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Irreducible unitary representations of the group
of diffeomorphisms of a non-compact manifold
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Introduction

Let M be a connected paracompact C>-manifold and G=Diffo(M) the
group of all diffeomorphisms of M with compact supports. In this paper, we
construct new series of irreducible unitary representations (=IURs) of G, for
a non-compact M, by using a certain kind of product measures on X=
IlienM:, M:=M, and IURs of the infinite symmetric group @ of all finite
permutations on the set N of natural numbers.

1. The group G acts on X from the left and the group &. acts from the
right through permutations of the coordinates. The latter produces inter-
twining operators when we consider representations of G on L*-spaces of
©.-invariant measures on X or tensor products (with respect to some refer-
ence vectors) of natural representations of G on the Hilbert spaces LA(M.). If
we can decompose these representations into irreducibles, then we will obtain
many different [URs of G. Actually we do not proceed in this direction, but
our results obtained here can be viewed, at least from the spirit, as an infinite
version of the Weyl’s beatiful situation in [18] for finite-dimensional (holomor-
phic) irreducible reprensentations of the full linear group G'=GL(#%, C): for
the tensor product ®¥-, V;, Vi=V, of natural representation of G’ on V=C",
the symmetric group &~ of indices {1, 2, --, N} generates the algebra of its
intertwining operators, and thanks to this, there exists a natural correspon-
dence between IURs of &y and irreducible representations of G" with Young
diagrams of rank N (for any N=1). _

2. Let us explain our method and results more exactly. An element
(z:)ien of X is called an ordered configuration in M, if the underlying set of
points {x.}:en is a configuration in M or it has no accumuration points and x:
+x; (i#j). The set X of all ordered configurations can be viewed as a
principal bundle with a base set 2=X/G. and fibres .. We can introduce
on £ no suitable topology but rather good measurable structures consistent to
those on X, and then, to construct IURs of G, we can apply a version of the
standard method of associated vector bundles.
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We proceed as follows. Take a measure ¢ on M, locally equivalent to
Lebesgue measures, defined on the family My of all Lebesgue measurable
subsets of M. We call a subset of X of the form E=1]:enE:, E:EWMu, unital
if E/s are mutually disjoint and ux(E;)>0, Xenu(E:)—1|<o0. Two unital
product subsets £ and F=I].e~F; are said to be cofinal (Notation: E ~ F) if
Sient(E.OF;)<co. For any fixed E, we denote by M(E) the o-ring generat-
ed by the set of unital product subsets {F; F~E}. Then ve(F)=II:enu(F;)
can be uniquely extended to a measure on M(E) which is G«-invariant. This
measure ve is supported by X: ve(A)=ve(ANX) for ASM(E), and we get a
quotient measure on 2= X/®.. Using the measure vr on (X, M(E)) and an
IUR IT of @, we can construct a unitary representation 7r of G, attached to
such a datum X =(/T; i, E), by a measurable version of the method of as-
sociated vector bundles.

The irreducibility of Ty is proved in Theorem 4.1. The equivalence
criterion for any pair of such repesentations is given in Theorem 5.2. On the
way of proving the latter, we encounter an interesting problem, Problem 5.8,
on a series (c:;)ijen of non-negative real numbers satisfying the condition that
di=2ienc; >0, e;=2ienc; >0, and [liend:, [ ene; are unconditionally con-
vergent. (This (ci):;en can be said to be, essentially, a stochastic matrix of
infinite size.)

We remark that the case of I. M. Gelfand et al. [17] is nothing but the case
of principal bundle X - I'= X/G.. with S. the group of all permutations on N
and the space of all configurations in M. Moreover groups of diffeomor-
phisms themselves or their homogeneous spaces are also studied by several
mathematicians (e.g., [3], [4], [11]~[12]).

3. The paper is organized as follows. Section 1 is devoted to studying
product measures on X and measurable principal bundles X - Q=X/6. with
measurable structures determined by fixed unital product subsets £ and also
the structure of the group Diffs(M). In Section 2, we construct unitary
representations Tr for X =(II; £, E). In Section 3, we collect several lemmas
and propositions which are necessary to study irreducibility and equivalence
relation for Tz’s. In Section 4, the irreducibility is proved. In Section 5, we
establish the criterion for Ts=Ts, X=(1; i, E), 3'=(1"; 1, E’). The princi-
pal part of its proof is to get E'~ Eb for some HEB..

Acknowledgements. The author expresses his hearty thanks to Prof. A.
Hora for his important suggestions and kind discussions in the measure
theory. The author is also grateful to Prof. K. Nishiyvama who read carefully
the first draft of this paper and gave many valuable comments.

§1. Product measures

Let M be a C™-manifold, and Diff(M) the group of all diffeomorphisms of
M. For a gEDiff(M), supp(g) is defined as the closure of the set {p€E M; gp+
b}, and put :
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(1.1) G=Diffo(M)={gEDiff(M); supp(g) is compact}.

We equip G with the natural topology: a sequence g» converges to g if supp
(g) and every supp(g») are contained in a compact set C and g», together with
all its derivatives, tends to ¢g uniformly on C. In this paper, we study irreduc-
ible unitary representations (=IURs) of G assuming M to be connected and
non-compact. To construct IURs of G, we shall use product measures on the
infinite product space X=M"=[l.enM; with M;=M for {EN, where N
denotes the set of natural numbers.
Notation. For an open subset U and a subset D of M, we put

G(U)=Diffo(U) (the group is connected) ,
Go={9E€ G; supp(9)C D} .

Note that Gy =G(U) for an open UCM. Other important subgroups
G(E’) and G((E")) of G are defined in § 3.

1.1. Measurable structures on the product space X. Let us fix a
measure ¢ on M which is equivalent locally to Lebesgue measures, that is, in
each coordinate neighbourhood UCM, du is given as

du(p)=wu(p)dprdpa-dpn ,

where (p1, p2, ==+, pn), n=dimM, is the local coordinates of p, and wu(p) is a
positive measurable function. We assume that #(M)=o00 and further that wy
is bounded both from below and from above on every compact subset of U so
that u(K)<co for every compact subset K of M. The measure x is under-
stood as is defined on the family 9y of all Lebesgue measurable subsets of M.

In each component M;=M of X=1I1.enM., take a measurable subset E;,
and put E=Il:;enE:. We call such a subset of X unital product subset if it
satisfies the following two conditions:

(UPS1) Sien|(E:)—1|<o0 and u(E:)>0 (i€EN):
(UPS2) E: (i€ N) are mutually disjoint.

We denote by € the family of all the unital product subsets of X.
We introduce two kinds of equivalence relations in € as follows. Let E
=]l:enE: and E'=[l.e~E: be two elements in €.

Definition 1.1. FE is cofiral with E’ if the condition
(CF) Zient(EQE}) <
holds, and FE is strongly cofinal with E’ if the condition
(SCF) u(EOE})=0 for i>0 (sufficiently large 7)
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holds. Here E.©OE;=(E\E})U(E\E;), the symmetric difference.

Denote by E~E’ (resp. ExXE’) the relation “cofinal” (resp. “strongly

“ ”

cofinal”). The equivalence class for “~” in € contaning E is denoted by
&(E). .

Definition 1.2. A family U of subsets of X is called finitely additive if it
satisfies

(1.1) Aed, BEA — AUBEY,
(1.2) AEN, BEA = A\ B<Y.

A is called countably additive if it satisfies
(1.3) AU (n=1,2,) = U A, €N,

together with (1.2).

Let Mx be the countably additive family of subsets of X which is generat-
ed by the collection of the subsets of X of the form

(14) K=Tl:evK: with measurable K;CM.=M (iEN).

We denote by F(E) (resp. M(E)) the finitely (resp. countably) additive
family generated by €(E). Then we get the following

Lemma 1.1. (7) The family F(E) consists of finite unions of subsets of the
form

(1.5) E"\ (UEY)

with E' and a finite number of EY in G(E).
(i2) The family M(E) consists of elements in Mx which can be covered by
a countably infinite number of elements in C(E).

Proof. The first assertion is direct from the definition. So we prove the
second assertion. As is easily seen, it is enough to prove that a subset K of
X in (1.4) belongs to M(E) if and only if it can be covered by some E*€E(£E),
k=1,2,---. The “only if” part is clear and so let us prove the “if” part. Put
K®=E®NK, then

K®=T] (Ei(k)me):l.ifﬂ(lsl;[sj(Ei(k)ﬂK")) X(IT:5;E:*)

ieN
This means that K®€M(E). Q.ED.

1.2. Product measures. Take a unital product subset E=]]:envE: of X.
For any E'=Il:e~E} in G(E), we put
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(1.6) ve(E)=1Ilienu(E?),

where the (unconditional) convergence of the infinite product is guaranteed by
the condition (UPS1) for E’. Moreover we see from an extension theorem for
measures due to Hopf that the product measure on E’ of y|E: (iEN) is
uniquely defined. Therefore we have a completely additive measure on M(E)
extending ve on {(E). We denote it again by the same symbol ve. Since
every element in M(E) is covered by a countably infinite number of elements
in §(E), with finite measures, the extension is unique and for any LEM(E)

(1.7) ve(L)=inf{ 3} ve(E®); U EWDL, EVEFE)}.

Note 1.1. The measure vz on M(E) is o-finite in the sense that for any
BEM(E), there exist B,EM(E) such that ve(B,)<oo and B=UnenBn.

Now let F=]l:enF: be another unital product subset of X. Assume that
E4F (not cofinal) and compare the product measures vz on M(E) and vr on
M(F). We know that &(E) N G&(F)=0 and that, for any E'=Il.enEiEC(E)
and F'=Il.enF/EC(F),

ve(E'NF) =11 ient(EiNF{)=0
and similarly vr(E'NF")=0. Then, we get from Lemma 1.1 (ii) the following
Lemma 1.2. Assume EXF. Then for any LEM(E)NIM(F),
ve(L)=0 and ve(L)=0.

1.3. Actions of G and ©. on X. An element g G acts naturally on X
as, for x=(x:)enE X,

(1-8) gx=(gxi)iew .

