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Isomorphisms of Alg.% .4

By

Joo Ho Kanc and Young Soo Jo

1. Introduction

The study of non-self-adjoint operator algebras on Hilbert space was
begun in 1974 by Arveson[1]. Recently, such algebras have been found to
be of use in physics, in electrical engineering, and in general systems
theory. Of particular interest to mathematicians are reflexive algebras
with commutative lattices of invariant subspaces.

First we will introduce terminologies which are used in this paper.
Let o be a complex Hilbert space and let o be a subset of Z(#), the class
of all bounded operators acting on 4. If &/ is a vector space over C and if
& is closed under the composition of maps, then .«f is called an algebra. «f
is called a self-adjoint algebra provided A* is in & for every A in <.
Otherwise, & is called a non-self-adjoint algebra. If % is a lattice of
orthogonal projections acting on J¢, then Alg¥ denotes the algebra of all
bounded operators acting on # that leave invariant every orthogonal
projection in %#. A subspace lattice ¥ is a strongly closed lattice of
orthogonal projections acting on 3, containing () and 1. Dually, if o/ is a
subalgebra of #(s), then Lat & is the lattice of all orthogonal projections
invariant for each operator in /. An algebra & is reflexive if o/ =
Alglat«/ and a lattice .Z is reflexive if £=LatAlg®. A lattice & is a
commutative subspace lattice, or CSL, if each pair of projections in &
commutes ; Alg¥? is then called a CSL-algebra. If xi, x,, ..., x, are vectors
in some Hilbert space, then [x;, x;, ..., %.] denotes the closed subspace
generated by the vectors x;, X3, ..., X..

Let # be a complex Hilbert space and let .#,, be the subspace lattice
of orthogonal projections generated by {[e.], [es], ..., [en-1], [e1, e, €3], e,
e, ), ..., (-3, €am-2, €2-1], €21, €2.]} With an orthonormal basis {ey, e, ...,
e,}. Then algebras Alg.%#, are important classes of non-self-adjoint
operator algebras. These algebras possess many surprising properties
related to isometries, isomorphisms, cohomology, and extreme points.
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Let # be a complex Hilbert space with an orthonormal basis {e,, e,,

..., ey}. Let Alg%.w be a subalgebra of #(s#) such that an operator A is

in Alg%nw if and only if A is in Alg.¥,. and one off-diagonal entry of A is

zero. Such Alg¥,.w are also interesting algebras which have been found
to be of use in physics, in electrical engineering and in other fields.

In this paper, we will investigate isomorphisms of these algebras. Let
Za.» be the subspace lattice of orthogonal projections generated by {[e.],
les], ..., [esn-1), [e1, e, €3, les, e, es], ..., [en-3, €us, €u-1l, [eu-1, €xl, [Cais1,
oty €2ty oov s [@-1, €]} (i=1,2 ...,n—1) wheree_;=( and ;=0 whenever
i=1. Let %, be the algebra consisting of all bounded operators acting on
a 2n-dimensional complex Hilbert space s, that are of the form

2

* X .
* .
* .
*

*
2%+1l - « <+ 0 *x =

where all non-starred entries are zero and with an orthonormal basis {e;, e,
ey ez,.} .

2. Isometries of Alg% ;.

Let &, and %, be commutative subspace lattices. By an isometry ¢:
Alg ¥ —Alg¥, we mean a strictly algebraic isometry, that is, a bijective,
linear, multiplicative map. An isometry ¢ : Alg¥ —Alg¥, is said to be
spatially implemented if there is a bounded invertible operator T such that
@(A)=TAT for all A in Alg¥,.

Lemma 2. 1. 1) AlgPoun=Bone,
(2) Lat@uw=Lww.

Let ! and j be positive integers. Then E; is the matrix whose (], j)-com-
ponent is 1 and all other components are (.

Theorem 2.2. Let ¢ : Alg%oo—Alg L be an isometry such that ¢ (E,;)
=E,foralll=1, 2, ..., 2n. Then there exist non-zero complex numbers a,; such
that (p(Ez;) :atjE[j for all Elj in Alg'gz,,(;).
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Proof. Let (D(Eu) =FE, for alll. Then (/?(E:j) =(p(EllElejj) :E11¢(Elj)Eij for
Ej;in Alg¥s.. Soif we compare the (I, j)-component of ¢ (E,) with that of
E.o(E)E;, ¢(E,) =a,E, for some non-zero complex number a.

Theorem 2. 3. Let ¢ : Alg%so—Alg Lo be an isometry such that ¢ (E,)
=Ey forall =1, 2, ..., 2n and let p(E;) =a,E;, a;#0 for all E; in Alg L.
Then there exists a diagonal operator T such that 9p(A)=TAT* forall A in
AlgPy.w. Here T is a 2n X 2n diagonal operator whose

(1) , 1)-component is 1 and (2i+1, 2i+1)-component is 1,
@2 (2, D-component is az),

) (24, 25)-component is (fI azk-Lz,.)_l (ﬁ Qaprr, u> (=12 ...,1) and
k=1 k=1

i-1 _ j—1
(27—1, 27 —1)-component is (H au-m> 1(H amm> (=2, ..., D,
k=1 k=1
@)  (2i+2j, 2i+25)-component is
hlill Qoitor-1, 2.'+2,¢>‘1 (Ji[l QAoi+2%-1, 2i+2k—2> (f=1, 2 e n—i)
and (2i+25—1, 2i+2j—1)-component is

ji-1

-1/ . .
inIl Qgivon—1 2i+2k> <n1j[1 Qi+2e—1, 2i+2&—2> (=2 ..., n—1i).

