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The structure of dualizing complex for a ring which is (S>)
By

M. T. DiBael and M. Tousi

Dualizing complexes were introduced by Grothendieck and Hartshorne in [7]
for use in algebraic geometry and were studied afterwards by R. Y. Sharp and a
number of authors, in a series of papers in commutative algebra.

The aim of this paper is to discuss more thoroughly about dualizing com-
plexes. After introductory section 1, in section 2, we shall find out that dualizing
complex of a ring is isomorphic to a Cousin complex of a certain module in certain
cases. Cousin complexes were introduced in [7] and it has a commutative algebra
analogous given by R. Y. Sharp in [14]. Incidentally any Cousin complex of a
finitely generated module is a complex of modules of generalized fractions; so that
it makes each term and each morphism of dualizing complex more clarified (see
3.2). As a result, we generalize a result of H. Zakeri [24, 3.6] which shows that
each indecomposable injective module over a Gorenstein ring is expressible in
terms of a module of generalized fractions. More precisely, we prove that each
indecomposable injective module over a ring which is (S;) and possesses a
dualizing complex is expressible as a module of generalized fractions. It worth
noting that [24] generalizes [22]. Note that finding a precise description of
indecomposable injective module has been the main objects of [10], [4] and [8].

Finally, we prove that if a local ring 4 is (S7) and has the canonical module
K, then a necessary and sufficient condition for 4 to possess a dualizing complex
is that the Cousin complex of K with respect to a certain filtration has finitely
generated homology modules. In particular, if K is a generalized Cohen-Macaulay
module, we show that 4 is a generalized Cohen-Macaulay ring and it possesses
dualizing complex (see 3.4 and 3.5).

Throughout this paper, 4 denotes a commutative Noetherian ring with
non-zero identity and M denotes an A-module.

1. Reminder and Preliminaries

In this section we recall some definitions and facts about Cousin complexes
and dualizing complexes.

1.1. Definition. A filtration of Spec(A4) (19, 1.1] is a descending sequence
F = (Fi);s, of subsets of Spec(4), so that

FooF 2 - 2F2Fy 2,
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with the property that, for each / > 0, each member of 0F; = F; — F;;; is a minimal
member of F; with respect to inclusion. We say that & admits M if Supp,(M) =
Fo. Suppose Z is a filtration of Spec(4) that admits M. The Cousin complex
C(#,M) for M with respect to & has the form

2 —1 0 n
Od—>Mi->M°—d—>M‘—>---—>M"d—>M"+‘—>---

with M" = @peap,,(COker d"‘z)p for all n >0. The homomorphisms in this
complex have the following properties: for m € M and p € 0Fp, the component of
d='(m) in M, is m/1; for n >0, xe M"! and q € 0F,, the component of d"~!(x)
in (Cokerd"?), is x/1, where ~: M"~' — Cokerd" 2 is the canonical epimor-
phism. The fact that such a complex can be constructed is explained in [19, 1.3].

1.2. Definition [15, (2.4)]. A dualizing complex I' for A4 is a complex of
A-modules and A4-homomorphisms such that

(i) each I' is an injective A-module;

(i1) I’ is a bounded complex;

(iii) foreach i, H'(I'), the i-th cohomology module of I" is finitely generated
A-module;

(iv) whenever X is a bounded complex of A-modules and A4-homomor-
phisms with the property that all its cohomology modules are finitely generated,
the morphism of complexes

O(X";I') : X" — Homy([Hom, (X", I')],T),

described in [15, (2.3) (ii)] is a quasi-isomorphism.