Further, let ©. denote the infinite symmetric group or the group of all finite
permutations of N. Then 0€6&. acts on X from the right as

(1.9) J,'O':(I:')ieN with xi=xs) .

Then, since (o7) ({)=0(z(7)) for 0, rE6., we have x(or)=(x0)r.

These actions of G and G- on X commute with each other, and induce
those on subsets of X. First let g¢&G. Take a unital product subset E=
Il:enE: of X. Then gE=Il:engE: is also a unital product subset and gE ~
E. In fact, gE/’s are mutually disjoint, and putting Sy=supp(g), we have
E©OgE.CSy and so

ESgE:C(ENS)U(E:NSy) for any iEN .

Hence
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iEZN#(E{@gEi) = Z{};z(E,ﬂ So)+ Zﬂ(gEim Se)=2p(Sg)<o.

Thus we get E~gE.

For 0E€&., the situation is much simpler. In fact, Eo=[l:e~vE? with E;
=FEs and so Ei=FE; for :>0, whence Ecx E.

Thus we obtain, with some additional discussions, the following.

Lemma 1.3. Let E=Il:enE: be a unital product subset of X.

() For any g€ G, gE is cofinal with E: gE~E. And for any 0E€6., Eo
is strongly cofinal with E : Ecx E.

(71) The family &(E) is invarviant under 9= G and 6E G, and consequent-
ly so are the families F(E) and M(E).

1.4. Jacobians for the actions of G and G.. Let g€ G and E'=I]:enE;
€G(E). Then, g£’€6&(E) and
(1.10) ve(9E")= Il p(9EN= 11 f omn(g; xi)di(x:)
ieN ieNJE;

where

(111) pM(g;p>=% for pEM.

For x=(x:):enEE", let us prove that the infinite product
(1.12) pe(glx)=Tlievou(g; x:)

converges ve-almost everywhere on E’.  Since S;=supp(g) is compact, there
exist two constants Ci, C; such that

(1.13) Ci<ou(g; p)S C2 (pES,) .

Further pu(g; 0)=1 for p&S,. Therefore the infinite product (1.12) con-
verges for tEE’ such that x:% S, for almost all indices /EN (or except a
finite number of 7). Our assertion follows from

Lemma 1.4. Let E'€CG(E) and S be a measurable subset of M with finite
measurve. Put

E('s)_—‘{.l‘:(.l',')ieNEE,; r:&ES f07’ l>>0} .
Then E(sEM(E) and ve(E'\ Els)=0.
Proof. The subset E(s) is the union of

(I EDX IL(EN\S)

1=sis
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over N=1, 2, ---, each of which is cofinal with E’ and so with E. Therefore
Els) is in M(E) and its measure is given by

ve(Eis)=lim{ TI w(E?)- I (Ei\ S)}
= H z'EN/l(E;') = VE(E,) . QED

Now, as is seen below, we can rewrite (1.10) as

VE(QE/)ZL,PE(g|x)dVE($)

so that we get the following theorem.

Theorem 1.5. Let E be a unital product subset of X and ve be the
associated product measure on (X, W(E)). Then, for g€G and x=(x:)EE’
~E,

(1.14) %g;: pz(gl.r)ELINpM(g; x:) .

Proof. 1t is enough to prove that the infinite product Il:enyon(g; x:)
converges in L*(E’, dve|E’), because its L2norm is convergent accordingly.
Let us evaluate

Ina=| I1 Voulg; 2 = IL Vou(g: 2 liaen

for m<m. This is equal to
(JL #ED-(MmEN- TL [ |Voule z) —1Pdu(x)

Recall the evaluation (1.13) and put C=max{|V/C, —1, |V C: —1/%}, then
[ Woulg: 2 ~1Pdu(x) < C-(EiNS,)

Note that [T:evu(gE?) and I1:enu(E?) are convergent and 2);enC+ ( E{NSg) =
C-u(Sg)<oo. Then we see Inn.—0 (m, n—00), as desired. Q.E.D.

Note that the above proof follows the line of Kakutani [10].
Let us now consider the action of ©.. We can easily see that, for 0€ 6.,
there holds ve(E 6)=ve(E’) for any E’€E(E), and therefore that

(1.15) %= (zEE).

1.5. Relation to two kinds of configuration spaces. An element xr=
(z:)ienv in X=Il:enM:, M:=M, is called an ordered configuration in M if (a) x:
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#+x, for i#7, and (b) the sequence x;, /€N, has no accumulation points in M.
Denote by X the set of all ordered configurations in M. Here let us study the
product measure v in relation to X and Ge.

Recall that a locally finite subset of M is called a configurationin M. We
denote by I'y the set of all infinite configurations in M. Let G be the group
of all permutations on N: ©.DG.. Then, naturally X/G.=TIy and we have
a principal fibre bundle X - TI'y. Using this fibre bundle, I. M. Gelfand and
others have constructed irreducible unitary representations (=IURs) of the
group G in [17].

Let us begin with the following important fact.

Lemma 1.6. The subset X of X belongs to ?Rx. For any unital product
subset E, the product measure ve is carried by X in the sense that, for any L
EM(E), LNX is also in M(E) and

(1.16) VE(L)ZUE(LmX) .

Proof. Take a system of countable open base {U;},en of M such that
each U is relatively compact, that is, the closure cl(U;) is compact. Then X
is expressed as

| U {e=(x)eX|#{i|lc;c U} <N},
JEN 0=N <o
where #A denotes the number of elements of a set A. Therefore X belongs
to Mx.
By Lemma 1.1 (ii), every element in M(E) is covered by an infinite number
of EYeM(E), g=1, 2, ---. Hence, to prove the second assertion, it is enough
to prove it for L=EP=][l,enE/'”. Then

E9NX=N U E%  with

JEN 1SN<w

ES=CTI1 E/)X(IT(E/?\ Ur)) .
1s/=N iI>N 1sk=j

The subsets E{%X of E'Y are decreasing in j and increasing in N. Since
ve(E@)<co and p(U,)<o for any k, we get

)/E(E(q)ﬂX)zl.ifn }‘}_r.n ve(ESR)

=lim HN;;(E,'“”)=VE(E“”). Q.E.D.

Jj—=o;eN
The above lemma suggests that the measure ve can be considered on X
instead of X. Since the family () and measure vr are invariant under the
action of &, we may induce from v a measure on the quotient space 2=0u
=X/®.. Then, it may be possible to consider mo: X — Qu as a principal fibre
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bundle for the group &, and to follow the standard method employed for X
- Iy also in~this situation to construct [IURs of G=Diffo(M), which acts from
the left on X and so on I'ny and Qu.

Definition 1.3. A subset B of Qu is called E-measurable if mo '(B)
belongs to M(E). The set of all E-measurable sets is denoted by Me(E).

The measure ve,q is defined as follows: for a measurable BC Qu, take a
Sfundamental set LEM(E) for B such that

(1.17) e '(B)=Uoee.Lo (disjoint union)
and put
(1.18) ve.o(B)=ve(L).

Then this value does not depend on the choice of L. Hence we should prove
the existence of a fundamental set L.

Lemma 1.7. For any BEW(E), there exists an LEWM(E) satisfying
(1.17).

Proof. Since mo™'(B) is in M(E), it is covered by a countably infinite
number of EY€&(E). Put L,=E'PNnre '(B). Then, for any ¢, Lo (0€
G.) are mutually disjoint because E‘? satisfies the condition (UPS2). Now
set for ¢g=1,

Le=La \ ag@m(lsLj%qu)G

and L=1Ili<¢<wL% Then, Lo (6€6.) are mutually disjoint and 7o '(B)=
Ho‘e@mLG. QED

As seen above, we may call 7o: X > Qu a measurable principal bundle in
the sense that the group .. acts mesurably on X and the projection 7o is also
measurable. Lemma 1.7 says, in other words, that for any S«-invariant A€
M(E) there exists an FEM(E) such that A=1Isee.Fo (disjoint union). Ina
certain degree, this property for mo: X — Qu, replaces the local triviality
property in the case of usual fibre bundles. In later sections, in studying the
irreducibility and mutual equivalence of the representations of G constructed
there, it is convenient for us to keep the presentation in the form of (X, M(E),
ve) rather than that in the form of (2w, Mo(E), ve,0). So we will use these
two forms according to the situations for the convenience of discussions.

1.6. Remarks on topologies. First note that, in the case when the space
of configurations I'w and the fibre bundle X - X/®.=I}y are treated, it is
natural to consider a metric d on XD X given as
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(1.19) d(x, y)=SlEJBdM(x1‘, yi)

for x=(z:), y=(y:) in X, where du is a metric on M. Then, denoting the
orbit &« by [x], we have a metric on I'y as

dr([x], [y])=d'irnef6wd (zo, yr)= dig@fma’ (xo,v),

for x, yE X.

In contrast to this, as in our present situation, in the case when the
quotient space 2y and the measurable fibre bundle X - X/®.= Qy are treated,
any suitable topologies cannot be found. In fact, when we introduce the
above metric d in X (or in X), the orbit & is not necessarily closed. So,
we should consider in X a much stronger topology. Let us consider a
topology for which an open base is given by the family of subsets of the form

(1.20) U=11:enU;: with open U;CM (GEN).

Then, on the one hand, this topology is suitable for the present situation
in the following points.

(1) Every element in the open base is in Mx.

(2) For any E'=Il:envEi in M(E) and >0, there exists an open UE
M(E) such that ve(E'©OU)<e.

(3) Every orbit £8x is closed in X.

(4) The action of G is discontinuous in the sense that (D1) for any x&€
X, there exists a neighbourhood U such that U.cN\U.=# for 6€EG. except
0=1, and further that (D2) for any x, y€ X such that £8«+ y&., there exist
neighbourhoods U: and Uy such that U.c(\Uy=# for any 0EGC..

On the other hand, this topology is not suitable with the present situation
in the points that, for an open set U=I1.;enU., the measure v:(UNE’), with
E’'€G(E), is in general zero, and that we even do not know if VNE isin M(E)
for any open V.

