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On the Berry Conjecture
By

Akio Fujn

1. Introduction

One of the most important problems proposed in the 20-th century seems
to be concerned with the Montgomery Conjecture [22] (cf. the subsection 3-2
below). The main point might be to get a characterization of the distribution
of the zeros of the Riemann zeta function {(s). Dyson (cf. the subsection 3-2
below) has noticed that the law in the Montgomery Conjecture is exactly the
law under which the quantities which appear in the world of physics are
distributed. On the other hand, from the side of physics, a striking
conjecture has been proposed to the theory of { (s). It is a conjecture of
Berry’'s[1], with which we are concerned in this article. The main purpose of
the present article is to give a reaction to the Berry Conjecture from the side
of mathematics. In fact, we shall give a proof of his conjecture at the level of
the first approximation. We shall also realize that a part of the Berry
Conjecture is deeply connected with the Montgomery Conjecture.

We start with describing the Berry Conjecture, namely, (19) of p.402 of
Berry [1]. For this purpose we shall first introduce some notations. Let
N(T) denote the number of the zeros S+iy of {(s) in 0<y<T, 0<B<1,
when T#7 for any y. When T=7, then we put

N(T) =5 (N(T+0) +N(T=0)).
Let
S(T)=%arg§<%+iT) for T#7,

where the argument is obtained by continuous variation along the straight
lines joining 2, 2+iT, and 3+i7, starting with the value zero. When T=r,
then we put

S(T) =%(S(T+0) +S(T—-0)).

Then the well known Riemann-von Mangoldt formula (cf. p.212 of Titchmarsh
[26]) states that
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N(T) =%19(T) +145(7),
where 9(T) is the continuos function defined by

9T) =Y (logl’(%+%)) —%Tlogn'

with
9(0) =0,
I'(s) being the I'-function. It is well known that
Iy, T =, 1 ., 7 ...
9(T) =7logy —5—g+ g7+ 576073 +

and that
S(T) €logT.

Now the Berry Conjecture may be stated, with a slight change of
notations, as follows.

Berry Conjecture. For T>T, and for 0<a< TlogT, we have

Vian) =5 [ WBE+) -NBE—F) -

=%{log (2ra) —Ci(2ra) —2ra-Si 2ra) + n?a—cos 2rna) +1+C,}
T

sin? (narﬂg%)
1 l0g27z
+-2-42 Z W +Ci(2rat*) —log 2rat*) —C,}
T 14

PGzl
=V(a,T,7¥%), say,

where p runs over the prime numbers, ¥ runs over the integers, B (t) being the
inverse function for t>t, of the function

__t by 7
Alt)= o (logs— 1) tg

* (cf. (26) of Berry[1]) satisfies

%«*«1,
log—zn,

we put

Ci(x) =—j:°%stdt
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and

Si(z) = [ "8i0t g

o t
and C, is the Euler constant.

We suppose below that 7* satisfies

although it is not stated explicitly in Berry [1].

It may be stressed that the Berry Conjecture is concerned with the
number variance V (a,T) for a whole range of a.

We call

-i;{log (2ra) —Ci(2ra) —2ra-Si (2ra) +m2a——cos 2ra) +1+C,}

the GUE part and

sin® n'ar—gp )

log*—
—{2 Z 2 +Ci(2ratr*) —log 2rat*) —C,}

2

rp”

Pl

the arithmetic part. The GUE part has no term containing T explicitly,
although o may depend on T.

We shall first study V{aT,t*). We shall prove below (cf. Theorem 1
with Remark 1 in the section 2) that when « is small enough, namely, when
a=o0(logT), then the GUE part dominates the arithmetic part. And that when
« is large enough, namely, when log7T € a < TlogT, then the GUE part and the
arithmetic part are mixed and they produce the beautiful term

*—{log logT —log| L (1+i 27“7{ )]}

o83

We shall next study a simplified number variance, namely, the first
approximation of V (a,T). We shall prove below (cf. Theorems 2, 2/, 3, 3, 3”
and 4 in the subsection 3-3) that it is controled by the same law as
V(a,T,7*). In this sense we may claim that we prove the Berry Conjecture
at the level of the first approximation.

We should notice here that the simplified number variance for a shorter
o is connected with the Montgomery Conjecture in two ways, as will be
recalled in the subsection 3-2. There we shall realize that the Montgomery
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Conjecture is waiting us at the critical point, indeed.

We shall also turn our attentions to a discrete version of the Berry
Conjecture. It is inevitable to consider our problem also in this situation if
one wants to try to understand the hidden part of the unknown story about
the distribution of the zeros of {(s). Moreover, many numerical
computations (cf. the subsection 4-2 below, for example,) await a theoretical
explanation in this context.

Furthermore, by applying the techniques used in the analysis for the
discrete number variance, we shall show (cf. Theorem 6’ in the section 5) that
we can obtain the first main term for V (@, T) in the range 1 Ka<T'"7 with a
positive constant %Sn <1, which coincides certainly with the first main term
of the Berry Conjecture. The number variance V (@,T) for a shorter a is
connected with the modified version of the Montgomery Conjecture (cf. the
section 5 below.)

As have been already noticed above, numerical computations related with
these problems have been presented by many mathematicians, for example,
Odlyzko [23] and van de Lune, H. J. J. te Riele and D. T. Winter [19]. The
latter will be recalled in the subsection 4-2. Numerical computations of the
number variance by Odlyzko [23] will be reproduced in the theorems (cf.
Theorems 2/, 3, 3, 3" and 4 in the subsection 3-3) and , as a result, in the
theoretical graphs (cf. the section 6 below.)

All of our results in this article and the numerical computations
mentioned above might permit us to say that the distribution of the zeros of
{(s) may be controled by the eigen-values of the Gaussian Unitary Ensembles
(GUE) as far as the problem is local within the magnitude of 0<a=o(logT).
And that as a trial of the unification of the local aspects and the global
aspects, the Berry Conjecture has been proposed.

Finally, we notice that in some situations (cf. some parts of the
subsection 3-2 and the section 4), it is simpler to use N, (T) in stead of N(T),
where we put

N+ (T) = Z * 1
0<y<T
The Riemann-von Mangoldt formula for N, (T) becomes

1

9(T) +1+5.(7),

where S; (T) =%argc (341T) as above when T#7 and S, (T) =S, (T+0)
when T=7.
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2. The evaluation of the right hand side V (a,T,7*) of the Berry’s
formula

We shall first try to check how V(a,T,t*) in the Berry’s formula looks
like. We shall give the details of the proof as much as possible, for
completeness. First of all

sin? (nmlﬂ%—) sin? (na—lgg%) sin? (Trar—lqgg,—)
logz—n_ logz—n logz—n
2 Z —— =2 Z — +2 Z IR
Pzl P bl <) 22 P

When 0<a<logT, then the first term is, by the Stieltjes integral,

z 1 —cos (hlogp)
p

_ 1—cos(rlogY) E f E 1—cos (hlogt)
YlogY log, logp) (—— g ) dt

_1—cos(hlo Y) (Y+R(Y)) f §(A=cos 1—cos (hlogt) t))

1393

Ylog? tlogt at
_ 1—cos (hlogt)
f R®)( tlogt )di

Y1—cos (hlogt) ~ 1—cos (hlogY) , 1—cos(hlog?)
Je tlogt T logtUtR(Y) YlogY + log2

f Rt Sm hlogt)dt-i-f2 R t) 1——cos (hlogt)) (logt+1)dt

L 10g2) +R (Y) —costhlogl) . 1—cos hlog?)