Proof. Let A=(a;) be in Alg¥sw». Then ¢(4)=(asa,). Let T=(t,) be
a 2n X 2n-diagonal matrix such that ,#( for all =1, 2, ..., 2n. Then TAT™!
= (tyayt;Y). Soif the linear system for unknown variables t,(I=1, 2, ..., 2n)

g g1
ap=tnly,

P P
Ap=tyln, du=1lyaty,

_ 1 _ 1
Qgi—1 2i-2=bai-1 2i-180i-2 2i-2, Q-1 2= lai-1 2i-1821 21,
_ -1
Qgivt 2i+2 = Loivt, 2i+1 824 242,
_ —1 _ -1
Qi3 2i+2 = boiva 2iv3boiva 2ivn, Qoitd 2i+4 = boivd 2iv3boiva 2ivas

— -1 — -1
Qon-1 2m-2=tom—1 9n-1ton2 2n—2 ANA Agu—t, 20 =Lon-1, 20—182m 20

has solutions, then ¢ (A)=TAT ! for all 4 in AlgZunw.
Put t;=1 and ¢y:.2+1=1. Then from the above relations

-1 -1 — -l -1

lp=0an, tp=an sy, lu=apdpdsy,
boics om0 = Qs A @it UL a oions Eoiot oot = Q5 A @l Qo1 o
2i-22i-2 7 Q2 A3y " Woi-3 2-2, Lai-12i-1= X1z A3aW3a ** i1, 2i-2,

1 11 -1
by = Qs Q3p **i=1, 26, boivn 242 =Q2i+1 2042,

-1 — 1 -1
Lo+ 0i+3 = Qoit1 2i+202i+3 2i+2, Loitd 244 = Ooit1 2+200i+3 2i+202i+3 2i+4,
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-1 -1 -1
bon—9 an-2= Qi+, 2i+2002i+3 2i+2(2i+3 244" "Mgn—3 -2,
— -1 —1 -1
bon—1 on-1 = Q2i+1 2i+200i+3 2i+2 000143 2i+4" " "Q9n—3 3m—2Qon—1 2m—2,
_ -1 -1 veapy=l -1
bom o0 = Qlgit1, 2i+2Qloi+3 2+2000i+3 2i+4" " "O2i-3 20-202n—1, 20 -2 020 —1 20 -

Hence ¢(A)=TAT ! for all A in AlgZLnw.

Lemma 2.4([10]). Let &, and ¥, be commutative subspace lattices on
Hilbert spaces #, and #,, respectively, and suppose that ¢ : Alg ¥ —Alg P, s
an algebraic isomorphism. Let # be a maximal abelian self-adjoint subal-
gebra (masa) contained in Alg¥,. Then there exist a bounded invertible
operator Y . # \—H, and an automorphism p : Alg¥ —Alg¥, such that

(i) poM)=M forall M in # and
(ii) @A)=Yp(A)Y ' forall A in Alg¥,.

Theorem 2. 5. Let ¢ : AlgL.cy—>Alg Loy be an isomorphism. Then there
exists an invertible operator T such that 9(A)=TAT™! for all A in Alg L.

Proof. Since (Alg%unw) N (AlgPe) " is a masa of Alg % e and Ey is in
(AlgPme) N (AlgLonw) “ foralll=1, 2, ..., 2n, by Lemma 2. 4 there exist an
invertible operator Y in #(s#) and an automorphism p: AlgZsno—
Alg %5 such that p(E))=E, and ¢(4)=Yo(A)Y ! for all A in AlgZLne
and [(I=1, 2 ..., 2n). By Theorem 2.3, 0(4) =SAS™! for some invertible
operator S. Hence ¢(A)=Yp(A)Y '=YSAS 'YL Let T=YS. Then ¢(A)
=TAT ! for all A in AlgZLue.

Theorem 2. 6. Let ¢ : Alg Loy—>Alg L.y be an isomorphism. Then there
exists an invertible operator T in Alg %y, all of whose diagonal components
are non-zero, such that o(A)=TAT ! for all A in AlgL»w.

Proof. Let ¢: Alg%nu—>Alg¥s be an isomorphism. Then by Theo-
rem 2.5 there exists an invertible operator T such that ¢(A)=TAT! for
all A in Alg¥sw. Let A=(a,) and ¢(A4)=(b,) be in Alg%s and let T=
(t,). Then (A)T=TA...(*).

(1) tym1=0 for all j, m.

First, we will show that #;,=0 for all j. Suppose that t,;,#( for some j.
Comparing the (2j, 1)-component of ¢(A)T with that of TA, ty1bs; 2=
ty1an. Since b1 #0, au=by; 5... (¥ ).

Comparing the(2j, 3)-component of ¢(A) T with that of TA, by itz 3=
tr3@n. SO by 3(by o—as) =ty 3(an—am) =0 by (*,). Since the equation (*)
holds for all 4 in Alg %L, ty:=0.

Comparing the(2j, 2)-component of ¢(A)T with that of T4,
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b oitos 2=ty 1G1t by 20t 6y a3 if 171 and
bos astos 2=t 1G1t by 20 if 1=1.

Since by =au, ty:(@u—an) =ty 1ar+tyan (#1) and ty.(au—an) =t;.ax
(i=1). Since the equation (*) holds for all A in Alg%»», we have a
contradiction if a;;=ay and a,;,#(” Thus &;,=0. We want to show that if
by u-1=0, then ty; 5+, =0 for all I. Suppose that t; »-1=0 and ty; 5+ #( for some
. Comparing the (2j, 21+1)-component of ¢(A) T with that of TA4, ayu+1, 2+

= b2f. 2j+

Comparing the (27, 20)-component of ¢(A4)T with that of TA ({#1),
by 25t 0= by u-1Qu-1 by u@o uF byj 9+1Qir, 21
Since ty; 5-1=0 and by ;;=au+1 u+1,
by (@, w1 — Qo ) =tyg ue1Quey u (LFD).

Since the equation (*) holds for all 4 in Alg%., we have a contradic-
tion.
Comparing the (27, 21+ 2)-component of ¢(A4)T with that of TA (I=1),

bos 25t0s wv2 =25 m+1@urr ur2+boj wr2Qusn wr2 +loj u+3Quss ua.
Since by; 5;=au+1, u+1,
by, wr2(@uer, 2o — Qurs wez) =lbyj 041Qoer uea by ue3@uss usa.

