u(xy) = %f(l'o) <% 71,

where feC(K) and ay<<a<a;. Similarly, mi;gu(.r)}—(l/a) A1,
if u takes a negative value. These inequalitiesfmply lleel| <1/ ||
and hence [|Gul=||(a—B) <1/ a.

We obtain a similar result if we replaee a, and «; by a; and
a; (ar<<ay<2ay) respectively, because (a—ay)| Gy |l<<(a—ay)/ar<l
(ar— ) /ar<<l for ay<<a<la,, and the corresponding Neumann series
converges again. Taking, for instance, a,=2a,-1— (ay/2) (n=2,3,-+)
and repeating similar observations, we have a system of operators

{Ga, a>ay} on C(K) satisfying (1.1)-(1.4) with & replaced by B.
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Thus, B is the generator of a semigroup on C(K) by Theorem 1. 1.
Remark. In the above proof we have proved that (1.5) and
(1.6) imply that

(1.9) if f in D(B) takes a positive maximum at z in K,
then Bf(x)<0.

Similarly (1.5) and (1.7) imply (1.9) with K, replaced by K.

Corollary.” Suppose that & is the generator of a semigroup
on C(K) and that M is a bounded operator on C(K). Define &'
on D(®) by &' f=Sf+Mf. If either M or &' satisfies (1.7), then
&' generates a semigroup on C(K).

Proof. Clearly & satisfies (1.7), and hence, if M satisfies
(1.7), so does &+ M by the preceding remark. Since (') =D(G)
is dense in C(K), it is sufficient to prove that & satisfies (1.8).
M being bounded, we can find a positive a, such that [[Ge, M |<
|Ga,ll- |M]|[<<1. Then, a Neumann series u= Ge, [+ i}l(GaoM)"Gaof
is a solution of u—G«,Mu=Gs,f and hence it is algo a solution of

(ao— O — M)u=(ay—&)u=f for any f€C(K), completing the proof.

§2. Solutions of parabolic and elliptic equations

Let D be a domain in an N-dimensional orientable manifold of
class C= and have compact closure D. The boundary 8D of D is
assumed to be non-empty and to consist of a finite number of con-
nected components, which are (IN—1)-dimensional hypersurfaces of
class C* Let an elliptic differential operator A be given on D by

Au(z) =3, (e @va@ 24 @)

ii= 11/u(.r) ox'
2.1

+’.§=bi(~’3) 66;‘, (x) +e(@)ulx),

9) Similar results are found in [10] and [27].
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where a'/(x) is a contravariant tensor of order 2, of class C»*®
symmetric and strictly positive definite at each point of D, b'(x) is
a contravariant tensor of order 1 and of class C*, ¢(x) is a non-
positive function in C**(D), and a(x)=det(a’(x))". 2, -, z" are
local coordinates of x in a coordinate neighborhood U. The volume

measure m on D is given by
m(E)=S Va(z) da*dx", ECUAD.
E

The (inward-directed) normal derivative 0u/0n and the surface
measure 7: on 9D are also associated with «/. That is, if we take
such a coordinate system s(x)= (T, --.-,f"’) that 8D is characterized
by #¥=0 and D by >0 in U, and if the values of &'/ and a in

the system s are denoted by @/ and @, respctively, we have

( )= E _NN( ')‘a’”(:c) Ou ~(x), xz€dDnU,

m(E)=SE1/a(x) V(D) dztdT, ECaDAU.

The definitions of A, m, 7, and 8/6n do not depend on the choice

of local coordinates, and . and 7i can be extended for any measur-

able subset of D and 8D respectively, uniquely in a natural way.
Now, consider the Cauchy problem for parabolic differential

equation
@2 Zep=autz) >0, €D
with boundary condition

(2.3) r(.r)u(t,x)+%(t,.r)=0 t=0, zEoD

10) We say that a function or a tensor is of class C#, if it is n-times continuously
differentiable. Moreover, if its n-th derivatives satisfy the uniform Holder condition
with exponent x (0<<x<(1) in a set E, it is called to be of class C% < in E. C»(E) and
Cm=(E) are the sets of all real-valued functions of class C* and of class C»* in E,
respectively.
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where y(x) is a non-positive function in C**(@D). The fundamental
solution of this problem has been constructed by S. Ito [17, 18]
extending the method of E. E. Levi. We cite a part of his results
in the following Theorems 2.1-2. 3.

Theorem 2.1. i) There is a function p(t, x,y) defined on
(0, o) ><E><f), and continuous in y for fixed (t, x)<E (0, o) xD.

For any feC(D)

u(t, x) = Sl_’p(t, x, y)f (y)m(dy)™

is continuous in (0, 90) XD, continvously differentiable in t=0,
belongs to C*(D) as a function of x and is the unique solution of
the equation (2.2) satisfying the boundary condition (2.3) and the

initial condition
limu(t, ) =f(x), wuniformly in x&D.®
>0
Such a function p(t, x,y) is unique.
i) p(t, x,y) is non-negative and satisfies

p+s, x,2)= Sﬁp(t, x, y)p(s, y, =)m(dy),

ST,P (¢, x, y)m(dy)<e®, where C=maxc(x).

x€D

Moreover, c(x)=0 and v(x)=0 imply
{ ¢tz yymeayy=1.

The function p(¢, x,y) is called the fundamental solution of
the Cauchy problem for the equation (2.2) with boundary condition
(2.3). Making use of this function we can solve a more general

equation in the following.

11) Since m(aD)=0, we may write SD in stead of SB.

12) This holds since the coefficient of au/an in (2.3) is positive on 8D and D is
compact.
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Theorem 2.2, Let f(x), h(t, x) and ¢(t, x) be bounded conti-
nuous functions on D, (0, 00) X D and (0, ) XD, respectively. If
there exists a number x=rx(t,. ty) for any positive t, and t; (£<t;)
such that he C*([t, t,] X D) and o= C**([t1, t.] X8D), then

w(t, )=\ pte.x N FImdy)
. 0 + S;dsgﬁ 5Cs. 2 DI —s5, ) m(dy)

¢t
-+ ‘ a'sgaD[)(s, x, V)e(t—s. y)m(dy)
JOo o
exists and is

(2.5)  continwous on (0, o) X D, continuously differentiable
in =0, and of class C*(D) and CY(D) as a function

of x.

u(t, x) satisfies

(2.6) (%—A)u(t,x)=h(t,x), £~0. zeD.

2.7 —(r—l——aa’—l~>z¢(t, D =e(t.2), >0, z€0D,
(2-8) limu(t, x)=f(x), boundedly in x&D.™®
>0
Conversely, a function u(t,x) on (0,00) XD satisfying (2.5)-
(2. 8) is necessarily represented by (2.4).

We remark that the above theorems are sharpened in the

following lemmas, which we prove in the appendix.

Lemma 2.1. p(¢, x,y) is continuous in (¢, z,y) on (0, o)
X DX D.

Lemma 2.2, If h(¢, x) is bounded and measurable on (0, o)

X D,
w(t, )= g;dsgﬁp(s, x, y)h(t—s, y)m(dy)

13) Actually, (2.8) holds uniformly on D.
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is continuously differentiable in x&D. Moreover, we have, for

any positive T,

(2.9) max sup alf (t, x)|<°°,
i vevg0ze<t | 0 (s
where ¢;(x) = (i, ++, &) is a coordinate system in U; (1<j<M),
M _
and JU;=D.
=1

Integrating p(¢, x.y) in ¢, we have the Green function for an

elliptic equation.

Theorem 2.3. If at least one of minc(x)<<0 and miny(x)<<0
1€D x€aD
holds, then

g )=\ P, 2. e
is finite unless x=y. For any feC*(D) and o= C**(8D)
210) u@ =\ _glx. DFImdn+| gyl

exists and satisfies

(2.11) ue C' (D) AC*(D)
(2.12) —Au(x)=f(x), zE€D,-
(2-13) —(T +§;>u(x) —o(2). xeoD.

Conversely, a function u which satisfies (2.11)—(2. 13) is neces-
sarily represented by (2.10).

Corollary. Let ¢ (or y), f and ¢ satisfy the condition in
Theorem 2.3. If v(t,x) is a function satisfying (2.5) and if

<~867—A>v(t, x) =f(x), >0, x€ D,

—(r+ 2 )ete D =e@. 120, 2=,

l}rrom(t, x) =0, boundedly in x= D,

then l‘imv(t, x)=u(x) exists and u(x) satisfies (2.11)—(2. 13).
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Now we consider the solution of two typical types of problems
for elliptic equations and introduce some notations for the use in
Chapter II. The results stated below are found in the standard
references such as [2] and [22]. They are also found in S. Ito [18].

Theorem 2.4, i) For any constant a>0 and feC*(D), the
solution u in C*(D) of
(a—Aulx)=f(x), z€D
u(x) =0, xEdD
exists. Such u is unique and we denote it by Gy f.1o®
ii) Gy considered as an operator in C(D), is linear, non-
negative and bounded. If a is positive, |Ga™|<l/a. Since the
domain of definition C**(D) is dense in C(D), G2 is uniquely
extended to the whole C(D). Henceforth Gi™ denotes this extension.
i) G is non-negative and G3™f wvanishes on 8D for each
fec). '
iv) For {Gi", a>0} the resolvent equation holds, that is,
Gglu_Glraniu_i_(a_B)G;nlnGanlnIO f07‘ (l?ly a, B>O
v) For any feC(D) and zD
limaGy"f(x) =f(x).

Moreover, the convergence is uniform in x&D if f vanishes on 8D.
Corollary to iv). The range of G3™, that is, {G2"f|feC(D)}
does not depend on the choice of a>0.

Theorem 2.5. i) For any constant a>0 and ¢=C(8D), the
solution u in C(D) AC*(D) of

(a—A)u(x) =0, x&D
u(x) =¢(x), x<EoD

exists. Such u is unique and we denote it by Hao.

14) min indicates that this is the minimal resolvent in the sense of Feller.
15) More precisely, it can be proved that GpiofeC»+=(D).
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i) Ha, considered as a mapping from C@®D) into C(D), is
linear, non-negative and bounded with norm one.

i) Hae does not take a non-negative maximum [non-positive
minimum) in D, unless it is a constant function.

iv) If Hae is not constant and takes a non-negative maximum
[non-positive minimum) at point x, on 8D, and if Hae is differenti-

able at x,, then

%Haw(xo) <0 [>0]®

v) If ¢ is in C*(@D), Hap is in cx(D).m

The property iv) is due to Giraud, Hopf, and Oleinik in case
Heo(x)>0 [<<0]. But the proof in [26] can be applied in this
case without any change. v) is reduced to Theorem 2.4, i) by
an appropriate extension of ¢ to ). We remark that v) is a special

case of Theorem 9.3 in Agmon-Donglis-Nirenberg [1].

Now, we add some properties of the closure of A.
Lemma 2.3."” A, considered as a linear operator defined on
D(A)=CUD), has the smallest closed extension A. If u in D(A)
is twice continuously differentiable in some neighbourhood of x in
D, then Au(x)=Au(x).

Proof. Since A satisfies (1.5) and (1.6) in Theorem 1.2 with
K and K, replaced by D and D, respectively, it has the smallest
closed extension A. For u in ®(A) there is a sequence {u,&D(A)
=C*(D)} satisfying w,—u and Aw,—Au. If u is twice continuously
differentiable in a neighbourhood U of x, then we have, for any &
in C*(D) with support contained in U,

Suh( ) Aun( ) m(dy) = SUA’I:( Wuly)midy),

16) This remains true if H, ¢ is replaced by a function # in C(D)C?*(D) satisfy-
ing (a—A)u0 [>0].

17) More precisely, we have HyoeC%+(D).

18) Cf. Wentzell [36, Lemma 1].
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where A’ is the formal adjoint of A. Letting n—>oco, we have
Sulz (M Au(y)m(dy) = SUA'II (M uly)m(dy)
= guh (M) Au( V) m(dy),

implying that Aux(y)=Au(y) in U.
Lemma 2.4. For any feC(D), ¢€C®D) and a>0, Gi"f
and H,¢ belong to D(A), and satisfy

(2.14) (a—A)GI"f=F.
(2.15) (a—A)H,p=0.

Proof. For £ in C* (D). G2"f belongs to C*(D)=D(A) and
hence (a—A) Gy = (a— A)GE"f=f by Theorem 2. 4. But, C**(D)
being dense in C(D) and GI™ being bounded, (2. 14) holds for any
feC(D). Simirarly, we can prove (2.15) for any ¢=C(8D), since
(2.15) holds for all ¢ in C**(8D) by Theorem 2.5, and H. is
bounded and maps a dense subset C**(8D)) of C(8D) into C*(D).

Making use of A we determine the range R(Gy™) in the follow-
ing. This is mainly for its own sake, rather than for later use.

Proposition 2.1. R(G;") is equal to e D(A) | [u] p=0},
where [ul, is the restriction of usC(D) on the boundary 8D.

Proof. Since R(Gy™) does not depend on a>0, we fix a positive
«. We note that v in D(A) is constant 0 if it satifies (a—A)v=0
and vanishes on 8D. In fact, at point x& ) where v takes a positive
maximum [negative minimum] Awv(z)<0 [>0] by Theorem 1.2
and the remark, and hence (a—A)v(x)>0 [<0], contradicting to
(a—ADrv=0. «=R(GZ™) belongs to D(A) and satisfies [2],,=0 by
Theorem 2.4 and Lemma 2.4. Conversely, let z belong to D(A)
and satisfy [ul,p=0. v=G""(a—A)u—u satisfies (a—A)v=0 by
Lemma 2.4 and vanishes on 9D, and hence v=0, implying

u=G""(a— ADucsR(GZ™).
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§3. Approximation of the integral San(x)'ﬁi(dx)

The inverse matrix (w;(x)) of (¢'/(x)) is a symmetric, strictly
positive definite covariant tensor of order 2. The length of a curve

C, which is of class C* piecewise, is defined by

NUE Az () dz' (D]
3.1) I(C)—So{gil(mj(x(/t)) ol (M-_} i,

where C is given by
C:2e(0, 1]=x)eD.

1(C) does not depend on the choice of coordinate sytem (x'(1),
2*(2), -+, x2¥(2)). The infimum d(x, y) of the lengths of all curves
contained in ) which connect z and vy and of class C' piecewise,
satisfies the postulates for distance and is called the distance between
x and y determined by a'/. We write d(x,8D)= ienf)d(x,y) and
D,={xeD|d(x,8D)<p}. The purpose in this sectyi(;n is to prove
that %gopf(.r)m(d.r) approximates Sabf(x)ﬁi(dx) when p—0.