It is known that a Noetherian ring 4 possesses a dualizing complex if and
only if it possesses a fundamental dualizing complex I", say, satisfying (i), (ii) and
(iii) above and the following condition (iv)":

(iv)’ D'z @ E4/p),

ieZ peSpec(A4)

where E(A/p) is the injective envelope of A/p as A-module, i.e. each prime ideal
of A occurs in exactly one term of I°, and there it occurs exactly once (see [6, (3.6)]
and [18, (1.2)]). Fundamental dualizing complex for a local ring A4 (if exists)
is unique up to isomorphism of complexes and shifting (see [15, (4.5)] and [6,
4.2]). A fundamental dualizing complex I' for a ring 4 can be normalized, so
that sup{i: I' #0} =dim A (see [6, 4.3]). It therefore follows from [16, (3.3)]
that, for a local ring (4,m) with dimA4 =d, I' is a normalized fundamental
dualizing complex (abbr. NFDC) for 4 if and only if (i), (ii), (iii) of (1.2) and the
following condition (iv)” are satisfied:

(iv)” I' @ E(4/p), i=0,1,....d.
p e Spec(4)
dim(A/p)=d—i
In this case, H%(I"), the initial non-zero cohomology module of /", is the canonical
module of A.
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Recall that, for a given integer n > 0, an 4-module M is said to be (S,) if
depth, (M) = min{n,dim M,} for all peSupp,(M). Denote, by Min(4), the
set of all minimal elements in Spec(A4) and, in case where M is of finite dimension,
we put Assh(M) = {p e Assy(M):dimA/p = dim M}.

The following remarks are needed for our process.

1.3. Remarks. Let (4,m) be a local ring of dimension d and K be its
canonical module.
(i) (See [1, (1.7) and (1.9)]) The following statements are equivalent:
(a)  Min(A4) = Assh(4);
(b)  Supp,(K) = Spec(4);
(c) For any p e Spec(4), dim A4, + dim(4/p) =d.
(ii) (See [1, (1.7)]) Assh(A4) = Ass4(K).
(i) (See [2, 1.1]) If A is (S3), then Ass(4) = Assh(A4).
(iv) (See, [2, 1.4]) The following statements are equivalent:
)
)

—
= o=

a) A is (S);
b) HY(K) = E4(A4/m), where H(K) is the d-th local cohomology module

n

—~ o~ =

of K with respect to n.

2. Connection between dualizing and Cousin complexes

In this section we establish, in certain situation, a connection between
dualizing complex of a ring 4 and the Cousin complex of the canonical module of
A with respect to a certain filtration. But, first we need the following preparatory
result.

2.1. Proposition. Let F = (F;);5, be a filtration of Spec(A) that admits
M. Let

DT BN e BN AN ) NG 7 AN 2 BN
be a complex of A-modules and A-homomorphisms such that X~' = M. and, for

each i >0, the following two conditions hold.

(a) Supp,(X')  F;;

(b)  The natural A-homomorphism &(X'): X' — @p cor,(X1), such that, for
x € X' and p € OF;, the component of E(X') (x) in the summand (X", is x/1 (it
follows from condition (a) and [14, (2.2) and (2.3)] that there is such an
A-homomorphism), is an isomorphism.

Then there is a (unique) morphism of complexes

Y =), C(F M) — X"

from the Cousin complex of M with respect to F to X* such that y~': M — M is
the identity mapping on M (¥ is called a morphism of complexes over 1d,s).
Moreover

(i) ¥ is an epimorphism of complexes if and only if Supp,(Cokere'™!) <
Fiyy, for all i > 0.
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(ii) ¥ is an isomorphism of complexes if and only if Supp,(Cokere™') <
Fiy and Supp(H'=Y(X")) € F;y1, for all i > 0.

Proof. The proof of existence and uniqueness of ¥ is a straightforward
adoptation of arguments given in [12, (3.3)] and is left to the reader.
(i) Use the notation

()d_*z,Md_*l,MOd_ﬂM'_,...__)MiLMf+'_,...
for thq Cousin complex C(?,M). By using [12, (1.2) (ii)], it is easy to see
that y' = (E(X)) ' o (Dpeor,('),) 0 &(MT) for each i >0, where &(M'): M —
@yeor, (M), and E(X7): X' — P, ;r (X7, are the natural A-isomorphisms and
W, (M), — (X7), is the induced A4-homomorphism. Hence Y' is an epi-
morphism if and only if ('), is an epimorphism, for all p e oF;.
For each i > 0, since Supp,(Cokerd'™!) < F;; (see [12, (1.1)]), we have, for
each p e 0F;, the commutative diagram

