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The Morse index theorem for
Carnot-Carathéodory spaces
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1. Introduction

Let M be a Riemannian manifold and H be a distribution on M, which is
bracket-generating, that is, for every point p of M local sections of H near p span
together with all their commutators the tangent space 7,M of M at p. A curve
¢ in M is called horizontal if ¢ is tangent almost everywhere to H. By Chow’s
theorem, any two points of M can be joined by a horizontal curve. Thus we can
define a Carnot-Carathéodory distance, dq(p,q):=infL(c), where ¢ is a horizontal
curve joining p and gq.

Some results on geodesics, which means locally minimizing curves, in
Carnot-Carathéodory spaces have been already known. Strichartz [9] showed that
every curve which is the projection of a curve satisfying a certain Hamiltonian equation
on the cotangent bundle 7*M on M, is a geodesic. Hamenstddt [4] obtained the
geodesic equation from the first variational formula and defined the Jacobi field
from the second variational formula. Her equation is satisfied by a class of geodesics
which are called normal. There are another kind of geodesics which are called
abnormal. (See [8] [1])

This distribution H is said to be strongly bracket-generating if the tangent
bundle TM is spanned by H and [X,H ] for every non-zero local section X of H. If
H is strongly bracket-generating, every gedesic is normal, that is, satisfies the geodesic
equation. Hence it is a critical point of the energy functional E(c)=}f||¢|?dt on
the horizontal path space and has Jacobi fields. Then we can define the conjugate
point and the index of the geodesic in the same way as those of the geodesic for
the usual Riemannian metric. We will prove the following Morse index theorem
for the Carnot-Carathéodory spaces.

Theorem 1. The index of the geodesic y is finite and equal to the number of
points which are conjugate to y(0), counted with its multiplicity.

Zhong Ge [11] proved this theorem for the case that M is a total space of a
principal G-bundle for a compact Lie grop G and H gives a fat connection, i.e.,
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the horizontal bundle H is strongly bracket-generating.
By Theorem 1, we can easily obtain the following corollaries.

Corollary 2. There are at most finitely many points which are conjugate to y(0)
along the gedesic 7.

Corollary 3. The geodesic is not length-minimizing beyond its conjugate point.

2. Geodesics and its Jacobi fields

Fix a point p in M. Choose the orthonormal frame {X,,---,X,} around p
such that {X;,--- X,} is an orthonormal frame of H. Let {0',---,0"} be the dual
coframe of {X,,---,X,,} and 0=(0",---,0™) be a 1-form with values in R".

Let o:(—¢,6)x[0,1] = M be a horizontal variation of y=a(0) with a variational
vector field X, and define

9y,\f=_a 0 <6°‘)
ds \ot

Then we obtain the first variational formula:

d .
=~ 0(X)~2d0(5. X).

5=0

d E(cy)
ds = °

1
=J {(2,X,0()dt,
s=0 0

where c(f)=afs,?).
We denote a 1-form a with values in m x m matrices by the following equation:

2d0(u,v) = — a(u)0(v)

for u, veT,M and ge M. According to Hamenstddt [4], the geodesic equation,
the second variational formula and the Jacobi equation are given as follows:

2.1. The geodesic equation.
{0()5)=P<P

$0—aX)e=0, M

where a*(y) is an adjoint matrix of a(y), ¢ is a curve on R™ and P is a projection
from R™ to R* as the subspace of R™

2.2. The second variational formula. For a variation o:(—¢,e) x (—¢,6) x [0,1]
— M of the geodesic y with variational vector fields X =% | = 0.0)a0d Y=2|(.)= (0.0

2
A A (cs,u)

0sou

1
= J {2,X,.2,Y—a*X(Y)p)—0(X),24%(, Y)p)}dt, 7]

(s,u) =(0,0) 0



Morse index theorem 289

where ¢, (f)=ofs,u,f) and A* is the 2-form with values in m xm matrices, whose
exact form is not our concern in this paper.

A vector field X along y is said to be horizontal if (I—P)2,X=0. It can be
easily checked that X is horizontal if X is a variational vector field associated to
a horizontal variation a.

Let 77, be the vector space of horizontal vector fields along y vanishing at the
endpoints of y. The right hand side of the second variational formula (2) can be
seen as the symmetric bilinear form on 7,. So it is denoted by D?E(y).

Definitions 4. The index of the geodesic y is the dimension of the maximal
subspace of 7, on which D*E(y) is negative definite.