Since the equation (*) holds for all A in Alg.%:», we have a contradic-
tion. Thus if ¢, 2-1=0, then &y x+;=0 for all . Therefore &; ».-1=0 for all j,
m.

If ty;, 2,,,?&0, then

) am am =25 24,
(3) ty,=0 for all {(#2m) and
(4)  tym=0 for all I(I#j).

For, comparing the (24, 2m)-component of ¢(A)T with that of TA4,

basi 25825 0m = Lo 9m—1Qam—1, 2m T L) 2m Qom, 2m + Lj 2m+1Qem+1, 0m 1f m#1 and
bos 25toi am =bos am—1Q2m 1. om + boj 2m Qom, 2m If ML =1.

Since ty; .m 70, ty; m-1=0 and ty; gn+1=0, by 3;=0am 2». Similarly, we can prove
the following.

(2 ty;,,=0 for all [({#9m) and
(3)  twwm=0 for all L{I#).

Similarly, we can prove the following. If &;-1m-1#0, then

(5) D21 2-1=Com 1. 2m-1,
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(6) tim-1=0for all I({#2j—1) and
(D ty-ra1=0 for all I{(I#m).

If 170 and fyi+1 5+17#0, then T is in Alg%nw.

For, let t;#(0. Comparing the (1, 2)-component of ¢ (A) T with that of
TA, tp#0.

Suppose that t; #0, tu#0, ..., ty27#0. Comparing the (2j+1, 27)-com-
ponent of ¢(A)T with that of TA (j#1), tajs12i+170.

Suppose that ¢t #0, tu#0, ..., tus, 2+.1%0. Comparing the (2141, 21+2)-
component of ¢(A)T with that of TA, tu+s u+27 0. If ty-y u-17#0, t2 270 and
tuer 24170, then we can get £y, =0 for allj(j#[! and j#I/+1) by comparing
the (27—1, 20)-component of ¢(A)T with that of TA.

Finally, suppose that ty.1x#0. Comparing the (2i+1, 2i)-component
of ¢(A) T with that of T4,

byivr oito it Baivy siviforer 5t Oovr sivaboivn
=lo+ 2-1@0i-1 2 boirs 2@ T boivr 2iv1 @aiv i

Since @+ 5=0, barr2=0, tass =0 tosr2-1=0 and boisr 5i+1 =241 2141, Loivr 2 ®
(@gis1 241 A ) =0.

Since the equation (*) holds for all A in Alg.%:.w, we have a contra-
diction. Thus #;+,2=0. Hence T is in Alg%y..

We want to prove that ¢, #0 and fy+y, 241 70.

It is easily verified that both #;-,; and #;-;, can not be non-zero, and
both #;_11 and f,;; can not be non-zero (j>2).

If t,=0, then tu-.17#0 for some k. Suppose that tx-;,=0 and tu ,=0.
Comparing the (2k—1, 2)-component of ¢(A)T with that of TA, we have
b1 2(@u—am) =tw_11 a, which is a contradiction. Thus tx—3 70 Or tx% ,#0...
(*,). But this contradicts the just above fact. Hence ¢;#(. By a simple
but tedious calculation, it is verified that both ¢y_; »+; and fy-; 5+2 cannot be
non-zero, and both #y_; »+ and &, x+: cannot be non-zero ({#i+1). Suppose
that ty+1 241=0. Then tus, 24170 for some [(I=1, 2, ..., n).

If tys, 5170 forsome [(I=1, 2, ..., n), then with an argument similar to
(*,) we have a contradiction. Hence #y+y 2617 0.

Let # be a complex Hilbert space with an orthonormal basis {e, e,
.., e} and let %1y be the subspace lattice of orthogonal projections
generated by {[e:], [es], ..., (esn-1], e, e, €3], [es, ey, e5), ..., [exn-1, ex, euri,
[esir2s i3], [si+3, Caiva, ai+5)y vons (@21, €]} E=0,1 2, ..., n—1) wheree_,=
0 and ¢;=0 whenever i=(.

Let %..:+» be the algebra consisting of all bounded operators, acting
on a 2n-dimensional complex Hilbert space #, that are of the form
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2i+2

* X *

G+1| -« -« % % 0

where all non-starred entries are zero and with an orthonormal basis {e;,
e, ..., ex}. By the arguments similar to those of Lemma 2. 1, Theorems 2.
92,9.3, 2.5, we can obtain the following.

Lemma 2.7. (1) Alg%siin=Bumiin,
(2) Lat®Buern=Louma+n-

Theorem 2.8. Let ¢: AlgLoncin—=Alg L e+ be an isomorphism such
that ¢(Ey)=E, for all 1=1, 2, ..., 2n. Then there exist non-zero complex
numbers a; such that ¢ (E;) =ayEy for all E; in Al1gLs+.

Theorem 2.9. Let ¢: AlgLoary>Alg L i+ be an isomorphism such
that o (E)) =E, forall 1=1, 2, ..., 2n and let ¢(E;) =ayEy;, a,;#0 for all E; in
AlgPorn. Then there exists a diagonal operator T such that ¢(A)=TAT"!
fO’I’ all A in Alg.‘?zn(iﬂ)-

Theorem 2. 10. Let ¢ : AlgLo.c+1y—>Alg Lo+ be an isomorphism. Then
there exists an invertible operator T such that ¢(A)=TAT for all A in
Alg L.