=Cin 2rar* ) —Cin (

T
7

f R(t) sm(hlogt)dt+f flm 1—cos (hlogt)) (logt+1)dt
0
=log 2rat*) +C,—Ci(2mar*) —Cin( 2 CTYlogZ)

long

1—cos (hlogY) , 1—cos (hlog2)
+R(Y) YlogV + log2

sm(hlogt)dt-i-j; R(t) (l—cos(hlogt)) (logt+1)dt,

YR(t)
t2logt

where we put Cin (x) = [™ =24t h= 2"‘}. Y= (%)™ and

Zlogp—t

Pt
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Thus we get

Vi, T7*) =%{log(2n‘a) —Ci(@ra) —2na-Si 2ra) + m2a—cos Cra) +1+C,}

sinz(n'arl—%%)
~ logs—~
e ) 2 Cin (22 og2)
p< (%) ™22 ’ P lOgZ-_
1—cos(hlogY) , 1—cos(hlog2) . (YR() .
+R(Y) YlogY log? k], tzlogtbm(hlogt)dt
Y R()
, M(l—cos (hlogt)) (logt+1)dt}.

When a satisfies further 1,;7—0 as T—0, then we see immediately, using
the prime number theorem

Zlogp=t+0 (t exp(—A+Vlogt)),

Pt
that
7 (aT.c%) =—{log (27a) —Ci (27a) —27a-Si (27a)
7[2
+r2a—cos 2ma) +1+C,+0 (1)},
because
sin?( ri)
log——
%{2 Z » 2n —Cin ( 2 (,;flogZ)
L o rp logs =
p<('27)',r22 277:
~ 1—cos (hlog¥) |, 1—cos (hlog2) ., [YR(¢)
+R(Y) YlogY + log? hf Flog Sm(hlogt)d
Y
—R(t—>(1—cos(hlogt)) (logt+1)dt}=0(1),

2 tlog’t

as T—o0. Here we notice that we always denote in this article some positive
constants by A.
When

logT € a<KlogT,

then the expression of V (&, T,7*) given above implies that

ViaT,t¥) = —log 2ra) +0(1) =—log logT+0(1),
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because
m2a—2na-Si (2ra) =cos 2ra) +0 (_clv—)
and
Ci (27a) =0 (1)
2 pol

We suppose next that

logT >1

and moreover, Ter is sufficiently large. Then

sin? nar——gL
log—
1—cos (hlogp)
2 +0(1
Z rzp’ = p o)

p<ig

_V1 o )l
-Y1 %(ZPHM)-#—O(]).

Y P

We see as in p.220 of Gallagher and Mueller [12] that

1 1 1
p”"’ Z 1+o+ih Zpl+5+ih+( Apl+ih_zp1+6+ih)

PEY p>v’ pPSY p<Y

ZZPI-HS-HI: +0(1) =logl(1+d+in) +0(1),
»

where we put

1
0= logY"
Since

1
Z—=log logY+0(1),
S)"p
4

we get
1-cosp(h10g£) =log logy_log|c 1 +‘Lh)|+0
P<¥

Hence, we get

61
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sinz(ﬂ:arﬁg%)
logs—
. Z 2,7 2T —1og log(%)f*—-log|C(l+—-l-T+ih)|+O(1)
PG 2 rp *lo o
=logr*+log log%;-logl((1+——l T +in)|+0(1).
T*logg
Thus we get

ViaT,t*) =~1-2—{log (2ra) —Ci 2ra) —2ra-Si 2rna)
T
+r2a—cos (2ra) +14+C,}

+——12{logz'*+log log—277ﬂ_L_—log|C(1+—1 T +ih) |
T *
T long

+Ci 2ratr*) —log Crar*) —C,+0(1)}.

This implies that

7 (@,T.0%) == (log logt-—logl¢ (1 +———+ik) [} +0 (—5) +0 (1)
s 2m ¥logL- ar
82r

=i2{1og logT—log|C(1++T+ih)|+O(l)).
T *
T logg
Since when logT € a<logT, we have
logIC(l+—1—T+i}1,)|=O(l),
r*logﬁ

we get the following as a conclusion.

Theorem 1. Suppose that T> T, and fi—é 7¥<1. Then we have
0, 27[

V(a,T.t*) =

#{log (2ra) —Ci(2ra) —2ra-Si 2ra) +w?a—cos 2ra) +1+C,+0 (1)}

if 0<a=o(logT)

y
%{mg logT—log|{ (1 +— 7+ 2”‘; )[+0()}
T T*logy - logy

if logT<a<TlogT.

Remark 1. Theorem 1 can be simplified a little bit. We suppose
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that 1< A< T. By p.135 of Titchmarsh[26], we get

logl (1+

1 oy .
logY+m) logl (1+ih)

1+—L #7 ) 2. L 2, 1
:f logY_C_(0_+ih)do_<< (logh)3- (log logh) 3 < (1ogT) 5" (log logT)B'
1 ¢ logY logY

Hence we get

1og|C(1+E%J+m) |=loglC (1+ik)|+0 (1)

if
loglogT\1 ,
(—-——lOgT V3L o,
Thus under the condition
log logT \ 1L %
(—_logT 13K 7¥K,
we get
Vi, %)

-

;[1;{1og (27a) —Ci (27a) — 2mar-Si (27ra) + P — cos (210) +1+Coto (1))

if 0<a=o(logT)

2mo

T
log—27I

#ﬂog logT—logl{ (141 +o)}

if logT<a< TlogT.

We understand from the above argument that when 0 <a<logT, then we need

only such condition as Iﬁgi—ﬁ L.
OEZ(‘

Remark 2. By p.135 of Titchmarsh[26], we know that for ¢>¢,
—1~——<< (logt)%- (log logt)%
C(1+it)
and

C(1+it) € (logt) 3.

Hence for t>t,, we get
log|C(1+it) | S%log logt'l-%log log logt+1logA <log logt—A.

If we assume the Riemann hypothesis, then it is well-known (cf. Theorem 14.9
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of Titchmarsh [26]) that for t>t,
log|C (1+it) | €log log logt.

3. The evaluation of a simplified number variance

3-1. A simplified number variance. In the previous section, we
have seen what the Berry Conjecture claims. In the present section and the
section 5, we shall see what we can prove with respect to the Berry
Conjecture.

We start with noticing that

Via,T) =%LT(S(B(I+%))—S(B( _%)))zdx+0(log;T)’

since

Lrogt—oL+ Lo +s(1)

N(T) =75 logg =5 +3

as is mentioned in the introduction. We have not touched the last integral
directly. However, we have given much study on the mean value

[T+ —s () ur,

log—zn

which can be considered as the first approximation of the last integral and is
called a simplified number variance in this article. We notice only that when
we put t=B(x),

Bla+a) ~1+-%

logz—n_‘
Moreover, we have mainly given much study for a shorter
2na

T
log—zn,

In this section, we shall evaluate the mean value

[Ts6+2%) —s ()t
0 log%

for the whole range of a and prove that it coincides, essentially, with what the
Berry Conjecture claims.
In the section 5, we shall give our study on the original number variance.
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L[ sBa+) -sBa—9)) k.