(di_l)‘,
B —

(M), (M), —0

1@"‘), l(w‘),

el .
(x ), S (x),
with top exact row. Now, from Supp ,(Cokere’~!) € F;;; for all i > 0, it follows,
by induction on n, that ("), is an epimorphism for all p € dF,. Conversely, if ¥
is an epimorphism, then, for each i > 0 and each p € 0F;, (e’"!)_ is epimorphism.
Since Supp,(Cokere’™!) = F;, then Supp,(Cokere~!) < Fiy;.
(i) Tt follows from [12, (1.1), (3.1) and (3.3)].

p

2.2. Lemma. Suppose U’ = U are subsets of Spec(A) such that each element
of U—U' is minimal (with respect to inclusion) in U. Assume E =<—Bpe U_uv
E(A/p) and Supp,(E) < U. Then the natural A-homomorphism E(E):E —
G}peu_u,(E)p such that for x e E and p € U — U’, the component of E(E)(x) in the
summand (E), is x/1 (it follows from assumption and (14, (2.2) and (2.3)] that there
is such an A-homomorphism), is an isomorphism.

Proof. 1t follows from [14, (2.5)] that Supp,(Keré(E)) <= U’ and
Supp,(Cokeré(E)) = U’. On the other hand, we have Assy(Keré(E)) <
Ass4(E) = U — U’'. Therefore Ker&(E) =0. Hence the sequence

0—EY @ (E), % Coker&(E) —0
pelU-U'
is split exact sequence, where 7 is the natural epimorphism. Therefore, since
(E), = E(A/p), for all pe U — U’, we have

Ass4(Cokeré(E)) = |J Assy4((E),)=U-U"
peU-U'

Therefore Coker&(E) = 0.
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Let A be a ring possessing a dualizing complex, so that 4 possesses a NFDC.

By shifting this complex, we may assume that
=
roo—rp 2

is a fundamental dualizing complex, I°#0, I' #0, and I' =0 for all i <0 or
i> 1. For each p e Spec(4), let ¢(p;I") be the unique integer ¢ for which E(A/p)
is a summand of I’ (see [16, page 208]).

The following result is essential in the rest of the paper and we quote it for the
convinience of the reader.

2.3. Lemma [16, (3.3)]. With the above notation, suppose that p and q are
prime ideals of A such that p < q and there is no prime strictly between p and q.
Then

Wg: ") =1(p; ") + 1.

For each i > 0, set T; := {p € Spec(A4) : t(p;I') > i}. Then, in view of 2.3, it
is easy to see that J = (T;),5, is a filtration of Spec(4). We refer to 7 as the
dualizing filtration of Spec(A) with respect to I".

2.4. Theorem. Let A be a (not necessarily local) ring, possessing a funda-
mental dualizing complex
-
roo—pr
with 1° # 0, I' #0, and I' =0, for all i, i <0 or | <i. Set K :=Kerd". Then
the following statements are true:
(i) There exists a (unique) homomorphism of complexes (over Idg )

Y= ,:CT,K)—1I"

Jrom the Cousin complex of K with respect to T, the dualizing filtration of Spec(A)
with respect to I', to the extended complex
—2 -1 0
rolS ki L eI —0,

of I', where 5~ is inclusion map.

(i) Min(A) = Ass4(K) if and only if T = H, where K = (H,),5, is the
height filtration of Spec(A4), i.e. H; = {p € Spec(A4) : ht(p) = i}, for each i > 0.

(iii) If Min(A) = Ass4(K), then A is (S)) if and only if W is an epimorphism.

(iv) If Min(A4) = Ass4(K), then A is (S2) if and only if ¥ is an isomorphism.

Proof. (i) It is clear that I’ :@pean E(A/p), for all i >0. The claim
follows from 2.1 and 2.2.