Note 1.2. In this strong topology, the connected component of a point x
=(x:)ien in X=Tl:enM:, M:=M, is equal to the union of (ITis:svM:) X (x:)isn
over N=1 (cf. Exerc.I.11.8 in [1]). Therefore each orbit x& is contained in
the connected component of x.

1.7. Relation to an infinite tensor product of Hilbert spaces. Let us
consider two Hilbert spaces

Ou=L* (M, Mu, #) and H(E)=LHX, M(E), ve),

where E=1l:enE: is a unital product subset of X. Then the characteristic
function xz of E:C M belongs to $» and the one yr for EC X belongs to $(E),
and we have a formal expression
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(1.21) e=®ienye, or xe(x)=®ienxelx:) for x=(x:).

This expression has a rigorous meaning in terms of infinite tensor product of
Hilbert spaces (cf. [16]). Take a unit vector ¢;= xz/|xzl from $u» and choose
o=(¢:):en as a reference vector to form the tensor product

(1.22) RIend i =RienlD:, ¢i} with H:=9u ((EN).

Then we can prove that this tensor product Hilbert space is canonically
isomorphic to H(E), and (1.21) is an equality through this isomorphism. So
that the Hilbert space $(E) is seen to be separable.

In this and many other reasons, we can understand that, fixing the unital
product subset E=II:envE; (at the starting point), we choose a direction in
which “tensor products” of many things will be taken. This direction is
nothing but a one in which the ordered configurations x=(x:) remain to
follow as 7— oo,

1.8. Normalization of unital product subsets. Let E=I[.enE: be a
unital product subset of X=I[l:enM: M;=M. We wish to choose a good
unital product subset E©=II:enE:®, cofinal with E, as a representative of
the equivalence class €(E). Then we will see that it is more convenient to use
E® instead of E. This replacement of E by E is natural in the sense that
M(E)=M(E), ve=vro and so on.

Now let us choose E®. Since the measure ¢ on M is locally equivalent
to Lebesgue measures, there exists, for every i, a relatively compact, open
subset EiC M such that u(E:©OE7)<27". We may further assume that every
E; has only a finite number of connected components and that u(E;\ E7)=0,
where E;=cl(E}). Put E/=E:\ (Uisi<:E}). Then E? are mutualy disjoint
and

EOE!C(EQE) U Uisi<ENE))}.
Thus we have

2 MEQENs ¥ WEQE)+ZuENE),

1<oo

>

SUENE)S 3 () EXNE)S 3 uE\E),

whence Diu(EOE?)<14+1=2, and so E=Il:e~nE: is cofinal with E”"=
IlienE?: E~E".
We can replace E” further by another one to arrive at

Proposition 1.8. Any unital product subset E=1l.enE; is cofinal with a
unital product subset EQ=11:enE:? having the following properties.
(UPS3) The closures cl(E:®) and CI(L*J.E‘;'(O)) are mutually disjoint for any
FE X!
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i. Each E is relatively compact, open and with only a finite number of
connected components.

(USP4) In case n=dimM >1, E:° is connected, simply connected and
diffeomorphic (together with its closure), by an element in G, to an open ball
(together with its closed ball) in a coordinate neighbourhood. For i#+j, E;©
and E;” can be connected by an open path Pi; such that cl(Py)N\cl(UapziEx®)
=0.

Here an open path between connected and simply connected sets A and B
means a connected, simply connected open set P such that P A and PNB

are non-empty and connected, simply connected together with the union
PUAUB.

Proof. We construct E;” from E;’s inductively according to ;. For the
condition (UPS3), it is enough to shrink each E? a little if necessary. So we
consider the condition (UPS4).

We will define B: inductively and work on it. For =1, put Bi=EY.

STEP 1. Assume B; be given. Let the connected components of B: be
Uy, U, -+, Ur. If some Us is not simply connected, then we cut it by a finite
number of hypersurfaces into simply connected pieces and shrink them so that
the closures of pieces are mutually disjoint.

STEP 2. Thus, assuming each Us is simply connected, we connect Us to
Us+1 by an open path in such a way that all such paths do not intersect
mutually and they form together with all Us'’s a connected, simply connected
open set E/”. The demand “diffeomorphic (together with its closure) to an
open ball (together with its closed ball)” in (USP4) is seen to be satisfied if we
shrink E;© a little if necessary. Thus we can get E.” so that the difference
B:©OE is so small that

(1.23) W BOEY)<27",

and that M \ cl(Uis;5:E5”) is connected (note that M \ cl(Uisjsi-1E;?) is
connected by induction hypopthesis).

STEP 3. For i>1, we still choose open paths P; connecting E;® with
E;® for 1=£;<7 so that

(1.24) c(PHNCHEL)=0 for k+j, 1<k<i,
Shei<it(Py) <277,

and that the union of £, 1<;<1, and Pj, 1= k<j<1{, does not cover any E/
for />1 (if necessary, shrink E;® a little).

STEP 4. Now assume that Ei©, E>©, -+, E, have already been chosen.
To choose E{, we start with

(1.25) Bin=Eqa\{ U cl(EU U cl(P)}
1sjs9q lsk<jsq
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and shrink it if necssary to get an open set Bq+1C Bg+1 such that
(1.26) #(Bis1 \ Bas1) <27 1 cl(Bas) Nl(E; ) =0 (1=j<q).

Then we follow Steps 1 to 3 for i=g+1. Thus we get £, and P;, 1<
7<i. The induction process is now completed.
Let us evaluate the sum Z;enp(EYOE?). Note that

E{OEYC(E/©B)U(BOB)U(B.OE)

with B{=B,, and take into account B{©B;=B;\ B; and (1.23), (1.26), then we
get

Dient( EIOEN L D ient( EYOB)+2.
On the other hand,

E{@B=E/\ Bi=E{N( U clEMU U _cl(P)
and so
ZMEOB)s 3 (3 ENNCE)+ Z p(cl(Pa))
< 3 wlcl(EN\ B)+327<2.

Here we used the fact that £ D B; and so
(Uj<i<ooE£,)mCl(Ej(0))CCI(E,'(O)) \ Bj .

Thus we come to Du(E/OE")<4, which says that E"=[l.enE/ is
cofinal with E®=[I;enE;®. Hence EO~E"~E.
Thus the proposition is now completely proved. Q.E.D.

§ 2. Representations of G =Diffo(M)

Let T be a unitary representation (=UR) of &. on a Hilbert space V(II).
We construct URs of G starting from (/7, V(II)) and the product measure (X,
M(E), ve) of (M, My, 1) associated to a unital product subset E=I];enE; of
X:HiENMi, M:=M.

2.1. Representation 7= on a Hilbert space $(2). With a given datum
(2.1) X=(I;un E),

we construct first a Hilbert space $(X) and then define a UR T of G on it.
Let E'=Il.evE! be a unital product subset which is cofinal with E:
Sienu(EQE)<co. Consider the measure space (E', M(E)|E’, ve|E"), where
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M(E)E'={BNE; BEM(E)}. Then the Hilbert space
O=LE", M(E)|E’, ve|E"; V(II))

of L:functions on E’ with values in V(IT) is defined as the completion of the
pre-Hilbert space of step functions of the form

(2.2) ¢=gxsk®vk (finite sum)
with B:€W(E)|E’, v V(II), for which the inner product is given by

23)  lelt= [ le@)madve(z)

We give a Hilbert space $(X) as the one which is generated by the family of
H% with E’~E (cofinal):

@y SD=_V o
E’'eC(E)

Here, for two elements ¢i,¢, in the union Ug-~eH%, their inner product is
defined as follows: let ¢.€9{kw with E‘”~ E then

@5 <ened=3 [ <o), T0) (pulas " Wrvandvi(z) .

(=5

A representation of G is defined as, for =H(2) and g=G,

(26)  Tee)el)=pelg ) olg"2) with pelgle) =L,
e(x)
To recognize that the inner product (2.5) is well-defined and gives actually
a Hilbert space, and that the formula (2.6) defines a unitary representation of
G on that Hilbert space, it is natural and convenient to restate the above
construction of Hilbert space by imitating the case of L*-sections of a vector
bundle associated to a principal fibre bundle. This will be done below.

2.2. Hilbert space J{(X) canonically isomorphic to £(2). In our
present case, we have a measurable G-principal bundle mo: X - Qu. The
group G acts on X measurably, and we get a measurable associated bundle for
an G.-module (I7, V(II)).

We introduce some notation. For a function f on X with values in
V(II), we put, for 0EG,

(2.7) (R(0)f)(x)=f(x0),
(o) )x)=1(0)(f(x)) .

Let $f% be, for a unital product subset £’ ~ E, the Hilbert space defined above.
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To consider $i% as a space of L2sections of the vector bundle associateg to
X - Qu for (IT, V(IT)), we extend every <Dt to a function f=Que on X as

(2.8) Qup=2see(R(0)-11(0))¢

or more exactly, for xEF’ and 0E€E G,

(2.8) (Que)(x0)=11(0)"(¢(2)),

recalling that E'c (6€6©.) are mutually disjoint. Then f= Qu¢ satisfies
(2.9) fxo)=1(0)"' f(x) (xE€X, 0EC)

and f(x)=0 outside IIses.E’0. Put

1A= I @lRmdve(z)

then we get a Hilbert space K%, isomorphic to ${% through the map Qu.
The Hilbert space H(X) for Y=(II; , E) is the one generated by the
family X%, E'~E:

(2.10) H(E)= \ HiE.

E'eE(E)
Here, for two elements ;€ H ko with E‘”~ E| their inner product is defined as
follows: take an FEM(E) such that Fo (6€6.) are mutually disjoint and
£i(x)=0 or fo{x)=0 outside IIsee.Fo, then

(2.11) i Fsm= [ @), fl@)>vamdvea) .

We see easily that the map Qn gives an isomorphism of Hilbert spaces
H(X) and H(X).

Remark 2.1. The Hilbert spaces () and H(X) are actually generated
respectively by 9§t and H{f=QnH{t with E'x E (strongly cofinal):

(212 9(5)= 8k, H(D)= b

Therefore the subset A of step functions of the form ¢=ys&v with B&E
M(E)|E’, for some E'~E, and vE V(II), is total in H(F), and so the subset
QuA={Qnp; p= A} is total in H(X). In particular, the Hilbert spaces H(2)
and J((2) are separable.