S. Ito [17] proved that for any 2;E8D there is a neighbourhood'

U of z; and a coordinate system 3(z)= (I :--,Z") in U satisfying
the following conditions: @D U and DA U are characterized by
V=0 and Z">0, respectively; a"'(z) =a'¥(x) =ay(x) =ax(x)=1
or 0 on 8D U according as i=N or i# N, where @'/(x) and a:;(x)
are the values of & and a;; in the system . Such 7 is called a
canonical coordinate system, and U a cadonical coordinate neighbour-
hood.

The topology given by the distance d(x,y) is the same as the
original one. Namely we can prove

Lemma 3.1. Let {x,; n=1,2,-YCD and xycD. We have
d(xn, )0 i{f and only if xi—zi (I<GN) for their local co-
ordinates.

Proof. Let U be a coordinate neighbourhood of x,, and ¢(x)

19) In the topology relative to D.
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=(a', -, 2"%) be a canonical coordinate system in U. For each
ye UAD satisfying |y — 3| >¢ for some i, we have d(y, x,)>Ke
where K is a positive constant independent of y. In fact, for each

curve

C:ie[0.1]=x(Debh
from x, to y and of class C' piecewise, we have

N dx' Q) dxt (D)2
l(c)>8 {j.zk‘if’"”(x(x)) di da } d

1
0
dflg) |au>1<l y — i >Ke.

>k

Thus, d(x,, 2,)—0 implies that x, is contained in U for all suffici-
ently large »n, and that xi—x} for i=1,2,---, N. To prove the con-
verse, put V= {z’1lz"—x5|<8, 1<G<N} for sufficiently small § and
let VCU. For each 2&VAD we have

Az, 2 <K' (S — 2

where K’ is a constant independent of z. For, if we define a curve

C' from z, to 2 by

C':2€[0,1]=x) =6 (zi+ (2" —zi), 1<GN)
then

dz 2)<HC) = | 33 ) (# = (2D}
<K(n6E-a)"

Here we should take ¢ as a canonical coordinate system in case
x,E0D, so that C' is a curve contained in D. Thus zi—z), 1<¢
<N, imply d(x,., x20)—0.

Let U be a canonical coordinate neighbourhood and 5(x)=

(x, ++-, ") be a canonical coordinate system. We write
- N-1
(B.2) Vo r a0 3)— {xe[)m Uz — i) <, o<z~<p}
=1

for 28D U and sufficiently small o and 7>0.
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Lemma 3.2. For any V(p, r, xy; 6) we have

(3.3)  lim 4&0D) _ _d_<x7;gD>_

=1 for z€V.
d(x,0D)»0 T N0

Proof. Since ayy(x) =1 for x€0D and ayy(x) is continuous,
there is, for any ¢>0, a & such that <6 and &€ U imply ayy(x)
<1+e. Define a curve C(x) for x€V by

Clx) : 2€ [0, 1] =y =5""(F'(D), -, 3" (1)),
F(D) =, -, ) =2, V(1) = 1zV.
We have
(3.4)  d(x,aD)<I(C(x)) — S:aw( DY da< (1+e) 2,

if x&V and zV<o.
Let 5(x)=(a', -+, ") be a coordinate system in U defined by

=k (G<iKN-1), 2¥=2z",
where % is a positive number. The values of a; in the system &
at x€dD N U are

aii(x)=k%a;(x) (i, jxN),

aiv(x)=an(x)=0 (F=xN),

any(x) =awn(x)=1.
Thus, the eigenvalues & (x), -, @&y(x) of the matrix (&;(x)) at

x€0D A U are given by
3.5  a(x)=Fka(x) (AI<KN-1), ay(x)=an(x) =1,

where @, (x), «--, @ay(x) are the eigenvalues of (@;;(x)). Let V; be
a set of type (3.2) satisfying VCV;.* For a sufficiently small %
we have & (x)>1, 1<Gi<N, z€0DAV; by (8.5). Thus for any
e>0 there is such a >0 that y"<C¢' and yeV; imply &(y)>1—r¢,
1<i<{N. Hence, the following estimation holds for any curve C'(x),
which is contained in Vi~ {y|y¥<<(d’}, starts at = and ends at a
point on 8D.

20) V is the closure of set V.
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1€ @)= 320 LR LEDI g
>a-o{ S0}

>-o"

>(1_e)1/ZiN: (l_e)l/ZiN.

ay" () I
a1 da

1
0

On the other hand, we can prove that d(x,dD) is the infimum of
1(C'(x)) of such C'(x) that we have mentioned above when xeV
and T¥<" by a sufficiently small 6">0. Thus we have

d(x,0D)>(1—e)*z"

if xeV and 7<d”. This combined with (3.4) imply the second
equality in (3. 3).

By Lemma 3. 1, d(x, 8D)—0 implies x"—0, and hence we have
also the first equality in (3.3).

Corollary. If V=V(po, 10, 2v; 3) is a set of type (3.2), then
Sfor sufficiently small >0 there are o'=p' (p) and " =p"(p) such
that

(3- 6) V(P', o, Xo; 5) cD.nVC V(DN, To, Xoj )
and
3.7 lim2—=lim2-=1.
>0 0 p>0 0

Proof. If we write B,= {x€V|d(x,8D)=p} and define o' =

minZ" and p”"=maxZ", (3.6) is clear. (3.7) follows from Lemma
x€B, x€B,

3. 2.
Lemma 3. 3.

(3.8) lim 718 f@)m(dz)= S A Pi(dr),

for feC(D). Moreover, for any compact subset {fr, A4} of
C(D) the convergence of 1in01 %SD Salx)m(dx) is uniform in A€ 4.
p=> »

Proof. Since 9D is compact, we can take such non-negative
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functions %;(x), 1<;<M, in C(D) that ﬁlh,(x)zl in a neigh-
bourhood of 8D and that each 7, has sué{aort contained in a set
V=V (pj, r;, x;; 5;) of type (3.2). We write 7;(x)= (=, ---, ),
fixing j for a while. Taking p'=p"(p) and p"=p""(p) as in Corollary
to Lemma 3.2 and writing V;(o") =V (o, r;, x;; 5;), we have

H_S A () m(dz) — S F@hy () (dx) |

< LS Fl)h;(x)m(dx) — —1—8 F(@)h(x)m(dx) I
0 JDy 0 JVip")

+ LS — f@h(x)m(dx) — 1,8 ’ ,f(x)hj(x)m(dx)I
Vi) Vite”

0 0

3 Aon@m@n - @)

0

Writing L, (£, 0), L,(f,p) and L(f,p) for the first, second and third
summands of the righthand side, and putting

N-1
Ry={@ 2 S @ - api<r),
=
we have

L(f, p)<%n FImV,G" — Vi)
= —{l)—llf||8::,df”ggm1/2i(x) dzl-dx",

L0121 i ma
<( =N\ e, vty azaz,

1< APV ar @)
- —j,—S:’f(x) hy()V@(z) dz¥ | dZ - dT,
where P;(x)=35;'(&", -+, 2", 0). Hence I,, I, and I; vanish when

o—0. Since

i fon@nEn = fomE

j=1
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and égbpf(x) hi(x)m(dx) = prf(x) m(dzx)

for sufficiently small p, we have (3.8).

If {fo, A4} is a compact subset of C(D), {fi, A€4} is equi-
continuous uniformly on D, and hence IL(fi, p) converges to 0
uniformly in 2€4. The convergence of L(fi, p) and L(f, p) are
also uniform in A€ 4 because {||f]||, A€ 4} is bounded.

Lemma 3.4. Suppose that {V(p;, r;, x;; 3;), 1<j<M} cover
oD. If we denote the projection (relative to s;) of point x€V;
to 8D by Pi(x)=357'(Z, -, 2", 0) and if a class of functions
{fo,eC(D), p=>0} is bounded and satisfies

-9 lim sup  |fo(2) —fo(Pi(2) [ =0, 1< <M,

p->0 xEV(p.rj.xj: j

then we have

ll_r)?(—;—g F()m(dax) — S () (dx)) —0.

The proof is similar to that of Lemma 3.3, where {fi, 1€ 4}
is replaced by {f,, p=>0}. Since {f;, p>>0} is bounded, I, (f;, p)
and I,(f5, o) tend to 0 when p—0, and so does Li(fs, p) by (3.9).

Thus we have the conclusion.

Let p(¢,z2,y) be the fundamental solution in Theorem 2. 1.
Concerning the integral of p(¢, x,y) on the strip D,, the following
estimation holds.

Lemma 3.5. There is a positive py such that for any T=0
%S 2, 2, ) m(dy) Kt
Dp
and
S e, ) P(dy) <KL
a

hold uniformly in 0<t<T, 0<<p<po and x<=D.
The proof is referred to the appendix. Combining this lemma

and Lemma 3.3, we have
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Lemma 3.6. For any 1T>0, we have
@10 tim (@ pts zyman={asl pG, 2 ey,
>0 0 , a

where the convergence is uniform in 0<t<T and x€D.
Proof. For any ¢>0 we can take positive numbers # and p,

such that

TI—S;OdSSD,,P(S’ x, y)m(dy) <,
and

S;odsgwp(s, z, y)mi(dy)<<e

uniformly in 0<(p<lp, and €D by Lemma 3.5. On the other
hand, p(s, x,y) being continuous in (s, z, y) on (0,o0) X DXD by
Lemma 2.1, {p(s, x, ), s€ [t,, T'], zED} is a compact set in C(D),

and hence

lim-L{ 5652 3ym@n) = pGs, 2 iy,

p>0 0

uniformly in s&€[t,, T'] and xeD by Lemma 3.3. Thus we can
take 0,0 such that 0<Cp<<p, implies

1 , _ 53 &
ITSD:b(s, x, y)m(dy) Swp(s, x, y)m(dy) ‘< A
uniformly in s&€[#, T'] and x&€D. Hence we have
[-L{asl o6z ymean = (as oG, 2 pmcan)|

p 0 Dy 0 aD

<_1_S’°a’sg pG, x, y)m(dy) + S‘“dsg p(s, z, y)ni(dy)

o~ p 0 Dy ’ ’ y y 0 aD ’ ’ y y
max(f,1g) 1 ~

+S‘° dSITSD.P(S’ x, y)m(dy) — Swp(s, x,y) m(dy)l

<2e+ {max(t, t,) — o} -ET<3€,

uniformly in 0<¢t<7T, x€D and 0<<p<min(p, o), completing the

proof.
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Chapter II. Analytical construction of the diffusion

To find the diffusion determined by

%;—=Au and Lu(x)=0, x€0D,

it is sufficient to construct the semigroup on C(D) with the Green

operators {Ga} such that
(a—A)Gau=u and LGau(x) =0, x€8D.
Since (@—A) (Gou—Ga"u) =0, Gau is written as

Gou=Ge"u+Hap, ¢=[Gaut]on.

In order that LG.u=0 is satified, the following equation should hold.

LG u+ LHap=0.
And hence, ¢ is obtained by
Y= (LHa)-lLG;ﬂ“lt.

Thus, G« should be given by
Ga U= gc]ln'—Ha(LHa) _ILG;M“M

by a purely formal computation, which will be rigorously justified
in §4-§5. LH., considered as an operator, has a closed extension
LH., which is the generator of a semigroup on C(8D), if an equation
of type

(A—LH)V¥r=¢

can be solved for sufficiently many ¢. LIy is the generator of a
Markov process, which will be called the Markov process on the
boundary of order «. The equation (A—LHu)y=¢ will be reduced
to an integro-differential equation and will be solved in some special

cases in §6.

§4. Operators induced by Wentzell’s boundary conditions

Let A and D satisfy the conditions at the beginning of §2.
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For each x in 8D we assign a class of functions {£i(y), i=
1, ---, N} in C*(D) satisfying:

i) there is a neighbourhood U, of x such that the restriction
of {£(y)} to U.AD is a canonical coordinate system.

i) &¥(y)>0 for each yeD; &(y)=0 (1<i<N) if and only
if y==x.

Consider

Lu(@) = B ()50 () + 35 B (2) 24 ()

tr(@)u(zx) +6(2) lim Au(y)

4.1
+;z(x) Ou (x) +S {u(y) —u(x)
N-1
—E M @),
where (&'/(x)) is symmetric and non-negative definite, y(x), é(x)
and — () are non-positive, and v, is a ¢-finite measure on D satis-
fying
v.({x}) =0
(4.2) v.(D—U.,)<<oo

Xu, {Sf(y) +1§(5i(3’))2} v.(dy)<Too.

Lu(x) exists at any point x in 8D, if « is in C*(D). In fact, the
integrand of the last term being O(&Sﬁ"(y))-I-‘:V_El()(éi(_’y))2 for
ueC*(D), the integral exists by (4.2). The othe1"=1terms in (4.1)
clearly exist for u€C*(D).

Now, we assume, throughout this paper, condition

(L.1) Lu(x) is continuous in x&€98D, if « is in C*(D).
Sometimes, we also assume one of the following conditions:

(L.2) v.(D)=c0 for each x=8D such that —d(x) + u(x)=0.

L.2) —y(x)—06(x)+ulx)+v.(D)>0, for any x€aD.

Let (L) be a linear subspace of C(D) satisfying
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(4.3) Lu(x) exists for each x and is continuous in x€dD,
if u is in D(L) ;™
4.4 CD)cd)C gocw(D).
Let L be the operator defined on ©(L) by
u—>Lu(x), x€0D.

For a>0, let ©(LH.) be the set of functions {p=CBD)|H.¢
eD(L)} and let LHs be the operator defined on ®D(LH.) by

o—>(LH.)¢o=L(Hxo).

Clearly, C**(8D) is contained in ®(LHx) by Theorem 2.5, v) and
(4.4). We note that D(L) can be chosen in different ways, as
long as it satisfies (4.3) and (4.4).

Lemma 4.1. If ¢ in D(LH.) takes a positive maximum at
X, E0D.
LHa(P(xo)<O.

If, moreover, L satisfies (L.2") and if a«=>0, we have
LHe¢(x,)<<0.
Especially, LHe1(x)<<0 for each x=0D, if a=>0 and (L.2") holds.