(i) For each pe Spec(4) such that #(p;I") =0, we have Kp;(lo)p;
E(A/p); so that Ass,(I°) = Ass4(K). Also, by 2.3, Ass,(I°) < Min(4). Hence
Min(4) = Ass4(K) if and only if #(p;I*) = ht(p) = 0, for all p e Min(4). Now,
using 2.3, the result follows.
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(iii) Assume that A is (S7). By 2.1(i), it is enough to show that Supp,
(Cokerd'™") = Hi, for each i > 0. It is clear that Supp ,(Cokerd™') = H,. Sup-
pose that i > 0 and p e dH;. Then ht(p) = i; so that depth(4;) > 0. Since (I°),
is a dualizing complex for A, (see [15, (4.2)]) and (]"),3 # 0, by [3, (2.5)], we have

Dy(H'((I),)) = Hpy (4;) = 0 where D, (— ) is the Matlis duality functor in A4,
and Hp 4, (Ap) is the 0-th local cohomology module of A, with respect to pA,.
Hence H' '((I'),) = 0. This implies that p ¢ Supp 4(Cokerd™"). Now, from

Supp 4(Cokerd'~') = H; we get Supp,(Cokerd’™') = Hyy,.

Conversely, assume that ¥ is an epimorphism of complexes. Let pe
Spec(4). We may assume that dimA4, > 0. Set /= ht(p). Then pedH; so
that, by 2.1(i), p ¢ Supp,(Cokers'™'). Thus the induced A,-homomorphism 8" :
(I"™"), — (I'), is an epimorphism. This shows that H), (4,)=D,(H'((I),)) =0
(3, (2.5)]. Thus depth(4,) > 1 and 4 is (S)).

(iv) Assume A4 is (S2). We have, by (iii) and 2.1(i),

Supp ((H'~'(I")) = Supp ,(Cokerd %) = H;.

Consequently, in view of 2.1(ii), it is enough to show that Supp,(H'~'(I*)) € Hi},
for all i >0. We have H!(I*) =0= H°(I*). Let us assume i > 2 and p € 0H,.
From the NFDC

i-2 i—1

(I'), 00— (1%, — - — (I72), 2 (1), 2 (1), — 0

for A, and the fact that depth A4, > min{2,dim4,} > 2, again by [3, (2.5)], we
get H=1(I); =0. Therefore p ¢ Supp,(H'~'(1*)). This contradiction shows that
Supp(H™'(I*)) € Hiy.

Conversely, assume that ¥ is an isomorphism of complexes. Let pe
Spec(4). By (iii), we may assume that dim(A4,) > 1. Set i=ht(p). Then
pedH;; so that, by 2.1(ii), p¢Supp,(H~'(I*)) and p ¢ Supp,(Cokerd ).
Hence, from the complex (I°),, we get HpA (Ap) = Dy(H' ((I) )) =0, and
H), (4y) = Dy(H'(I);) = 0. Thus depthd, >2 and 4 is (S2).

Now, by using 2.3 and 1.3, it is straightforward to prove the following
corollary.

2.5. Corollary. Let (A,m) be a local ring with dimA =d. Suppose that A
possesses a dualizing complex and that

roo—n 2 e
is NFDC for A. Let K = Kerd°, and
0k,

be the extension of I', where 6~ is inclusion map. (It is known that K is the
canonical module of A.) Set 9 = (D;);s, be the dimension filtration of Spec(A),
ie. Di = {p e Spec(A) : dim(A4/p) <d —i}. Then the following statements are true.
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(i) There exists a (unique) homomorphism of complexes
Y=y ,:C2,K T

Jfrom the Cousin complex of K with respect to 2 to 1* (over Idg).
(i) Min(A4) = Ass4(K) if and only if D = H, where K is the height filt-
ration of Spec(A).
(ili) If Min(A4) = Ass4(K), then A is (S1) if and only if ¥ is an epimorphism.
(iv) A is (S2) if and only if ¥ is an isomorphism.

3. Applications

In this section we provide some applications of the presentation of dualizing
complex by Cousin complex.