Example 2.11. Let

ODOODOOHH
DO ODOH—O
OCDOOHHOO
—HOOOOO
OHOOOO
ODOHOOO

Define ¢ : Alg¥oa+n—>AlgLox3a+n DY (P(A)=TAT* =TAT! for all A in
Alg%ixa+». Then ¢ is spatially implemented but T is not in Alg.%axq+1-

Example 2.12. Let



218 Joo Ho Kang and Young Soo Jo

001000
010000
|1 00000
00000 1
000010
000100

Define ¢ : Alg%ssasn—=AlgLoxsq:n by @(A)=TAT*=TAT™ for all A in
Alg%5x30+n. Then ¢ is spatially implemented but T is not in Alg%sx3a+n-

Example 2.13. Let

001000
010000
100000
000100
000010
000001

Define ¢: Alg%isq+ny—=AlgLoxsarny by 9(A)=TAT*=TAT! for all A in
Alg%saa+n. Then ¢ is spatially implemented but T is not in Alg.%sx3a+1).

Theorem 2.14. Let ¢ : Alg L+ Alg Lo+ be an isomorphism. Then
we can get the following :

1)ty m-1=0 for all j and m.
If tZJ', 2m7l:0, then

(2) Qom, 2m = b2j, 24,
) t;,=0 for all I(U+#2m) and,
@)  tym=0 for all I{1#7).

If tyi-1, 9m-1 70, then

) am-1, am-1=02j-1 2j-1,
6) tism1=0 forall I(1#2j—1) and
(D tyra1=0 for all I{U#m).

Proof.(1)  ty 2m-1=0 for all j and m.

First, we will show that #,,,=0 for all . Suppose that #,;#(0 for some j.
Comparing the (24, 1)-component of ¢(A)T with that of TA, by st 1=
tyray. Since ty;17#0, ay=by . Comparing the (2541, 1)-component of
@(A)T with that of TA, byjiata; 1+ bojer2ie1toier 1 boser sivalojen 1= boser 1@
Since ay=by; 5, We have by oiboi 1 =tois1,1(Da; 25— bajer, 2+1) — bojr is2lyjrnt GF#1
or j#1) and by 2itsi1=tye11(bois—barr24) (=1 and j=1). We have a
contradiction. Hence ty;,=0 for all j.
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Next we want to show that if ¢; 4, =0, then ¢t 4+1=0 for all [({=2, ...,
n—1).

Suppose that ty; 4-1=0 and t; 4+:#0 for some {({=2, ..., n—1). Com-
paring the (24, 2l+1)-component of ¢ (A)T with that of TA4,

Dos 25tai e1 = boj 1@t 241

Since ty; 54170, by si=au+1 u+1-
Comparing the(2j+1, 2/+1)-component of ¢(A4)T with that of TA,

bojrr itos e bojar gjwbojer e F Dojor, aiv2bojvn o1 =lojon, 201 Qe 241

Since a1, 2401= baj 2),

bajrv o5tes o1 =toje1 241(B2s 25— Dojar 9541) — bojur 2jwatajen unn (G#1 or j#1) and
b21+1, 2iboj u+1 ™= Lyja, z:+1(bzf, 2 b2j+L 2j+l) (i =1 and j= 1).

We have a contradiction. Hence if t; 3-1=0, then &, 5+1=0 for all L

By the arguments similar to those of Theorem 2.6, we can obtain the
following.

If tz,', 2’”#__0’ then

@) Qom, 2m = b3j 9j,
(3) ty.,=0 for all I{+#2m) and
@) tywm=0 for all I(I#j).

If t5-1 9170, then

(5) boj-1 29-1=Qom—1, 9m-1,
(6) t,m1=0forall I(i#2j—1) and
(1D ty-ru1=0 for all L{#m).

As special cases, we will consider the cases that are =0 and i=n—1.

Theorem 2. 15. Let ¢ : Alg L.+ Alg Lo+ be an isomorphism. Then
there exists an invertible operator S in Alg.L .o+ Such that ¢(A)=SAS'or
eA)=(SU)ASU)™ for all A in Alg Lo+, where

is a 2n X 2n matrix.

Proof. Let ¢: Alg%so+n—>AlgLmo+» be an isomorphism. Then by
Theorem 2. 10, there exists an invertible operator T such that ¢(4)=
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TAT 'for all A in Alg¥s0:n. Let A=(a;) and ¢(A) = (by) be in AlgLsq+»
and let T=(¢;). Then ¢(A)T=TA for all A in AlgZLsnq+n-
We can get the following by Theorem 2.14:

(1)  tym1=0 for all j and m.
If t; :m 70, then

(2) @ m=Dbai 2,
(3) ty,=0for all I(U+#2m) and
(4)  tywm=0 for all L{#j).

If ty-1 9m—17#0, then

(5) Qom—1, 9m-1=D2j-1.2j-1,
(6) tim-1=0 for all I(I#25—1) and
(D ty-ru1=0 for all [({#m).

If ty-y o170, tr 270 and fysy 2+ #0, then
(8) ty-1u=0 for all j(j#I and j#I+1).

We want to prove that ¢,=0 if ¢;#0. Suppose that ¢,;#0 and #;#0.
Comparing the (1, 2)-component of ¢(A)T with that of TA, butp=tnan+
tiap. Since ty#0, bu=ay. Since t;3=0, we have t;,(ax—an) =0 which is a
contradiction. Hence t;,=0. If {;%#0 and t»#0, then t.#0 for all k(k=1, 2,
..., 2n). Hence if t;#0 and t»#0, then T is Alg%ue:n by (1), (D), ..., (8).
So we can take S=T in this case. If {;#0 and t»=0, then let

100 -~ 000
000 ~ 001
g—|0 00 = 010
000~ 100

be a 2n X 2n matrix. Define ¢, : Alg Zono+n—Alg Lao+n by ¢:(A) =UAU ! for
all A in Alg%s.qn. Then ¢, is an isomorphism and ¢ (4) =(UTYAUT) !
forall A in Alg%sq+p. If £y, 270, then UT belongs to Alg.% s+ because i,
is the (2, 2)-component of UT. In this case, we can take S=TU. Since
U?=], S=UUT)U and so belongs to Alg%s.q+» and T=SU. Hence ¢(A4) =
TAT '=(SU)A(SU) ' for all A in AlgLmq+n.

We want to prove that ¢;#0(, and #, ,#0 if t»=0.

First, we will prove that t,, ;70 if t»=0.