Proof. Let u=H.e. Since u coincides with ¢ on 8D, we have

N-1 U au . .
22 () e as;oas;o (2)<0, Zg- (@) =0 =1, N=1)

and r(x)u(x)<0. Since (a—A)u(x)=0 for each xED,
8(x0)€l}im Au(y)=6(xo)wlim au(y) =ad(xo) u( a,)<0.
Yeb, y>xg YED, y>x9
Since « takes a positive maximum at x, as a function on D by

virtue of Theorem 2.5, iii), we have u(x,) (0u/0n) (x,)<0 and

u(y) —u(x) — 2-85’

Thus LHa¢(x,) =Lu(x)<0. If >0, then H.e is not a constant

(20) &4, (y) =uly) —u(x)<0.

21) We neglect the term whose coefficient is zero. For instance, if afi(z)=g/(x)=0
and vy (D)<<oo, then Lu(x) exists for all « in C*(D).
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function, and hence does not take a positive maximum in D,
(0u/on) (x,)<<0 and u(y) —u(xy) <O for each ye D by Theorem 2. 5,

ii1) and iv). Thus,
Lo () <y (20) +ad(a0) ) ue(ax0) +ﬂ(xo)% (a0)
+ SD@( ) — () Yay (dy) <0,

if one of u(x), —r(x), —06(x) and v, (D) is positive by (L.2")
Corollary. LH, has the smallest closed extension LH.. If ¢
in D(LHy) takes a positive mazximum at z€0D, LHup(zx)<0.
This is clear by Lemma 4.1, Theorem 1.2 and the remark to
Theorem 1. 2.

Now, we consider the set of functions D(LGE™) = {feC(D)|
Grrfe®(L)} and define LG for fED(LGE™) by

S (LG f=L(G"f).

D(LG™™) contains C**(D) and hence it is dense in C(D) by virtue
of Theorem 2.4 and (L. 1).

Lemma 4.2, LG™ can be uniquely extended to a non-negative,
bounded linear operator on C(D) taking values in C(8D) for each
a>0.

We write LGa™ for the extension.

Proof. Let z be non-negative and contained in D(LGE™). If
Giy is of class C? in a neighbourhood of yED, then AGZ"u(y)
=AG"u(y) =aGe™u(y) —u(y) by Lemmas 2.3 and 2.4. Noting
that Gi'"« vanishes on 8D and is non-negative, we have

LG u(x) = —o(x)ulx) + u(x) —%G.‘i‘i"u(x) + SDGE"“(y)u,(dy),

which is non-negative at each x€8D. Thus LGZ™ is nonnegative,
and hence — LG ||u||<<LG&"u<LG&"||u| for each u in D(LGE™),

min

implying boundedness of LG&™ with norm [LG&"||=|LG&"1].
D(LGI™) being dense in C(D), LG&E™ can be extended uniquely to

min

a non-negative bounded linear operator LG&™ on C(D).
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Corollary. The range of LG&" does not depend on a>0.
Moreover we have

(4.5)  LG"f—LGg"f+ (a—B) LG G f=0, feC(D).
This is clear from the resolvent equation for {Gy"} and the de-
finition of LGo™.

Lemma 4.3. For any ¢=COD) and a, B>0, we have

(4.6) H,o—Hap+ (a—B)Gy"Hap=0.

Proof. Let us denote the lefthand side of (4.6) by u,. The
mapping ¢—>ue is clearly bounded and linear from C(@D) into
C(D). If ¢ isin C*(8D), uy belongs to C*(D), because Hap and
Hae is in C*(D) by Theorem 2.5, v) and G2 Hae is in C*(D) by
Theorem 2.4, 1). Hence, for ¢=C**(8D), we have (a—A)us=0
by an easy calculation and it results from [up]sp=0 that =0 by

Theorem 2.5, i). Thus, #,=0 for each ¢=C(®D), since C**(8D)
is dense in C(8D), completing the proof.

Lemma 4.4. D(LH,) does not depend on a>0. If we denote

the common domain by 5, we have
4.7 LHoep— LHso+ (a—B) LGy Hap=0,

for any «, f>0 and goe@.

Proof. Let ¢ be in ©D(LH;). By definition of ®(LHs) Hge
belongs to C**(8D)), and hence Gy"Hz¢ isin C*(D)CD(L). Thus,
we can apply L on the both sides of Hup=Hzp— (a—B)Gs"Hap,

and obtain
(4.8) LHup=LHao— (a—B)LGY"Hap, o=D(LHp).

For any ¢&®(LHs) there is a sequence {p,€D(LHe)} such that
¢a—>¢ and LHsp,—>LHse. But, ¢,—¢ implies Hap,—>Hzp and hence
LG2" Hep,= LG Hopn—> LG Ha . Thus, by (4. 8), LHa ¢, converges
to LHsp— (a—B) LG Hse as n—>oco. This means that ¢ in ©(LHz)
belongs to ®(LH,) and that (4.7) holds. Interchanging a and B,
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we have D(LIL) CD(LHs), completing the proof.

Let @(E) be the set of all functions which can be written in

the form
(4. 9) G fit S Hass, HECD), ¢,ED,
i= 1=
where m and n are non-negative integers and a;,>0, 8;>0 (1<li<m,
1< <n).
Lemma 4.5. C**(D) is contained in SD(/I\,). There is a linear
operator L defined on D(L) satisfying
21¢=Lu. for ueC**(D)
LG =LGm™f,  for feC(D),
/I:I—Iaq)=L—Ha<o, Sor goE@.
Such an operator 2 is unique.
Proof. For any u with expression (4.9) we assign

(4. 10) Eu=2m'.IT_G,',Z"’"ﬁ+Z"1mB, @;-
i=1 j=

N
In order that L« depends only on #z, not on the choice of the ex-

pression, it is sufficient to prove that
(4.11) u=3Gy"fi+ > Ha;0;=0
i=1 j=1

implies gf@,’f‘"‘f;-l—éLI{am,ZO. Since >l¢; is the boundary value

j=1
of # and u=0, we have

(4.12) >10,=0.
Since (a—A) G fi=fi+ (a—a:) G f:
and (a—A)Hz; 05=(a—B;) Hs; 0,

follow from Lemma 2.4, we have, using (4.5) and (4.7),
S LG fit S LHa, ¢y= 3 (LGS + (a—a) LGI"GElF)

+ (L oo+ («—B) LG Hoy0))
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— LG 51/t S a) Gt 33— B) Has o} + LEL(S01)
LG (e ) {2 GL"fit 33 H %.} + L_H(z <p,) 0,

by (4.11) and (4.12). LGMf=LG™f, LH.p=LHae and the
uniqueness of L are clear by definition of L.

If is in C*(D), [ulw is in C“(GD)C%, and hence H,[u]w»
belongs to C*(D) by Theorem 2.5, v). Since u— H,[u]s» vanishes
on 8D and is in C*(D), there is a v&eC(D) such that u— H,{ulwm
=Gy by Proposition 2.1. Thus, we have Euzz(Ha[u]oD—l-GLm“v)
=LH.[u)ow+ LG v=LH.[u]w+ LG v=Lu, completing the proof.

Remark 4.1. u belongs to @(/[\,) if and only if ucD(A) and
[u]apeﬁ. In fact, if uEED(Z), then z is in ®D(A) by (4.9) and
Lemma 2. 4, and we have [u]a,,:ﬁ(ij%. Conversely, if ©u€D(A)
and [u]apefg, then, we have u=5;'1““f-l-Hw[u]aD by some feC(D)
similarly to the last paragraph of the proof of Lemma 4.5, and hence
uE‘Z’J(/Ij). We note that « in @(/I:) is expressed by

u=GM(a—A)u+Hulw, a>0,

which we can prove by applying a— A to the both sides of u=Gr"f
+Hm[u]av by Lemma 2. 4.

§5. Semigroups on C(8D) and construction of the diffusion

Theorem 5.1. i) Let a>0. LHx is a generator of a semi-
group on C(8D), if and only if there exists a number >0 such
that

(a—A)ulx)=0 xED,

D G—Lul(x)=¢(x), x£06D

has a solution ueD(L)C*(D) for each ¢ in a dense subset of
C@D).
ii) If LHa generates a semigroup on C(0D) for some a0,
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then LHp is also the generator of a semigroup on C(8D) for each

B=>0.
We call the semigroup on C(8D) with generator LH. the semi-

group on C(@D) of order a. and denote it by {S¥, t>0}. The
Green operator of {S¥} is denoted by

K‘A”co:Sme‘“ “odt, 1=>0.
0

Proof. By Theorem 2.5, i) and the definition of D(LH.),

the equation (5.1) is equivalent to
(5 1,) (x“‘LHa)'\P‘:(ﬂ, ‘\P‘E@(LH«)
The solution « of (5.1) is given by uw=Hxyr. If (5.1) has a

solution for each ¢ in a dense subset of C(8D), or equivalently,
N(QA—LH,) is dense in C(®D), then LH,. satisfies (1.5), (1.7) and
(1.8) of Theorem 1.2 by Lemma 4.1, and hence LH. generates
a semigroup on C(8D). Conversely, if LH, is the generator,
NR(1—LH,) is C@D) for all positive 4, and hence, W(A—LH,) is
dense in C(8D), completing the proof of i). For any a and 8,
LHs is LH. plus a bounded operator by Lemmas 4.2 and 4.4.
Noting Corollary to Lemma 4. 1, we see that Corollary to Theorem
1.2 is applicable to our case. Hence, we have ii), and the proof
is complete.

Corollary. LH. is the generator of a semigroup on C(8D),

if and only if there is a number 1>0 such that the equation
(a—A)u(xz)=0, zE€D,

(5.2) ~

A—Lu(x)=¢(x), xz€0D,

has a solution uEfD(i\)”) for each ¢ in a dense set of C(8D), or,

equivalently, the equation
(5.2 (A—LH)y=¢

has a solution wED(LHy) for each ¢ in a dense set.

22) Note that DL)CD(A).
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Proof. Suppose that x« belongs to @(E) and satisfies (5.2).
Then, u=Hx[u«],» and [14]6965 by Remark 4.1, and hence, [z«]an
satisfies (5.2"). Conversely, if 4 is the solution of (5.2"), we have
Ha«pe@@), and Havr is the solution of (5.2). (5.2") has a solu-
tion for all ¢ in a dense set, if and only if (5.1") does so. Thus

the proof is complete.

Lemma 5.1. Let L satisfy (L. 2') and a0 If LH. generates
a semigroup on C(8D), then

(5-3) LHopr=¢
has a unique solution for each ¢&C(8D). and hence LH," is defined

on C(@D). —LH;" is non-negative and bounded.

Proof. Since constant 1 belongs to @(LH;) and LH«1(x)<<0
at each x€aD for positive & by (L.2) and Lemma 4.1, LH.+#%
is the generator of a semigroup on C(@D) by the corollary to
Theorem 1.1, where —k=§ggma1(x). Thus, — LHu= {k— (LHx
+E)}r=¢ has a unique solution y» for each ¢=C(6D) by Theorem
1.1. —LH," is clearly non-negative and ||—LH,"||<k™, completing
the proof.

We sometimes write K& for —LH;?, if it exists.
Lemma 5.2. If « in @(i\) satisfies
(a—A)u=0, on D,
(l—£)u=0, on 8D,

Jor some a0 and 1>0, then u=0. Moreover, if a>>0 and if L
satisfies (L.2")*® and LH. is a generator, then

(a—A)u=0. on D,

/l\,u=0, on 0D,
imply u=0.

23) The condition “(L.2’) and @>0" can be replaced by any one of conditions
“—q(x)>0 for each x€8D” and “—y(x)+p(x)+vs(D)>0 for each z&sD and ¢ is
not identically zero.” In fact, all we have to use is LH,1<0..
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Proof. Let (a—A)u=0 and (A—/I:)uz(). Then = Heu[2]sw
and [11,]3,,6‘,'5 by Remark 4.1. Thus, (A—l_,ITIa)[u]ap=(/Z—z)u=0.
Since 1>>0, this implies [«],»=0 by the property of LH,. stated in
the corollary to Lemma 4. 1. Now, let «>>0 and let L satisfy (L.2").
If (a—A)u=0 and /I:u:(), we have LHa[u]sn=0, and hence [#]n=0
by the uniqueness of the solution of (5.3) in LLemma 5. 1. In both

cases, we have u=Hux|u]»p=0.
Lemma 5.3. For any ucC(D), we have
(5. 4) im (eGP u+ H,(ulw) =u

o>o0

Proof. Fix >0, and put v=wu—Hglalsn. By (4.6), we have
aGM e — o =aGM u—aGy Ha[w) op— 2+ Fla|t] oo
= (aGy"" u+ Holu)sp—u) — BGE" Hal 1] o .
Since v vanishes on 8D, aGy"v—v converges uniformly to 0 by

Theorem 2.4, v). Moreover, Gy Ha[u]s also converges to 0, and

hence aGy™u-+ Hq[u]sn converges to u.
Lemma 5.4. (8/0n) Hol diverges uniformly and monotonically
to —oo, when a—>oco.

Proof. Since we have H,1=Hpl— (a—B)Gy""Hzl, by (4.6),
a>>p implies H,1<Hz1, and hence (8/0n)H,1 is monotone non-
increasing in «. Moreover, Theorem 2.4, v) implies Hx1(x)}0 for
x€D when a—oo, with g fixed in the above equality, Now, we
note that there is a function 2 C*(D) satisfying

(5.5) [«)ar=1 and g—Zu(x)<—K, x€aD
for any fixed K>0. In fact, (Hs1)™ belongs to C*(D) and satisfies

9 (Ha 1)) = np (Hae D)™ (2) -2 Hay1(2)
on on

= 710"-6—‘Ha0 1(x)<—n,inf I 8 Hx, 1(x) l ., x€0D.
on ven | On

Since 1na£ | (8/0n) Hyy1(x) |=0 by Theorem 2.5, iv), it satisfies (5.5)
1€
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for sufficiently lagre n, and fixed a,. Take such a neighbourhood
U of 8D relative to D that «(x)>1/2 holds on U and U has a
smooth boundary. Since the convergence Hyx1—0 on D is monotone,
it is uniform on @U—8D by Dini’s theorem, and hence Hi1(x)
<Lu(x) on 0U and a>>2|Aux| for sufficnently large «. Thus, by

(A—a)(Hel—u) (x) =au(x) —Au(x)}%— |Aul|>0, x= U,

Hi:1—u never takes a positive maximum in U, and hence H.1(x)
<Lu(x) in U, implying (8/0n) H.1(x)<(6/0n)u(x)<—K, x<€dD,
fox sufficiently large a>>0, completing the proof.