Lemma 5 (Hamenstiddt [4]). There exists a positive number & depending upon
©(0) such that the Hessian DZE(y|[0,(,]) is positive definite.

Remark. In the case where H is strongly bracket-generating, the set %,
consisting of horizontal curves jointing p and g, is a “manifold”. One can prove
this fact by using the results of Hsu [5] and Lemma 7 below. Here a “manifold”
means that any horizontal vector field along y vanishing at the endpoints is a
variational vector field associated to a horizontal variation a. Then 7, can be
seen as a tangent space of €,, at y.

The argument of Hamenstddt [4] holds good in the case where %, is a
“manifold”. (See [5] for more detailed argument)

2.3. The Jacobi equation.

{@, Y=PaXY)p+y)

3
40— a*GW = — 24%G. Vo, ©)

where ¥ is a curve on R™. Jacobi fields are defined to be a variational vector
field associated to a variation o:(—e¢,8)x [0,1] = M such that each curve 7+ afs,f)
is a geodesic. And the null space of the bilinear form D?E(y) consists of all Jacobi
fields along y vanishing at its endpoints.

3. Some properties of Jacobi fields

According to the Jacobi equation (3), a Jacobi field is determined by the values of
Y(0) and y(0). In terms of the covariant derivative, we have

Lemma 6. Let Y be a Jacobi field along y and 5F, %¥ be its first and second
covariant derivatives. If Y, 5 and B¥ vanish simultaneously at some point y(t,), then
Y is identically equal to zero.

Proof. By the linearity of (3), we must only prove y(f,)=0. From the theory
of the connection, there exists uniquely a 1-form o with values in mxm
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skew-symmetric matrices such that d0= —w A0. And for any two vector fields X and
Y, (VyY)=XO0(Y)+w(X)0(Y). Hencefor any vector field X along the geodesic y,

DX
2,X=0 (E) — o(X)0().

Therefore, from (3), we have Py(r,)=0. By differentiating the first equation of (3),
Py'(15)=0. And from the second equation of (3), Pa*(j(t,)¥/(1)=0. Lemma 6 then
follows from the following:

Lemma 7. Let ¢ be a vector in R™ and u be a non-zero horizontal tangent vector at a
point q in M. If both P& and Pa*(u)é vanish, then & is zero.

Proof. For any vectors v, and v, of H,,

<&, 0(,)) = <a*w)é, 0(v,)> =0.
From the definitin of a*
&,2d0(u.v;)) = — {a*(u)¢, 0(v2)> =0.
Thus we have
<&,0(v,) —2d0(u,v,)> =0

From the strongly bracket-generating hypothesis, there exist a tagent vector v; at
g and local sections U and V of H around ¢ such that U,=u and

=00, +[U.V])
= 0(v) + U,0(V)— V,0(U) = 2d0(U,, V)

Take two vectors v, and v, of H, such that
0(v,) = 0(v',)+ U,0(V)—V,0(U)

and v,=V,. Then {=0(v,)—2d0(u,v;). Hence we have {=0.

Remark. If the Jacobi field Y is identically zero, so is Py. By the proof
of Lemma 6, y is identically equal to zero. Thus the Jacobi field Y is uniquely
determined by Y(0) and y(0). Therefore the dimension of the linear space consisting
of all Jacobi fields along a non-constant geodesic y is just equal to 2dim M and
that of the linear subspace consisting of al Jacobi fields vanishing at y(0) is equal
to dim M.

Definition 8. The point q is conjugate to p along y if there exists a non-zero
Jacobi fields Y which vanishes at p and q. The multiplicity of q as a conjugate point
is equal to the dimension of the vector space consisting of all such Jacobi fields.
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Lemma 9. If q is not conjugate to p along y, then every Jacobi field along y
is uniquely determined by its values at p and q.

This lemma follows from the fact that there are “enough” Jacobi fields along
y, which is stated in the remark above. But if we do not assume that the distribution
is strongly bracket-generating, Lemma 9 does not hold even for normal geodesic.