3-2. A simplified number variance for a shorter a and the
Montgomery Conjecture. In this subsection, we shall recall that the
simplified number variance for a shorter «& is connected with the Montgomery
Conjecture.

We recall first that under the Riemann Hypothesis (R.H.), the author [6]
[7] has shown, by applying Goldston [13], that

_/;T (S(H——Z’%) ~S@t))%t

log—2 T

= L=ty [T (1 —cos (2raw) da+o (1)),

for 0<a=o0(logT), where F (a) is the Montgomery's sum [22] defined by

l 1 4 ’
(.21;.[.) ia(r—-r )w (,r_ Y ) )

Fl@)=F@T) =
-Z—njlogToq_r'sr

7 and 7" running over the imaginary parts of the zeros of {(s) and

4
444

w(t) =

With respect to F (a), Montgomery [22] and Goldston-Montgomery [14]
have shown, under R. H., that for 0<a <1,

_ log logT loglogT\\ T\ 3 T
Fl) =a+0(/ logT Y+ (140( logT ))(Zn log —.

For a =1, Goldston [13] has shown, under R. H., that
f F—(g-)—da i1 bounded.
1 g

For an individual value of F (a) for a> 1, Montgomery [22] has
conjectured the following.

Montgomery’s conjecture.
Fla)=140(1) for a=1
uniformly in bounded intervals.

Thus if we assume R. H. and the Montgomery's conjecture on F (a), then we
get for 0<a=o (logT),
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[T e+ —s @) ar
’ logﬁ

=-7[I2—{log (2ra) +C,—Ci(2ra) +1—cos 2rna) + nla—2ra-Si(2ra) +o(1)}.

The right hand side is nothing but the GUE part of the Berry’s formula in
the Berry Conjecture mentioned in the introduction. Moreover, the present
range of @, namely, 0 <a=o (logT), coincides exactly with the range of a of
the appearance of the GUE part in Theorem 1 in the previous section.

It is highly probable that the higher moments (cf. Theorems 2, 2’ and 3 in
the subsection 3-3 below) of

S(t +—2~”—%{~) —s@)
logz—n_

might be the same as those comming from GUE.
We should recall here another approach. It has been observed by
Gallagher-Mueller [12] that

[+ =N )2

T
logb—zn
2ra ’ g
= Z m2(7)+2f‘°g% Z ‘1du+0 (log’T)
logyz 07T R

for 0<-2%-<1, where T>T,, the dash indicates that we sum over the different

s
v's and m (7) denotes the multiplicity of 7. Concerning the integrand in the
right hand side of the above equality, we have the following conjecture due to
Montgomery [22].

Montgomery’s pair correlation conjecture. For any a>0,
LT f"‘ _(sinTty,
l—zn_logT{ . (1-( p )2 dt+o(1)}.

0<y,y'<T
0<p—y <-20a

logﬁ
As is noticed by Dyson, the density function

_/sinmty,
1- (SIAf
is exactly the density function of the pair correlation of the eigenvalues of

Gaussian Unitary Ensembles. :
By the Riemann-von Mangoldt formula for N (T), we see that for any
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= q=L Tf"‘
I_Z Z 1_27'[10% odt

positive o

0<ry'<T 0<y<T T_ng_$f<7
0<y—7r'< m; 1032—7;
wqa
2ra
+ Z S@)=SG="")) +o(D).
0<7<T log‘z’—

Since, we [7] have shown, under R. H., that for ¢ < T4

S(y+a) € TlogT,

0<y<Tr+a>0

we get

A=tz [ “ar+0(1)
2 C2m Jo )

0<ryY'<T
0<y—y'< m_;
loggz

Moreover, we (cf. pp.242-243 of [8]) have seen that the following is
equivalent to the Montgomery’s pair correlation conjecture: for any a>0,

_ 2n«x f smn’t )2
), S =72 = Logs [ S 24, 1)),
0<7<T logzﬂ.

Now Gallagher-Mueller’s Theorem 1 in [12] shows that if the
Montgomery's pair correlation conjecture holds uniformly in each interval
0<ap<a<a;<oo, then we have

Z m?(y) ilog2 (1+0(1)).

0<r<T

Moreover, combining this with their observation mentioned above, they show
in the same Theorem 1 under the Montgomery's pair correlation conjecture
that for any bounded «,

T .
f (s(t+—2&>—s<r))2¢u:f (S, (-2 5. ()2
0 T 0 T

log—zn, log‘—zn

=Tf_ min (|a ,

sinma
=)

2da+o(T).

It is simple to see that

© sin7a \ ,
f_mmm(|a|,a) (—m )4da

=%{log (2ra) —Ci(2ra) - 2ra-Si 2ra) + rla—cos 2ra) +1+C,)} .
T
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To close this subsection, we may stress that Gallagher-Mueller’s range of
a is Ci<a<C:; with some positive constants C; and Cz, while our range of «
is 0 <a=o (logT). This difference is important when one sees the Berry
Conjecture, in particular, our Theorem 1 proved in the section 2.

3-3. A simplified number variance for a whole range of a and a
comparison with the Berry Conjecture. Here we shall evaluate

[T+ —s 1) ar

log*—zn,

for the whole range of a with or without assuming any unproved hypothesis.

We denote ~“"F, sometimes, by k.
logo

More generally and more recently, the author [10] has shown by refining
the previous results that for T>T,, for h in 0 <A <KT and for any integer k in

1<k<30 we have

2Fk!
(277) 2kp1

+0 (T (Ak)*{ (Cin (hlog%) —Cin (hlog2) )+

fo (S (+h) =S (1)) = 247 (Cin (hlogs) —Cin (hlog2)) *

+ (Cin (hlogz—’;) —Cin (hlog2))* *log log (h+3) +&*

+ (log log (h+3))*}).

To compare our results with Berry’s V(a,T,Z‘*), it might be better to
start with the following result which is written down in pp.182-183 of Fujii
(10].

2k

mz"T:""‘O( T (Ak)* (R +5%1)),

foT(s(t+h)—s<n)2mt=

where we put

——_—
=
ot

8y

(2) EZI_—“CQ%)("ﬂgL)'

p<Z

Z= () ¥ with some positive constant b and the dependence on the integer
k=1 is written down explicitly. We suppose above that

T
%3m0
5 < log2 -

By our analysis given in the section 2, we see that for 0 <a<logT,
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1—cos(hlogZ) |, 1—cos (hlog2)

£=Cin(2n ZlogZ log2

w}%) —Cin( 2”3{ log2) +R (2)
logﬁ

f R sm(hlogt dt+f R (l—cos(hlogt))(logt-l-l)dt

=log(2ra) +C,—Ci(2na) —Cin( T log2) +0 (log (3k))

%21
— hl 1—
+R(Z)1 ch( ogZ)+ colzgélogZ)
ZR()
— ———sm (hlogt)dt+ | Plogh (1—cos (hlogt)) (logt+1)dt

=log (Zn’a) C1 2ra) +CO+O(log (3k)).

When logT €a< TlogT, then we have
- - 1
£(2)=5(T) +0( ) )

min (T, (L)f) <p<ma\'(TA(L)f)

=log logT —log| L ( ]+ +1h [+0 (log (3k))
=log 1ogT—1og|c(1+m)|+0 (log (3k)),

since we have for fixed b,
loglC (1 +~—~+zh )| —loglC(14+in) |« logh~<<1

This implies the following result.