Note that if M is an A-module with Ass4(M) contains only finitely many
minimal members, then the Cousin complex of M with respect to a filtration
admitting M is isomorphic to a complex of modules of generalized fractions [12,
(3.4)]. Thus we may find a description, in terms of a complex of modules of
generalized fractions, of a dualizing complex for a ring which is (S;). This will
help us to understand each term and each morphism of dualizing complex more
explicitly; so that it makes easier to work with.

The concept of a chain of triangular subsets on A4 is explained in [11, page
420]. Such a chain % = (U;);5, determines a complex of modules of generalized
fractions

0 1 . i .
C@U,M):0—M-> UM .. — UM UTM— -

in which €%(m) = m/(1) for all me M and

e’( m )_ m
(u|,...,u,~) (ul,...,ui,l)

for all i>1, me M, and (uy,...,u;) € U. When working with a complex of
modules of generalized fractions C(%, M), as above, we are regarding the term
Ur'M as being in the 0-th position, so that H(C(%, M)) = Kere'*! /Ime’ for
i>0, and H™'(C(#,M)) = Kere®.

In the rest of this paper, M denotes a non-zero finitely generated 4-module
with dim M =n. We need the following lemma.

3.1. Lemma. Let A be a local ring with maximal ideal m.

(i) Let F = (Fi);s Wwith F;={peSupp,(M):dim(M/pM)<n—i}; so
that & is a filtration of Spec(A) which admits M. Assume, for each i > 1, W; =
{(wl,...,wi)eA’:dim<m) <n-—j, for all j with 1 sjsi} (We
adopt the convention whereby dimension of the zero module is —o). Then
W = (W);s, is a chain of triangular subsets on A, and there exists a (unique)
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isomorphsim of complexes (over 1d)
0= (0,5 ,:CW,M)— C(F, M)
from the complex of generalized fractions C(W',M) to the Cousin complex
C(Z#,M).
(it) Let, for each i > 1,
Ui = {(x1,...,x;) € A" : there exists J with 0 < j <isuch that x|, ... x;

is an s.s.o.p. for M and xj;\ = --- = x; = 1}

where ‘s.s.o.p’ stands for “subset of a system of parameters”. Then U = (Ui)js, Is
a chain of triangular subsets on A, and the two complexes of modules of generalized
Sractions C(U, M) and C(W', M) are isomorphic (over the 1dy).

Proof. Let by,...,b; e m, then, by [9, 13.4],

(@) n—j<dim(M/(b,....b))M);

(b) n—j=dim(M/(b,....b)M) if and only if by,....b; is an s.s.0.p. for
M.

(1) It is straightforward to see that, for each i > 1,

Wi={(v1,...,v;) € A" : for every j with | < j <i, Avj +---+ Av; & p,
for all p € 0F;_, N Supp,(M)}.
Hence the claim follows from [12, (3.4)].
(i) By [21, 1.2 and 1.4], % is a chain of triangular subsets on A. For each
i>1, since U; = W,, there is an A-homomorphism
o UM — WM

m

(ury ... u;)
(u1,...,u;) € U.. Now, it is clear that

which is such that ¢’( )=(u m ) for all meM and all
1 i

D = (¢");51 - C(U, M) = C(W', M)

is a morphism of complexes. We show that each ¢’ is an isomorphism.
m ; . .
Let ﬁe W 'M be a non-zero element. Then w; is not a unit, for
Wi, ..., W
all j with 1 < j <i. Hence, either w,...,w; € m which shows that (w,,....w;,) €
U, or wi....,wi,; € m and w; is a unit. Therefore w,,...,w, | is an s.s.0.p. for M,

and

—1 -1

. “'m w. 'm m . _i

(p'( Wi ) = L = , (in W'M).
Wiy ywizg, 1) (wryeoywic, 1) (wr,oeo,wy)

This shows that ¢’ is an epimorphism.
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: . m .
Suppose, for (ul—m—’—m e U'M, we have ¢ ((MT—)) =0, ie.
m