2.3. Unitary representation 7r of G. A representation of G is given
on H(X) as

(2.13) Tx(9)f(x)=pe(g™'|x)"*f(g7 x)
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for f€IH(2), g=G and x< X, which we denote by the same symbol 7 with
that on H(3).

The unitarity of T is clear if we note that the domain of integration F°
EM(E) in (2.11) can be replaced by ¢gF if A and £,E€9(X) is replaced respec-
tively by Tx(9)fi and T(g)fe.

For the continuity of G=2g+ T:(g), we should first mention the topology
of G. The group G=Diffo(M) is equipped with the usual D-type topology or
the inductive topology according to the family Diffx(M), K compacts in M,
where Diffx(M) denotes the subgroup of G consisting of g with supp(g)CK,
and is equipped with the topology of uniform convergence of every derivative.
Then we have

Proposition 2.1. The formula (2.13) gives a continuous unitary represen-
tation of G=Diffo(M) on the Hilbert space H(X).

Proof. Since the unitarity is already known, it is enough to prove the
continuity of G2g+—<Tx(g)A, f»> for A, f» in a fixed total subset of H(X).
Therefore, by Remark 2.1, we can take as fi, /> two step functions of the form
fi=Qne; with ¢;=xs0Quv;, BYEM(E)|EY for unital EY=E and v, V().
Then

(T=(g)h, fr=<v,, UZ>V(I7)'L“zlpE(g-llx)”zXBm(g—lx)XB‘Z'(x)dVE(.r)

=<, Uz)vm)‘/ PE(Q_1|«T)”261’VE(I) .

gB' ' N B2

Further we can take as B a subset of the product form BY=II:exB:"’ such
that B/=E; for :>0. Then, by (1.12) and an additional discussion on the
interchange of “infinite product” and “integration”, we get

KTs(h, fo>=<v1, v2>vimy* IJN[ ou(g™h ) *du(x:) .

9B )NB2!

Now, fix a compact X CM and take g=Diffx(M). Then, by assumption
on the measure /, there exist positive constants ci(g), c2(g) such that

c(@=ou(g™ )= clg) (PEK); ou(g™ p)=1 PEK).

Note that we can demand ci(g) = ¢; >0 and c2(g) < c2< o for any g in a certain
neighbourhood of e=identity in Diffx(#). Thus an evaluation similar to
that in § 1.4 proves that, when g tends to e=identity, the infinite product in the
above expression of < T=(g)A, /2> tends to

<U1, Z)z> v * .HN/J(B{(” N Bz(z))=<l)1, Z)z> 12000 VE(B(” N B(Z)):<f1, f2>.

The continuity of g— T:(g) is now completely proved. Q.E.D.
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Thus, for a datum X =(I1; u, E) with a UR [T of G and a unital product
subset £ of X with respect to x¢, we get a UR Tr of G. For another datum
>'=(IT"; 1, E’) but with the same g, we have Ts=Ts if II'=/] (unitary
equivalent) and E'~ E (cofinal).

Remark 2.2. To study irreducibility and equivalence relations for 7%’s,
it is often convenient for us to use the realization of T: on H(2)=\ e/t
and utilize the family of subspaces 9{% for explicit calculations. These
subspaces play a role, for the Hilbert space $(%), something like local charts
for a manifold. Symbolically speaking, global structure of the manifold M is
reflected in the structure of H(2) or H(X)=QuH(X) at the point how to patch
together these subspaces 9% or Kt = QuH{k, whereas in each H% only local
structure can be reflected. Anyhow we have enough reason to keep two kinds
of realizations of Ty: the one on $(X) and the other on H(X)=QuH(2).

§ 3. Some fundamental lemmas

Here we collect some lemmas which will be needed later.

3.1. Elementary representations of diffeomorphism groups. Let E),
E,, -+, E; be mutually disjoint open subsets of M, and put

H= & LZ(Ei) with Lz(Ei):LZ(Ez’§ d/llEi),

lsis7r

Gl=l§riISer with Ge={9EG: supp(¢)CE.}.

Then we have a natural representation of G on 9, as the tensor product of
that on Lz(Ez) of Gig,:
for f€91, g=(g:)E G and y=(y)Elis:s,E:

(3.1 (Ll(g)f)(y)lel:IsrpM(gf“; )2 f(g™'y)

with the Jacobian pu(g; p) for p€M in (1.11), and gy=_(g:v;).

Note that Giz=G(E;)=Diffo(E;). Let the connected components of E;
be E;;, j€]; (we admit the case |/:|]=o0). Then G z,= G(E;) for every E;, and
G(E.) is equal to the restricted direct product of G(E)’s, and is contained in
the direct product of G(E;)’s:

(3.2) MesG(Ey)=GeCllie  G(Ey) .
We get easily the following

Lemma 3.1. The representation L, of G\ on 1 is a divect sum of IURs
which ave not mutually equivalent.

Proof. The group Giz, is equal to [1;e,,G(E;;) and the natural representa-
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tion of each G(E;) on L*E;) is irreducible, and the decomposition L E;)=
D%, LA E;) for each 17 <7 gives, through tensor product, a desired direct
sum decomposition. Q.E.D.

Now let F}, F3, -+, Fs be also mutually disjoint open subsets of M, and put

.= ® LXFy), G= 11 G(F),
1sjss 1sjss

then we have a natural reprensentation L2 of Gz on ; similarly as (3.1). Let
us compare two representations L; of G; (i=1,2). Put B;=E;NF;for 1<{
=7, 1=j<s,

Bie=E:\cl( U F;), Be,=F;\cl( U By),
1sjss l1sisr
and l.={1,2, -+, », 0}, Jo={1, 2, -+, s,00}. Assume that
(3.3) w(E:\ jg”Bij):O , u(F;\ l,chii)zo .
Then LA E;)=>%,.L% B;;), and therefore
(3.4) £:=2% ® LABu), 9:=2°% ® L¥Bi),
J lsisr i 1sjss

where j=(j1, j2, =", jr), J:E€Jw, and i=(41, iz, -+, is), ;€ I.. We put further

Giz= [EII_EE] G(B,_,)C GiNGe,
where Bwo=# and G(B;)={e} for B;=0. Since B.~NF;=# for any j, we
may understand that each G(Bi») acts trivially on .. Each G(B:;) acts
naturally on L% B;) and trivially on L*(B.,) if (', j)+(1, 7).
For j=(, j2, =+, j») and i=(4, 2, **, is) in (3.4), we put

50)= & LABu). $(D)= & L*(Bu,).

Further consider the set of pairs [j]1={(7, j:); 1=i<#} and [i]={(7;, 7); 1<5<
s}. In case [i]D[j] (and necessarily » <s), we define $([i]\[J]) as the tensor
product of L¥B;;) over j such that (¢;, /)€[i]\[7]. Now suppose that [i]D[j]
and [i\[Fj]C{(e0, j); 1=j=s5}, then changing the order of the factors in the
tensor product, we have a natural isomorphism

(3.5) @i H(8)-9(NOH[INID),

On the other hand, for any ¢<=9([i]\[j]), |[¢|=1, we have an isomorphism,

under ITis:s-G(Bi), of $(J) into $()RH([iN\[j]) given as Id;®¢:90- @,
where Id; is the identity operator on $(j). Then @; '-(Id;®¢) gives an
isomorphism of $(j) into H(i).
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Lemma 3.2. For two representations (L, 9:) of G: for i=1,2, let A: D
> 9., be an intertwining operator of Li|Giz with L2 Gia. Assume that the
condition (3.3) holds. Then A is a sum of scalar multiples of the natural
isomorphisms

(3.6) Qi 'o(1diQ¢),
where $<H([i\[J]), and the pairs (i, j) satisfies the condition
[i120i], [iNF]c{(oo, j);1=j<s}.

A proof can be given by using Lemma 3.1. In summary, we can say that
dividing E;'s and Fj's into B;=FE:NF; and their outsides Biw, Bwj; it is
enough, for intertwining operators, to pick up in (3.4) the factors of $: and 9
having the same B;’s in common.

3.2. Infinite tensor products of representations. Similarly as above,
we get the following, for an infinite tensor product. Let E'=Il.e~nE: be a
unital product subset in E(E) such that each E: is open and connected. Put
G(E)=Tl:enG(E?), the restricted direct product of G(E?)=Gz;. Then G(E’)
is contained in G naturally.

We define a natural representation of G(E’) on ==L (E’, M(E)|E’,
velE') as

(3.7 Leg)f(x)=pe(97"x)"?f(g7 )
with oz(glx) in (1.14), for g G(E"), €Dz and xEE’. Then

Lemma 3.3. The unitary representation Le of G(E’) on i is irreduc-
ible.

Proof. Put @;"—‘LZ(E:', dlllE:'), ¢i=XE//||XEﬂ"€-f)i and ¢=(¢i)z'e1v. Then
$iz- is canonically isomorphic to the tensor product @%nd: = :en {H:, @i} of
$: with respect to the reference vector ¢. Because of (1.14), the representa-
tion Lz of G(E")=IT:enG(E?) is equivalent, under the above isomorphism, to
the outer tensor product ®%~L: of reprensentation L; of G(E?) on 9:, where

(3.8) Lig)d(p)=oulg™"; 0)"*¢(g7'D)

for g€ G(E?), ¢=9: and pEE;. Each L; is irreducible since E; is connected.
Therefore its tensor product is also irreducible, whence so is Lg-. Q.E.D.

3.3. Structure of a subgroup G((E’)). Assume now n=dim M =2.
For a subset E'=Il:enE}, E:CM, of X, let G((E")) be a subgroup of G given
by

(3.9) GUEN)={9EG; gEi=Es;) iEN), 30E6.}.
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Let E'=I1:e~E} be a unital product subset in &(E) satisfying the conditions
(UPS3)—(UPS4) (replacing E;® there by E}), which exists by Proposition 1.8.
Let us study the structure of G((E")) for such an E".