Corollary. If LH. is a generator and (L.2) holds, then

lim || K%||=0, for 2>0.
Proof. If 6(x) or u(x) is positive at xEa8D,

LH1(2) = 5() +ad () + ﬂ(x)ainHa 1(z) + S (Ha1(y) — 1} na(dy)

diverges monotonically to —oo be Lemma 5.4. But, condition (L. 2)
implies v,(D)=c0 and henceSD {H.1(y) —1}v.(dy) decreases to — oo,
if 8(x)=pu(x)=0. Thus, (LH«1(x))™" converges monotonically to
0, and hence uniformly on 8D, if a—oo, by Dini’s theorem. Thus,
we have 1=—|(LH.1)'|-LH«1<||(LH«1)?||(A—LHx1), which
implies

KA<]||[(LH D) K8(1— LH« 1) = |[(LH:1)Y||—0, as a—>oo,
completing the proof.

Remark 5.1. Under the assumption that LH. is a generator,

lim||K5[[>0

if 8(x)=u(x)=0 for all x€dD and v.(D) is bounded in x=aD.

Proof. We have L1(x)=y(x) by 8(x)=0, and hence 7 is

bounded. By assumption LH.1(x) is bounded both in a and =z,

since
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|LH1(2) | =17+ (H1() 1@
<§glg lr(x) |+ 5,‘3313”‘(1)) =K <<oo.
Hence, 1>|[A— LHx1||*(A— LHx)1, which implies K§1>|A— LH.1||™*
>+ K)*>0, completing the proof.

Theorem 5.2. Let A: be the restriction of A to the subset
D(A4z) = {ulue‘})(z\) and Lu=0} of D(A). If LH. is a generator
and (L. 2) holds, then Az is the generator of a semigroup on C(D).
The Green operator Gu of the semigroup is given by

(5.6) Gott=G™ yu+ H,K2LG™ u, ucC(D).

Thus, we have obtained the semigroup on C(D) determined
by A and L. This is a special case of a little more general

Theorem 5.2'. Let Aix be the restriction of A to the set
SD(ZZ_)\)={quE@(E) and 2u=/lu}, 1>0. If LH. is a generator
and (L.2) holds, then Ai-n is the generator of a semigroup on
C(D). The Green operator Gy of the semigroup is given by

5.7 Glu=G™"u+ H. K} LG™u, ucC(D).

Proof. Since K¢=(1—LH.)™" exists for each 2>0 and a>0
by Lemma 5.1, we can define G} on C(D) by (5.7). Giu clearly
belongs to D(L), and moreover, to D(A;-1), since

=D Gu=Q-D)Gu+ (— D) Ha KeLG™u
=—LG™u+U—LH)KLG™u=—LG™ u+LG™ =0 on 8D.
Now, we verify the conditions (1.1)-(1.4) in Theorem 1.1 for Az-x.
For any a>0 and «C(D), Giu is the unique solution of (a@—A)v
=u contained in D(Azi,), since
(@a—A)Gru=(a—A)GP"u+ (a— A) Ha K3LGE ™ u=u

and the uniqueness follows from Lemma 5.2. Thus, G}= (a@—Ai-»),
implying (1.2). G3>0 in (1.4) follows from evident inequalities
GR">0, H.>0, K§>0 and LGP0 and (5.7). To prove [|G}|<1/a
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in (1.3), we note that the following equality holds:
aGM 1+ H,1=1+Gy"c,

since the boundary values of the both sides coincide and we have
the same value when we apply «a— A on the both sides. Hence, we

have
(A—LH)1=A— LH.1=2+aLG="1—L1— LG ¢
:'{—{-wLG;ninl—r_lu_éa;l—G:onlnc—SDG;nlnC‘(y)Vx(dy)>afézlu 1.

Then, applying K¥ on the both ends, we have
1=K¢(3— LH)1>aKLG™ 1

This, combined with aGy™"+H,1<1, imply aGll=aGy'"1
+aH K¢LG™M™1<1, and hence (1.3).

To prove (1.1), it is sufficient to verify aGiu—u when a—oo
for each # in some dense subset of C(D), for instance, SD(z). Since

the first summand of the rigththand side of
laGyu—ull = laGE" u+aH, K{LGE™ u—ul|
<llaG™u+ H,[u)w—ull + |aKsLG*™u— [u] ol

converges to 0 by Lemma 5.3, we have only to prove aK¢LG "y
=[] for weD(L). Writing u=Gg™v+ Hse for fixed B, where
veC(D) and ¢=[u],»ED, and noting that

G u=GyrGrro+ Gy Hep = %—3 (Ge™v— G+ Hep—H,0).
we have

aKE LG — [22] ool =

me( mm,v G',Ln‘"v-l—HBga—Ifaga) —(P“

—“ ——K%L(G’“‘“v Gm’"v+HB¢) +— (¢—2K50) — fP”

B
<G IRSIALGE + Lo =0l + 1262 ol +| %, o=

where we have used K¢(A—LH.)¢=¢ for ¢E@. Since || K%||—0 by
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the corollary to Lemma 5.4 and l[/IjGa’f‘“H:HEG};““lH:[]2(}',{;“‘“1
—(a—BLGF"GE"1|<|LGE™ 1| for a>p, [aKZLGZ"u— [2]all

converges to 0, completing the proof.

Remark 5.2. Suppose that LHx is a generator and (L.2') is
satisfied. In order that Ai-n be a gemerator it is necessary that
lim[[Kg|[=0 hold.

T Proof. By assumption, G} in (5.7) can be defined and satisfies
Gr=(a—Az-»)" as in the proof of Theorem 5.2". If Az, is a

generator, aGiu—>u (a—>o0) for u€C(D), and hence we have
aK?\ZE;]m u—> [u] 8Dy LZ'_>°°,

noting that Glu is reduced to K(LG™"u on 8D. Put u—Hse and
¢=K%81. We have

Ko LG = a KoL (G2 Ha )

2 _K¢(LHs¢— LHap) =—% - K3{(2— LH,)¢o— (A— LHz) ¢}
a—f3 a—f

=@ , & pei THYKEl=_% ,_ % Ko
w—ﬁ¢ a— (10— LHs)KR1 a—ﬁw P 31

Since aK¢LG™™ 4~ [u]sw=¢ and aﬁ—>l, we have K%1—0, which

implies |KSl=[Ks1[—~0.

Remark 5.3. There is a freedom of choice in defining (L)
and hence @(2) as we have noted in §4. But, the following assertion
holds. Let L, be also an operator of type (4.1) and satisfy (4.3)
and (4.4). Suppose that L, is an extension of L. Then, if LHx
is a generator, we have @(/I\,)=E®(21) and /I:=j:1.

Proof. Since LG™=L,G™ is obvious, we have only to prove
LH,=L,H.. The range of i—LH. being dense in C(8D) for 10,
L, H. is also a generator. (1—L,;H.)™" is an extension of (A—LH)™,
because L, Hx is an extension of LH,. But, since (A—LHz)™" has
domain C(8D), we have (A—L,Hz)"'=(1—LH.)™" and hence, L, H
=LH,.



566 Ken-iti Sato and Tadashi Ueno

We have obtained a class of semigroups on C(D) with gene-
rators A7, (1>0), if there is a semigroup on C(8D) with generator
LH, for some a>>0. A converse problem may be of some interest.
Here, we formulate a result.

Theorem 5.3. Suppose that, for each i>0, Ai-r is the gene-
rator of a semigroup on C(D). Then, LH. is the generator of a
semigroup on C(8D) for each a>0.

Proof. By the corollary to Theorem 5.1, it is sufficient to prove
that (a—A)u=0 and (Z—i)u=¢ has a solution # for each ¢ in a
dense subset of C(8D) for some fixed a >0 and 1>0. Let 1’4

Take any f in SD(/I\,) satisfying (/Z'—I/,\)f=0 and write v= 7 1.

Since Az, is a generator, there is a w such that (a—A)w=
—(a—A)v and (/I—I:\)w=0. Then, u=v-+w satisfies (a—A)u=
(a— Ao+ (a—Aw=0 and A—L)u=—L)v+ Q- L)w=G—L)v
=Q—=2)[v]w+ (/l'—f)v= [ flop. Since Az_x is a generator {uE@(I/,\)
I(X'—E)u:O} is dense in C(D), implying that LH, is a generator.

Remark 5.4. In the above proof, we have really proved that
if Ai.n generates a semigroup on C(D) for some 1>>0, and if
{quEQ(i\) and (/I'—/I:)uzO} is dense in C(D) for some A2,

then LH, is a generator. Probably the second assumption can be

dropped, but it is not yet proved.

Now, we prove some equalities connecting {G)} and {K%}.
The resolvent equations for {G3} and {K%} are obtained by putting
A=p or a=p in the following.

Proposition 5.1.*° If LH. and LHzs are generators of semi-
groups on C(8D), then we have, for any A and p>0,

(5.8)  Glu—Ghut (a—B)GCAGEu+ (A— 1) K¥ [Ghul o =0,

ueC(D),
(5.9 Re—Kio+QU—mKiKEo+ (a—B)GiKEe=0,
peC@@D),

24) Some of these relations are obtained also in [12, 25] under a different set-up.
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(5.10) K5o—KBo+(A—m)K3KEo+ K3(LHs— LH:) K2 =0,
eeC(D),
where G is defined in (5.7) and I/(\‘”=HaK§. Above equalities
hold even when A or u=0 if Ki or K§ exists.

Proof. If we apply a—A and A—E to the lefthand sides of
(5.8) and (5.9), then the result is 0. But the solution «&C(D)
of (a—A)u=0 and (/1—2)u=0 is unique and is constant 0 for a_>0
and 1>0 (also for 2=0 if Kj exists) by Lemma 5.2, and hence
(5.8) and (5.9) are proved. As for (5.10), the boundary value of
the left hand side of (5.9) being Kio— Ko+ (11— u)KE¢KBo+
(a—B)KILGE"Hz KB, it is sufficient to verify (a—B)LGr"HzK8¢
=(LHs— LH,)K®¢p. But, this is clear by (4.7) with ¢ replaced by
Kto.

§6. A reduction to an integro-differential equation

The problem of constructing the diffusion determined by A and
L is reduced to solve the equation of type (A— LH.)y»=¢. But this
equation is essentially an integro-differential equation given on the
boundary 8D. To show this we prepare

Lemma 6.1.”> Let K be a P-dimensional compact manifold
of class C* and let {1, t>0} be a semigroup on C(K) with gene-
rator &. Let {7’ (y)eC*(K), 1<i<P} be extensions of local co-
ordinates in a neighbourhood of a point x€K such that 1, v'(y)
QA<i<P) and gpl(v"(y))2 belong to D(®). Moreover, let ' (y)=0,
1P, if and, only if y=x. Then, we have

f <)+za<x> 6f () +7(@)f(2)

Of() =B @2l

TV oo oS <x>v<y)}”*<dy)

feC(K)nD(G),

25) A similar result is obtained by K. Yosida [38]. The proof of this lemma is
a modification of Wentzell’s method of seeking the boundary condition,
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where (@'/(x)) is non-negative definite, 7(x) is non-positive, and

v, 1s a measure on K such that
5 (K—U)<eo, | S37(59)m.(dy)<oo

Sor any neighbourhood U of x.
Proof. For f in ©(8)C(K),

Of () =lim—(T,f(2) ~f(2))
~tim ([ (P2 d) - 1)
=lim| r(Of @)+ 5§ O @)
o -ra-5Y f @7 DHET Y] v d) |

where r@)=t7(Pt, 2, K)—1)=t(T:1(x) —1)<0
8=t 7 (DIPG 2,80 = (T (@)~ (),

vt B) =1 554 (59)°PCt, 2, dy), E€BEK)™

By assumption l}n("l () =81(x)=y(x) and lirgl B () =6y (x) =6 (x)

exist. Moreover, there is >0 such that

v(t, K}<l§£ow(t,K)+1
—lime {7560 @ - () @} +1
<O(BE)@+1, for 1<e,.

Putting
)= {) @ - @r o}

SN =7 DT {EA

we have

26) B(K) is the topological Borel field of K.
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P 9 f P -1

¢ =45 2 L @@+ g

P
7(f,y) being continuous in K— {z} and 0(277" ( y)2) around z, the
second summand of g(y) can be continuously extended on K. Let
¢ be a mapping from K— {x} into KX R" defined by
¢ y=o(y)=(y,27(3)) EKXR",

and let M be the closure of the image ¢(K— {x}) in KXR” M
is compact for —1<z"(y)<l. Define

G2 =43 B @ zir (£ {gr o

on ¢(K— {z}), and extend it continuously on M, and denote it by
the same notation G(£), & M. This is possible by what we have
noted about g(y). Clearly, g(y)=G(¢(y)), yeK— {z}. Define
NG, E)=v(t, ¢*(E)), ECM. Since N, M)=y(, K—{z})<
@(é(#)“) (x) +1 for sufficiently small ¢, there is a sequence {t, 0}
suc‘}; that {N(t,,-)} tends to N(-) in weak star. Thus, we have

Gue) =lim (e f(2) + 338 02 @)+ GO NG a0

~1@f@+1F @Y @+ conao.

Writing v(E)=N(¢(E)), ECK— {x}, we have

\,conwo={ — conuo+| — cona

2 @z }N(dc>+S . GONED
_ 5 _@f

.11677677

- B @@ T @+ gy

ij=1

@\, 2zNEO+| Gl

= Sl g SL@+{ e -rw

iHi=1

-5 @} 5w vy,
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where a’(x) = —;—Sm{n }Z N(dD).
Putting v.(E)= SE {é 7 (y) 2} _lu (dy)

and noting (6.2) and (6.3) we have (6.1). It is clear by defini-
tions that 7(x)<{0, (@/(x)) is non-negative definite and p, satisfies
the conditions stated in the lemma.

Lemma 6.2. Let L be 0/an’> Then, there is a semigroup on

C(@D) with generator LHa for any «>0. If ¢ belongs to C**(8D),
then

—%Haco(x): 9 H.o(z)
6.0 = Saien Tl @ +EF @ ggf @
+7a Do@ +| o) —o@) - -2 (e}

v.(a,dy),”® xE8D,

where (a'(a, x)) is non-negative definite, 7(a, x)<O0 and v.(a, dy)
is a o-finite measure on 0D satisfying

6.5 wadD—Ud<os, | S(6())5( dy)<oo.

Sfor any neighbourhood U, of x.