Theorem 2. Suppose that 0 < “’“; LT. Then we have uniformly for an

T
integer 1 <k Lkl

[T s e+ —s )t
o8

2k

mZk (log (27a) —Ci 2ra) +Co)*

+0(T(Ak)*((log (21@) —Ci (27a) +C,) * 2 +1*))
if 0<a<logT

=1 (2—2)2-,‘-;2"F(10g logT —log]{ (14+i—2E& 7D

]0g27z

O (T (Ak)*((log logT—logl (1+ 2”?\ )] "‘%-{-k"))

log3z

if logT <a<TlogT.
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In particular, when #=1, we get the following.
Theorem 2. Suppose that 0<- 228 &T. Then we have

27r

NGB O
ot

f
P{log(Zna) —Ci(2ra) +C,+0 (V1og Cra+3))}

if 0<a<logT

—T;{log logT—log| (1+i 2”? )|
T

= logy

+0( | (loglogT —logl{ (1+i 2ra )|))}
==

if logT<a< TlogT.

Thus we have obtained the same main term as V (a,T,7%) as far as a is
sufficiently large (cf. Theorem 1 with Remark 1 above).

If we assume the Riemann Hypothesis, then by modifying Selberg’s
argument in pp.179-203 of Selberg[25], we get for each integer k=1,

2ra 2k!
+ 2k‘ _— e
f (St logT) =S (1)) dt )
2m

2kTE 4+ (TE*1),

This together with our evaluation of & described above implies the
following theorem, where we omit writing the dependence on k.

Theorem 3 (Under the Riemann Hypothesis). Suppose that 0<ﬁ<< T.
Then we have for each integer k=1, &

[T +-21% ) —s ()t
0 log7
2k
(27) *k!
0 ((log 2ma) —Ci 2ra) +C,) 1 +1) }
if 0<a<logT

2*T{(log 2ra) —Ci Qra) +C,)*

= 2—2"T{(log logT —log|{ (1+3

2T\ |y &
e 1)

o5y

+0 ((log logT —log|C (1+i 2ma )|)" 1}
log*z7r

if logT<a<TlogT.
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In particular, when k=1, we get

Theorem 3 (Under the Riemann Hypothesis). Suppose  that

0<% 2% &T. Then we have
Zrt
-

—{log (2ra) —Ci(2ra) +C,+0(1)}

if 0<a<logT

[ s+ —s @)= 7

2
logg— ——{log logT —log|{ (1+i~) [+0 (1)}
lOgZ—
L if logT €a< TlogT.

One sees in Theorem 3’ or also in Theorem 2’ that we do not have an
asymptotic formula for the case when 0<a<1. To recover this case, we pick
up some of our results mentioned in the previous subsection, combine it with
Theorem 3" and get the following Theorem 3” and Theorem 4.

Theorem 3° (Under the Riemann Hypothesis). Suppose  that
0<#%LT. Then we have
0821
T
[T s+ —s @) ar
log——zn

(T 2ra ] —cosa | *F(q)
T st gy [TEU) (1 cos (2a) dato (1))

if 0<a=o(logT)
2ra

—*{log logT —log|C (141 )|+O(1)}

025

if logT€a<TlogT,
where F(a) is defined in the subsection 3-2.

Theorem 4 (Under the Riemann Hypothesis and the Montgomery
Conjecture on F(a)). Suppose that O<|Zg"i<<T. Then we have
8or

%{log(Zna) —Ci(2ra) —2ra-Si(2ra)

+ r2a—cos @ra) +1+C,+0(1)}

T . _
fo (S(t+ 2”(;,)-—5(”)2,1;:{ if 0<a=o(logT)
“F2n L {log 1ogT—1og|{ (1+4 2”“ )|+00
i ok

| if logT € a< TlogT.
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The right hand side is exactly the right hand side of V (a,T,c*) given in
Theorem 1 with Remark 1. We may repeat that even without assuming any
unproved hypothesis, the main terms coincide in both our mean value theorem,
namely, Theorem 2/, and V (,T,7*), as far as « is sufficiently large. For
0<a<1, we need the Riemann Hypothesis and the Montgomery Conjecture as
described just above.

In the section 6, we shall give the graphs of

#{log (2ra) —Ci(2ra) —2ra-Si(2ra) +m?a——cos 2ra) +1+C,}

and
!
——Z*%k——Z" {log logT—log|C(1+4 2ray A
(27) 2*E! | T
°8or

for the various ranges of a, certain T’s and for k =1. We should compare
these with the empirical datas given by Odlyzko [23] and also the graphs in
pp.404-406 of Berry [1]. We could say that we have succeeded in giving a
theoretical proof to explain the phenomenon shown in the empirical datas
given by Odlyzko[23].

4. A discrete version of the Berry Conjecture

4-1. A discrete version of the Berry Conjecture. Here we are
concerned with a discrete version of our problem.

In stead of the function B (¢) in the Berry Conjecture, we shall deal with
the quantity g, defined by

99y =xm for x=-—1,

where 9 () is defined in the introduction. We denote g, by G (x) and use
both notations. In view of the results mentioned in the subsection 3-3, we
may state a discrete version of the Berry Conjecture as follows.

A discrete version of the Berry Conjecture. For M> M, and for
0<a<iM, we have

(N(Gm+a)) —N(Gm)) —a)?

1smsM

Mz{log (2ra) —Ci(2ra) —2ra-Si 2ra) + m2a—cos Cra) +1+C,+0(1)}
T

if 0<a=o(logM)

Mz{log logM —log| £ (141 27r]c\7/zl y+0 (1)}
T

o83z

if logM<La<M.
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We might replace N (+) in the above conjecture by N, () without
changing the other parts. We shall see below that we have a satisfactory
result for a sufficiently large a.

4-2. A discrete number variance for a bounded a and the random
matrix theory. In this subsection we shall recall some investigations
which are connected with a discrete number variance for a bounded a. It
will reveal again a connection of the distribution of the zeros with the random
matrix theory.

Special attentions have been paid to the case for «=1 long before. ¢n or
G (m) is called the Gram point. Gram [15] observed that the zeros of

{(3+it) appears exactly once in the interval [gm, gm+1) up to <50. In other
notations, Gram's observation or (Gram’s law) states that

N(@ms1) —N(g,n) =1 for any integer m in —1<m<8.
From Haselgrove's table [16], one sees that

g-1=9.666908--- <7, =14.134725"+- <90 <7:<9:1 <13 <G <74 <g3<7: <94 <76
<Gs<77<ge<78<g7<7:s<gs<710<99=051.733843-,

where 7, is the n-th positive imaginary part of the zeros of {(s). It appears
at first sight that this might continue to hold for m >9. However as we know
at present that many counterexamples have been found since Hutchinson [17].
In fact, we know that for positive proportion of m

N(@ms1) =N(gm) 22
and for positive proportion of m

N(G@m+1) =N (gm) =0
(cf. p.353 of Selberg[25] and p.393 of Fujii[5]). These lead to the following
problem (cf. Problem in Fujii[5]): to study the quantity

liml
M—-wM

GM (k,a)
for each k=0,1,2,--- and for any positive a, where we put
Gu (k@) =|{—=1<m<M; N Umsa) =N (gm) =k}|.