By (UPS4), for any i/, cl(E}), cl(E;) and Ciy=cl(Ux=+:;E%) are mutually
disjoint, and there exists an open path P; connecting E;, Ej such that cl(P;)
NCi;=0. Put My=E;UE;UP;. Then M, is a connected open submanifold
of M and so G(M;)=Diffo(M,;) is canonically imbedded into G=Diffo(M).
We shall construct an element g;& G(My;) such that

(3.10) gsEi=Ej, gsE;=FE:.
Then g,/ E% is the identity map on E% for £+i,j. Thus we get the following

Lemma 3.4. Let n=dim M =2 and E'=Il:.enE: be a unital product
subset in €(E) satisfying (UPS3)—(UPS4). Then there exists for any 6EGCaw,
an element gs< G such that gsEi=Eswy and gs|E:=identity on E; if o(i)=1i.

Proof. 1t is enough to construct for each 7+ an element g;=G(M;;)CG
in (3.10), and put gs,,=gy for the transposition o;=(z, 7).

STEP 1. Inside of Py, we can choose two non-intersecting simple paths Ci
and C; connecting a point x;€ E! with an x;E E}.

Figure 3.1.

We give to the path C: (resp. Cz) a direction from x: to x; (resp. x; to x;). By
(UPS4), E: and E; are respectively diffeomorphic to open balls B:wC E} with
center x; and B;0C E; with center x; by elements %;, ;€ G with supports in
small neighbourhoods of cl(E?), cl(E;) respectively. Now choose a series of
points i, Ziz, -+, ir on Ci (resp. xj, Zjz, =+, Tjs on Cz) and small open balls
B, B, +++, Bir (resp. B, By, -+, Bjs) with center x:1, Xi2, -+, Zir (resp. X, Zjz,
.-+, xjs) respectively in such a way that

cl(Bax)Ncl(B;)=# for any k, [21;
B:wNBa#0, BaNBi#Fd, -, BiNBj+d;
B:wNBjs+0, BjsNBjs-1#0, -+, BaNBjo*+H.

STEP 2. Put
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Figure 3.2.
Bjs B

E;’:E§\CI{I<LEJ“BMU U le},

1si<s

Ei=E;\c{ U BxU U Bj}.
1sk<7r 1<Iss

Then there exists an %20 G~ (resp. hiE Gig,) such that D= kB (resp.
Djo=h;oB;o) is completely contained in BN B (resp. in BjoN B;1). Here a set
A is completely contained in an open B if cI(A)C B, by definition. Then there
exists an naE€ Gz, with Ba=cl(B:) (resp. 7, € Gs,) such that Da=haD:o
(resp. Dji=h;1Dj) is completely contained in BaNBiz (resp. in BjiN Bjz).
Repeatedly we find %:.€ Gz, -, R E G, such that Diw=hwD; -1 is com-
pletely contained in B N Bix+1 for 0 k<7 —1and D:»CB:»N Bj. Similarly
we find 72;:€ Giz,, -, h;sE G, having the corresponding property.

STEP 3. Finally we can find %:«€ Gigy, hiws Gig such that hiwDir= Do,
hjxDj;s=D;. Then, since h}oleo=Bjo, hi 'Bjo=E} and ki 0= Bio, hi ' Bio=
E:, we see that the element

(3.11) 95 =h;" hid i R (ishir X Bss - B o) (Bie -1+ R o) i
gives a desired element in G(M;)CG:
9sEi=Ej, gsE;=E}, supp(g9y)CEJE;UP;,
whence supp(g:;) N Cy;=0. Q.E.D.

3.4. Representations of G((E’)) on ${%. Let E'=Il.enEibeasin § 3.2,
and /T an IUR of Gw. Put $F=LAE' M(E)E’, dve|lE"; V(II)) and HE. =
QndE as in § 2. For any g G((E’)), there exists a 0E€6G. such that gE'=
E’c, whence, for any x=(x:);enEE’, we have g 'x=y0~ ' with vEE’. There-
fore, for f=Qne, EHE and xEE’,

g lx)=f(yo " )=1I(0)f(y)=H(0)e(y),
and so

(Te(@)f)x)=0c(g7[x)"*f (g7 x)=pe(g'|x)"*[1(0) p(g™ x0) .
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This means the following: for any g€ G((E’)), T=(g) leaves the subspace K%
of H(X) invariant, and it induces a unitary representation Tz of G((E’)) on
‘ﬁﬂ;réﬂ[ﬂ;’ as

(3.12) TeAg)p(x)=pe(g7|2)"2[1(0) p(g~ x0)

for g€ GU(E")), pE9%, xEE’, where 0E6w is so chosen that gE'=FE’0.
Let us prove the irreducibility of 7.

Lemma 3.5. For a unital product subset E' satisfying (UPS3)-(UPS4),
the unitary representation Te on ik of G((E")) is irreducible.

Proof. Note that H% =9Q V() with $e=LHE’, M(E)|E’, dvelE").
When T is restrited to the subgroup G(E’)C G((E’)), we have

(3.13) TE'(Q)ELE'(Q)®1 vy ,

where 1y denotes the identity operator on V(II). Take an intertwining
operator A of Ts with itself. Then, identifying H{t with £,=:Q V(IT), we
have

Ae(Leg)®1vin)=(Le(9)®1vim)° A (¢EG(E")).

Since Lg on g is irreducible by Lemma 3.3, A is of the form A=15,& A,
with a bounded operator A: on V(II).

For any 0E 8., there exists a g« G((E’)) such that g«E'=FE’0. In (3.12),
put g=gs, 9(x)=¢(x)@v with ¢EH and vE V(II). Then the equation
Ao Tegs)= Te(gs)° A is written down for ¢ as

¢’ (Al (o)v)= ¢/®(17(0')A10)

with ¢'(x)=pe(gs Y 2)"?¢(gs'x0). Thus we get Aioll(0)=11(0)° A1, 6EC..
Since 17 is irreducible, A; should be a scalar multiple of the identity operator.
Hence so is A, and the irreducibility of 7% is proved. Q.E.D.

§4. Irreducibility of the representation 7 of G

Let X =(IT; 1, E) be a parameter of the unitary representation 7 of G on
J(X). Here Il is an IUR of &. and E=]l.e~E; is a unital product subset of
X, with respect to a measure ¢ on M, satisfying the conditions at the begin-
ning of §1.1. We prove the following theorem, one of our main results.
Recall that we have assumed dim M 22.

Theorem 4.1. The unitary representation Tz of G=Diffo(M) on the
Hilbert space H(X) is always irreducible.

4.1. Structure of the Hilbert space H(X). Before entering into the
details of the proof, we give a remark on the structure of the Hilbert space
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H(X). Let E© =Il:enE:” be a unital product subset cofinal with E for which
the conditions (UPS3) —(UPS4) in Proposition 1.8 hold. Put X®@=(IT; ¢, E?),
then H(X®)=%H(3) and Tzo=Ts. Hence we can work with X instead of
2.

By Remark 2.1, the Hilbert space H(X®) is spanned by the family of
subspaces K, where E”s are strongly cofinal with E@: E’~ E®, Further,
as seen below, we can chose E® so as to satisfy one more condition (UPS5).
For any so chosen E©®, the Hilbert space H(2)=9((2®) is spanned by H{E’s
with E’=~ E® which satisfy (UPS3)—(UPS4) too.

For a unital product subset F=I[IenF;: satisfying (UPS3)—(UPS4), we
consider the following condition.

(UPS5) For every N >0, the complement M \ cl(U;>~F;) of cl(U:snFy) is
connected.

Lemma 4.2. Let F=1Il:enF: be a unital product subset satisfying (UPS3)
—(UPS4). Then, cutting off a small part of each F;, i€ N, we get a unital
product subset F'=Il.enF!, FiCF; cofinal to F, which satisfies (UPS5)
together with (UPS3)—(UPS4).

Proof. Put A=M \ cl(U:enF:), then A is not empty. In fact, if A=0,
then M= cl(U;e v F:)= cl(F1))Ucl(U:22F:) on the one hand, and cl(F1) and
cl(U;z2F;) are mutually disjoint by (UPS3) on the other hand. This contra-
dicts the connectedness of M. Since A is open, its connected components Aj,
A, -+ are at most countably infinite. We connect A; with A;.1 inductively as
follows, getting F; from F; accordingly.

First connect A, with A. by a (rectifiable simple) curve C. In case C
meets with F;, we shift continuously the part CN F; of the curve very near to
the boundary cl(F:)\F;, and pare off a small part of F; together with the
shifted curve inside F;, thus getting a connected open F.""C F; such that p(F:\
FMY)<3 ' u(Fy). So that FP=[I;enF:" is cofinal to F, and A, and A; is
connected outside cl(U:enF:") by the shifted curve. Secondly, to connect A
with As properly, we work similarly with a curve C connecting them and with
FOY=Tl;,enFV. Paring a small part of each F;” if necessary, we get a
connected open F:®CF;¥ such that u(Fy"\F;?)<3 " %u(F;) and that a
continuously shifted version of C is outside cl(U:enF:®).

Now assume that for each i€ N, we have chosen opens F;"DF;¥D---D
F;%*7 such that g(FY*P\FY)<3 " 7u(F;) and that A; and Aj+: is connected
by a curve outside cl(U;enF:"’) for j=1,2, -, k—1. Then, to connect A
with Ax+1 properly, we work similarly with a curve C connecting them and
F* V=Tl,enF:* cofinal to F. Thus we get connected opens F;* such that
FRPCF% y(F%*\F®)<3 ""*u(F;), and that a shifted version of C is
outside cl(U:enF:*).

By induction, we get for each 1€ N a series of decreasing connected opens
F®, k=1,2,+-. Note that
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Seent(F A N\F) < D pend ™ *u(Fi)=27"3""u( F)

with F;®=F;. Then we see Fi'=\xenF:"* is of measure >(1—27'37)u(F;)
and so F=I].enF: is cofinal to F. Recall that, by (USP4), every F; is
diffeomorphic (together with its closure) to an open ball (together with its
closed ball), under some g& G. Then it is seen that we can manage parings
of F'®, k=1, 2, ---, appropriately so that we get as F;** a closed or open ball,
after the transformation by the same ¢g. So doing, let F7 be the interior of
F/. Then u(F/\F/)=0 and so F'=[l:e~F} is unital and cofinal to F.
Further, F’ satisfies (UPS3)—(UPS4) since F/CF:. Especially M\cl(U:z1F})
is connected.

