J. Math. Kyoto Univ. (JMKYAZ)
33-2 (1993) 451-504

Compactification of moduli of parabolic sheaves
and
moduli of parabolic Higgs sheaves

By

Koji YokoGawa

Introduction

Let f: X -» S be a smooth, projective. geometrically integral morphism of
locally noetherian schemes, D be an effective relative Cartier divisor on X/S and
let Ox(1) be an f-very ample invertible sheaf. Assume that S is of finite type
over a universally Japanese ring =. In the previous paper “Moduli of Parabolic
Stable Sheaves™ [13], we have extended the notion of parabolic bundles on curves
to higher dimensional cases, i.e. parabolic sheaves on a geometric fibre X, of f
is a triple (E, F,, a,) consisting of a torsion free coherent sheaf E. a filtration
E=F(E)y>F,(Ey> -2 F(E)> F,.{(E)=E(— D) and a system of weights
0<a,<a,<--<ag <1 Moreover, we have constructed a coarse moduli
scheme M [ of parabolic stable sheaves with fixed weights «, and fixed Hilbert
polynomials H,.

In this article, we shall construct a moduli scheme M ;% of equivalence
classes of parabolic semi-stable sheaves and show that it is projective over S
under some boundedness conditions. We could do more. In fact, the method
used in constructing moduli schemes of stable pairs (cf. [26]) leads us to a
construction of a moduli scheme of “parabolic pairs”. Let Q be a locally free
(Ox-module. Combining the notion of parabolic sheaves and that of Q-pairs, we
come to a notion of parabolic Q-pairs, i.e. a parabolic Q-pair is a pair (E,. ¢)
of a parabolic sheaf E, and a parabolic homomorphism ¢: E, - E, ® Q with
oAn@=0. The word “parabolic Higgs sheaves” used in our title means
Q) (log D)-pairs (in the case where Q)(log D) is locally free). In the case of
curves, it is in fact equivalent to the notion of Simpson’s “filtered regular Higgs
bundles” [25]. Simpson [25] gave a natural one-to-one correspondence between
stable filtered regular Higgs bundles of degree zero and stable filtered local systems
of degree zero. In this paper, since we shall restrict ourselves to the moduli
problem for parabolic 2-pairs, 2 can be any locally free sheaf. Our main theorem
is the existence of a moduli scheme of equivalence classes of parabolic semi-stable
Q-pairs. Moreover, we shall define a morphism of the moduli scheme to an
affine space of “characteristic polynomials” and prove that it is projective as a
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natural generalization of results of Hitchin [7] in the case of Higgs bundles on
curves or Simpson’s [24] in higher dimensional cases. Then as a special case,
we obtain the moduli scheme M} which is projective over S.

In § 1, we shall give various definitions on parabolic pairs. Almost all notions
are naturally extended to our case. §2 is devoted to the construction of a
parameter space R® of all parabolic semi-stable Q-pairs with fixed Hilbert
polynomials and weights. Moreover, a morphism ¥ of R* to the product of a
Gieseker space Z and some Grassmann schemes G, is constructed. Then the
results in [13] can be generalized to our case. In particular. the existence of a
coarse moduli scheme of stable parabolic Q-pairs is proved. §3 is devoted to
the analysis of orbit spaces of (Z x [1G)* which is a natural generalization of
results in §2 of M. Maruyama [10]. In the case of parabolic sheaves, under the
assumption that S is a scheme over a field of characteristic zero, most of these
are not needed since the projectivity of the morphism % of R* to (Z x [1G)*
is proved in our Appendix. The notion of extensions of points in Gieseker spaces
is naturally extended to our case but it does not work well since the set of all
extensions of two points in Z x [1G; is not a complete family. Hence, we shall
introduce a notion of “quasi-extension”. In §4, we shall prove the main theorem,
that is, the existence of a moduli scheme of parabolic semi-stable Q-pairs. The
projectivity of the moduli scheme of parabolic semi-stable sheaves is proved in
§5. For the moduli scheme of parabolic semi-stable pairs, the properness of the
morphism of the moduli scheme to the space of “characteristic polynomials” is
proved. We shall derive these results by the method used in S. G. Langton [8].
In appendix, we shall show that the morphism ¥: I —(Z x [[G,)* constructed
in [13] is proper in the case of characteristic zero. Strangely, the author could
not prove it without an additional condition “x, > 0” where «, is the minimum
weight. However, in the case of curves or more generally in the case where
u-(semi-)stability is the same as (semi-)stability, by changing weights, we can also
get a moduli scheme which is projective over S.