4. Proof of Theorem 1

Let i(s) be the index of the restricted geodesic y|, ; and n(s) be the dimension
of the null space of the bilinear form D?E(y|,,). Here we will give the proof of
the finiteness of i(1) and the following formula:

i=3 ns). )

0<s<1

4.1. Let A be the division of the unit interval 0=¢,<?¢, < --- <ty=1 such that
D*E(y|, ,_1.1) 18 positive definite for each j. (By Lemma 5, we can choose such a
division A) And let 7% be the subspace of .7, consisting of all vector fields Y
and y such that Y|, _, ., is a Jacobi field along y|,, ,,;- For any XeZ, and any
YeT?,

N tj d
D*EyX,Y)= ). J {<[7[ 0(X) +a(y)0(X), ¥ + <O(X ),lﬁ’—a*(?)lb}dt

j=1 1j-1

Il
M=

I

tj d
J 1;1;<6(X)’ Y odt

Jj=1 tj-

N-—

= 2 <OX()p(t;— 0) —(t;+0)>

j=1

where Y|, 1s @ curve on R™ associated to the Jacobi field Yy, - (Here we
must remark that 2,X and 2,Y are curves in R*=P(R™).

Let Q be the subspace of .77, consisting of all the horizontal vector fields
vanishing at t=¢,,---,fy_,. By Lemma 9, the vector space .7, splits as the direct
sum 7 5@®Q. Moreover, by the above computation, we can see these subspaces
are orthogonal to each other with respect to the bilinear form D2E(y). From the
choice of the division A, D*E(y) is positive definite on Q. Thus the index of y is
equal to the index of the bilinear form D?E(y) restricted on 7. The dimension
of 7 is finite because ) is isomorphic to T,y yM®---®T,,,_ ,M from Lemma

Y
9. Hence the index i(1) is finite.

4.2. If 1</, each element of 9',,,[0” can be extended to a vector field which

vanishes identically on the interval [t,7'] since it vanishes at y(t). So I can

Yo,e1
be seen as a subspace of 'O/_Yhn o The bilinear form D?E(y |, ) is negative definite
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on the subspace of 97, on which D*E(y|,.) is negative definite. Hence i(f) is

10.7]
non-decreasing.

4.3. We may assme that the division A is chosen so that r,<t<t,,,. Let
A, be the division of the interval [0,7], 0=¢,<t,<--- <f;<t. According to Lemma
9. a broken Jacobi field is uniquely determined by its values at the break points

¢). Thus the vector space '7$|' is isomorphic to the following vector space:
10,7}

Zi(A) = Ty(u)M@ @ Ty(mM‘

Let B, be the bilinear form on X (A) associated to D?E(y|,.). Then i(z) is equal
to the index of B,. Since the bilinear form B, depends continuously on i, for any
sufficiently small ¢>0, B,_, is negative definite on the subspace of Z(A) on which
B, is negative definite. Therefore i(t—eg)>i(tr). Since i(f) is non-decreasing,
i(t—e¢)=i(tr). Namely i(r) is left continuous.

4.4. For any sufficiently small ¢>0 (we may assume that f,<t<t+e<t;,,),
B, .. is positive definite on the subspace V, on which B, is positive definite. The
dimension of V, is equal to dim X(A)—i(t)—n(z). Hence

i(t+¢)<dim Z(A)—dim V, = i(t) +n(7)

4.5. Let {X,,- X,,} be a basis of the maximal subspace of .7'31[0‘” on which
D2y lo.) is negative definite, and {Y,,---,Y,,} be a basis of the nullspace of
D?*E(y o). Namely, Y,,---, Y, are linearly independent Jacobi fields along y .
vanishing at y(0) and y(r). Denote y; by the curve on R™ such that the pair (Y;,y))
satisfies the equation (3). Since Y; is uniquely determined by the value (Y{1)=0,
Y1), the vectors ¥ (t),--,Y,(1) are linearly independent. Hence, by Lemma 9,

we can choose the elements Z,,---,Z, . of I so that {Y{(1).0(Z (1)) =4,

Yoerer’ i
where 6;; is Kronecker’s delta. Extend X/s and Y;s to vector fields vanishing
identically between y() and y(t +¢) and define the vector fields W; by W;=1Y,—cZ;,

for a small number ¢. Then it is easy to see that

DZE(()’ |[0.t+e])(Xi s Wj)= - CDZE()’ I[O.r+t])(Xi «Zj)
DZE()’ |[0,: +£])( Wi, Wj)= —25ij+czDzE()’ |[0,t+£])(Zl' ’Zj)-

A
iox+el

on which D*E(y lio.c+¢) is negative definite. Hence i(t +¢€)>i(t)+n(r). By the last
subsection, this equality holds.
By Lemma 5, i(f) =0 if ¢ is sufficiently small. Therefore the equation (4) holds.

For a sufficiently small ¢, {X,,---,Xi,, Wy, Wy} spans a subspace of 7
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