In fact, the problem and the conjecture were proposed by Kosambi [18]
for a slightly different choice of the sequence §,,+a and g,,. He was concerned
with the distribution of the number f,, (m) defined by

foa(m) =[{7s; L(yma) € ((m—1)bmb]}|

for any positive constants a and b, where L (x,a) for x=>a is defined by

x
Lra) =5 [ ot
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His conjecture states that the distribution is of Poisson type. More
precisely, for some b>0 and a>0,

1 e bt _
llmM|{1£m<M;fb,a(m)—k}|— for £=0,1,2-".

M—oo k‘
In pp.124-128 of [3], the author has shown that this is not correct for
b>b,>0 and for any a>0 (Cf. also Gallagher-Mueller [12]). Similarly, we
[5] can show that

e ok
1

Gir (ko) # p

Iimi
M—vooM

for some £=0 if a>a,>0, where we put
Gl (k) =[{—=1<m<M; Ny Gmra) =N+ (9,) =F}.

The computer calculations by van de Lune, te Riele and Winter [19] tells
us that for M=1500000000,

1 )

il (0,1) =0.1378...
1

MGM(LD =0.7261...
1

L (2,1) =0.1342...

and

%cM (3.1) =0.0018...

Concerning this problem, we [5] have once given the following conjecture.

Conjecture. For each integer k=0 and for 0<a<a,<o0,

1 _
LI-TOMGM(}?’Q) =E(ka),

where E (k) is defined below (cf. 2.32 of Mehta-Cloizeaux [21] and Mehta
[20].)
For 0<a<a,,
EQa=I10-2)

]

and for each integer k=1,

o Jon . A
Pha)=T10=4) ), 1252

Aj1< <A

where A;'s for 1 =0 run over the eigen values of the integral operator
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_ ('sin((y—x)ra) ,
Rf(y) _'/'—1 (y 7 f (x)dzx.
Numerical computations in p.350 of Mehta-Cloizeaux [21] suggests that
E(0,1)=017--, E(1,1)=0.74-- and E(2,1)=013:--

These should be compared with the datas given by van de Lune, te Riele and
Winter [19] mentioned above.

Moreover, it seems to be known to the physicists (cf. References in Mehta
[20]) that

ikE (ko) =a

k=0

and

Zsz (k,) =Z (k—a)’E (k) +2aZkE (k,x) —aZZE(k,a)
k=0 k=0 k=0 k=0
— «a, Sin7Tx \ , 2
a 2]; (a—z) (& 5)4dx+a?.
To understand, more easily, the connection of the discrete number
variance with the above conjecture, we shall first modify the above conjecture
as follows.

Conjecture (+). For each integer #=0 and for 0<a<a,<o,

1
LIEL'MGXJ(I?,Q) =E(ka).

Then we shall show in the subsection 4-5 under the Conjecture (+) that
for any bounded a(>0), we have

Z (S+ (gm+a) _S+ (gm) )2

n<M

~M#{log (2ra) —Ci(2ra) —2rna-Si 2ra) + mla—cos 2ra) +1+C,).

The right hand side is nothing but the GUE part of the discrete version of the
Berry Conjecture for a bounded a.

On the other hand, our unconditional Theorem 5 in the subsection 4-3
implies, as a special case, that

i Z (S Gmea) =S (gm))2~#log (2ra)

2 %SMSM

as a— and a<logM. This certainly supports the discrete version of the
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Berry Conjecture for a sufficiently large a.
We understand that there is a gap between

Y. (St Gmra) =S4 (9))?

mSM
and

). (5 Gnra) =S(gm)?

m<M

Furthermore, we understand also that to get the following asymptotic
formula, which is a consequence of Conjecture (+) and the formula

2oi-okE (ko) =a,
Z (N+ (gm+a) —Ny (gm)) ~aM

even for 0 <a <1, without assuming any unproved hypothesis, seems to be
very difficult. Since it says that

Y Ve —Na@)) =), ) d~am,

mE<M m<M m<%\9(7)5m+0'

namely that
the sequence %19(7,,), n=123 is uniformly distributed mod one.

In fact, the last statement has been conjectured several times (, for
example, p.219 of Fujii[11]), although we[4] have proved, among others, that
a slightly less fast increasing sequence like

anlong n= cee
log log log log log log7y,’ n=no+1,no+2, no+3,

is uniformly distributed mod one for any positive constant b.

4-3. The evaluation of a discrete number variance. To study the
problem mentioned in the previous subsection theoretically, we need to
evaluate the mean values

Y (N ea) =N (g))7

for each j = 1,2,3,-- and for any positive a. It is exactly to evaluate the
following mean values.

Y (S Gmea) =S (gm))?

mE<M

for each =1,2,3,":* and for any positive a.
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We have announced the following theorem in [3] and [5]: for any integer
k21, for positive a<logM and for M>M,, we have

Y. (S Gea) =S (g))

mE<M

=— 0 (2log (a+1))*+0 (M (AR ¥ (k+ (log (a+1)) D).
(27) 28!

We can replace S(-) in the above result by S, (+) without changing the
other parts.

These results are strong enough to conclude, among others, three results
concerning

N(gm+l) _N( m)

and

1
})BLMGX? (ka),

which have been mentioned above (cf. p.393 of Fujii[5]).
When k=1, a—0 and a<logM, then the main term of the above theorem
coincides with the main term of a discrete version of the Berry Conjecture.

When 0 <a <M~ with a positive constant 3 <n <1, we can extend our
proof in [3] and [5] and prove, in fact, the following theorems.

Theorem 5. Suppose that M> M, and 0 <a <M with a positive
constant <9 <1. Then we have

o #{Iog (2ra+1) +0 (Jiog[@F 1))}
if 0<a<logM
%{log logM+0 (/1og logM ) }

T

Y (S mta)=S(Gm)*=

%Sm <M

M
2

if logM<a<M"™.

2ra

When we treat the separated case G (m) +-"5; in stead of G (m+a), then

logﬁ

the problem becomes simpler and we have the following finer result.

Theorem 5'. Suppose that M>M, and 0<a <M. Then we have

Z (S(G (m) + Zﬁﬁ)—s(c(m)))z

M
Yemam lOggn
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m|§

77% log 2ra+1) +0 (Vlog Cra+1))}
if 0<a<logM

—1—{log logM —log|{ (14— Zna )|+O( log logM —log|C (1+i 2ra )!)}
i 01 087

I
SIS

if logM<a< M.
Theorem 5 corresponds to Theorem 2° in the subsection 3-3. Theorem 5

will correspond to Theorems 6 and 6" in the section 5.
We can certainly extend our theorems to the higher moments, namely,

Z SGm+a)—=S(Gm)))*

M w<m

or

Y (sGm) +TE) —s (G ),
Yensm lng—

although we shall omit writing them. We can also replace S () in Theorems
5 and 5 by S+ (+) without changing the other parts.

In the subsection 4-4, we shall give the details of the proofs of Theorems
5 and 5 as much as possible for completeness.

4-4. Proof of Theorems 5 and 5'. We shall prove Theorem 5 first.

We start with the following Selberg’s explicit formula for S (t) (cf. p.250
of Selberg[25].)