(u1 Y ,u,')

lower triangular matrix H with entries in 4 such that H [ul,...,ui]r = [wi,...,wi]

and |H|-me ]'_,l w;M. Since (u).....u;) € U, there exists j with 0 < j < i such

that u;,...,u; is an ss.o.p. for M and wyy =---=uw;=1. If j<i-1, then
m

(ury .- ui)
Wi,...,w; is an s.s.0.p. for M, so that (w,,...,w;) € U;. Thus ﬁ =0, in
l, MR | i
U,."M. Finally, if j=i— 1, then wy,...,w,_; e m. We may assume that w; is
a unit. Taking the ix i/ diagonal matrix K = diag[l, Lo Lwh, we have
KH[uy,....u)T = [wi,...,wi.1,1]7 and |K||H|me s LW w) M = Z _IwiM
This shows that ———— =0 in U'M.
(ur,. .. u;)

The following proposition gives the first application of the connection between

dualizing and Cousin complexes.

=0 (in W M). Then there exists (w,...,w;) € W; and an ixi

T

=0 (in U7'M). If j=1i, then we have wy,...,w;em and therefore

3.2. Proposition. (i) Let the situation and conventions be as in 2.4. Let A be
(S2) and Min(A) = Ass4(K) (this condition would be satisfied if A is local and (S>),
by 1.3). Assume, for each i > 1, that

Vi={(v1,...,v) € A" : htg((v1,...,v)) = j, for all j with 1 < j <i},

(we adopt the convention whereby htyA = c©). Then v = (V;),.n is a chain of
triangular subsets on A, and there is a unique isomorphism of complexes from
C(v",K), the complex of modules of generalized fractions, to I*, the extended
complex of I' (over the 1dg).

(it) Let the situation and conventions be as in 2.5. Let, for each i > 1,

Zi={(z1,...,2z)) € A" : there exists j with 0 < j < i such that zy,...,z;

is an s.s.o.p. for Aand zj| = ---=z; =1}

Then & = (Z:);>, is a chain of triangular subsets on A and there exists a unique
morphism of complexes

=A)is 1 C(Z.K) > I,

from the complex of modules of generalized fractions C(Z,K) to I* (over the Idg ).
Moreover if A is (S2), then A is an isomorphism.

Proof. (i) Since Supp,(K) = Spec(A4), it is easy to see that, for each i > 1,

Vi={(v1,....v)) € A" : for each j with | < j <i Avj +--- + Av; &p
for all p e dH;_; N Supp,(K)},
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where # = (H;);5 is the height filtration of Spec(4). Hence it follows from [12,
(3.4)] that the Cousin complex C(#,K) is isomorphic to C(¥",K). The claim
follows from 2.4.

(i1) It follows from 3.1 that the Cousin complex C(2, A) is isomorphic (over
Id4) to C(Z, A), where 2 = (D;), is the dimension filtration of Spec(4). Hence,
by [19, 1.7],

C(Z,K) ~ C(Q",A)@AK ~ C(@,A)@AK ~ (C(2,K).
Therefore, the claim follows from 2.5.

We are now able to give a description in terms of modules of generalized
fractions of indecomposable injective modules over certain rings. This generalizes
[24, (3.6)].

3.3. Corollary. Let A be a ring which is (Sy) and possessing a fundamental
dualizing complex

I 0-1°>1">...51' 50

Set K=H"I"). Let peSpec(A) with r=htp. Then the injective envelope
E(A/p) may be viewed in terms of a module of generalized fractions. More
precisely

E(A/p) = (U, x (1)) (H"™(I")),,

where t = t(p;1°) and, for i > 1,

U = {(?"T) e(Ap)’:ht,,p(("T‘,...?)) > j, for all j with 1 sti}.