Proof. Since there is a unique solution of the equation

(a—A)u=0 on D, (—a—an)u=q> on 8D, for o=C"(6D) by

Theorem 2.3, there is a semigroup on C(8D) with generator

'G%Ha by Theorem 5.1. Since &i(y) satisfies the conditions in

Lemma 6. 1, %Ha can be represented by (6.1) for ¢ in C*(8D)

ND(LH,). But C*(8D) being contained in @(LHa)CfD(LHa) as
we have noted just before Lemma 4.1, (6.4) holds for C**(8D).

27) We put D(o/on)=C'(D).
28) Recently, S. A. Molcanov [23] proved that the first term in the right side of
(6.4) can be omitted, and he represented vz(a, ) in a more concrete form.
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Lemma 6.3. For any given v.(dy) satisfying (4.2) and any
a>0, there is a o-finite measur v.(a,dy) satisfying the condition
(6.5) with v.(a, -) replaced by v.(a, -) such that

6.6 | entean={ Ho)n@)

N-1
if 0€COD) and () =0(E EY), y==.
Proof. Fix an x€6D and put 7( y)=[§ll($i(y))il . Each &

2
aD
belonging to C*(8D), »(y)=C*(@D) and hence ¢-7 belonge to
C*(@D) cC**(D) for any ¢&C*®®D), implying Ha(e-7) €C*(D).
Thus, noting that ¢-7(x) =0 and (8/8¢%) (¢ 1) () =0 A<iIKN-1),

functional

00 =\ Helo ) (5)wu(d)

(o ()~ Halom @~ 5 2 Halom @8] ()

can be defined on C*(8D). ®(¢) is clearly linear, non-negative and
bounded, because ©(1) is finite. C®*(@D) being dense in C(0D),
0(¢) can be extended to a bounded, linear and non-negative func-

tional on C(8D) uniquely, and hence represented as an integral

o) =\ e(»u(@, ecCGD)

by a bounded measure x on 8D in virtue of Riesz’ theorem.
Now, define 5.(a, dy) by

(s B) =\ () u(dy),

which is clearly a o-finite measure on 8D and satisfies (6.5) with
v.(a, -) replaced by ».(a«, -). If ¢&C*(@D) and ¢ vanishes in a
neighbourhood of x, then ¢y can be considered as in C*(8D), and
hence

[ en@an={ e u@)-o6m

=\ Heo () (@).
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N-1
Let ¢ be in C(8D) and satisfy ¢(y)=0<25§(y)2>, y—x. Then, we
can find a sequence {p.} CC*(8D) tending to ¢ such that the support
of ¢, does not contain = and |g.(y) |[<<K%(y). We have

[ ontosta dy)={ Hepn(rr.tan.

and this formula becomes (6.6) as n—>co by the dominated conver

gence theorem, since |Hag.(y) |<Ha|e.| (y)<KH«n(y) =0 (¥))
N-1

+O(Sri ().

Theorem 6.1. For any given L, we have

. N-1 . azw
LHep=LHop= > a'’(a, ) ()

ii=1 08:0¢.
6.1 F3E D20 e Do)
o) —o@ -5 2 (e} an,

for oC*(@D) and oD,
where (a'/(a, x)) is non-negative definite, r(a, x)<0, and v.(a, +)
is a o-finite measure on 8D satisfying

6.8)  v(aoD-U)<eo. | SE(3))% (. dy)<oo.

J

Jor any neighbourhood U. of x.

Proof. First, we note that the following quantities are finite.

P 0= HL1G) - Dutay).
(6.9)
B e, 2) = | (Hati(5) — 80300 ().

In fact, the integrands of (6.9) and their derivatives with respect
to & (1<i<N—1) vanish at  and the integrands belong to C*(D),
implying that the integrals are finite by assumptions on ..

Now, we compute LHze for ¢&C**(8D)) by definitions
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Do)+ S (2@

(6.10)  +r(@De(2x)+8(2) lim A(He) () +u(x)5;Haco(x)

LHao(2) = LHyo(x) = 2«"(@

+ (Heo () —o@ -5 -2

£ (@) )ur(dy).
Since (@—A)Hzp(x) =0 for x&D, the forth summand is given by
(6.11) 6(z) lim A(Hap) () =ap(2).

The fifth summand can be rewritten making use of (6. 4) by Lemma
6.2. As for the last summand, the integral restricted to D is given
in the following, making use of Lemma 6.3 and (6.9).

[, (Eeo () ~0(2) = 5 -2-(2)8t(3) Juaty)

= Helo—o@ ~5-2-@ef ()

(6.12) + S {Ha1(y) — 1L} p(x)v.(dy)

+SD.-1 ;’Z (x){Hae‘(y) &E(M}v.(dy)

{52 (x)exy)}»x(a,dy)

+3(a, x)o(x) + E B (e, 2)-22 ().

0&!
Denote the retriction on 8D of v.(-) by [v.]s(-) and put

a¥(a, ) =a'(x) + p(x)ad’ (a, x)

B (a, ) =B () + u(2) B (a, ) + B (@, z)

7(a, 2) =1(2) +ad(x) + 2(2)7(a, 2) +F(a, 2)

vila, ) =[] () +u(@)v.(a, -) +5.(a, +).

Thus, (6.4) and (6.9)-(6.12) imply the representation (6.7). By
definition (6. 13) the properties of (a'/(a, x)) and v.(«, -) mentioned
in the theorem and that y(a, £)<{0 are clear, completing the proof.

(6.13)

By the above theorem, to solve the equation
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(A—LH)yr=¢

for ¢ in a set dense in C(8D) is reduced to solve an integro-differ-

ential equation

W@~ (S e 2k @

(6. 14) + jrzjlllﬁi (@, ) g}b;: (x) +7(a,x)y(x)

+ Sw {‘1, () =y (2) —%i% (x)E,’;(y)} ve(a, dy)

=¢(x), xE€dD,
for so many ¢ in C(@D).
To consider some examples, we prepare

Lemma 6.4. If LH.is a generator of a semigroup on C(@D),

then L'Hx is also a generator, where
L'u(x)=Lu(x) +1 (x)u(x) +6'(x) })im Au(y), zx<8D,
YED, y>x

and ' (x) and &' (x) are non-positive continuous functions of xEaD,

Proof. Since 7' and &' are continuous, L' satisfies (L.1) and
we can choose D(L") =D(L) A {u|usC*(D) and Au can be extended
to a function in C(D)}. Thus we have D(LH,) =D(L'H.) and

L' (Ha¢) (x) = LHa(x) +71' () Hap(x) + 8" (x) lf_)m AHao(y)
=LHuo(x) +71"(2)e(2) +ad’ (2)e(x), for ¢€D(LH.),
and hence, L'H.=LH.+7 +ad. By applying the corollary to
Theorem 1.2 for ®=LH. and M=y'+ad’, we complete the proof.
Example 1. If L is given by
Lu(x) zﬁu(x) +r(@ulx) +6(x) €lgm Auly),

where y and & are non-positive and continuous and if we choose
D(L) = {ulucs C(D) AC*(D) and Au can be extended to a function
in C(D)}, then Ai_, is the generator of a semigroup ony C(D) for
each 1>0. ‘
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In fact, by Lemma 6.2 (8/6n)Hx is a generator, and hence LHx«
is also a generator by Lemma 6.4 for any a>0. Since L satisfies
(L.2), Az, is a generator by Theorem 5.2' for each 1>0.

Example 2. Consider the case where 9D is a compact Lie group
and each translation of 8D can be extended to an isometric trans-
formation of I). Let A be invariant under the transformations
induced by translations of 8D. Let a'/(x), f(x), and p(x) in L
be constants and let ¥(x) and 8(x) be continuous in x€8D. Let
v.(+) and {&(y)} satisfy v.(E) =v.(x7'(E)) and &(y) =&(x7(y)),
x€0D, yED, where e is the neutral element of 8D and x7(-) is
the transformation of ) induced by the translation of 8 determined
by £'€0D : yEdD—x-yEdD. Then, Ai . is the generator of a
semigroup on C(D) for each 1>>0, if L satisfies (L.2). Moreover,
if we assume only (L. 2") for L and require & to be a constant, then
(L.2) is necessary and sufficient in order that Aj_, be a generator.

In fact, if y=8=0, then a'/(a, x), B'(a, x), and y(a, x) in (6.7)
are constants, and v,(a, ) is translation invariant, and hence, by a
theorem of G. Hunt [11, p.279] LH. is the generator of a semi-
group on C(8D). Therefore, LH, is a generator even if y and &
do not vanish, by Lemma 6. 4. If L satisfies (L.2), Ai_ is a gene-
rator by Theorem 5.2'. Let L satisfy (L.2') and let & be a constant
and A7, be a generator. If p—86>0, (L.2) is satisfied. We have
[K%|[>0 as a—>oco by Remark 5.2. Thus, if x=8=0, then by
Remark 5.1 v,(D) is not bounded in x, and hence v.(D) is always
oo, completing the proof.

As concrete examples, consider a circular disc in R? or a solid
sphere in R* with rotation invariant A and L. As another example,
let D be a set {(x1, x5, o) | B+ 1<, 0<x:<27} in R* where
(x1, 25, 0) is identified with (a1, a2, 27). 8D is a 2-dimensional
torus. Let A and L be invariant under the rotations around xj-axis
and translations along xs-axis.

We note a little more general result is obtained in case 8D is
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a torus |33, p. 537| by making use of [27].

Example 2 can be extended to the case where 8D is a homo-
geneous space, since Hunt [11, pp. 286-293] has obtained a corres-
ponding result about homogeneous space. In this case, the conditions
on A and L are more restrictive to a certain extent.

A similar result is obtained in the case of the Brownian motion
in the half space of R™ in [32].

Chapter III. Local time and the Markov process

on the boundary

To inquire the probabilistic meaning of the Markov process on
the boundary, we consider in this chapter the reflecting diffusion,
that is, the diffusion determined by

0u _ py and 9% (x)=
W—Al{ and » (x) =0, xsol).

In this case, local time on the boundary t(z,w) will be defined by
1, w) =lim 2 2, (2. )y s
p>0 0 Jo

which has some properties similar to the case of one dimension, as

will be proved in §7. Then, i, (w) will be proved in §9 to

be a Markov process on the boundary with the generator ai‘H;),
n

where t7'(¢, w) is the right continuous inverse of t(¢,w). This
means that the Markov process on the boundary of order 0 is the
trace on the boundary of the trajectory of the reflecting diffusion,
and that t7'(¢,w) is a time scale suitable to describe this motion.
Moreover, the diffusion determined by

0 _ py and p(2)u(x) +6(x) lim Au(y) +2% (2) =0, x€8D
at YED, y>x on

will be constructed from the reflecting diffusion using t(z,w) in §9,

29) Xg is the indicator function of a set [.
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Some lemmas related to certain differential equations and t(z, w)

will be proved in §8 as a preliminary to §9.

§7. Local time on the boundary of the reflecting diffusion

Let p*(¢,x,y) be the fundamental solution of the Cauchy

problem for the parabolic equation

ou B

——67(17, .’I?)—Au(t, .I'), t>0, xeD
with reflecting barrier condition

(7. 1) %?(t,‘r)z(), =0, oD,

where A contains 7o constant term:

(7.2)  Au(t,x) :i.%l;/Tl(__;‘T aii <(lfi(;r) Va(x)

+§bf<x)%(t, 2.

i=1

)

ou
xi

7

{T¥,t>0} defined by

(7.3)  Trf(z)= SB P4t 2 ) FC) m (dy)
for t>0 and Tt f(x) =f(x)

are non-negative linear operators on C(D), and form a semigroup
on C(D) in the sense of §1 by virtue of Theorem 2. 1.

Let W be the set of all functions o defined on [0, +oo], taking
values in DY {4}, where 4 is adjoined to D as an isolated point,
and satisfying following conditions:

1. There is such a ¢(w) € [0, +oo] that w() €D for 0<t<<€ (w),
and w(t) =4 for ¢ (w)<t<+oo.

2. w(t) is continuous in ¢ for 0<t<<¢(w). We sometimes write
x.(w)=w(t). Let B, and B be the smallest Borel fields of subsets
of W, which make {r.,s€][0,¢]} and {z,,s€ [0, +o0)} measurable,
respectively. For each we W and t>0, we have a shifted path
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w; €W defined by w/(s)=w(t+s), s€[0, +o]. A mapping
w—w; is clearly B-measurable.

Theorem 7.1. There is a Markov process X=(x., W, B,, P.,
z€DY M) with {p*(t,x.y)m(dy)} as a system of transition
probabilities, that is, there is a system of measures {P.(-), x€ DY
{4}y on (W,B) such that P.(B) is B(DVY {4})-measurable in x
for each B, P.(xy(w)=x)=1 for each x€D, E.(f(w!)|B)=
E.. ()™ holds for each B-measurable bounded function f with P.-
probability one, and

E.(f(x))= SBP* (t, 2, N f(mdy), feCD).

Such a Markov process is unique’ Moreover, X is conservative,
that is,
(7.4) P.(C(w)=+)=1, for z€D.
The transition operators of X form a semigroup on C(D) and its
generator is Ai, where L=8/on and D(L)=C(D).
We call X the reflecting diffusion on D determined by A.
Proof. First, let us prove that the generator of 7}* is Az. Since
(@—A)u=0 and Lu=¢ can be solved for dense ¢ in C(8D) by

Theorem 2.3, A; generates a semigroup on C(D) by Theorems 5. 1
and 5.2. Let G} be its Green operator. Since ¢=C"*(8D) implies

ueC'(D) and u=H,K¢p, f€C**(D) implies HMKﬁ”%G;“i“fEC’(E)
by Theorem 2.4, (i). Hence, Gif belongs to C*(D)~C*(D) and
satisfies (a—A)G:f=F in D and —%G;fzo on 8D for each fe
C*(D). Therefore, we have

Gif(@) =\ (Ve p* 0. 2. 32 dt) fCoym(an)

D

by Theorem 2. 3, since e *'p*(¢, x, y) is the fundamental solution of

30) Es(-) is the integration by measure Pg(-).
31) More precisely, Py is unique if W, B, and B are fixed.
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the Cauchy problem of 9u/6t=(A—a)u with boundary condition
du/on=0. This implies that G} is the Green operator of 7%, and
hence the generator of 71}* is A:.

