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The Morse index theorem for
Carnot-Carathéodory spaces

By

Iwao KISFIIMOTO

1. Introduction

Let M  be  a  Riemannian manifold and H  be  a distribution on M , which is
bracket-generating, tha t is, for every point p  of M  local sections of H  near p  span
together with all their commutators the tangent space T M  o f  M  at p .  A  curve
c  in  M  is called horizontal if  c  is  tangent almost everywhere to H .  By Chow's
theorem, any two points of M  can be joined by a horizontal curve. Thus we can
define a  Carnot-Carathéodory distance, cic(p,q):=infL(c), where c  is  a horizontal
curve joining p  and q.

S om e resu lts  o n  geodesics, w hich m eans locally m inim izing curves, in
Carnot-Carathéodory spaces have been already known. Strichartz [9] showed that
every curve which is the projection of a curve satisfying a certain Hamiltonian equation
on the cotangent bundle T *M  on  M, is a  geodesic. H am enstddt [4] obtained the
geodesic equation from the  first variational formula and defined the Jacobi field
from the second variational fo rm ula . Her equation is satisfied by a class of geodesics
which are  called n o rm a l. There are  another kind of geodesics which a re  called
abnormal. (See [8 ]  [l])

This distribution H  is  sa id  to  b e  strongly  bracket-generating if the tangent
bundle TM  is spanned by H  and [X ,H ] for every non-zero local section X of H .  If
H is strongly bracket-generating, every gedesic is normal, that is, satisfies the geodesic
equation. H ence it is a  critical point of the energy functional E(c)=1111e112dt o n
the horizontal path space and has Jacobi fields. Then we can define the conjugate
point and the index of the geodesic in  the  same way as  those of the geodesic for
the usual Riemannian metric. W e will prove the following Morse index theorem
for the Carnot-Carathéodory spaces.

Theorem 1. T he index  of  the geodesic y  is f inite and equal to the number of
points which are conjugate to y(0), counted with its multiplicity.

Zhong G e [11] proved this theorem for the case that M  is a  to tal space of a
principal G-bundle for a com pact L ie g rop  G  and  I I  gives a fat connection, i.e.,
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2 . 1 .  The geodesic equation.
{00i)=Pço
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the horizontal bundle H  is strongly bracket-generating.
By Theorem 1, we can easily obtain the following corollaries.

Corollary 2. There are at inost finitely many points which are conjugate to y(0)
along the gedesic y.

Corollary 3. The geodesic is not length-minimizing beyond its conjugate point.

2. Geodesics and its Jacobi fields

F ix  a  poin t p  in  M .  Choose the  o rth o n o rm a l frame {X, ,• • •, X„,} around p
such that {X, , • • ., Xk }  is an  o rtho no rm al frame of H . Let {0 1, • • .,01 be the dual
cofram e of {X, , • • .,X„,} and 0=(0 1,...,0m) be a  1-form with values in Rm.

Let a  ( — e, e) x [0, 1] M  be a horizontal variation of y = a(0) with a variational
vector field X , and define

g y x =  0 ( al )

es \et /
=—

d  

0(X )-2d0()),X ).
s = 0  d t

 

Then we obtain the first variational formula:

—
d  

E(c,)
ds

= f  <g yX,0()))>dt,
s=o o

 

where cs (0= (s, t).
We denote a 1-form a with values in m x m matrices by the following equation:

2d0(u,v) — —a(u)0(v)

for u ,  v e rq M  and q e M .  According to H am en std d t [4], the  geodesic equation,
the second variational formula and the Jacobi equation are given as follows:

where a*()3) is an adjoint matrix of a(j)), yo is a  curve on IV  and P is a projection
from R"' to R k a s  th e  subspace of Ir.

2 .2 .  The second variational formula. For a variation a :( — e,e) x ( — E, E) X  [0,1]
M of the geodesic y with variational vector fields X ='n I--'j = ( 0 ,0 ) and Y = —Pul(s,u)--- 0020

1
E(c,) =  1 < g  g y Y — a*(Y)cp> — <0(X),2A *0), Y)ço>ldt, (2)eseu ' o
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where cs.„(t)=a(s,u,t) and  A * is  the  2-form with values in  in x m matrices, whose
exact form is not our concern in  this paper.

A  vector field X  along y is said to  be horizontal if (I — P)9  X  =O . It can be
easily checked that X  is  horizontal if X  is  a  variational vector field associated to
a horizontal variation  Œ.

Let .9 7 b e  the vector space of horizontal vector fields along y  vanishing at the
endpoints of y. The right hand side of the second variational formula (2) can be
seen as the symmetric bilinear form on y • So it is denoted by D 2  E(y).

Definitions 4. T he index  of  the geodesic y  is  the dim ension of  the m axim al
subspace of 3 - 7 o n  which D 2 E(y) is negative definite.