Now put Byv=M\cl(U:>~nF7) for N=0. Let us prove that By are con-
nected for N =1, by induction on N. Note that, by (UPS3), cl(U;>~F7) is a
disjoint union of cl(Fx+1) and cl(U;>ny+1F7). Then we see By+1=ByUcl(Fy+1)
for N=0. At first, as seen above, By is connected. Since cl(Fy+1) is con-
nected, we have a connected open neighbourhood F” of it, disjoint with
cl(Uisn+1F7). Then Byyai=ByUF”, By F”#8, and therefore Bw+: is con-
nected. This completes the induction. So the condition (UPS5) is satisfied.

Q.E.D.

4.2. A lemma for irreducibility. Assume that E®~FE is taken to
satisfy (UPS3)—(UPS4) and (UPS5), and that E'~ E® are taken to satisfy
(UPS3)—(UPS4). Then we see, by Lemma 3.5, the restriction T (g)=
Tso(g)| K for g=G((E)) gives an IUR of G((E). To obtain the
irreducibility of Tszo of G from that of the family (7%, J{t), we apply an
elementary lemma given below.

Lemma 4.3. Let H be a group and T its unitary representation on a
Hilbert space . Assume there exist a family of subgroups {Hs}sca and that of
subspaces {Ds}yses such that

(a) 9s is Hs-invariant and Hs-irreducible;

(b) © is spanned by the family {Ds}ses;

(c) for any 8, 8'E 4, there exists a finite sequence 61=20, Oz, ***, 8r=20" such

that 5N Dsi+(0) for 1=2i<r;

(d) for some 64, the IUR of Hs, on 9s, does not appear in the

orthogonal complement (Hs,)* C 9.
Then the representation (T, $) of H is irreducible.

Proof. By the assumption (d), any H-invariant subspace of £ either
contains the Hs,-irreducible subspace $s, or is orthogonal to it. Therefore
there exists an H-irreducible subspace 9’ containig £s,. Now take any §&€ 4.
We can find 81, &, -+, 8s such that £5NHs.,F(0) for 0=/<s with Js+1=0.
Since 9’ contains Hs, N s, +=(0) and s, is Hs,-irreducible, we see that £ does
contain the whole $5,. Similar arguments prove inductively that £ contains
Dsz, t00, Dss, and Hs,,, =s.  Thus §’ contains all of Hs, 5E 4.  This proves that
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9'=9 by (b). Q.ED.

4.3. Proof of Theorem 4.1. We prove the theorem by applying Lemma
4.3 for H=G, (T, 9)=(Tso, (X)) and the set of parameters

Ad={E’; E'~ E”, with (UPS3)—(UPS4)} .

For 6=E'€4, we take Hs=G((E")), 9s=JI{{t.. Then (a) is proved by Lemma
3.5, and also (b) holds. So we prove (c) and (d) here.

First consider (c). Take E’, E'E€4 and put &1=H %, D3=H{%». Let us
find E®E€ 4 such that 9.=IH (e satisfies 1N H27(0), H2NH:=(0). Since E’,
E” are strongly cofinal with E©, there exists an N >0 such that E;(=E/=E;®
for 1>N. We see easily that there exist a 68y and an Ny, 0= N, =N, such
that E:NE%#0 for Mi<i<N, and that {E;UEs;); 1£7< N1} are mutually
disjoint. Put EV=E’, E®=E"¢ and

E®=( I1 F)XES% with EQ=I[ E

and with Fi=E;UE%. for 1<i< Ny and Fi=E:N E4 for Ni<i< N, then E®
4. Put @225”175!2», and note that @1=5[|’,’;,=ﬂ({i-m and @3=ﬂ[f};‘"=ﬂ[ﬂs‘3).
Then we have 9:NH:17#(0) for 1=<7=2 because ve(EPNEY*V)=(. This
proves (c) with »=3.

Let us now prove (d). Fix a do=FE’. Take an arbitrary §=E" from 4
and study the decomposition of the subspace $s along the orthogonal decom-
position $=95P(Hs,)*. Since E’ and E” are strongly cofinal with E©, there
exists an N>0 such that

E=(T1 A)XE®, E’'=(II B)XE%,
1sisEN 1s/sN

where A/’s (resp. B;’s) are mutually disjoint open subsets of M \ cl(U:»~E ).
Put

Ci=A:NB;, Cw=A: \ Cl(UlsisNBj) , Coi=B; \ Cl(UlsisNAi) ,

then A:\ Uos;snCy and B;\ Uos:snCi; are of measure zero. Therefore,
modulo null sets, B=11.5;s~B; is a disjoint union of subsets of the form D=
[Tis;snD; with D;=C;,; for some 7. Let Dz be the set of all non-empty such
DCB and put [D]=DX E®%, then H{kt=3%cp,H 5. Similar statement is
also true for A=TIT:s:snvA: so that Ht=3%p, H{lp). Takea DEDs. Then,
each component D; is either contained in some A; or disjoint with all A..
Therefore we have two cases: (i) H{lp)CHE in case DoC A for some 6EGn,
and (ii) H{lp) L H % in case some D; is disjoint with all A; or two D;, Dy (j=+
7') are contained in the same A:.. Thus we get an orthogonal decomposition
of 95, for each d€ 4, as
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(5.1) 9:=IHtr=9:'DDs>, H5'CTHso, 5" L D50,

where 95" and 9,? are respectively the direct sums of H{lp in the cases (i) and
(ii).
Now consider a subgroup Hs.s of Hs,=G((E")) defined as

Hsos=V\0ep.Gp with Go=VizisnGip,=1l12:snGip; .

The representation of Gp on H{lp) is a multiple of the natural IUR on L*(D),
and the one of Gp on other Hp with D’ED4\UDs, D'# D, does not contain
the IUR on L%D) (cf. Lemma 3.1). Therefore we see that the representation
of the subgroup Hs.s of Hs, on the space $s, =% is disjoint with that on £
C($s.)*. On the other hand, the orthogonal complement ($s,)* is spanned by
$5°, €4, because the whole space § is spanned by $s’s and each $s has the
decomposition (5.1). Therefore the IUR of Hs, on $s, does not appear in
(Ds0)*=Vsesst. This is exactly the assumption (d).

Thus the proof of the irreducibility of 7% is now complete, and so
Theorem 4.1 is proved.

§5. Equivalence relations among the IURs Tx

Let IT), IT; be two IURs of €, and E=Il:envE:, F=Il:enF: be two unital
product subsets of X with respect to a measure z on M. Put 2\=(T; 1, E),
3y=(1I; 1, F). We study here a criterion for the equivalence Tz, = Ty,

5.1. Natural equivalence relations. Let S. be the group of all permu-
tations of N. Then it acts on X from the right: xa=(Za):en for aEG. and
r=(x:)ien€X. Further . acts on . and accordingly on IT; as

s=aca”', (“IL)(o)=IIL(*"0)=II(a"'0a) (0EGC.).

By the action x—xa on X, a unital product subset E=II:enFE: is sent to
Ea=Tl:enEa). Further, if E'~E, then E'a~ Ea and

VEa(E'a)=H ieNﬂ(EZz(i))= HjeNll(E;/'): VE(E,) .

This means that the action x—xa on X gives an isomorphism of measure
spaces (X, M(E), ve) and (X, M(Ea), vea).

Since E is cofinal with Ea if and only if a belongs to the subgroup &, the
measure spaces coincides with each other if and only if a€&.. Put, for X'=
(IT; 4, E) and ¢E6C.,

(5.1) a=0; u, Ea™),
and, for fEIH(X),
(5.2) (Raf)x)=f(za) (xEX).
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Then, as is easily seen, K. gives an isomorphism of H(X) onto H(°X).
Further we obtain the following

Lemma 5.1. For a€&., the map R. gives an isomorphism of IURs (Ts,
H(2)) and (Tas, K(°X)) of G.

5.2. Equivalence criterion. As a necessary and sufficient condition for
unitary equivalence Tz, = T, we will get the following rather simple crite-
rion.

Theorem 5.2. Assume dim M 22. Let \=(I1; u, E) and 3.=(II; 1, F)
be as above two parameters of IURs of G=Diffol(M). Then, (Tz, H(Z}), i=
1,2, are mutually equivalent if and only if, for some element aEG,

(5.3) L= and E~Fa* (cofinal).
The rest of this section is devoted to prove this theorem.

5.3. Relation between E and F. To prove the above criterion, let us
begin with the relation between E and F.

Proposition 5.3. Assume Ts, = Tx,, then necessarily E~ Fb for some bE

O

The proof of this proposition is rather long and is divided into several
steps.

STEP 1. Asis seen in § 1.8 and in § 4.1, we may assume from the begin-
ning that each E and F satisfy the conditions (UPS3)—(UPS4) and (UPS5).
Recall that
(54) H(s)= B, ()= V Ak,

EW=E FxF
where we can also take EV and F satisfying (UPS3)—(UPS4) too.

Let A: J(X)—-H(2:), be a non-zero intertwining operator of Tx, with
T:,. Since both Ty, (=1, 2) are irreducible, we may assume A is unitary.
Denote by P#4 the orthogonal projection of #(X;) onto H{Fw, and put Arwew
= PFuo Ao P, Then Aruwgw, viewed as a map

(55)  Arwsor HBo= Qudlba— K= Qu M,

intertwines Tx,|G® with Tx,|G® for a subgroup GV=G{(E®)N GUF?)) of
G.
By definition, for g€ G, there exist ¢ and 7€ such that

gEV=EQy (EN), gFVY=E{) JEN).
Put hulE?)=cl(U:erE:"’) and
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(5.6) EP=FP=EYNFY,

EX=E2\hul(F?V), FX=F"\hul(E"),
then hul(E") and hul(F") are invariant under g and
(5.7) 9EP=EQ ey, 9ER=EX e, gFLR=F%e
Put further

(5.8) E®= > EY, F®= 3 F{P (disjoint unions).