For the existence of P,(-) on the space of continuous path
functions W, it is sufficient to prove

(7.5) lim sup—i—(l -—S )p"‘ (t, x,y)m (dy)) =0 for 0,
Uelx

140 x€D

by virtue of a result of Dynkin [4] and Kinney [19], where U:(x)
={yeD|d(x, y)<<e}. Now, fix an x,€D and find such a function
feC*(D) that satisfies 8f/on=0, 0<f<1, vanishes everywhere in
D — Ues(axy), and is constantly 1 in some neighbourhood V of .
It is easy to find such an f if x, is in D. For x,€8D, choosing
sufficiently small a and $>0 and 6=C**“([0, + o)) which satisfies
0<0<1, 0(2)=1 for 0<z<la, and 6(2)=0 for z>b, we obtain
such an f by putting f(x)=«9<§ll(i"—f{;)z>-0(f”), where () and
(z}) are canonical coordinate systems of x and x,, respectively.
Noting that £ belongs to the domain of the generator of {7}*} since
fe@(f) and zf=0f/6n=0 by Lemma 4.5, that Af(x) =Af(x)=0
for x€V, and that %, >f for each x&€V, we have

sup—i—{l —Sve(v‘)p" (t,x,y) m(dy)}

€V

Ssup - f1-{ 4@z drIman)

—sup| - {1-{ 01w DI an) +ar |

<|| L +ay.

which converges to 0 when ¢ tends to 0. Since D is compact, (7.5)
has been proved. The uniqueness of X is assured by K. Ito [15,
p.35] and (7.4) follows from pr+(t', x,y)m(dy) =1, which is
obtained by (7.1), (7.2) and Theorem 2.1, ii).

Theorem 7.2. There is a sequence of positive nunbers {p.|0}
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such that t, (t, w) converges to a continuous, non-negative additive
Sfunctional t(t,w) of X uniformly on any compact time interval
with Peprobability 1 for any x€D, where {p.} does not depend
on the choice of x€D, and

7.6) (. w):—i—g;xp,,(xs(w))ds, 0.
t(z, w) satisfies
.7 EGQw) = S;dsgapp+ (s, 0 y)Pi(dy), xeD.

Such an additive functional t(t,w) is unique up to Prprobability

0 for all x. Moreover,
(7.8) P.(limt(t, w) =) =1, if €D,
(7.9 PG, w)=>0 for al t=>0) =1, if and only if x€aD,

and t(t,w) increases at t only when x,(w) is on the boundary.
t(z, w) is called the local time on the boundary for the reflect-
ing diffusion X.
By an additive functional of X, we mean that t(¢,w) is B

measurable and that

P.(t(¢t +s, w) =t(¢, w) +t(s, wi) for all ¢, s>0)=1, xED,
holds.

Proof.®® Put ¢,(¢, x) =E.(t,(¢, w)). Then, we have

(7.10)  lim sup Ey(t,(z, w) —tx (£, w) [*) =0.

pip’ Y0 €D
In fact, noting that ¢,(¢,x) converges to Sldsg (s, 2, y)m(dy)
uniformly in x€D and 0<t<{T" for any fixed 0’1'>MZ) by Lemma 3. 6,
and putting f(;r)=—tl’—x,,,(x)—%xpp/(x), we have

E.(|t.(t, w) —ty (¢, w) |®) = Ex{<s;f(.rs)ds>2}

32) The method is suggested by McKean-Tanaka [21].
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2F, <S; Fflxy) dsS: flx,) dr) =2F, {S; f(x)dsE,, (S: Sf(x,) dr)}

<2E,(S' £ | d.;) sup E(S £z d;-)l

0 0<s<t,y€D 0

dsupep(t, x) - sup Jen(s, y) —ew (s, y) [—0,
p>0 0Ss<t,y€D

uniformly in w€D as p and p'—0. Now, define
L, w)=E.(t,(T)|B,) for (T
Then, we have
(7.11) L(t, w) =t,(t) +e,(T'—1t, x,).
Since (L) =1y (), B,, 0<¢<T, P.), is a separable martingale for

any x€ D, by an extension of Kolmogorov's inequality due to Doob
[3, p. 353] we have

(7. 12) P(mdx [,(2) =Ly (&) | >e) <e2E.(|L(T) =L (1) |2
=B (|t,(T) —ts (T) ).

Thus, by (7. 10) and (7.12) and by making use of the Borel-Cantelli
Lemma we can find such a subsequence {p,/} for any sequence {p,{0}
that
P.(L,,. (¢, w) converges uniformly in 0<¢<{7, when n'—o0) =1,
rebD.
Hence, by (7.11) and Lemma 3.6 we have
P.(t,, (¢, w) converges uniformly in 0<¢<(T, when n'—o0) =1,
reD.
Since the convergence in (7. 10) is uniform in ux, {p./} can be taken
independently of x&D. Then, by making use of the diagonal

method we can prove that there is a sequence p,{0 such that

P.(W") =1 for each xe D, where

W' = {w|t, (¢, w) converges uniformly on any compact time
" y P

interval, when n—soo}.
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Now, define t(¢, w) by t(t, w)=limt, (¢, w) for we W’ and t(z, w)
= +oo for weE W'. That t(z, w) "i-;ma non-negative additive functional
is clear by the construction. Continuity follows from the uniform
convegence of t, (¢, w) to t(¢,w). By (7.10) i(¢,w) is also a limit
of t,(¢,w) in the sense of L*(W,P,) and hence in the sense of
LY (W, P,). This, combined with e,(¢, x) =E,(,(¢, x))—»g;dsgwp*(s,
x,y)ni(dy), implies (7.7). Now, let x,(w) be in D and >0.
Then, by the continuity of path functions there are # and #, such
that #,<<t<<t, and i,(¢;, w)=1,(¢,, w) for sufficiently small p, and
hence t(t;,w)=1(t,, w), implying that t(¢,w) increases at ¢ only
when z,(w) is on 8D. (In case x,(w)&ED and t=0, we have only
to consider 0=¢<t, with (¢, w)=0.) (7.8) and (7.9) will be
proved later as a corollary to Theorem 9. 1.

Let us prove the uniqueness. Suppose that t(z,w) and t'(¢, w)
are both non-negative additive functionals of X satisfying (7.7).
Put 8(¢t, w)=1i(t, w)—1'(¢,w). Since T,* forms a semigroup on
C(D), the reflecting diffusion has the strong Markov property by
[14, p. 60], and the right continuous inverse t'(¢,w) of t(¢,w) is

a Markov time. Hence we have
t
]
HO) t=71(s) te t—t/
_ E(S dsg S(dr w;_l(s)))z E(S [E(S g(d,-))] ) ds):O,
0 0 0 0 =7

by the assumption E,(8(¢,w))=0. Similarly we have

E,(S;t(ds) S:@(dﬂ) _ E,(S;t(ds)g “s(dr, w:)>

E(St (ds) S'@(d;—)) —0,
0 s
and hence

E.(8(t, w)?) = L(S S'@(dﬂ@@b—)) - 2E,<S'g<ds) X'@(ﬁ)) —0,
0J0 0 s
which implies P,(t(¢, w)=t'(¢, w) for all £)=1. The proof of
Theorem 7.2 is complete.

Remark. For any t, we have
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(7.12) 1i?1 E.(Jt, (¢, w) —t(t, w) |>) =0, wuniformly in zx.
pY0

§8. Solutions for some parabolic equations

Lemma 8.1.* If f and b belong to C**(D), then
v(t,x)=E, {S;f(xs) exp( — S;b (x,) dr)ds}

is continuously differentiable in t>0, belongs to C*(D) nC*(D) as

a function of x, and satisfies

(8.1 <%—l—b(x) —A)v(t, x)=f(x), t>0, x€D,

62 L=, >0, z20D,

(8.3) liinv(t, x) =0, xeD.
tyo0

Proof.

v(t, x)—E < flx) a's> ,(S; {exp(— S;b (z,) dr) - 1}f(x,) ds)
\

—EA\ f(zx)ds\ b(x,) exp( Sb(x,)dr)du)

0

.
(5
—E((perau] s exo( (b2 ar)as)
(bt ([ fw exn( - peedar)as))
—E({paroi—s zas).

Thus, we have

o(t, @) ={ as{ 1G5 2,9 () ~b (et =s5 Iy,

Hence, v(¢, ) is continuously differentiable in x&€D and satisfies

(2.9) with u replaced by v, by Lemma 2.2. Therefore,

33) This is a parabolic version of the theorem of Kac [14, p. 50]. A similar result
is obtained by Has’'minskii [9, p. 8] independently.
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,'U(t, x) -‘v(tl’ x’) I<I‘U(t, x) _lv(t,: .1') l + ‘1’(t,, .lf) *‘U(t’, xl) l
N
<N f I et |+ K a2,

implying v&€C*'([0, 7' X D). Thus, v(¢, x) satisfies (8.1)-(8.3)
by Theorem 2. 2.

Lemma 8.2. Let f and b be in C**(D) and let ¢ and B be
in C*(@D) and B>0. Then,

B.4)  w(t,x)= L(S f(xs)exp( — S;b (&) dr — S;g (x,)t(dr))ds)

is continuously differentiable in t=>0, belongs to C'(D) AC*(D) as

a function of x, and satisfies
.5 (2-+b@) -A)ute, D =f@), >0, 2D,

(8.6) (B(x) ——a—)u(t, ) =0, =0, z€ab,
on
8.7 limu(z, x)=0, xeD.
o
8.4) v, x)= E,(S;ep(xs) exp(— S;b (x,)dr
~\s@ten i)

is continuously differentiable in t=0, belongs to C'(D)AC*(D) as

a function of x, and satisfies
©.5) (Z+b@-a)@0 -0, >0, 2€D,
(8.6") (B(x) —%)v(t, x) =¢(x), (=0, x€aD),
8.7) l'i?(’lv(t, x) =0, rebD.

Proof. Here, we prove the propositions for v alone, since the
proof for u« is almost the same. Take continuous extensions on D
of ¢ and B denoted by & and B, respectively. B is taken to be non-

negative. Put
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(8.8) w(t,x)=E, {S;& (x,) exp( — S;b (x,)dr
~{Beeian u@s.
(8.9  vpo(t,x)=E, {S;{b (x.) exp( — Sob (x,)dr

Bt @n @},
We note that
(8.10) limw,,p, (¢, ) =v,(¢. ) (boundedly in 0<t< T, £€D),
(8.11) limwv,, (¢, x) =v(t,x) (boundedly in 0<t<T, z€D),
where {p.} is the sequence in Theorem 7.2, and 7’ is arbitrary
number. In fact, Ssﬁ(x,)tp,(d;‘)egsﬁ(x,)t(dr) and the dominated
0 0
convergence theorem imply (8.10). Moreover, we have
Soév (x,) exp( - S:b (x,)dr— S;Z\Q (x,)‘t(dr))’[pn (ds)
(8.12) -, . .
~(ocey exp( = {perar—{ Bt )uan,

when n—>oo. Since t,,(2)—t(¢) in L,(W,P,), {t,} are uniformly
integrable in the sense of Doob [3]. The left hand side of (8.12)
is bounded by |&|le'"*'t, (¢), and hence, uniformly integrable in .
Therefore, (8. 11) follows from (8.12). The convergences in (8. 10)
and (8.11) are bounded, because both wv, (¢, x) and v,(¢, x) are
bounded by [|¢]le™! E,(t,(¢, w)) = [|¢]l¢™ ¢, (T, x) for any z&€D and
0<eLT.

Now, fix p and p’, and take sequences {gm} and {/i,} in go(,"’"‘(l_))

converging boundedly to &(x)ix,,,,(;r) and b(x)-l—f-)(x)—;—,xn,,(x),
[4

respectively. By Lemma 8.1

un(t,x) =E, {S;g,,. (x,) exp( — S;hm (x,) dr) ds}

satisfies (i+hm—A)um=g‘m on D, %zO on 8D, and limu,=0.
ot an ty0
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Hence, making use of the fundamental solution p(¢, x,y) of the
equation %=Au with boundary condition <B—%>u=0, we have,
by Theorem 2.2,

un(t ) =\ds\ s, 2,5) {ga(3) ~hu()umCt =5, D} ()
+ Sodsgwi)(s, x, ) B tn(t —s, )M (dy).
Since un converges boundedly to wv,,» when m—oco, it follows that

Voot (E, 2) = S;dsg pGs, x,y) {%Xo,,(y)é?(y)

D

(8.13) —b()vpp(t—s.y) — ; 20,/ () BCY) Uyt (£ 5, y)}m(dy)

+ S;dsganp (s, 2, ) B(y) v, ot (t—s, ) Wi (dy).

To apply Lemma 3.4 to {fy(x) =B(x) v (s, 2)} we have, by (8.13)

above,

sup lfp/ (x) —for(P;(x)) | <const. sup

x€V(p/irj xjia; 2€V(pt,7j.xj50 ;)

{S;‘“SB'P“’ x, ) —p(s, Py(x), ) |m(dy)

+

L asl, 156290 =p (s Pi@), 30 I m(dy)
{asl 1665 23— pG, P2, ) 1y},

which converges to 0 when o' |0 by Lemmas 2.1, 3.3 and 3.5.
Hence, letting o'=p,}0 in (8.13), we obtain

ontt, @)= as{ 55,2, 9 (L 20.()8(2) B3It =5, 9) ()
in virtue of Lemma 3.4. Thus, we have, by letting p=p,0,
vt ) =\as\ pGs, 2 (M

— S;dsgbp(s, 2, )b(v(t—s, yym(dy),
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implying that v&C**((0, T) X D) by Theorem 2.2 and Lemma 2. 2,
and that v satisfies (8.5)-(8.7") by Theorem 2.2.

§9. Markov processes on the boundary and some

modifications of the reflecting diffusion

Now, we construct Markov processes on the boundary corres-
ponding to the semigroups on C(8D) in §6 in some special cases. In
a similar way we can obtain some modifications of the reflecting
diffusion.

Let a(¢, w) be a non-negative continuous additive functional
of X, and let a”'(¢, w) be the right continuous inverse of a(Z, w),
that is,
a (¢, w) =supis|a(s, w)<t;.

Noting that P,(a(¢, w)>0 for all £>0)=0 or 1 for each z€D,
we denote by S* the set of all such x that the above probability
is 1. Then, it can be proved that

P.(x41¢.my(w) takes values in S*Y {4}, is right continuous and
has left limits as a function of #&€ [0, a(oo, w))) =1, x&D.