Moreover
(i) If Min(A4) = Ass4(K) (this condition would be satisfied if A is local), then

E(4/p) = (V, x (4= 9) 'K,

where, for i > 1,

Vi={(v1,...,05) e A" :hty((v1,...,v))) = j, for all j with 1 < j <i}.
(ii) If A is local, then

E(A/p) = (Z, x (4 - )" 'K,

where, for i > 1,

Zi={(z1,...,zi)) € A" : there exists j with 0 < j < i, such that z,...,z;
is an s.s.0.p. for A and zj = --- =z; = 1}.

Proof. We first prove (i). By 3.2 (i) and [24, (2.1) and (2.2)],

E(A/p) = Ea,(Ap/pAp) = (VT'K), = (Veni[4 = 9)) 77K
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(as Ay,-modules), where
Viald—vp) ={(v1,...,0,15) € A - (v1,...,0,41) € V41 and s€ 4 — p}.
Define the natural 4-homomorphism
n:(Vex (A=) 'K = (Vea[4 - o))" 'K,

by #n(x/(v1,...,v,,8) = x/(v1,...,0,8), for all xeK, (vi,...,v,)eV, and
se A —p. We show that » is an isomorphism.

Let a = x/(v1,...,0p,0r415) € (Vi1 [4 — p))”" 'K be a non-zero element. If
v;ép, for some i with 1<i<r then a=uv;x/(vi,...,0r,0r41(50;)) =0 in
(V,u[A-=pD)"'K. Hence Av,+---+ Av, =p, and v,y ¢ p. Therefore (vy,...,
vy, Up418) € ¥, x (A — p). This shows that » is an epimorphism.

Suppose, for x/(vi,...,v,8)€(V, x (4 — p)" 'K, we have f:=
x/(v1,...,0p,8) =0 (in (V,41[4 — p])_’_lK). Then there exists (wy,...,w,, W,+11) €
Vis1[4 —p] and an (r+ 1) x (r+ 1) lower triangular matrix H with entries in A4
such that H[vl,...,v,,s]r = [wl,...,w,+1t]T and |H| - xe er=1 w;K. If v; ¢ p, for
some i with 1 <i <r, then f =0 (in (V, x (4 —p))""'K). Hence Av| + - -- + Av,
< p. Therefore, Aw; +---+ Aw, = p, and w,; ¢ p. Hence (wi,...,w,, Wy it) €
V, x (A —p). This shows that =0 (in (¥, x (4 —p)) " 'K).

Now, we prove (ii). Let & = (Z;);.n and ¥~ = (V}),.n be as in assumption.
Then, by [5, 3.3] and 3.2,

(Z, x (1)K =V, x {1})7" K.
Consequently, in view of [24, (2.1) and (2.2)], we have

(Z, x (A—p)) 'K =((Z, x {1})7'K),

= ((V, x {1})77'K),

~ (V, x (4-p)" 'K = E(4/p),

as Ap-modules.
Finally, we consider the general case. After localizing I' at p, we get the
dualizing complex

L0177 — . S 15 0.

for Ay, where t=t(p;I). Note that if i<t—r, then I]=0. For otherwise
(E(A/q)), #0 for some qeSpec(4) with t(q;I')=i Then q<p. Let
q=pyc=Pp; < --- <p,=p be a saturated chain of elements of Spec(4). Then
i=tqI')=t(p;I')—s<t—r. Hence s> htp which is a contradiction. It is
clear that I =0, for all i > 1.

In view of (i), we have

E(A/p) = (U] x (Ay — pd,)) """ (H'™"(I')),,
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where -

U = {(ﬂﬁ> e(Ap)':htAp(x—l,....x—j) > j, for all j with 1 str}.
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It is easy to see that
(U} x (A = p4p)) " (H(1)), = (U, x (1)1 (HT(I)),0
where U, is as in the assumption.

The following result gives an equivalent condition for a Cousin complex to be
a dualizing complex, in certain rings.

3.4. Corollary. Let (A, m) be a local ring of dimA =d. Assume that A has
canonical module K and A is (Sy). Denote by @ = (D;), the dimension filtration
of Spec(A). Write the Cousin complex C(2.K) as

O_)Kd_.l»KOd_O}KI_"“_)KiLKHl_)“.
and denote by K' the induced complex
K 0—K Lk — . kg,
Then the following statements are equivalent.
(1) A possesses a dualizing complex;

(ii) K" is a dualizing complex for A,
(iii) H'(C(2,K)) is finitely generated A-module for all i > 1.