Suppose that £y 94270, f39+1=0 and t3 5+3=0 for some j(j=1, 2 ..., n—
2). Comparing the (3, 27+ 2)-component of ¢(A)T with that of T4,

basty aj+2t bty ojrat sty 2j+2 =13 2j41Q05+1 2542 Lo 25428042 2542 L3 27430543 2542



Isomorphisms of Alg% ;.m 221

Since 3 5+1=0, 32+3=0 and ¢, 54270, ¢4 2+2=0 and hence we have t3 3.,(by—
byy) =byt, 5+2 Which is a contradiction. Hence if ¢, 5;4:7#0, then t34:1#0 or
tigi+3# 0 forsomej(j=1, 2 ..., n—2). Suppose that t, 54,70, t3 54170 and &, 5
=(. Comparing the (3, 27)-component of ¢(A4)T with that of T4,

baly 2, bsta ojt barty ;=11 2-1G0j-1 25 b3 2;Q05 2+ b3 2j 410541, 25

Since £ 5+ 7#0, t42,=0 and t3 5,170, t22,=0, ta2,-1=0 and byu=az12+1. So we
have t32;(@j+1 2541 — s 25) =l3241G0+12; Which is a contradiction. If we
continue this process, then we can get the following ; If £, 34270 and ¢3 5;41 7
0, then ty1, 542,70 for all I{=1, 2, ..., 27). In particular, #+,7#0 and ty+1 3
#(. Comparing the (2j+3, 2)-component of ¢(A4)T with that of TA,

bojragjralojra 2t Dojua ajestaies 2 Dojus ivalojra 2=12j+3 1@12+ tojez 2@+ brjes 3.

Since ty41370, ty+33=0. So we have ty.32(bojra gj42— bojea 25+3) = bajua gjratajen 2
which is a contradiction. Suppose that f;5427%0, f39+3%0 and ¢, 544=0.
Comparing the (3, 2j+4)-component of ¢(4)T with that of T4,

baly gjuatDsstagjeat bails gj+a=13 25430543 2544 T 13 2544 @500 2544 T Ly 25245 2544 -

Since t5 21270, £y 5544=0. Since t3 24370, ta 2545=0. Since t3 2+3% 0, b3y =0as;+3 25+3.
So we have t3 544(@yj+a 2j+3— Gaj+a 25+4) = L3 25+3005+3 25+4 Which is a contradiction.

If we continue this process, we can get the following ; If ¢ 54,70 and
by 2i+37 0, then fhiy 940w #0 for all I(I=1, 2, ..., 22—27—2). In particular,
tin-2,2270 and ty.—9;-1, 2.1 #(0. Comparing the (2n—2j+1, 2n)-component of
¢(A)T with that of T4,

bon-9+1. 3n 258223, 20 T Ban-gj41 n-2i+ 1 E2n—41 20+ D2ngjv1, 2a-2j42ban 2542 2m
=ton-541 21-1Q20-1, 22 T L2n—2j+1. 20 A2, 20

Since tp-2..7#0 and ty-gj-12-170, ln-2j+22.=0 and ta.—gj+12.-1=0 and as, 2. =
by-gi2m-2. SO we have ty g1 2. (banoss 22— Danai+1 20-2741) =bon-25+1 025 ton 24 2m
which is a contradiction. Therefore if t3»=0, then t, =0 for all [=2, ..., n
—1. Hence t; .70 if t=0.

Suppose that ¢, ,,#0 and ¢ 5,-;=0. Comparing the (3, 2n)-component of
¢(A)T with that of TA,

Dyt ot Dasts 20t b3aly 20 =13 24-1Q20-1 20+ L3 24 At 200

Since by # 0, ty z,.zo and Qon, 0 =b22. So we have t3 9n (bzz'— b33) =b3ztz 2n which is
a contradiction. Hence if #; 2, #0, then £3 3,-1%0. If £, 2,70 and ¢3..-:#0, then
tym—27#0. Suppose that ¢ 5, #0, t3 2,170 and £, 2.-,=0. Comparing the (3, 2
—2)-component of ¢(A)T with that of TA4,

by2ts 0n-2F b33l 22t Bsala 20-2=13 20-3G2-3 20213 20-2Q20—2 20-2 13 20-1@m—1, 202

Since #, 2. #0, t22.-2=0 and t;3.-2=0. Since #32.-1#0, b3 =02-1 2.-1 and 3 2.3=
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0. So we have t33.-2(@s-1 31— Gm-22-2) =l32-1@2-1 22 Which is a contra-
diction. If we continue this process, we can get the following ; If #, ., #0,
then #4070 for all I(U=1, 2, ..., 2n—2)...(*). In particular, f,, is
non-zero. In consequence, if ¢y is zero, then t,, ; is non-zero.

Finally, we want to show that ¢, is non-zero.

Suppose t;3# (. Comparing the(l, 2)-component of ¢ (A) T with that of
TA, butip+buptn=tuap+tean+ipay. Since tu#0, ag=by. So tplan—an)=
tizay which is a contradiction. Hence t;;=0. Similarly we can prove that ¢,
=() by comparing the (1, 2)-component of ¢(4) T with that of TA.

Suppose that #, »+1#0 for some k(k=2, ..., n—1). Comparing the
(1, 2k)-component of ¢(A) T with that of TA,

ity et b2ty =11 21001 26 b1 26 Qon, 26 T E1 261 Qo1 20

Since t, 54170, by =an+1 2+ and ¢, %-1=0. So we have t, % (@up+1 me1— Qo 2) =
L w+1G2+1, 2 Which is a contradiction. Hence ¢, %+, =0 for all k=1, 2, ..., n—
1.

Suppose that ¢, % #0 for some k(k=2, ..., n). Comparing the (1, 2k)-
component of ¢(4)T with that of T4,

butiontbuts =110 1001 0t 0o 2t 11 0et1Qe+1 2.