Suppose that S* is measurable. We define W* to be the set of
all functions w* of [0, +oo], taking values in S*Y {4} and satis-
fying the following conditions:

1. There is such a ¢*(w*)€ [0, +oo] that w*()eS* for 0<¢
<C*(w*) and w*(t) =4 for &*(w*)<t<+oo.

2. w*(¢) is right continuous and has left limits for each z& [0,
¢ (w®)).
We write xf (w*)=w*(¢). Let B} and B* be the smallest Borel
fields of subsets of W*, which make {z¥:s€[0,¢]} and {xF : s
[0, + o]} measurable, respectively. We define P¥ on (W*, B*) by

P¥(B)=P.(xs10(w) belongs to B, as a function of 2)

for BEB*. Then, the system X*=(xF, W*, B}, P¥; xS*Y {4})
is a Markov process and has the strong Markov property. The
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transition operator of X* and the Green operator are determined
by
Ff(x) =EX(f(al)) = E.(f(xg1a) Yticater)

@D K¥f(2)= S:(’_A[ T*f(x)dt= E*(S:""“’“’f(xs)a<d‘)>’

where f is bounded measurable on S*. The righthand sides of the
above equalities have meaning, because for any measurable extension
on D of f the righthand sides exist and they depend only on f,
not on the choice of the extension. We call X* the Markov process
obtained from X through time change by a(1).

Suppose that another non-negative continuons additive functional
b(¢, w) of X is given. Let P(-) be a probability measure on [0, +oo]
with density ¢, and let P, be the product measure of P, and P
on the space 2= WX [0, +oo]. Define F/(0w) on 2 for t&[0 +oo]
by

T(w) = xg-1¢0, (W), if b(a™'(t, w), w)<<T,
=4, if otherwise
C(w)=inf{t|T,(0) =4}, where v=(w, T)ESL.
We have

P.(7.(w) takes values in S*Y {4}, is right continuous and

has left limits as a function of t&€[0,8(w))) =1, x€D,
and define a measure P} on (W* B*) by
P#(B)=P.(7,(»v) belongs to B as a function of #)

for BEB*. Then, the system X*=(xf, W* B}, P} x=S*Y {4})
is also a Markov process with the strong Markov property, called
the Markov process obtained from X through time change by a(t)
and killing by b(¢). Its transition operator and Green operator are

TiH(x) = EX(f(a?)) = E.(f(xa 1) e Aicacon)

©2 Kif(x) = S:e‘“T," F(x) dt = E,(S:e"‘““""(“') f(xs)a(ds))
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The proof of the above results is referred mainly to Volkonskii
[34, §1].

Theorem 9.1. Let X* be the Markov process obtained from
the reflecting diffusion X through time change by the local time

on the boundary t(t,w). Then, X* is conservative, has state space

S*=8D, and T¥ is a semigroup on C(8D) with generator %I—Ia R

More generally, we can prove the following.
Theorem 9.1'. For B and v in C**(8D) satisfying B=>0 and
<0, put

a(t,w) = S;B(.z‘x(u'))t(ds, w),
(9.3) ,
b(¢, w) =at + 80 |7 (a.(w)) | Bla. (o))t (ds, w).

where a is a non-negative number. Then, the Markov process X*
obtained from X through time change by a(t) and killing by b(¢)
has the state space S*=08D and T% forms a semigroup on C(8D)
with generator 1 —a—Ha +r.
B on
Proof. Since t(¢,w) and, consequently, a(#,7w) increase at ¢
only when x,(w) is on 8, S* is contained in 8/). Hence we can
define, for o= C**(0D),

EW(I) = E,<S:e'“‘"’""”cp(a:Qa(a’s)).

t

Since v(t, x) :E,<S e "““"""“"M:n)a(d.c)) satisfies
0

0 N
(ﬁ A+a>z(t,x) 0.

1 @ -
(4 -~ et @) =g(2),
limv (¢, 2)=0

40

by Lemma 8.2, we can see, by Corollary to Theorem 2.3, that

34) ®/an is understood to be an operator with domain C*(D).
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I:;Acp(x)=lim-v(t, x) =u(x) belongs to C'(D)C*(D) and satisfies

(A—a)u(x) =0, zxeD,
B S -
(/1 5 on r) u(x)=¢(x), xeoD.
Thus, by Theorem 5.1 <i o +r> H.= "l—iHa +7r generates a
’ "\ B on B on

semi-group 77’, on C(6D). Since S:e‘“'%,go(x)dt:kaf(x)=S:e”“'
To(x)dt, we have %,qo(x) =Tép(x) for all p=C**(8D). Since 7’,
is strongly continuous in >0, we have P.(zxg;1@=x)=1 for each
x€0D. Therefore, we have, by the strong Markov property,
P.(a7(0) =0) = E.(Pu'@y(a7'(0) =0)) = P.(a7(0,w0§-1¢0.w5) =0) = P, (a™
(0, w)<<oo)=1 for each x€8D. Thus, S*=6D and '7',=T‘,’, com-
pleting the proof of Theorem 9.1’. Conservativity of X* in Theorem

9.1 follows from that the domain of aiI{o contains the constant
n

function 1 and —60)—ZI—IOI=O, and hence T71(x) —lzgtTf‘%H,l(:c)ds
0
=0.
As a special case where B=1 and r=0, we have obtained a

system of Markov processes on the boundary 8D with generator

%Ha. Thus we have established a justification of the interpretation
of LH, in the introduction in the case of the reflecting diffusion.
Corollary.* P,(lti_)rz't(t, w)=o0)=1 if x€D.
P.(t(¢, w)>0 for all t=>0)=1 1if and only if x€aD.

Proof. From conservativity of X* we have P.(limt(¢, w) =o0)
=1 for each x€8D. The strong Markov property ;:plies this for
x€D, since P,(limi(z, w) =o0) = E,(P.,(limt(¢, w) =o0)) =1 where
o is the first hitt,i—r)lmg time to 8D. The se(t:-(;old assertion has already

been proved.

Note. Replacing (a-A)u(zx)=0 by (A+c(x))ul(x)=0 in

35) Cf. Theorem 7.2, (7.8) and (7.9).
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Theorem 2.5, we obtain a non-negative bounded linear operator

H,., instead of H., where 0>c=C*(D). We can define ainI-IM

and prove properties of —567—11—44 similar to those of %Ha. For in-

stance, Markov process on the boundary corresponding to —— Iﬂ |

B on
-+7 is obtained by putting, in (9. 3),

(¢, w) = || |y s+ { | (an ) 1 8Ca o))tds, w).

An alternative proof of Theorem 9.1. H. Tanaka (private
communication) suggested that Theorem 9.1 can be proved essen-
tially by Theorem 2.3 and a property of additive functionals [25,
Theorem 4.1]. Here is a proof. First, we have for >0,

E, (S ““’t(dt)) =limE, <S ‘“([”’]‘)/"t(dt)>

n->»co

=lim Z E. (S ' _“"/"f(dt)>
(k=1)/n

n-dc0 k=

Ctim s e a] g, a ),

n>0 k=1 (k=1/n
= S:e‘“’dtgwﬁ @, z, y)ni(dy) = Sang: (z, )7 (dy),
where gi(z,y)= S:e‘“‘ (@, z, y)de.
Hence, by [25, Theorem 4.1],
0.0 E[emo@it@n)={ g emay, zeb,

holds for all p=C(@D). The condition on gi(x,y) for the use of
[25, Theorem 4.1] is easily checked, for g&é(x,y) is continuous in

DXD—{(z,y)|xz=y}. Let {K%, 2>0} be the Green operator for

the semigroup on C(@D) generated by 3?1 Hz, and let p}(¢, x, y)

be the fundamental solution of the Cauchy problem for the equation
%i;—zAu with boundary condition (/I —5%)11=0. Then, e=*p5(t, x, y)



592 Ken-iti Sato and Tadashi Ueno

is the fundamental solution of the Cauchy problem for 8u/0r=
(A—a)u and S”e'“'pjg(t, x,y)dt is the Green functon for (a—A)u=f
0

with boundary condition unchanged. Hence,
Ksp(o) = i prcer, yyoCmcay)

by virtue of Theorem 2.3. The right side of (9.4) is just Kje(x),
if x€dD. Put

Ksp(x) = E,<S:e'°‘"““’co(x,)t(dt)), zeD.

Then, (9. 4) means kva“go:Kﬁ‘:p on 8D, and hence, E§¢=K3f¢ on 8D
for all 2>0 by the force of the resolvent equations:
Ke—Ka+(—pmKeK2=0 and K¢—K*+(—p)KiKe=0.
Letting a—0, we obtain E2¢=K£¢ on 8D, from which Theorem
9.1 follows.
Now, as in the case of one dimensional diffusion [16], we

construct some diffusions modifying the reflecting diffusion X by

making use of the local time on the boundary.
Theorem 9.2. For b in C**(D) and ¢ in C**(D) and v and
6 in C*(0D) satisfying b>0, ¢<0, r<0, and 60, put

att, w) = (b ds+{ 1302 o)) 115, w),

b(z, ) =S;Ic(xs(w)) Ib(xs(w))ds+g;|r(xs(w)) 1t(ds, ).

Then, the Markov process X* obtained from X through time change
by a and killing by b has the state space D and {T% is a semi-
group on C(D), whose generator is the contraction of A, by the
lateral condition /I\,luZO, where A1=%A+c and

Lin(@) =7 (@)u() +3(2) lim Au(y) +ainu(x) 2

36) 9/on is the normal derivative associated with A (not with A,). We put
D)= {u|lucC'(D)C*(D) and Au(zx) is extended to be continuous on Dj}.
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Proof. Since a(#,w) is strictly increasing, the state space S*
of X* is clearly D. Let f€C* (D). Since

v(t, x)= E,(S;}‘(xs) exp(—aa(s) — b(s))a(ds))
satisfies

O\ h—A—cb)o—
(E Fab—A d))z Jo on D,

2\ _
(r +/lb‘+—a7)v—f8 on 8D

by Lemma 8.2, l‘imv(t, x) =u(x) exists, belongs to D(L,) and
satisfies (/l—Al)u=? on D, Liu=0 on 8D, by the corollary to
Theorem 2.3. On the other hand, #=K}{f in view of (9.2).
Moreover, « belongs to @(/I:I)C@(Zl) and satisfies (A—A)u=f
and 21u=0. In fact, u=Gayf+Ha:[t]mw, where Gatf and Ha,
correspond to A,. Since GMfeC*(D)CD(L,) by Theorem 2.4,
H.1[u].p belongs to ©(L;), and hence uEfD(l/,\,) and Ii\lu=L1Gf;‘,‘]"f
+ Ly Hy1[2)so=Liu. Next, note that there is a semigroup on C(D)
with generator A, restricted to {ztERSD(/I\,l)I/l\,Iu:O} by Theorems

5.1 and 5.2, since the equation (a—A;))u=0, L,u=¢ is equivalent

to (A+cb—ab)u=0, (r +a6+5in>u=qo. Then, the Green operator

of this semigroup coincides with K%, and the proof is complete.

Comments on the general case

The definition of the local time on the boundary in §7 is based
essentially on the special case, while the following method will be
useful in general.

Consider the diffusion z,(w) on D corresponding to a semi-
group {7},t>0} on C(D) with Green operator {G«,a>>0}. Let u

be a function in C(D) non-negative and not identically zero. Then,
Ue=Gatt— G = H[Gatt] op

is uniformly a-excessive relative to x,, that is, non-negative, ¢ 71}«
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<uw, and e *T,u«(x) converges uniformly to wu«(x) when z—0.
Hence, there is a unique non-negative, continuous additive functional
t*(¢t, w) of x, such that

1«:,(S°°e—a'ts<dz, w)) ().
0

It can be proved that t%(#, w) increases only when x,(w) is on the
boundary. The Markov process y,(w) obtained from x,(w) through
time change by t?(¢,w), that is, y,(w) =2y ¢..»(w), would share
the essential character with the Markov process ¥ on the boundary
having generator LH,, where L is the operator of boundary condi-

tion. Namely, ¥ is expected to be obtained from y, through time
change by an additive functional of the type a(t)=8;¢( v.)ds, where
¢ is a function on 8D, and conversely.

In the case of the reflecting diffusion, the local time on the

boundary t(¢,ww) defined in §7 is connected with ti(z,w) by the

relation

t

B 1
t w)= So"«ptx—,cw‘ »

te(ds, w),

if ueC*(D). Here, m[r:%G;“‘“u>0. The proof is as follows.

Put 3/ =-2Gg'"u, noting that GI"«€C'(D) by Theorem 2. 4. 4 is

positive everywhere on 8D by the footnote 16) to Theorem 2.5,

iv). Since #« belongs to C(D)C*(D) and satisfies (a—A)ua=0

on D and — aan u«=1', we have, by Theorem 2.3, u.(x) =S gi(x, y)
8D

' (y)ni(dy), from which

wa(x) = E,(S:e‘“'wlr'(x,)f(dt))

follows (see the second proof of Theorem 9.1). This proves the
connection between t(z) and t¢(z) stated above, and =1,
Returning to the general case, t?(¢, w) depends on the choice

of &« and u. But, if we take another pair &' and #' and suppose
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that # and #«' are positive, then, there is a function ¢ on 8D such
that

$2(2, w) = S;cp(xs(w))tiff(ds, w)

holds, and conversely. ¢ is a positive function on 8D, bounded
and boundedly away from zero. For the proof, note a result of
Motoo [24, Proposition 6.17.] and the fact that, if we have 0<<¢;

<u<c, by constant ¢; and c,, then ti’l(t)<t‘,’f(t)<t‘fz(t)=—?—t‘fl(t).
1

Dependence of the process y,(w) above on the choice of « and «
corresponds to the situation that L is not uniquely determined by
the diffusion. In fact, the boundary conditions Lz=0 and L'u=0
coincides if L'=e(x)L, where e(x) is a positive function on aD.

Motoo has proved in [24] that (7.9) holds if « is positive, and
that (7.8) holds if « is positive and x, is conservative, where t(¢, w)
in (7.8) and (7.9) is replaced by t%(¢, w).