1sjsco 1sisoco
Then EV=E® and F;Y=F;® modulo null sets, and therefore, for £®=
HieNEi(Z) and F‘(z)zl_[jeNI:'ﬂj(z)Y

j[ﬂ;lm:j[{?(z) , j[g:zn»:ﬂﬂrzm .

STEP 2. Let Ci, kEK, be all the connected components of E=F{P, E%,
and F{2. Then G contains the restricted direct product G® of Gic.=G(Cx):
GC?=IT;enG(Cr)CG™. To study the action of G*®, it is convenient for us to
use 9Fo =9 :2® V(1)) instead of H{Fe=QunHHs. The Hilbert space Hipw=
LAE® M(E)E®, dve| E®) is isomorphic to the infinite product ®fenL*(E:®)
of

LAE®)= 2® LAEY)= 2®L*(Cs)
1 kEK1i

Sjs

with respect to the reference vector ¢=(¢:)ien, ¢i=xew/|xe»|, where
LAE®)=L*E®, dv|E:®?) etc. and Ki,;={kEK; C.CE?}. Fix an N>,
and put
(5.9) Di(k)= ® LXCw) for k=(ky, ks, kn)E 11 K,

1= 1s/sN

=N
then we have a natural isomorphism

(5.10) P =(TuPHu(R)N®(Q “LHE®),

where ¢'=(¢:);>n. By means of this, a consideration similar to that for
Lemma 3.2 proves that Ara e =Arage Kills all the components £1(k)Q(X¥%
LAE:®)) with B=(k, ke, -+-, kn) for which k=0 or Cr,C E{R=E;"\hul(F®)
for some {=N. Thus Arere kills all the components containing a factor
from LA ER) for some iEN. (To see this, we actually compare the action of
GewCG.) From this fact, we get the following

Lemma 5.4. Assume that there exists a non-zervo intertwining operator A
of Ts, with Ts,. Then,

(5.11) Sien(ER) <o,  Fenu(Fid)<oo,
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for any EQY~E and FO~F, where EX=E.V \ hul(F"), F&\ hul(EY) as in
(5.6).

Proof. Put EY=31enEY), then E;?=E%+ E% and so
LAE®)=LXEY)DLYE?).

Since Arwew» kills all the components containing L(EX)-factor for some /€
N, we get Areore(xe~)=0 for any E~ = E® (strongly cofinal) if Xl;enp(EWR)
=00 or equivalently if IT:»ou(E{)=0. This means that Arwen=Arega=0.
On the other hand, if 3 ey ( ER)=0o0 for some pair EV~E, F"'~ F, then
it holds also for any pair EV~E, FV~F. Hence we get A=0, a contradic-
tion.
A similar argument for A™' proves the assertion for Fi&’s. Q.E.D.

STEP 3. Now replace E:'¥ and F;" respectively by E.¥=E,Y+ FQ, F;®
=F;"+EQ. Then, for E¥=[l:enE:® and F®=I1;enF;®, we have

E(3)DE(1) E(3)~E(1) . F(3)DF(1) , F(3)~F(1) ;
hul(E) =hul(F®) (=hul(E") Uhul(F).
Note that ﬁ]z(alD-ﬁwm, @m«snD@mm, then we obtain

Lemma 5.5. Assume that theve exists a non-zevo intertwining operator A
of Tz, with Ts,. Then A is approximated strongly by the family Arwen=PF
o Ao Pt with EV~E, FV~F such that E:V and F;'" are open and hul(E?)
=hul(F®).

Corollary 5.6. Assume Tz, = Ts,. Then, veplacing unital product subsets
E in 3\ and F in 3; by their cofinal ones, we can assume that hul(E)=hul(F).
(Here the conditions (UPS3)—(UPS4) are not necessarily satisfied.)

5.4. From hul(E)=hul(F) to E~Fb(3 bE&.). We continue to study
the relation between E and F, and wish to get £~ Fb for some HEB..

STEP 4. By Lemma 5.5, we may pursue Arwea with hul(E®)=hul(F®).
In this case, E{&=0, F{@=0 and

(5.12) Ef=ZEY= 3 Cv, mEM\E®)=0;

FP=3FP= 2 Ck, p(F;"'\F;*)=0,
ieN kEK2j

where Ky;={k€K; C.CF;V}. Consider the action of G®=II%cxG(C:) on

both of HEH=ZHiz0® V(Hl) and @.’}%»’é&pu)@ V(Hz) Note that G® acts

trivially on the second factors V(/I;), i=1,2, and that Hro=»Hirx is

decomposed as in (5.10), and Hro=9re as in
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(513 Hro= (D0 NS, LAF)

for N’>0 (the reference vector is omitted for ®;>»-), with

(5.14) ﬁz(k’)z ® Lz(Ck;) for k'-_—(kf, ki, -, kz’w)e H K.
1SjSN’ 1SN’

Considerations similar to that for Lemma 3.2, on the action of G?, give
us the following crucial lemma.

Lemma 5.7. The image of Arvegan=Aroge is contained in the sum of
the components

(5.15) H(RN(Q L(F*))

for which the parameter k'=(ki, ks, -+, kn)El1s;sn Ka; satisfies the condition
(NT) among ki, ks, -+, ki, no two of them belong to the same Ki;, i€ N.

STEP 5. Denote by Px- the orthogonal projection of £r= onto the sub-
space spanned by such subspaces in (5.15) that the condition (NT) holds for
them. Then it is enough for us to prove Px-—0 strongly in case E® <X F®p or
EAFb for any bEG.. In fact, if so, we have Arwpw=Arega=0. This
- means A=0 by Lemma 5.5, a contradiction.

To prove Py-—0 is reduced to a problem on series of real numbers as
follows, by considering Pn-(xr)—0 (N’—o0) for any unital product subsets F”
CF® which are strongly cofinal to F®. Put c;=u(EY)=pu(F{P), and we
consider E{’=F}P grouping C.’s, instead of C, themselves. Put

di=p(E®P)=2jenci, ei=m(F®)=2ency,

then u(E;P?OF;®)=d;+e;—2c;, and we come to the following problem (N’ is
replaced by N).

Problem 5.8. Let c;20 for i, JEN. Put d:=2;encCij, €;=2ienCij, and
assume that

d:>0, e;>0 (i,jEN);
Iiend:, Iliene; are (unconditionally) convergent.

For N>0, expand the product T1.s;sne; (vesp. Tlisisnd:) in terms of ci's and
let pn (rvesp. qn) be the sum of monomial terms CiiCiz** Civw (¥€SP. Cuj\Cair** Chin)
such that

(DE) iy, 22, =+, in (vesp. 1, jo, =+, Jn) ave diffevent from each other.
Assume further that
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(5.16) .EN(di'l'eb(i)_ZCi,b(i)):oo for any bEB. .

Then, does there hold py—0 or gvn—0 as N—oo?

Note that (5.16) is expressed as

(5.16") 3 cy=00 for any bEB..
Fepred
5.5. Solution of Problem 5.8 (Step 1). For a finite subset J of NV,
consider the product

Hjej€j=HjeJ(2ieNCij)
and expand it in a (possibly infinite) sum of terms
(5.17) Iljejcs; with (ij)je]EN] .

Denote by p; the sum of all such terms (5.17) that the sets of indices {#;; 7€/}
consist of different integers. Then py=p;, for Jv={1, 2, 3, --, N}, and we get
easily the following

Lemma 5.9. For two disjoint finite subsets J, J of N,
brur=prpr.

To treat pw~ or p;, we can normalize (c;;) as follows. Put ci;=cu/e; with
e;=2)encCy, then Dienvci;=1. Let p; be the sum for (c/) corresponding to p;
for (c;). Then, pj=p;/(Il,ese;), and I ;ese; is bounded from above and below
for any finite JCN. Therefore the assertion on p~ for (cs) is equivalent to
that for (c4). Hence, to treat p~, we may put the following additional
condition on (c4):

(5.18) e;=2)ienc;=1 (JEN),

and in this case we may call (ci),5en a stochastic matrix of infinite size.
Here we should note that [l.end?, with di=32);enci, is again convergent.
This can be seen from that every term ci,, €35 **C i in the expansion of
[T1sisnd! is a multiple of ¢is C25 cniw by (Ilisisnes)™, and that all the products
Iljese;, JC N, are bounded from below and above.

Under the condition (5.18), put 6;=1—p;=I1,;c;e;—p;=0. Then, for any
disjoint subsets /i, J2, -*- of N, we have by Lemma 5.9

(519)  limpw<Tza(1-6s).

Therefore, to verify py—0 (N—00), it is sufficient to see the existence of
disjoint subsets J. such that 215-18;,=0%° or more simply 8;,=c (n=1, 2, --*) for
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a constant ¢ >0.
Now, for the term in (5.17), put L.={j<&J; i;=Fk} for kEN, and K={kEN;
Lk#:ﬂ}, szz{kEK, |Lk|ép}, then

(5.20) Micrcis =TT rex(IT ierscr) .

The factor Il ier.cx is the contribution to I1;escs,; from the k-th row of (ci;).
Therefore

pry=the sum of terms for which K;>=0.
Since ¢;=1 and Il c;e;=1, we have
(5.21) dy=the sum of terms for which K:»+8.

Let us evaluate the sum in the right hand side. For a finite subset @ of
N and a family (Rq)qeo of disjoint subsets of JCN, let A((g; Rq)qcq) be the
union of all terms in (5.17) containing the factor Ilqeo(ITrerecer). Put J'=
J\ (UqeoR4), then the total sum of elements in A((q; Rq)qee) is equal to

H qeo(H reRqur) '(er—:]'ej) = quo(H rERqur) (by (5.18)) .

We denote it by [ A((g; Rq¢)qee)]. Note that the term in (5.20) is contained in
A((g; Rq)qeq) if and only if QCK and R,C L, for any ¢=@Q.