Lemma 5 (Hamenstddt [4]). There exists a positive number 6 depending upon
(p(0) such that the Hessian D 2 E(yl t o m ) is positive definite.

Remark. In  th e  c a se  where H  is strongly bracket-generating, th e  se t  Ce p

consisting of horizontal curves jointing p  and q, is  a  "m anifold". O ne can prove
this fact by using the results of Hsu [5] and Lemma 7 below . H ere  a  "manifold"
m eans that any horizontal vector field along y  vanishing at th e  endpoints is a
variational vector field associated to a horizontal variation a. Then 2,- - 7 can  be
seen as a tangent space o f  p  q  a t y.

The argum ent of Hamenstiidt [4] holds good in  th e  c a se  w h e r e  I N  i s  a
"manifold". (See [5] for more detailed argument)

2.3. The Jacobi equation.
{9  y  Y = P(a *( Y)(p + 111)

(3)

where tp is  a  curve o n  le . Jacobi fields are defined to be a  variational vector
field associated to a variation a :( — r.,E) x [0,1] M  such that each curve ti—)a(s,t)
is a  geodesic. And the null space of the bilinear form D2 E(y) consists of all Jacobi
fields along y vanishing at its endpoints.

3. Some properties of Jacobi fields

According to the Jacobi equation (3), a Jacobi field is determined by the values of
Y(0) and (//(0). In  terms of the covariant derivative, we have

Lemma 6. L et Y  be a Jacobi .f ield along y  and 7, Ti be its f irst and second
covariant deriv ativ es. If Y , f  and T2Y- vanish simultaneously at some point y(1 0 ), then
Y  is identically  equal to zero.

1)fr — a* ().1 0  =  2 A *(1.', Y)(P,

P ro o f  By the linearity of (3), we must only prove 0 ( 0 = 0 .  From the theory
of the  connec tion , there  ex ists un iquely  a  1-form w  w ith  v a lu e s  in  m x m
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skew-symmetric matrices such that d0= —w AO.O . And for any two vector fields X and
Y, 0(V, Y)= X0(Y)+ w(X)0( Y). Hence for any vector field X along the geodesic y,

x =  0  (

D X
)  w ( X ) 0 ( ) .

dt

Therefore, from (3), we have Ptit(t0 ) = 0 .  By differentiating the first equation of (3),
P0'(10 )= 0 .  And from the second equation of (3), Pa*(y(t o ))0(t 0 ).= O. L e m m a  6 then
follows from the following:

Lemma 7. L e t  be a vector in I r  and u be a non-zero horizontal tangent vector at a
point q in  M . I f  b o th  P  and Pa*(u)c vanish, then i s  zero.

P ro o f  For any vectors y 1 a n d  y, of Il q ,

<,0(v,)> = <a*(u ) ,0(v 2 )> =0.

From the definitin of a*,

<>2d0(u,v 2)> = — <a*(u),0(v2)> =0.

Thus we have

<,0 (v 1)-2d0(u,v 2 )>= 0

From the strongly bracket-generating hypothesis, there exist a  tagent vector y', at
q and local sections U a n d  V of H  around q such that U 4 = 14 and

= O(v', + [U, q)

= 0(1, '  1) + Uq0(V) V q0(U) 2d0(Uq , Vq)

Take two vectors y, and y, of IIq such that

0(y,)= 0(C1)+ Uq 0( V)— Vq 0(U)

and v 2 =  V .  T h e n  = 0(v 1)-2dO(u, v2 ). Hence we h a v e  =0.

R em ark . If  the  Jacobi field Y  is identically zero, so  is  P 0  . By the  proof
of Lemma 6, 0 is identically equal to z e ro . Thus the Jacobi field Y is uniquely
determined by Y(0) and 0 (0 ). Therefore the dimension of the linear space consisting
of all Jacobi fields along a non-constant geodesic y  is just equal to  2dim M  and
that of the linear subspace consisting of al Jacobi fields vanishing at y(0) is equal
to dim M.

Definition 8. The point q  is conjugate to p  along y  if  there ex ists a non-zero
Jacobi fields Y  which vanishes at p and q. The multiplicity of  q as a conjugate point
is equal to  the dim ension of  the vector space consisting of  all such Jacobi f ields.
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Lemma 9. I f  q is not conjugate to p  along y, then every  Jacobi f ield along y
is uniquely determined by its values at p and q.

This lemma follows from the fact that there are "enough" Jacobi fields along
y, which is stated in the rem ark above. But if we do not assume that the distribution
is strongly bracket-generating, Lemma 9  does not hold even for normal geodesic.