The author would like to thank Professors M. Maruyama and A. Fujiki for
their helpful suggestions and encouragement.

Notation and Convention. Let f: X — S be a smooth, projective, gecometrically
integral morphism of locally noetherian schemes, D be an effective relative Cartier
divisor on X/S and let ("y(1) be an f-very ample invertible sheaf. For a coherent
Cy-module E and a numerical polynomial H, we denote simply by Quot (E, H)
the Quot-scheme Quoty,y;s. If s is a geometric point of S, then X, means the
geometric fiber of X over s and E, = E ®, k(s). We denote by S'(E) the i-th
symmetric product of E, by S*(E) the symmetric (' y-algebra. For a coherent
(x,-module F, the degree of F with respect to (’x(1) is that of the first Chern
class of F with respect to 'y (1) = Cx(1)® (', and it is denoted by deg,,,F
or simply deg F. Moreover, the rank of F is denoted by rk (F), u(F) = deg F/
rk (F) and h'(F) = dim, H(X,, F).

For polynomials f,(n) and f,(n), fi(n) < f,(n) (or, fi(n) = f,(n)) means that
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fi(n) < fo(n) (or, fi(n) < fy(n), resp.) for all sufficiently large integers n. For a
polynomial H and a number m, H[m] denotes the polynomial such that
H[m](x) = H(m + x).

1. Parabolic pairs

Let X be a non-singular, projective variety over an algebraically closed field
k and let ("y(1) be a very ample invertible sheaf on X. Fix an effective Cartier
divisor D < X and a locally free ("y-module Q of finite rank.

Let us recall some definitions on parabolic sheaves. (For details, see §1 of

[13].)

Definition 1.0. A parabolic sheaf is a triple (E, F,, «,) of a torsion free
coherent ("y-module E, a filtration

(1.0.1) E=F,(E)> Fy(E)> > F(E)> F,,,(E) = E(— D)

and a system of weights 0 <o, <a, <---<o, <. For a parabolic sheaf
(E, F, o), we have a filtration

(1.0.2) UE(—mD)=UE,>-2E,2E,2-
meZ acR

where E, = F(E)(— [«]D) with i an integer such that o, , <a—[a] <o
(g =0, —1 and 2., =1). We often denote (E, F, «,) by E,.

A parabolic homomorphism of E, to F, is an ("x-homomorphism of E to
F which maps E, into F, for all x > 0. In this paper, we change the definition
of parabolic subsheaves given in [13], i.e. a parabolic sheaf F, is said to be a
parabolic subsheaf of E, when if F is a coherent subsheaf of E and F, € E, for
all a.

The parabolic Hilbert polynomial of E, is

1

(1.0.3) par- z(E, (m)) =f 7 (E,(m))da.

0
The polynomial par-x(E,(m))/tk(E) is denoted by par-Pg (m). Moreover, the
parabolic degree of E, is

1

(1.04) par-deg (E,) = J deg (E,)da + rk (E) - deg D.

0

par- u(E,) is par-deg(E,)/rk (E) and wt(E,) is par-deg(E,) — deg E.

For 0 <« <1, deg E(— D) <deg E, <deg E. Hence, by (1.0.4). we have the
following inequalities. '

(1.0.5) 0 < wt(E,) <rk (E)-degD.
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We can naturally extend the notion of Q-pairs (cf. [6], [19], [24] and [26])
to parabolic cases.

Definition 1.1. A pair (E,, ¢) of a parabolic sheal E, and a parabolic
homomorphism ¢: E, - E, @y is said to be a parabolic Q-pair if ¢ A @ =0,
where ¢ A ¢ is the following homomorphism

e®1

E-SERLESER QRQL—ERy AR

and E,®yQ is a parabolic sheaf such that (EQ®yQ),=E, ®yQ2. The
polynomial par-x(E,(m)) is called the parabolic Hilbert polynomial of (E,. ¢).

A parabolic subsheaf E, of E, is called ¢-invariant when for all 0 <« <1,
¢(E,) is contained in E,® Q. For parabolic pairs (E,, ¢) and (E, ¢'), an
(Oy-homomorphism f of E to E’ is said to be a homomorphism of parabolic
pairs when ¢ of = (f®id,)o ¢ and f is a parabolic homomorphism of E, to
E,. (E,, ¢') is called a (parabolic) sub-pair of (E,, ¢) if E’ is a coherent subsheaf
of E, E,< E, for all « and @], = ¢".