Appendix. Proof of lemmas concerning fundamental solutions

In order to prove Lemmas 2.1, 2.2, and 3.5, we state the
method of construction of the fundamental solution p(¢,zx,y) of
the Cauchy problem for parabolic equation (2.2) with boundary
condition (2. 3) according to S. Ito [17, 18] with slight modifications.
We have introduced in §3 the definition of canonical coordinate neigh-
bourhood U of a point on the boundary 8D and canonical coordinate
system in U. For a point x4 in D, any coordinate neighbourhood
U not reaching 8D and any coordinate system in U are called
canonical. We can choose a finite number of canonical coordinate
neighbourhoods U;, 1<i<M, open®™ subsets B;, 1< j<M;, of U;
and non-negative functions A; in C**(D) with supports contained
in By, satisfying the following conditions: {B;;, 1< j<<M;, 1<i< M}
is a covering of D; if B intersects Byy, then ByyC Us; ga;,(x)”

37) In the topology on D.
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66/:;} (z)=0 for x€dD. Suppose that U; contains

boundary points for 1<i<M’, while U; (M'+1<i<M) does not.

Let o;(x) = (x&), -**, x») be canonical coordinate system in Us:, and

a® and af? be the values in a of a and a, respectively. For

1M, define

=1 for zeD;

it 3,90 = s (5 E0) e~ (a3 )

X (y'io - x:i)) (y(o — x(;)))

for z, ye U: and r¥(¢, x,y) by replacing zf, and x4, by xff and

1% 3 1 N—1% —_ 1 N — N
x¢§, respectively, where (ai, -, 2™, xf) = (x, 5 X6y s —XH)s
and,

i 2|r(P;(x))|
a;(t, x,y)= 1+ |7(Pi(x)) ] ‘

_ lr(P;(x)) | 1271  4=1/2,N N
B;(t,x,y)—l—l—1+7|T(Pi(x))lt/[l exp(—¢t"xy)]

X[1+ 7P |~ P (5) (oho—2t) |
qi(t, x>y) :ai(t’ x, y) (T;(t, z, y) _r;*(t, x, y))
0.0t 7,9) (it 2,9) +7E (6 2,300

where Pi(x)=067"(xly, -+, x5, 0). For M'+1<iM we define
r:(t, x,y) by the same formula and put

q(t, x,y)=rit, x,y).
Further, we define
M M;
q(t, 2, ) =3 Elu(x)qi(t, z, y) A ().

The fundamental solution p(¢#, x,y) is constructed from q(¢,z,y)
by

38) The construction in [18] contains a fault, which is corrected by S. Ito in his
lectures at University of Tokyo and Rikkyo University. The definition of ¢i(¢, x,y)
here is slightly modified further.
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@) pt,z5) =gtz ) +|ds\ g —s 2, 2fCs, 2 yIm(d),

where f is the solution of the integral equation

£t 2,3 = (A=)t 2.5)

-+ S’dsg_<A, — i)q(t —s, x, 2)f(s, 2, y)m(dz)*®
0 Jb ot
and is obtained by successive approximation as follows:
@2 alny=(4-2)e 5
(@3) et x,y)= S;dsg _e(t—s, 2, 2)en(s, z, ) m(dz)

@4  fzn)=Zent, z,9).

Let us fix T arbitrarily. We prove necessary estimates in the following.
Note that constants K;, K, -+, Ki; in this section are independent of
te(0,T] and x, yeD. First, we have

(@5 gt z,») <K %/L-;(x)/h,(y)t‘”/z
X exp( —K,t? éJ Yr— X | 2)
(a.6) le(t, z,y) | <K1§x5,.,. () 4y ()t
X eXP<—Kz ¢t kZI_VJy'E;)—x'f;) I ’)
@7 lealt, xy) |<K'{“‘I‘(—";——1)_lt<"‘"">/z, >0,

The proof of (a-5)—(a-7) is as follows.*® First, we have (a.5) with
K; and K, replaced by some Kj and Kj, respectively, from the
definition of ¢ and

N N
exp( — Kz E |y — xS 2) <8XP< — Kt E |y — x| 2) .

k1Y -1
(

Calculating e,(¢, z, y) from (a.2) and using (af)=(afh)™, ath(x)

39) Azq(¢ z,y) denotes the operation of A to ¢(¢,x,y) with respect to x.
40) The proof of (a.7) is communicated from S. Ito.
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—alh(3) +0(Z] 2to—5t1 ), afR(3) =O(sih), and orexp(~CHH<C,
exp(—Cs6%), we obtain (a.6) with K, and K, replaced by some
K} and K/, respectively. (a.7) for n=0 with K, replaced by some
K}"” is an obvious consequence. Before the proof of (a.7) for n>1,

let us prove, for some K,

1\-1
(a.8) SB le. (¢, x, y) | m(dx)< K5 r( ”‘2" 1 ) £O-D/2

@9 | etz ) Im@p<rirr(2EL) e
We can choose such a constant K; that (a.8) and (a.9) hold for

n=0, by virtue of (a.6) with K; and K, replaced by Ki’ and K’

above. Moreover, we take K;>K;i"”. If (a.8) holds for some n, then

Slenn(t, z,y) | m(dx)

<S;dsxg leo(t— s, x, 2) | |en(s, 2, y) |m(dx)m(dz)

42 __1_)‘1 (7l+1>'1§' N -1/2 (12
<K r<2 r 5 0(zf 5) Vs ds

=K3# r(—" +2 )—’t"ﬂ
2 >

which proves (a.8) for n+1. Thus (a.8) is verified for all 7>0.
(a.9) is proved in the same way. Using (a.8) and (a.9), we have

-1
. 10) |en(t, z, 3) |<z~"/1Kg+lr(”_;Fl) fo-N-b7

In fact, (a.10) holds for n=0 by K;>Ki", and if (a.10) is true
for some 7, then, separating the integral in s in the right side of
(a.3) into [0,%/2] and [#/2,t], we have

1

-1 -1
JewnCt, 2, ) | <2 Kyer(4-) (L)

/!
« (S: 2(t —5) (-N=D/2 (=12 g S‘ (t—s) (-N-1)/2 ((-D)/2 ds)
0 t/2
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= QN2 K4 p(_l_>—l r(ﬂ_l>_lt(n—~)/2<gl/2(1 — §) CN-D/2 D2 o
2 2 0

+ Sl (1—s) V2 sln-N-D2 ds)
1/2

Nosn o 1\ n+1\71 1 n+1\ oy
< ker( ) r(A5r) Bl e

Thus, we have (a.5)-(a.7) if we put K;=max(Kj, K}, 2"°K;) and
.=min(Kj}, K3).
The estimate (a.7) implies the convergence of the series in
the right side of (a.4). The existence of the integral in (a.1) is
verified in the proof of Lemma 2.1 below.

Proof of Lemma 2.1. Obviously, ¢(¢,x,y) is a continuous
function of three variables. So, by (a.1), we have only to prove

the continuity of

u(t, x,y)= S;dsgﬁq(t—s, x, 2)f(s, z, y)m(dz).

First, note that there is a K, such that
@1 {let a0 in@n<k,

which follows from (a.5). Fix 0<{t;<<t,<lco and let #<¢t<#,. Since
f(t, x,y) is bounded on [#/2, t,] XDxD by (a.7), we have

@12) |[" aslate—s 2 2765 2 yymian| <o

for sufficiently small 6>>0, where K is a constant independent of ¢,

8, x and y. Fix & and put

v(s; t, 2, y) =%o,-55(s) Sl_)q(t —s5, 2, 2)f(s, 2, y)m(dz).

If we fix sx0, £—0 and let '=¢, £’ =z, and y'—y, then v(s; ¢, 2,
¥ )—=v(s; t,x,y). In fact, e.(¢, x,y) defined by (a.2) and (a.3)
are continuous in y, which is proved by induction, and hence,
f(t, x,y) is continuous in y, and we have, using the dominated

convergence theorem, the continuity of v(s; ¢, 2, y) with respect to
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(¢, x,y). The estimates (a.5) and (a.8) imply

lv(s; ¢, z,3) I<K56‘"/2S |f(s, 2, ) |m(dz)

o -1
<Ka 5N STKt F( 71’; 1 ) s(u-1)/2,

n=0

for a suitable constant K;. Hence, using the dominated convergence

theorem again, we have
t2 ' f2
go v(s; ¢, 2,y )ds—>g0 v(s; ¢, x, y)ds,
that is,

S;,—sdsgq(t' —s,x', 2)f(s, 2, y')m(dz)

— S;_sdsgq (t—s, x, 2) f(s, 2, y)m(dz).

This combined with (a.12) prove that «(¢, 2, y")—u(t, z,y), and

the proof of Lemma 2.1 is complete.

Proof of Lemma 2.2. Let us prove, for a constant K,

(a. 13) I—ag%- (¢, z,y) I<Kﬂt(—N—l)/2
and
(a. 14) S l o ? (¢, z, y)lm(dy)<K =

First, by a simple calculation, we have, for some K; and Kj,

(a. 15) | 2 t,,)

<K7 E Xsi; (x) Aij (y) FN-D/2

N
X exp(—Kst‘lz Iy’f;)—x’{.-)P) ,

(a. 16) S 2 ‘1 (= y)lm(dy)<1< 1,

Since we have, by (a. 5), (a.7), (a.8) and (a.11),

Vas\ 1gt—s 2 211665, 2 ) 1 ma2)

e A e (O e W)
0 t/2
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=KIMK, P( n-+1 ) t("—N+1)/2(Sl/2(1 —s) —N/2 =172 g0 Sl
0

(1 —=N—-1)/2 d
S S
2 )

1/2
B R LR P P
0
— 2N/2K'1'+1K9 ( ’l;' 3 ) =N H)/2

t
eon(t, x,y)= Sudsgﬁq(t—s, x, 2)e.(s, 2,y Ymn(dz)

exists and
(a. 17) P 2, 3)=q(t, x, y)+”2:én(t, zy)
holds. By
0 S q(t—s, x, 2)ea(s, z, y)m(dz)
ax o x, n\vy <

=S —(t—s, x, 2)ea(s, z, y) m(dz)
b 0%t

and by an estimate similar to the proof of (a.10), we have

[l

0
Ox%;(t —5, &, 2)e.(s, 2, y)m(dz)

and

(a. 18)

0€,11 I N/2 il (L) (71+2> FCn—N/2
—6,’1)2;) (t, xZ, y) <2 K1 K7[' 2 r 2

Here, we have used (a.7), (a.8), (a.15) and (a.16). Thus p(z, x,y)
is of class C' as a function of x, and we can differentiate (a.17)
with respect to xy, term by term. (a.13) follows from (a.15) and
(a.18), and (a.9) combined with (a.16) implv

)

Hence, we have (a.14).

0,1,
6 l

m(dy)<Ki'K,;r < 5 )r<n—2|—2)‘lt,,/z'

——(t, x, y)

To conclude the proof, put

o(s, . ) =pr(s, z, Ph(t—s, y)m(dy).

Then, by (a. 13), (a. 14) and boundedness of /1, v(s, ¢, x) and u(z, x)

are of class C* as function of x and
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ov _
s (¢, x)= S Bl (s, t, 2)ds.

(2.9) follows from the estimate (a.14).

Proof of Lemma 3.5. It is sufficient to prove
@19) 2 pttaymdn<ker,

from which S p(t, x, y)m(dy) <Kt follows by Lemma 3.3 if we
aD

let p—0. Let us give the estimates

@20) 2l @) m(dy) <Kt

(a. 21) %Snpm(dy) S;dsgb lg(t—s, z, 2) | les(s, 2, ) | m(dz) <Ku
a.22) L m(@{as{ lesCt—s. 2,2 lenGs, 20) | (d) <Kt

where Kj, is independent not only of ¢&(0, T'] and x, yED, but

also of p=(0,p]. Choose sets Viup=V(pin, rin, Zipe; 0:) 1<i<M,

1< G<M;, 1<k M;;, of the type (3.2) such that D,C|J Vi and
Tk

D, Bixc UV for any sufficiently small p, and put p"=p"(p)=
k

mjachﬁ»(p) where pi7+(p) is defined by using Corollary to Lemma 3.2

6,

in Viu. Then, we have, by (a.5),

i Jat ) im@<H A @iz ) umay

kP JIDenV,

<3 e, 1@ 2 )V @Gy dytor s,

i,k

where
N
ri(t, x, y) = Kit™" exp( — Kt X vy — xw | ”)
I=1
and

N-1
Rin={ (oo, s 5|35 Iyl (ol P <rif
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From this follows (a.20), since p”/p—>1. If we denote by > ¢?

irr

the summation for all 7/, j* such that B;;nBry%¢ and recall that
By U; for such 7', j', then, we have, by (a.5) and (a.6),

—:“Soﬁm(dy) S;dsgb lg(t—s, z, 2) | |es(s, 2, v) | m(dz)
<—§-sz71 (dy) S;dsgbm (d=) b3 .,stf DK 1) 2oy () (27 ()
X (t—s)~N2g-N-DA
X exp< —Ka(t—s) ‘lé |2 — x| 2) exp(- K, S—llé |ty — 2on| 2)
<%S o ) S;ds :2: ./Z;/( "D R dis(x) dry ()57
8 exp( —Kut™ ,Zjll Vo= Zo| 2)

"’ 124
<2Ku tl/zlp_z E(i.i) Z_‘)_},_S: dya{)g...sﬂ . /E;;(x)l;'jl(y)t‘wz

Biinit K i
N _
X exp(— Klzt_l IElly(g— x{a ] 2) Va(‘)(y) dyb)-ﬂdyﬁ)‘l,

for some Ky and K, from which (a.21) follows. Here we have
chosen K, satisfying Ki;,<(K, and

N N
eXP( —K,s7! 121 |yan—zan | 2) <‘3XP< — K 5_1121 |yo— 2] 2) .
Similarly we can prove the estimate (a.22).

Now, we have

@28) L Jeste, 2,90 Im@D<Kir(Gf) w1,
where Ki=max(I'(1/2)Ky, Ks). In fact, (a.23) holds for n=1 by
virtue of (a.22). If e.(¢,x,y) satisfies (a.23), we have, using
(a.9),

%SDP |ent:(2, x, y) I m(dy>

<%SD m(dy) S;dsgﬁleo(t—s, z,2) | len(s, 2, ) |m(dz)

P

-1 -1 —_
<Kukir(3) 1(%) (-0 g (L) oo
0



604

Ken-iti Sato and Tadashi Ueno

Thus, (a. 23) holds for all #2>1. From (a.11) and (a. 23) we obtain

—1—8 m(dy) Stdsg_lq(t—s, z, 2) | |ea(s, z,y) | m(dz)
o Jo, o JB

-1
<K4K:;1r(_";’2) M >,

This combined with (a. 20) and (a.21) prove (a.19), and the proof

of Lemma 3.5 is complete.
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