4. Proof of Theorem 1

o„siLet i(s) be the index of the restricted geodesic yl ta n d  n(s) be the dimension
of the null space of the bilinear form D2 E(y110 ). Here we will give the proof of
the finiteness of i(1 ) and the following formula:

t(i)= n(s). (4)
o<s<)

4.1. Let A be the division of the unit interval 0 = to < t, < • • • < tN = 1 such that
D2 E(y ) 1 )  is positive definite for each j .  (By Lemma 5 , we can choose such a
division A.) And let  Y A

y b e  the subspace of , 9 "  consisting of all vector fields Y
and y such that i s  a  Jacobi field along y For any X e .%  and any
YE gr Ay

N Ctj
D 2 E(y)(X, Y) = {1< 0(X) + a())0(X), ip> + <0(x), - a V )0 }  d

dt

d= -<0(X),0>dt
.1=1 t.,_,dt
N -1

= <0(x(0),,p(ti -o)-0(t,+0)>
t =1

where V/ I,,, _,,, , ,  is a  curve o n  I r  associated to the Jacobi field Y i1 1 .(Here we
must remark that g yX and 9 y Y are curves in  le = P(Ir).)

Let Q  b e  the  subspace o f  eT  y  consisting o f  a ll th e  horizontal vector fields
vanishing at t = t i  , • • • , IN- 1 • By Lemma 9 , the vector space ,T y splits as the direct
sum 3

-°
C 1 Q .  Moreover, by the  above computation, we can see these subspaces

are orthogonal to each other with respect to  the bilinear form D 2 E(y). From  the
choice of the division A, D 2 E(y) is  positive definite on Q .  Thus the index of y is
equal to the index of the bilinear form D 2 E(y) restricted on The dimension
of is finite because tT  Ay  is isomorphic to Ty 0 ,,M 0  ••• Ty o N _,,M  from Lemma
9. Hence the index i(1 ) is finite.

4.2. If T <  t', each element of Y c a n  b e  e x t e n d e d  t o  a  vector field which
vanishes identically on  the  interval [r ,-C ] since it vanishes at y(r). S o  .r 1

be seen as a subspace of The bilinear form 1)2 RY 1[0,1) is negative definite
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on the subspace of Y on  which D 2  E(y 1( 0 . .0 )  is negative definite. Hence i(t) is
non-decreasing.

4.3. W e may assm e th a t the division A  is chosen so that 1, <T <t , , 1 . Let
A, be the division of the interval [0,T], 0= to < t, < ••• <t,< T. According to Lemma
9 , a  broken Jacobi field is uniquely determined by its values a t  the break points
y(t i ). Thus the vector space .9-A

y r is isomorphic to the following vector space:

E i(A) = T y  M  0 • • • 0 T y( , ) M

Let B, be the bilinear form on  Ei(A) associated to D 2  E(y Then i(r) is equal
to  the index of B , .  Since the bilinear form B, depends continuously on  t, for any
sufficiently small E>0, B,_, is negative definite on the subspace of E1(A) on which
B, is nega tive  de fin ite . T he re fo re  i(r — i(t). S ince  i(t) is non-decreasing,
i(r — e) = i(t). Namely i(t) is left continuous.

4.4. F or any sufficiently small E>0 (we may assume tha t t i <T <T +E <t i + ,),
B ,„  is positive definite on the subspace 1/., on  which B, is positive definite. The
dimension of V, is equal to dim Ei(A)—i(T)—n(r). Hence

i(t + e) dim E1(A) — dim V, = i(t) + n(T)

4.5. Let {X, ,•••,X,,,,} be a  basis of the maximal subspace of on which
•40,1

D 2 R7 is negative definite, a n d  { Y, ,•••, Y„,,,} b e  a  basis o f  th e  nullspace of
D2 E(y1, 0 ,,] ). Namely, Y, , •, Y„,,, are linearly independent Jacobi fields along y ItO,r1
vanishing at y(0) and y ( t ) .  Denote b y  the curve on R'n such that the pair ( y i ,C )
satisfies the equation ( 3 ) .  Since Y, is uniquely determined by the value (Y (t)= 0 ,
O (t )), the  vectors tk i (r),•••,0„,,,(T) are linearly independent. Hence, by Lemma 9,
we can choose the elements Z 1 , • • • ,Z „(,) of ..%°

1s o  t h a t  <C(r),0(Z
1
(r))> =S u ,Y

where is  Kronecker's delta. Extend X i's  and Y 's  to  v e c to r  fields vanishing
identically between y(t) and y(T +E) and define the vector fields W W.; = -
for a  small number c. Then it is easy to see that

D2  EOY ko., + d )(X 1 , W3) — — cD2  RY ilo + d)(/

D 2  E(y I r o  ,, Ej )( W , = — 26,i + c 2  D2  E(y 1E0 E .1)(Z i ,Z

F or a  sufficiently small c , {X 1 ,• • •,X, ( ,) , W1, ,  W n ( r ) }  spans a  subspace of

on which D 2  E(y It o  E l )  is negative definite. Hence i(i+E) i(T)+ri(T). By the last
subsection, this equality holds.

By Lemma 5, i(t) = 0 if t is sufficiently small. Therefore the equation (4) holds.
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