Let F be a @-invariant coherent subsheaf of E such that E/F is torsion
free. If we put F, = E,nF, then (F,., ¢|g) is a sub-pair of (E,, ¢). In this case.
we call this structure of (F,. ¢|p) the induced (sub-)structure of (E,. ¢). Let G
be a torsion free coherent quotient sheaf of E with quotient map ¢: E - G.
Assume that ker (g) is @-invariant. Setting G, = (E, + F)/F for all « >0, we get
a quotient pair (G, ¢) of (E,. ¢) where ¢ is the homomorphism of G to G Q) xQ
induced from ¢.

Remark 1.2. ¢ induces an ('y-homomorphism ¢ of Q¥ to &x«/ " (E,). The
condition “¢p A @ = 0" implies that ¢ is extended to a homomorphism of
(x-algebras of S*(2V) to Ewd/ P (E,). Thus we have a parabolic homomorphism
associated to ¢:

¢ E, ®yS*(QY) — E,.

Definition 1.3. 1) (E,. @) is said to be parabolic stable (or, parabolic
semi-stable) if for every ¢-invariant parabolic subsheaf F, of E, with 0 # F # E,
we have

par- Pp (m) < par- Py (m) (or, =, resp.).

2) (E,. @) is said to be parabolic u-stable (or, parabolic u-semi-stable) if for
every @-invariant parabolic subsheaf F, of E, with 0 # F # E, we have

par- u(F,) < par- u(E,) (or, <, resp.).

3) Let e be an integer. (E,, ¢) is said to be of type e if for every g-invariant
parabolic subsheaf F, of E, with 0 # F # E, we have

par- u(F,) < par- u(E) + e.

Remark 1.4. By Remark .11 of [13], we may assume that in the above
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definitions, F, has the induced structure.

Let f: X > S be a smooth, projective, geometrically integral morphism of
noetherian schemes, D = X be a relative effective Cartier divisor with respect to
f and let O4(1) be an f-very ample invertible sheaf. Let H, H,,...H, be
polynomials and «,,...,%, be real numbers such that 0<a, <--- <o, <1. Set
H,={H,....H} and o, = {o.....}.

We denote by F,(H, H,. «,) the family of classes of parabolic Q-pairs on
the fibres of X over S such that (E,. ¢) is contained in F,(H. H,. «,) if and
only if (E,, ¢) is a parabolic semi-stable ©2-pair on a geometric fibre of X over
S. x(E(m)) = H(m), x((E/F;,(E))(m)) = H;(m) and the system of weights is o,.

By the inequality (1.0.5), if (E,. ¢) is of type e, then for all ¢-invariant
coherent subsheaf F of E, we have that u(F)< p(E)+ deg D + ¢. Hence, by
Proposition 1.6 of [26]. we have

Lemma LS. If (E,, ¢) is of type e, then there exists an integer e which
depends only on e, D, Q and rk (E) such that E is of type €', i.e. for all coherent
subsheaf F of E, u(F) < u(E) + €.

By virtue of the boundedness results on the families of coherent sheaves (cf.
[11]). we have the following.

Corollary 1.6. The family Fo(H. H,. o) is bounded if one of the following
conditions is satisfied.

1) S is a noetherian scheme over a field of characteristic zero.

2) The rank is not greater than 3.

3) The dimension of X over S is not greater than 2.

Let us recall that a torsion free coherent sheaf E on a geometric fibre X,
is said to be of c-type e if for general non-singular curves C =D,.----D,_,,
D;e| 0y, (1)], every subsheaf E'(# 0) of E ® x O has a degree < rk (E')(u(E) + e).

Definition 1.7. 1) (E,, ¢) is said to be parabolic e-stable (or. parabolic
e-semi-stable) if (E,, ¢) is parabolic stable (or. parabolic semi-stable, resp.) and
E is of c-type e.

2) (E,. o) is said to be strictly parabolic e-semi-stable if it is e-semi-stable
and if for every e-invariant parabolic quotient sheaf F, of E, with
par- Pg, = par- Pr,, (F,, @|g,) is parabolic e-semi-stable.

Let F5(H, H,, o,) be the sub-family of #,(H, H,, «,) such that (E,, ¢) is
contained in % (H, H,, o) if and only if (E,, ¢) is parabolic e-semi-stable.
By virtue of Lemma 3.3 of [9] and Lemma 1.5, we have

Proposition 1.8. The fumily F5(H, H,, a,) is bounded.