Lemma. Suppose that M> M, X = M® with a sufficiently small positive
constant b.  Then for any M’%St, we have

s=sL Y M}+o|}jJHl g;l’;,,l

<X 3p

+0( Z Ax(p?) 2”) O((ox,l—"%)logM)

p<x2
ox—% 1o QE g \Xp
+O((0x.t X( ! )f Xz |Z <1721f(X ld

p<X3

wheve we put
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(An) for 1<n<X
3 2
o (10%)2—2(10%)2 - )
A ,  X<n<X
Ax) =1 2 (logX)? for X=n
3
(log™-)?
Aln) —"— X2<p < X3
(n) 2 (10gX)? for n

and

_1 1 2
X,—2+2m§1x(,8 X logX)'
0 rumning here through all zevos S+iy of {(s) for which
¥3 B——l

logX -

In stead of ¢, we write G (x). By the above lemma, to evaluate the sum

lt—7l<

5= ) (S(Emta) =SG )

7” m<M

we need to evaluate or estimate the following sums.

sim ¥ 1 Yol 5o 7 (Fasly,

b

Mewsn  p<x3 Monem p<x3
|Zk Sy = lZI.
IG(m) 3 tG(m+a) !
M P M P P
751»13\/ p<X3 S<mEM p<X3

|2k S [ ‘Zk
1+°x(,(m) 4 1+21G(m+a) ’
p< Xz

—’ZL <m<M —-Sm<M

. 1 _1
55= Z (UX,G(m)_g)USwX'G(m' )

'z—lSm <M
and

1 1
r— E _dyveox -1
Ss'= (Ox.com+a 2)“5 oxGomrar=y),

M
=<
5 <m<M

where we put

1 1

piG(m+a) _piG(m) ’

Am (P) =
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la (p)l<<—ng for p<X®,

la’ (p)| €1 for p<X%,

oo~

k=1 and 2, v=2 and 4, 1 <ESX* and X*E2< (romp)
We shall estimate S; first.

Um §21) A (P2)
Z Z Vo2

—sm<M PrLpa<X3

) Z——P—“m()|2+ oY b I 00 =SS+,

say.
Mnsmy p<x3 Mnsm pepa<xs
Since for 0<a< /M
2
G m+a) =G (m) +aG’ (m) +%G”(m)+”'=G(m)+aG'(m)+O(Mla ZM)
0og
2ra a?
=G(m)+ +0( o
10g~62<—’7;‘) MiogM | M

we get

—zz Z 1—cos ((G m+a) =G (m) ) logp))

—Sm<M b<X3
=2 ), )0
—cos ( N G( )Iogp))
—SmSM P<X3 g 277_-
o
a4
Z Z MlogzM MZ))
—-SmSM p<X3

2

The last remainder term is O (M) under the condition 0 <a< /M.
To evaluate the first sum, we shall use the same analysis as in the section
2. When

0<a<logM,

we get

2
Z —(1—cos %logﬁ))
log 2T

D<X3

___f’“l—cos (h (m) logt) 2+ R () 1—cos (h (m)logX®)
2 tlogt X3logXx?®

1—cos (h (m)log2) CR@M) .
+ log2 h(m)j; tlegl’SIH (h (m)logt)dt
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+ fz Xstfkftg)zt (1—cos (h (m)logt) ) (logt+1)dt,

where we put

o) =25
lo 5
pis
We have
f“”l-cos (h (m) logt) dt=Cin (h (m)logX®) —Cin (h (m)log2)
2 tlogt
and
Z Cin (h (m) logX®) _—log(era-I-l) +0M).

—Sm M

Hence, we get

Se=M o100 Qrma+1) +0 (M).

2
When
logM €L a & VM,
we have
1o, 2ma -Vi,4_
Zp(l COS(]O G 0m )logp)) Zp(l cos (h (m)logp) ) +0(1)
p<X3 27t p<M
1
_Z Z l+xh(m)>+0(]')'
p<M D<M

When logM € a<log?M, then

21 Z —— 1og1ogM—1og|c(1+IO;M+m(m))|+o(1)

P<M p<M

=log logM —log|C (1+ih(m))|+0(1).
Since h (m) <logM, we have
log|{ (14ih (m)) | <log log logM.

Hence, we get
M
Se——z—Zlog logM+ 0O (Mlog log logM)..

When logsM < a< /M, then since
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a2 ( 2ralogp )
log——c (m)
2r . calogh

dm? " M2og?M’

we get by Theorem 5.9 in p.104 of Titchmarsh [26]

- 1 «/alogp MlogM
th(m)logp<< Z )
,;, Z M yiognt  atogy) <M
—Sm>M

Thus in this case we get

Se= ]‘24 2log logM+0 (M).

Hence, we get

%{mog Cra+1)+0 (1)}

if 0<a<logM
Se=1

%{ZIOg logM +0 (log log logM) }

| if logM<La< /M.

We shall next estimate S7.

S$;= Z ;/—Pl—a— z am(f)l)l—l—m(fk)-

pr#p2<X3 2 Me\<m
2 m

The inner sum is

= Z e(—G(m-l-a')logﬁj)— Z ¢ (=G (m) loghy+G (m+a) logps)

%SmﬁM %’"SWSM
— Z e (—G (m~+a)logpy+G (m)logps) + Z e(—G(m)log%;).
MTS»11$M

H<nzm

Each sum on the right hand side is of the form

Y elrm),

Me,<m
2

where e (x) =¢?™*,

f@) =6 @ +a)AtG ) Ar and |Ai+Ad=]logl]
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Since
f”(m)z—cl(m)a(l'.' L +) (A1+Az)
G (m) 247G2? (m)
G m+a)?d 1
—{ 4.
G(m+a) ( 247G (m+a) )
G’ (‘M)a 1 JA1+A2| CYLA1|
— +-)1A = +
Glm) " 247G? (m) A Mlog®M — M?log*M’
we get
llog?:|
fm) =——L2
Mlog“M
provided that
ak M ,
X3logM
namely that
a M-

with some positive constant 3 <7 <1. Hence by Theorem 5.9 in p.104 of
Titchmarsh [26] again, we get

1 M Mlog*M
S, < / + <M
! Z vP1p2 ( logM |log‘h| )
j2p)

p1#p2<X3

where 6 denotes some positive constant <1.
Hence, we get

M 2log (2ma+1) +0 (1))
if 0<a<klogM
%{ZIOg logM =+ 0 (log log logM) }

if logM<La M.

Sz can be estimated in the same manner as S; and get
S &K M?.

Next, we shall estimate Ss.

= a(pl)n.a (pk)a_@k*'l)"'aT(ka) beat Do i6om
53 ;PIZDM */m ( pl-..pk )

<<Z Z la (Pl)p!j:::lp‘i(pk) |2

m pr-pk=pk+1-p2k
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Pk+1 P2k ) iGom)|

*Zm

Prpr#Pk+1-+p2k

=Ss+Sy, say.

SS<M(ZM§)—E)"<<M.

p<X3

Se can be estimated as S7 and we get

k+1"""P2k
1 Milogle= R J/Mloght

Sg<< Pl"'Pk _|_
2k+1 EZk'

0
/by par ( logM )<<M.

wPk#EDk+1D2k \/ |log

Hence, we get
S3&KM.
Similarly, we get
Sy, Ss, S KM.