Since b,=0, t,%-1=0 and t,%1=0, but,u=amn wtiz...(*¥1). If t»=0 then
bz 20 DY (%), SO @o 2 =bosi-m 2420-2. Hence by s (Doasn- 2420-2— b1) =0
by (*,) which is a contradiction. Suppose that #»#( and ¢;3=(. Compar-
ing the (3, 2)-component of ¢(A4) T with that of TA,

baplyntbyta+bute=tuan+tnantinas.

Since tzz?éo, t42=0 and a22=b22. So we have lgz(bzz—bg;;):bgztzz which is a
contradiction. Thus if ;#0, then ¢t #(0. Suppose that t»#0, t3#0 and ty=
0. Comparing the (3, 4)-component of ¢(4)T with that of TA4,

byt basty+ byutu=1tnau+tuauttsas.

Since t3#(, b=as and t=0. Since tp#0, tx=0. So we get tylag—au) =
auts which is a contradiction. Soif t»#( and #53#0, then t4#0. Hence if we
continue this process, then we can get the following ; If ¢»#0, then ¢, #( for
alli(l=2 3, ..., 2n). Since tu %70, @w 2 =bmw 2. SOt % (bo %—b1) =0 Dby (*,)
which is a contradiction. Hence ¢,;#(.

Theorem 2.16. Let ¢ : AlgLon-n+p—=Alg Lon-1+» be an isomorphism.
Then there exists an invertible operator S in Alg Lowm-n+1 such that ¢(A) =
SASYor o(A)=(SU)ASU)™! for all A in AlgPLon-n+1, Where
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is a 2n X 2n matrix.

Proof. Let ¢: AlgZLs-n+n—>AlgZL20@-n+n be an isomorphism. Then
by Theorem 2. 10, there exists an invertible operator T such that ¢(4) =
TAT! for all A in Alg%sw-p+. Let A=(a,) and ¢(A)=(b,) be in
Alg Pou-p+p and let T=(t,;). Then ¢(A)T=TA for all A in AlgZLsm-1+D-
We can get the following by Theorem 2. 14.

(1)  tym-1=0 for all j and m.
If t; 2,70, then

(2) Qom, 2m = b3j. 2j,
(3) ty,=0 for all I(U+#2m) and
(4)  tuwm=0 for all I(I#)).

If ;-1 2m—170, then

) Qom—1. am-1=bg-1. 251,
(6) t,m-1=0for all [({#2j—1) and
(D ty-ra-1=0 for all I{#m).

If ty_1 w1 #0, t 270 and tury 21 #0, then (§) t-,2=0for all j(j#[/ and j#I+
1. If ty-10.-1#0, then fp22.270. Suppose that fp 12170 and ty-22.-2=0.
Comparing the (2n—1, 2n—2)-component of ¢(A) T with that of TA4,

bt mm-2ton-22m-2F DOam-1 201821 202
=lon-1.2-30m-3 m—2F b1 20-2Q2m -2 02T Lon—1, 20—1020 -1 21—2.

Since -1 2170, Dot 0n-1=Qgu-12.-1 AN l3-1 2.-3=0. SO0 we get fy_roms*
(@1 -1~ Qon—2 2n-2) =tam—1 31821 22 Which is a contradiction.

Similarly, we can prove that if f5,—1 2,-17#0 and £2.-5 2.2 70, then 5,3 .-3
#(.

So if t,2.7#0 and ty.-y 2.-1 70, then t..#0 for all k(=1, 2, ..., 2n) and
t-12.=0 by comparing the (2n—1, 2n)-component of ¢(4) T with that of
TA. Hence T is in Alg%Lyn-n+n by (1), (2), ..., (8). In this case, we can
take S=T. If t3,2.%#0 and -y 2.-1=0, then let
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be a 2nX2n matrix. Define ¢;: Alg%m-n+1—>AlgLom-n+n by @1(4) =
UAU 'for all A in Alg#s-n+n. Then ¢, is an isomorphism and ¢;¢(4) =
(UDAWTD) ! for all A in Alg%s-v+n and ¢, -1 is the @n—1, 2n—1)-
component of UT. If ¢, ,,-,#0, then UT belongs to Alg%smw-n+p. In this
case we can take S=TU. Since U?=], S=U(UT)U and so belongs to
AlgLomm-n+» and T=SU. Hence o(A)=TAT '=(SU)A(SU) ' for all A in
AlgLon-n+p. With the same proof as some part of Theorem 2. 15, we can
prove that if f,-, 2.1 =0, then f. . #0 and ¢, 2.1 #0.

Let I, be the m Xm identity matrix and let J, be the m Xm backward
identity matrix.

Theorem 2. 17. Let ¢ : Alg L s.¢+n—>Alg P si+1y be an isomorphism (1<i<
n—2). Then there exists an invertible operator S in Alg.Lo.+p sSuch that ¢(4)
=SAS ' or p(A)=(SU)ASU) " or p(A)=(SV)ASV) ' or p(A)=(SW)A
SW)™! where

U=<[26+1 ]Zn?Zx'—l), V:<]26H ]2,1?21'4 and W:<]26+1 ]zl)zm '

Proof. Let ¢: Alg%yin—>Alg%s ¢+ be an isomorphism. Then by
Theorem 2. 10, there exists an invertible operator T such that ¢(4)=
TAT 'for all A in Alg%sa+n. Let A=(a,) and ¢(4) = (b,;)) be in Alg L+
and let T=(t,). Then ¢(A)T=TA for all A in Alg%si+». By Theorem 2.
14, we can get the following :

(1)  ty m1=0 for all j and m.
If t3; 0 #0, then

(2) Qom, 2m = b2, 24,
(3 t.,=0 for all I({#2m) and
4)  ty2,=0 for all I{#7).

If -1 2m-170, then

®) Qom-—1m-1=b2j-1, 251,
(6) tizm-1=0 for all I((#2j—1) and
(7) Lo, 21—1-_—0 for all l(l#m).
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If ty- 170, tu2#0 and fys1, a0 #0, then
() ty-12=0for all j(j#! and j#I+1).