Proof. If A possesses a dualizing complex, then, by 2.5, K" is also a dualizing
complex for 4. So it is enough to show that (iii) implies (ii). From 1.3, we have
D; = {p € Supp,(K) : htgp > i} for all i >0. Also, by [I, (1.10)], K is (S,). It
therefore follows from [20, 4.4] that

H™'(C(2,K)) =0=H"(C(2,K)).

Thus all cohomology modules of the complex K° are finitely generated A-modules.
Let i>0 and pedD;. By [17, page 21], (Cokerd™?), = H/, (K,). Since
Ky is the canonical module of A, [1, 4.3] and 4, is (S2), by 1.3 (iv), H, (K,) =
E4 (Ap/pAy). This shows that
K'>~ @ (Cokerd™?), = @ E(A/vp).
pedD; pedD;
In what follows, we assume that (4, m) is local. For the final application of
our approach of dualizing complex, we need some preparatory notions from [21,
(1.8)]. (i) A finite dimensional A-module M is called a generalized Cohen-
Macaulay (abbr. g.CM) if there exists r>1 such that, for each system of
parameters xp,...,x, for M and for all i=1,...,n,

m((Ax) + -+ Axic )M x) [ (Ax, +--+ Axi. )M] = 0,

where n = dim M. Note that, by [13, (3.2) and (3.3)], M is g.CM module if and
only if H (M) is of finite length for all i=0,1,...,n—1. (ii) [13, (2.1)] A
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sequence Xxp,...,xs; of elements of m is said to be a filter-M-regular sequence if
Supp 4 (((Ax) + -+ + Axi- )M = x;) [ (Ax) + -+ + Axi_) )M ) < {m},

for all i=1,...,s (here and above, Ax; +---+ Ax;_, is to be interperted as 0
when i=1). (iii) [13, (2.3)] M is said to be an f-module if every system of
parameters for M constitutes a filter-M-regular sequence.

Now, we present a partial converse of [23, (3.5)] which is also a generalization
of [2, (2.3)].

3.5. Theorem. Assume (A,m) is local ring, d =dimA >0, A is (S;), and A
has canonical module K. Let C(2,K) be the Cousin complex of K with respect to
the dimension filtration 9 of Spec(A) and K as in 3.4. If K is g CM A-module,
then K is a fundamental dualizing complex for A and A is a g.CM ring.

Proof. 1n view of the preceding paragraph of 3.5, K is an f~module. By 1.3,
Supp,(K/aK) = Supp,(A/aAd), for all ideals a of 4; so that dimK =d and for
each by,...,bjem, by,...,b; is an ss.o.p. for 4 if and only if it is an s.s.o0.p. for
K. Take & = (Z;);5, as in 3.2. Then, by [21, (2.3) and (2.4)], H=Y(C(Z,K)),
the i-th cohomology module of C(Z,K), is isomorphic to H/(K) for all i=
0,1,....d — 1. As we have seen in the proof of 3.2 (ii), C(2,K) = C(Z,K).
Hence

H™Y(C(2,K)) = H] (K),

for all i=0,1,...,d—1. Also, we have Supp,(H‘'(C(2,K))= and

Supp,(HY(C(2,K)) = J. Therefore all cohomology modules of the Cousin

complex C(2,K) are finitely generated. Now the first claim follows by 3.4.
By [3, (2.5)], we have

Hom,(H'™'(C(2,K)). E(4/m)) = Hi=*1(4),

for all i=2,...,d — 1. It therefore follows from [9, 18.6(ii)] that H,’,}(A) is of
finite length, for all j=2,...,d —1. If d <2, then 4 is CM ring and there is
nothing to prove. If d > 3, then depth 4 > 2, so that H’(4) = 0 = H]}(4). Thus
A is g.CM ring.
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