Finally, we shall estimate Ss. By the definition of ox,cum, We get

Ss&L——=—=+S1o,

(gX)

where we put
S10= Z’ (O'X,c(m)—%)vg(gx,mm_%)
Mnsm
and the dash indicates that we sum over all m which satsfy

1 4
OX,6m) _§> logX'

Now
X3(ﬁ—%)
510<<Z uéZ(B——)'{—<m<M 1G (m) — 7] < ok }]
B+ir
3<B—l>
—=) 28— X P72 logM
<) p-preeb EEeM o))
B+ir
& Z X3§2) (B——)__w_}_ Z ___) usz(ﬁ—
B+ir B+ir

=Su+Sw, say,

where the double dash indicates that we sum over all 8+i7 for which
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e M
B>= +ng and "= Toght
4 B
512=Zﬂ ((log&?) (0_%)V+V(U_%>u—l)52(0_%)(10:5‘13"‘514. say,

g+ir 2

where in Si3 we integrate over the interval (%-i-ﬁﬁ] and in S14 we integrate

over the interval (3,3+1ax).
We have, by Selberg’s Theorem 1 in p.232 of [25],
1 1 2 AM M
N(_+ Ty [
(logX)¥ 2 logX IOQM) (logX)¥

Sk

where N (0,T) denotes the number of the zeros B+ iy for which > ¢ and
0<y<T.
In the same manner, we get

S [, (10g8?) (0=5)+vlo—g)exd( Y Do

.2~+BH /5>0r“—_'31;[wl-
- 2 _.._1_ v _l v-1 —-—(o—-)
[, (os) (o= +v (0= )" (i “He-bao
< M—‘
(logX)¥
Hence, we get
M
S X :
12 (logX)“
Similarly, we get
(logX)¥
Hence, we get
M
S5,55 € :
"7 (logX)”

Combining all of our estimates, we get

% #{log(Zn'cH-l) +0 (Viog(a+1))}
if 0<a<logM

M—{log logM+0 (Vlog logh) }

' if logM<a< M,
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This proves Theorem 5.
We shall next prove Theorem 5. In the present case, the treatement of
Se and S7 becomes simpler. Now since

1 T
am (P) =m(pﬂl§g—M—-]‘)
p
h(m) = 2ra
log*éE

in the evaluation of Se.
Thus we get, as in the section 2, when 0 <a<logh,

Z Z 1—cos (h(m)logp)) +0 (M) = %Z]og Qra+1)+0M).

<,,,<M D<M

When logM L a <M, since

2ro

Z%(l—cos (h (m) logp) ) =log logM —log|{ (141 )|+O
p<M log“g—
we get
SG=A—2/[‘2 (log log!Vf—log|C(1+i“2n]C\(/[‘)H‘O(m-
log‘g
Hence, we get
M
—2*{210g(27ra+1) +0(1)}
if 0<a<logM
S.:4
° %Z{log logM —log|{ (1+4 2ra )H—O
02
| i logM<a <M.

Furthermore, in the estimate of S5,
Flr) =G (r) (4,44, with |A1+A2|=|log§l‘|.

Hence we do not have to assume that @< M*™" and get
S& M.

Consequently, we get
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’%{ng QCra+1)+0(1)}

if 0<a<logM

]
Mo {log log—logl€ (14 27y 4 6(1))
2 M

logb—2 7

if logM<La<M.
The rest is similar and we get our Theorem 5" as described above.

4-5. A supplement to the subsection 4-2. Here we shall give a
proof to the statement announced in the subsection 4-2. First of all, we
assume the Conjecture (+) in the following form.

G k) =ME (k,a) +0 (AkWA/]Im*) uniformly for a bounded «.

where A, is a constant depending only on k and @ (M)—00 as M— oo,
Let a be any bounded positive number. Using the Riemann-von
Mangoldt formula, we get first

) (S Gmea) =S gn))?

m<M

- Z (N+ (gm+a.) —N+ (gm) __a,)Z

m<M
= Z (N4 (gm+a) —N. (gm))2+a'2]\/[_2az (N+ (gm+a) _N+( m))
m<M m<M

=U,+a*M—2aU,, say.
Let L be a sufficiently large constant. Then we have
U= ) KGhka)= ) FGhka)+ ) KGH(ha) =UstUi, say.
1<k<LlgM 1<k<L L<k<logM
Applying the above conjecture to Us, we get first

Us=M Z FE (he) +0 (L Z k2A )

: : & (M) o

1<k<L 1<5k<L

Using the mean value theorem which has been noticed in the subsection 4-3,
we have

(N(Gm+a)) =N(G(m)))¥<MA’ (a+log (a+3) +j)¥

1Sm<M

uniformly for an integer j 21 and 0<a<logM. At the same time, we get also

N+ (Gm+a)) =N, (G (m))) Y <KMA' (a+log (a+3) +5)¥

1Ssms<M
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uniformly for an integer j 21 and 0<a<logM.
This implies that for any Y > 1,

Y Gk < ) (N, (Gon+a) =N (G )

¥ <k<log 1<m<M
KMA’ (a+log (@ +3) +5) 4.
Namely, we have for any Y >1,
Gir (k) KY"UMA’ (a+log (a+3) +5)%.
¥ <kClogh
Now

U= Z Z kG (kax)

PLlogM PL<K<2Y
oM

& Z 22b+2L2 Z G!Tl (k,a)

03b<10g(|—0iﬂ) 2L<k < logh

22b+ZL

< @07

0< b <l0g (128,

-MA’ (a+log(a+3) +5)¥

Here we take
Ji=max (a,y/log (@F3)), J.=max (a?log(a+3))
ji=max ([/;]1,2) and L=CJ,

with an arbitrarily large constant C and [J,] denotes the largest integer <J,.
By these choices, we get

ARRIC? 4 A, M
<<___£_ — b<<M_chZ 2<<_
S ] ZW (Goreney

On the other hand, since

a— 2_[ sm?tx)zd “f min (Ja],a) ( 51;(7;(1) da

=~—2—{log 2ra) —Ci(2na) —2ra-Si 2ra) + m?a——cos 2ra) +1+C,},
T

we have

3

Zsz (k.ct) =#{log (21e) —Ci (21a) —2ra-Si (21a)
k=1

+r2a—cos 2ra) +1+C,} +a?
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for any positive a. Thus for any positive €, we choose C sufficiently large
satisfying

| Z K2E (k) —Lz{log (2ra) —Ci2ra) —2ra-Si 2ra)
0<k<C/, T

+rla—cos 2ra) +1+C,) —a?<e

Since C can be arbitrarily large and € can be arbitrarily small, we get

Us=M (- llog (2ma) —Ci (2a) ~2mari (27c)
+r?a—cos 2ra) +14+Co} +a?) +o (M)
and
Us=0(M).
Thus we get
U1=M(;1;{log (2ra) —Ci(2ra) —27a-Si (2ra)
+m2a—cos 2ra) +14+Co} +a?) +o(M).

In the same manner, using 2i-okE (k.a) =a, we get
U,=aM+o (M).