If t1#0 and ta4g 24270, then T is in Alg%sa+p as in the proof of Theorem 2.
15. In this case, we can take S=T. If t;,#0 and ty.22+:=0, then let U=
126“ 7 ) Define ¢, : Alg Lpi+n—>Alg L oirn by 91(A) =UAU ' for all A
m—2i—
in Alg#sa:n. Then ¢, is an isomorphism, ¢,9(A) = (UT)A(UT) ! for all A
in Alg %s.c+n and to, 242 is the (2142, 2i+2)-component of UT. If ty, 470,
then UT belongs to Alg%sa:n. In this case, we can take S=TU. Since U?
=] S=U(UT)U and so belongs to Alg¥su+1» and T=SU. Hence ¢(4) =
TAT '=(SU)A (SU)‘1 for all A in Alg®Poa+p. If tn=0 and ty+s 2+2#0, then

let V= (JZ’“ . ) Define @p: Alg LAl Locin by @(A)=VAV"!
-2~

for all A in Alg%s.a+n. Then ¢, is an isomorphism, @, (4) = (VDA(VT)™!
for all A in Alg#s.+» and ty41; is the (1, 1)-component of VT. If 170,
then VT belongs to Alg%sa+p. In this case, we can take S=TV. Since V?
=1 S=V(VT)V and so belongs to Alg%s.+1» and T=SV. Hence p(4)=
TAT '=(SV)ASV) ! for all A in AlgPoi+n.
Jo ) Define @3 : Alg Zacn
0 Jonu-

—>AlgPocin by @;(A)=WAW™! for all A in Alg%se+n. Then ¢; is an
isomorphism, @;0(A)=(WTAWT) ! for all A in AlgLs.+v, tu+11 is the
(1, 1)-component of WT and t, 5+, is the (2i+2, 2(+2)-component of WT.
If ty+ 1 70 and 3, +2 70, then WT belongs to Alg%,.¢+p. In this case, we can
take S=TW. Since W?=I S=W(WT)W and so belongs to Alg%:.:+1 and
T=SW. Hence o(A)=TAT '=(SW)ASW) ! for all A in AlgPi+1».

We want to prove that fy.1#0 if ty=0 and #y, 24270 if fyrg 22=0.

First we want to prove that if ¢;,=0, then ty.11#0.

Suppose that ¢;=0. Then ty.,1#0 for some k(k=1, 2, ..., n—1). If
twsr 170, then we can prove that ty, ;70 or tpss 0B #1, k=1, 2, ..., n—1)
by comparing the (2k+1, 2)-component of ¢ (A4) T with that of TA. If ty11
#(0 and tx 70, then tx_.3#0 by comparing the (26 —1, 2)-component of
¢(A)T with that of TA. If t3 %0 and fy-1 :#0, then tx-,4#0 by comparing
the (2k—1, 4)-component of ¢(A)T with that of TA. If we continue this
process, then we can prove that if fx.,#0 and #y, ,#0, then tp41-, 170 for
all I{=1, 2, ..., 2k)... (D).

If tyi1 170 and fmss2#0, then fu.33#0 by comparing the (2&k+3, 2)-
component of 9(A) T with that of TA. If fp+s 270 and fa+s 370, then fyp.s +7#
0 by comparing the (2k+3, 4)-component of ¢(4) T with that of TA. So if
we continue this process, then we can prove that if &1 170 and .z 270,
then ty+, #0 forall I(I=1, 2, ..., 2n—2k)...(ii). In the case (i), if £<i, then

If t,=0 and #y+s 2+2=0, then let W=
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tiwn70 and t, »#(0. Comparing the (1, 22 +2)-component of ¢(4) T with
that of TA,

butymsat0ialy s =t sms1@o+1 e T 1L he2@ope2 o2 b1 20 +3@2043 2042

Since by =amu+1 u+1, We have t, ps2(@n+s 41— Aokrs 2442) =11 %+1@m+1, %+2 Which is
a contradiction. _
If i<k, then tysz 2170, tara n-270 and tosy s-2170. By (T) fosz segiss
=(. We want to prove that ty.1%-5=0 for all j=0, 1, 2 ..., n—1.
Suppose that ty;+1, %-2+170 for some j, Comparing the (25+1, 2k —2)-
component of ¢(A)T with that of T4,

boivr aitos -2t Bajer, aje1bojur 2m-2+ Dojr, givalojun ey
=toje1 oe-2i-1Qok-2i-1. 2% -2 T Lajrt, oe—2i Qo2 20 —2 T+ Lojut, 2e—2i+1Q2k—2141 22

Since tyivo m-270, ta; 2e-2=0and tyeg u-2=0G #7). Since fysa ge-si-170, tajsr 2621
=(. Since ty+1, s-2417 0, bajs1, 2541 =Qoe-2i41, 2m-2i+1. £ =5, then by+y 4542=0. Hence
we have o1 s 2 (@om-2i+1 241 — Qo9 -2 = ajs1, 2-241@2-2i+1, -2 Which is a con-
tradiction. Thus fy+1 g-2+1=0forallj=0, 1, 2, ..., n—1. Itis a contradiction.
In the case (ii), if £<4, then fy 5-2%7#0 and tyy, 2r-2+170.
Comparing the (2(+1, 2i—2k+2)-component of ¢(A)T with that of
TA,

b2i+L 2it2i. 2i—2k+2+b2i+l, 2i+1 tZi+L 2i—2k+2+b2i+L 2i+2t2i+2 2i—2k+2
loiet, 2i-2kr1@oi-2k+1 2i-2e+2 T B2 L 2i-2e+2Q0i— 20 +2 2i-2k 42
Floist, 2i-om+3Q2i-2m+3 22042

Since ty-27#0, tuw-ne=0 Since tyiy -2 70, fars2-2+3=0 and basy g1 =
Q-1 2-2+1.  OINCE byv1 240=0, we have

tyiv1, 2i—2k+2(02:‘—2k+L 2i-2+1 " A2i-2k+2 2i—2k+2) =loit1. 2i-2k+1Q2 % +1, 2%-2k+2-

It is a contradiction.