Let us now first take @={q}, one point set, and R,={r, 72}, two points
set. Inthe sum s’ of all such [A(g; Rqo)]=[A(q; {1, 2})], the monomial (5.20)
contributes to s’ through several A(q; Rq), and the total number of times of
its contribution is equal to

/
n2=2qu=2< 2‘1) with lq= |Lq| .

Next take @={q} and R,={r, 72, 73}, three points set, and let s;’ be the
sum of all such [A(g; Rs)]. Then the total number of times in which the
monomial (5.20) contributes to s’ is given by

l
7’13:2qu=3( 3‘7) .

Further we take @={q, ¢z}, two points set, and Rq, Rq, disjoint two points
sets. Denote by sf2 the sum of all [A((g; Rq)qeq)] of such type. Then the
total number of times in which the monomial (5.20) contributes to s4. is equal
to

la\ [ lq
7l2,2=o§K< ; )( ; ) where Q={q, q2}.
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In particular, #2.=0 if |Kz2|<2.
Now let us evaluate m=mn,— n3— ns, for the monomial (5.20). In case
|Kz2|=1, let Kz2={q}, then

m=(12")—(13")=3%1q(1q—1)<5—zq>.

Hence m =0 except the cases where /;=2, 3,4 and m=1, 2, 2 correspondingly.

In case |K:2|=2, we see similarly that <0 except the cases where /,=|L,|=

2 for g€ K2 and m=1 accordingly. If |Kz2/>2, then m =<0 necessarily.
Thus we get the following

Lemma 5.10. Let s/, si’ and sz be the sums of [A((q; Rq)eeq)] defined
above. Then there holds always the inequality

1—p,/=0 g%(szl_.%]—sf,z) .
The above evaluation of §; is sometimes not convenient to apply in
certain situations. So we give another but similar evaluation as follows.
Fix a subset 7 of N. Consider only the terms [1;esc,; in (5.17) or (5.20) with

(5.22) K..CI or “if i;=i for j,j'€J, j+j, then ;€I .

Denote by A'((g; Rq¢)qeq) the subset of A((g; Rq)qeq) consisting of such terms
that (5.22) holds, and denote also by s’ (resp. s3’’, s54) the sum of [A'((g;
Rq)qcq)] analogous to the sum s;’ (resp. s/, sf2) of [A((g; Rq)eco)]. Since the
evaluation of the number of times of contribution of I1;e/c.; is always true, we
get similarly as above the following

Lemma 5.11. Let I be a subset and | a finite subset of N. Then
5] g%(SZI'I —831’] *Szl,'zl) .
5.6. Solution of Problem 5.8 (Step 2). Put /={:}, one point set, then

si4=0 and so &, =227'(s." —s5') with

1, __ 1,] —
/= 2u CinCijp, 3’ =
{ing2tcy {i1.d2.53Yc]

S2 Cij1Cij;Cijs «
Since Il:end: converges and so d:—1, we may assume that d:=X),enci; <3/2
for i€N. Then

1 1
M=a 2 cuci(Zco—cin—cm)S5s" .
3 JjeJ 2

{gztc)

S3

Hence §;=247's,’”.
Now we apply the following
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Lemma 5.12. Let xi, x2, -+ be a finite number of non-negative real
numbers. Then,

2 TinZie %%(Exj)@xj—mgx{xj}) .

71<72

Thus we get
1
(5.23) 023 (JECU)(J%C” rg_xglx{cu}) .

Using this evaluation of &;, we prove

Lemma 5.13. Let (ci;) be as in Problem 5.8. Assume there exists an
infinite set UCN of indices such that

max{ci; JEN}<1—k (i€U)
for some £>0. Then pn—0 as N— o,

Proof. Since d;—1 as i~ 0, we may assume without loss of generality that
|d:—1|<k/3. First take an i=w, € U. For this 7, we can find a finite subset
JiC N such that d:—>;es.c;=5k/3. Then, Xjencs;2d:—x/321—2«/3, and by
(5.23) we have

6,,g%(l——%—;c){(l—%x)—(l—K)}=%<1—%/c> (=« (put)).

Assume we have taken mutually disjoint subsets Ji, /2, =+, J» of N such
that 8,,=«" (p=1,2, -+, n). Then we can find a u»1 U and a finite subset
J2+1CN \ (U%-175) such that, for i=un41,

di_Zje]mlCijé K/B .

By a similar evaluation as above, we get 6/,.,2«.
Thanks to (5.19), we have py—0 (N —o0). Q.E.D.

By this lemma, we see that it rests for us to check the case where max{c;
JEN}-1 as i»o. In this case, there exists an injection z of N into itself
such that c¢iun—1 (i—0).

Note that the assumption on c¢; in Probelm 5.8 is symmetric in (7, 7).
Then, except a case similar to Lemma 5.13, where g~ —0, we come to the case
Coii— 1 (=) with an injection v: N=>N, to be checked. Thus, altogether,
taking into account e¢;=1 and d:—~1, we come to the following three cases,
ngodulo appropriate permutations of rows and columns of c¢;; by elements in
(G

(A) ci—1; (B) Ciivn ™1 (C) CitNzi— 1}
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as 1~ o0, where N, >0, N,>0.

5.7. Solution of Problem 5.8 (Step 3). Let us first treat the case (A).
Then the assumption (5.16") for (c) is equivalent to

(5.24) 2 Cij:Oo .
oIV

On the other hand, we can easily get the inequality s:4 <27'(s."”)? and
therefore

Szl'l —s3' — Sz,z"! = (1 —%n}gl)({dz~}>821’l —%(Sz"!)2 .

We may assume without loss of generality d:<3/2 for /<€N. Then, we
obtain

(5.25) 5 2%32"’(1 — ")

Solving the inequality x(1—x)=8"", we get the following

Lemma 5.14. Assume for a finite subsets | of N there exists an I CN such
that

(5.26) 2‘4‘/5 <! s”Tﬁ .

Then 8;=1—p;=1/32.
Now we put /=/. Then

s’z ci( T ey)Zmin{ci) (2 cy).
€] JEJ ie] i,JjE]
J#*i i#Jy
Since ¢~ 1, we may assume c:;=1/2. Hence we have

(5.27) s =5

On the other hand, put I'=/'=J U{p}, one point bigger than /=/. Then the
difference s,’*'—s;’”/ is small as shown by

r 4
/=S D cpncpnt X cpicmt 2 2 CiiCip
{g2tcs Je] €] jej

é%(dp —cpp)?+(dp— Cpp)Cpp‘i‘rl:,lg]X{di} “(ep—Cpp)
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§%(dp - Cpp) +%(€p - Cpp) .

Here d:i=Xjenci;=<3/2 and di=1 (i 2 ©), ep=iencip=1, and cpp—1 (p— ).
This means that s’*/'—s2’*/ is sufficiently small if »>>0. Thus we see from
(5.24) and (5.27) that, when we make =/ increase one by one appropriately,
then some of s’ comes into the interval (5.26), and 6,=1/32 for such J by
Lemma 5.14.

From the above discussion, it is seen by induction that there exists a
series of mutually disjoint finite subsets Ji, /2, -** of N such that &,,=1/32 for
n=1,2, ---. From this we obtain by (5.19) that pv—0 as N >,

Note that, by the symmetry of assumption, we have also gy—0 in Case
(A).

5.8. Solution of Problem 5.8 (Step 4). The cases (B) and (C) are
similar, and so we treat only the former here. In Case (B) the condition
(5.16") is automatically satisfied.

First assume that a similar conditions as (5.24) holds:

(5.28) > Cij =0,

i,JEN

i+N1#j
Then, we can reduce the situation to Case (A) and get p»—0 and gv—0. In
fact, for pw, it is sufficient to apply Lemma 5.9 and the result in Case (A). For
gn, we consider a new (c¢i;) with ¢hi=2icas14n5:Cir, Cii=Cijem (722). Put gi
for (ci;) the quantity similar o gwv for (c¢;). Then gnv<gh clearly, and gy—0
since (c¢;) is in Case (A).

Now assume (5.28) does not hold. Then limwy-wgy>0. In fact, gy
Iisisnciien, and [ ienc:,ion, converges because 2 ien(d: — ci,i4m) <.  So let
us prove pxy—0. Define (c) as ch=2isrsn Cir, Cii= cz Jg+mi-1(7=2). Then, gn
< gu and therefore we can reduce the case to Niy=

Assuming M1=1, let us evaluate pn. Put C:(Cij)i,jeN and let Cv;x) be an
(N—1)x(N—1) matrix obtained from C by cutting off i-th row for /=N and
j-th row for j=k and j>N. Further let Dy be an N XN matrix with ele-
ments

d"_Cij (i<N, ]éN), dNJ 2N51<ooCl] (ZéN)

Denote by px(C) the quantity pn for C=(c;). Then we have also py-1(Cow; »)
and p~(Dv), and get by simple calculations

n(C)<pn(Dy)= lskZSNdzvk ov1(Cuvimy)

pN—l(C(N;k))< IT ( p Cu)S H eJSL

§le <N
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with a constant L>0. Therefore

PN(C)éL’ 2 2 Cin.

1sk=N Nsi<oeo

The right hand side tends to zero as N =00 because 2;+:+n,C <0 by assump-
tion. Thus we get px=p~(C)—0. [END OF STEP 4]

Summalizing §§ 5.5~5.8, we have solved Problem 5.8 affirmatively. So
that the proof of Proposition 5.3 is also completed.

5.9. Relation between II, and Il,. It is now established that, if 75 =
Ts,, then E~Fb for some bE&.. Therefore, through the natural equiva-
lence by a=b"'E@G., we may assume E~F. Changing the representative
unital product subsets with their cofinal ones, we may further assume that E
=F and the conditions (UPS3)—(UPS4) in § 1.8 are satisfied.

Let G((E)) be the subgroup of G defined in (3.9). Consider the represen-
tations of G((E)) under Tx (i=1,2) on the subspaces 9% =9:Q V(II.) of
H(Z)=H(Z:). Then the discussions in § 3.4, especially those in the proof of
Lemma 3.5, prove that, if Tx, = T¥,, then necessarily I1,=11,.

Thus we have completely proved our equivalence criterion, Theorem 5.2.
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