Consequently, we get

), (1 Gmva) =S4 (g0))?

mSM

~M—l‘;{log (2ra) —Ci(2ra) —2nma-Si 2ra) + wia—cos 2ra) +14C,}.
T

5. The evaluation of the number variance V (o, 7).

In stead of V(a,T), we may evaluate the number variance
f_nr (NG (t+a)) =N (G (1)) —a) e,
2
namely,
| [, (G +a) =sG®))
2
where G (t) is the same as in the section 4. The same analysis applies to

[ B+ -sBE—9)u
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as will be seen below.

We shall indicate only how to modify and how to apply the same method
as in the previous section.

For this purpose it is enough to evaluate the following integral.

f |Z /E pxc<t+a) :G(n)lzdt

p<X3

where we put X=T? with some positive constant b. This is

T
— _1_f (2_ei(G<t+a)—G(t))logp_e—i(6(1+a)—G(/))Iogp) dt
Z: pJIT
2
p<X3

+ Z _f {—:G(rmnogﬂ —zc:(mog2

p#q<X3
e—l(G(Ha)logp—G(l)logq) _er(G(l+a)logq—G(!)logp)}dt

=V+V' say.

Moreover, it is enough to evaluate only the following integral, since the other
integrals can be treated in the same manner.

r.
V({)) EfT ez(G(t+a)—G(I))logpdt
2

Now we have

G (t+a) —G (1)) logh=aG’ (t)logp+0(a ‘Oﬂ’—)

2o
W—logf’ ol 2T —+ Tz) logp) .

Hence under the condition 0<a < /T, we get

Vip)= f ; e‘mi’r@“’g’dﬁo (( lOC;T +%) logp).
Since
11 [T=46"(T) 1
10gG2(7? 10862(77;) G (T) 0T  10g?T’

we get further under the condition 0 <a<logT,

+%) logp) +0 (L2108,

T . ona
Ve = [, enEn T

:%e' zg‘(’n 0gs 4 () (M)
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Hence, we get if 0<a<logT, then

—2 Z —(1-—005(1 Zg?T) logp)) +0(T) —%Zlog 2ra+1)+0(T),

p<X3

where we have used the same argument as in the section 2.
Suppose next that log?T < a</T. Then since

d* alog(p ~ «logp
2 G({t) '~ 121002T’

we see, by Lemma 4.4 in p.71 of Titchmarsh[26], that

TlogT
L—F—=.
Vi) valogp

Hence, we get

1 TlogT \ _
) v = @>—o<n.

17<X3

Thus we get when log2T<<a<</7_“

T 1 T
=—2—2 Z ;"'O (T) =§'Zlog logT+0O(T).

p<X3

Finally, if logT € @< log?T, then

22——2f log] (14+i—2TF% 2’“" \dt+o T)
p<X3 lo 27[

=%210g logT+0 (Tlog log logT) .

Consequently, we get
T{2log (Zna+1) +0(1)}
if 0<a<logT

V=1
%2 {log logT+0 (log log logT) }

if logT<€a</T.

The other integrals or the sums can be treated in the same manner and
we get the following theorem.

Theorem 6. Suppose that T> T, and 0 <a LT'" with a positive
constant 3<n<1. Then we have
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o=

n'i log Cra+1) +0 (Vlog(a+1))}
if 0<a<logT

[; (G E+a) =S (G 1)) ar=1
z {log logT+0 (/1og logT) }

o)
A=

if logT €a< T,
Similarly, we get

Theorem 6. Suppose that T> T, and 0 <a LTY" with a positive
constant 3<9<1. Then we have

[ sBE+D) ~sBE—9)) 4z

z

~llog(a+1) +0 (V1og 2ra+1))}
if 0<a<logT

i—{log logT+0 (V1og logT) }

Nl'\]‘
3 'H

0|~

if logT<ak T,

It is clear that we can obtain the higher moments of the above theorems.
It is also clear that such modified conjectures as

logT{f smnt )3dt+o(1)}
0<y 7' <T.
0<L9() ~29() <a
for any >0 and
11m7|{o<t<T NG ({t+a)) —N(G @) =k|=E(

T—oo

for each integer k=0 and for any a>0
give some information on our problem for a bounded a.

The former 1is consistent with the Montgomery’s pair correlation
conjecture if

‘1=0(TlogT).
0<y,r’<T. a
" a
log 1 ZT<T TSI log?L
%8x8 g oggy  log'yy

2ra __Aa

The latter is a continuous version of Conjecture described in the
subsection 4-2 and, in fact, has been proposed in p.394 of Fujii [5] for the
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separated case. It implies immediately as in the subsections 4-2 and 4-5 that
for any a>0,

[T s ura) -sce)u= [T NG t+a) =N 1) —a)r

=f0’<N(c (t+a) =N (G (t)))zdt—zafo’w(c (t+a) =N (G ®))dt+a?T

~T{Zk2E (k,a) —a?}
k=0

~ T#{log (2ra) —Ci2ra) —2ra-Si 2ra) + m*a—cos 2ma) +1+C.).
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Yoshida. Through the stimulating discussions with him on the present topics
and on the Epstein zeta functions, the original manuscript has become finer
and more precise. (The results on the Epstein zeta functions will appear
elsewhere.™)

6. Some graphs
6-1. The graph of
*iz—{log (2ra) —Ci 2ra) —2na-Si 2ra) + m2a—cos 2ra) +1+Co},

for 0<a<100.

20 40 60 80 100

*  (Added in proof) It appears in J. Math. Kyoto Univ. 36-4 (1996).
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6-2-i. The graph of

—ZE!—,‘—Z"{log logT—log| & (144 2zer ) [}*
(27[)2 k! lo T
gor
for k=1, T=10% and for 0 <a <20.
0.4}
0.3
0.2
0.1
5 10 15 20
-0.1
6-2-1i. The graph of
1
2—k',‘2k{log logT—log|C (144 21 ) [}
(27) 2P T
logﬁ

for k=1, T=10% and for 0<a<120.
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6-2-iii. The graph of

(—Zkzr—'Z"{log logT—log| € (1+4 2ra )|}"
0 log .

for k=1, T=10% and for 499900 < a <500000.

0.45¢
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0.35

499920 499940 49 96 499980 500000

0.25¢%

6-3-i. The graph of

%Zk{log logT—log| (144 27m )[HE
(27) 2k! log——
for k=1, T=10% and for 0 <a<100.
0 5 e —

20 40 60 80 100
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6-3-ii. The graph of

—-—2-’21—,‘—2" {log logT—1log| (1 +i—27m Y[}k
(21) k! logl
21
for k=1, T=10* and for 0 <a <1000.
0.6¢
0.55}
0.5}
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0.35
200 400 600 800 1000
0.25
6-3-iii. The graph of
| .
2—"",‘2"{10g logT—log|{ (1+4 2za )[}H*
(27) 2*R! 1Ogl
2r
for k=1, T=10% and for 4999000 < a <5000000.
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6-3-iv. The graph of

2k!

WZk{log logT—log|{ (1 +i——2*nf1¥,—) [}

log—27Z

for k=1, T=10% and for 49999000 < a <50000000.

7 7 7 7 V 7
4.9999 10 4.99992 10 4.99994ULO 4.99996 10 4.99998 10

0.35¢F
6-3-v. The graph of
A*Zk{log logT —log|C (144 2ra )|Hx
(277.') Zkkl lo I,
£2n
for k=1, T=10% and for 4999999000 < a < 5000000000.
0.55 |
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9 v 9 9 9 9
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