If i<k, then ty. 5 270, twsoier 2170 and topssirs si+2 7 0.

Comparing the (2k+2i+1, 2{+2)-component of ¢(4)T with that of
TA,

Davaivr sevaibonsar a2t Oonvarsr, serniet bpsnint 242 T Doprnivs, e aivalonraien 2ie2
=lonvoivs, 2+1@oi+1, 242 T boerniet, 242Qaiv2 242 T Lopsoiv, 2432143 2142

Since to+gi2+42=0, lossai1243=0 and @oivg 242= Berivn mriva

bvaier 22 (Donanion seraies— Doprgivr mszier) = Dopraies sesnivabonsaivn 2.

It is a contradiction. Thus if &, =0, tysy 1 #0... (ko).
Next we want to prove that if fy4 24+2=0, then fy, 42 7#0.
Suppose that 5 5i+2=0.
If t;,#0, then £;#0 for all j(j=1, 2, ..., 2i+1). S0 tyss2=0, tsss =0, ...,
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tyuvz =0 and fysp 242=0... (¥ ).

If toivo, z.'+2j5é0 for some ](]=2, e, n —i— 1), then toita 2i+2j—1¢0 or t2i+3, 2%+2j+1
#( by comparing the (2i+3, 2i+2j)-component of ¢ (A) T with that of TA.

If tivg 242,70 and toivg 2i42i-1 70, then tyrq 2i+2-270 by comparing the (2 +
3 2i+2j—2)-component of ¢(A)T with that of TA. If tyi32:2-1#0 and
yiva 22270, then tass ue2;-37 (0 by comparing the (2i+5, 2i+27—2)-compo-
nent of ¢(4)T with that of TA.

If we continue this process, then we can get the following ; If ty.p gi+0; 7
0 and tzg+3 2,'+2,'-1¢0, then Loivo+1 2,'+zj_17&0 for all l(l: ]_, 2, eey 2]_2) In partic-
ular tysgjer 24170 and toirg; 20270

Comparing the (2i+2j+1, 2i+2)-component of ¢(A)T with that of
TA,

b2i+2j+l. 2425 t2i+2j, 2i+2+ b2i+2j+L 2+25+1 t2i+2j+1. 2i+2 + b2i+2j+L 2i+2j+2t2i+2j+2 2i+2
=loivgirr ai+1Qoier 2iv2 T baivojet 22 Qoivg 2iv2t Loivoen, 24302 +3 2i42-

Since tyrg; 24270, tovosez 2ie2=0 and @oisn 2i00=bai42; 2i42).

Since tyrgjsr 5i+1 70, tovgjer 2ea=0. SINCE Agivy 2i42=0, We have fyrojuy siv2(Doivas 242
—byirzje1 2i+2i+1) =buirgj+1 urosbares 242 Which is a contradiction.

If toivs 2iv2; 70 @nd fyivg giv2j+1 70, then taivq 2iv05+27 0 by comparing the (2i+
3 2i+2j+2)-component of ¢(A)T with that of TA. If tyi3u42+170 and
tura wvie2# 0, then tais sivg+37#0 by comparing the (2i+5, 2i+2j+2)-compo-
nent of ¢(A)T with that of TA. So if we continue this process, then we
have the following. If tyig 2+2;7 0 and ty+a gie2j+1 70, then tyige, sise+: 70 for all
=1, 2 ..., 2n—2i—27). In particular, tm-s+2270 and tu_s+12.-170.
Comparing the (2n—2j+3, 2n)-component of ¢(4) T with that of T4,

Don—2i+3 am-2i+28om-2542 2n T Dan—2543 202+ 3Lam—2i43 20 T D2a—2j43 2n-2jaL2n=25+4 20
= lon—25+3 2n-1Qan—1 22 T L2n-2i+3 20 20, 2.

Since ty-2+22 70, ton-2j+420=0 and Qo 20 =020 2j42 2m-2j+2.  SINCE lon—sjut, 20-1 70,
tu-gita-t = 0. So we have tu gi3o (Bm-ziramsisz — Dum-gjivaz-zies) =
Dyn-2j+3 2a-2j+2lam-2j+2 2« Which is a contradiction. Thus fyg 5+2,=0 for all j(j=1,
2 ....,n—i—1)...(*y). Hence tys2,=0 for all j(j=1, 2, ..., n—1) by (*,)
and (*,) and hence fy+3 2. %0.

If tyivs 0. # (0, then fy43 2,170 by comparing the (243, 2n)-component of
¢(A)T with that of TA.

If tyisp 2.7 0 and ty+3 2.-170, then tyiq 2-27#0 by comparing the (2i+3, 2n
—2)-component of ¢(A) T with that of TA. So if we continue this process,
then we have the following. If #y.52.7#0, then fyipv 0. 7#0 for all I(I=1, 2,
e, 2n—2i—2). In particular, ty, 5+7#0... (*3). If ;=0 then ty.,1#0 by
(*,). Suppose that ty.,1#0 and t;,=0. Comparing the (2i+1, 2)
-component of ¢(A) T with that of TA,
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Since fty+11#0, tu+13=0 and by, av1=au. Since £ =0 and bys1242=0, we
have #y.12(ay—axn) =tu+, 141, Which is a contradiction.

If tys 170 and fy . #0, then tx-, 3% 0 by comparing the (2 —1, 2)-compo-
nent of ¢(A) T with that of TA. If we continue this process, then we have
the following. If £y.+1,#0 and ty ,#0, then fy4,1+,#0 for all I{=0, 1, 2 ...,
21). By (*y) tysng+;=0 for all j(G=1, 2, ..., n—i—1). S0 tus+22,=0 for all
7(j=1, 2, ..., n—1) and hence ty+32.%0. By (*3) ty, 24270
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