By virtue of Proposition 1.8, Lemma 2.6 of [13] and by a similar proof as
Proposition 2.5 of [13], we have
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Proposition 1.9. There exists an integer N, such that
1) if (E.. @)eF$(H, Hy. o) is parabolic stable, then for all m > N, and all
@-invariant parabolic subsheaves F, of E, with 0 # F # E,

1 1
—[ hO(F,(m))da/rk (F) < J hO(E (m))da/rk (E),

0 0

2) if (E,. @)eFs(H. H,, o) is not parabolic stable. then for all m > Ny and
all @-invariant parabolic subsheaves F, of E, with 0 # F # E.

1 1
j hO(F,(nz))doc/rk(F)SJ ho(E (m))da/rk (E),

0 0

and there exists a non-trivial ¢-invariant parabolic subsheaf E, of E, such that
for all m> N and i > 0,

1

1
j hO(E;(m))doz/rk(E’)=j h°(E,(m))da/rk (E),

0 0

W(E'(m)) =0 and E'(m) is generated by its global sections.

Remark 1.10. Recall that a coherent ('y-module E is said to be f-torsion
free or relatively torsion free if it is flat over S and for every geometric fibre X
of /, EQxy, is a torsion free (y -module. By the argument below Definition
1.13 of {13], we know that if E is f-torsion free, then the canonical homomorphism
E&®yxOx(— D)— E is injective.

Let (Sc/i/S) be the category of locally noetherian schemes over S. Let T
be an object of (Sc/1/S). A triple (E, F,. a,) of a coherent (’yx _-module E. a
filtration F, of E as in (1.0.1) and a system of weights «, is called a flar fumily
of parabolic sheaves on X /T if E is f;-torsion free and all E/F,(E) are flat over
T (hence, all F;(E) are flat over T). Note that a flat family of parabolic sheaves
has a filtration as in (1.0.2), hence we denote it simple by E,. A flat family of
parabolic pairs is a pair (E, ¢) of a flat family of parabolic sheaves E, and an
("x .-homomorphism ¢ of E to E @y such that ¢(E,)) S E, ® 4 for all «

For the openness of parabolic stability of parabolic pairs, we have

Proposition 1.11.  Ler g: Y- T be a smooth, projective, geometrically integral
morphism of locally noctherian schemes, €y (1) be a g-very ample invertible sheaf,
D < Y be a relative effective Cartier divisor and (E, @) be a flat fumily of parabolic
Q-pairs on Y/T. If Hi(Y, Co()® k(1)) =0 for all i >0 and t€ T, then there exist
open sets T* and T* of T such that for all algebraically closed fields k,

T(k) = {te T(K)(E,, ) ® k(1) is strictly parabolic e-semi-stable}
T (k) = {te TE,, ) ® k(t) is parabolic e-stable}.



Compactification of moduli 457

Proof. By virtue of Corollary 2.3, there exists a closed subscheme Q¢ of
0 = Quot(E, H) such that for every object T’ of (Sch/T),

QT') ={GeQ(T")|G is @y, -invariant}.

Using the scheme Q¢ instead of Q in the proof of Proposition 2.8 of [13], the
proof in [13] holds good for our case. O

By the similar proof as in the usual case, we see that every parabolic
semi-stable ©-pair (E,, ¢) has a Jordan-Holder filtration

E=EODEID"'DE'"+1=0

where for all i, E; is ¢-invariant, (E'/E'*"),, @) with the induced structure is
parabolic stable and par- Pii. 1), (m) = par- P (m). We denote by gr (E,. ¢) the
direct sum @, ((E'/E'*"),, ¢). The Jordan-Holder filtration is not in general
unique but gr(E,, ¢) is uniquely determined up to parabolic isomorphisms. It
is easy to see that gr(E,, ¢) is also parabolic semi-stable. Moreover, every
parabolic pair has a unique (u-) Harder-Narasimhan filtration of parabolic pairs,
see §5 for the proof.

Definition 1.12. For an object T of (Sch/S). set

(E4, @) is a flat family of
par- X s(T) = { (E,, @) | parabolic Q-pairs on X;/T ~
with the property (1.12.1)

where ~ is the equivalence relation defined by (1.12.2).

(1.12.1)  For every geometric point t of T, ((E,. (F,),, 2,), ¢,) is parabolic
semi-stable, y(E,(m)) = H(m) and x((E,/F;. (E))(m)) = H;(m), where (F,), is
the filtration consisting of ¢-invariant subsheaves

E = Fl(E)I = FZ(E)t 202 FI+1(E)1 = E,(— D).

(1.122) (E,. @) ~(EL. ¢') if and only if (1) (E,, ¢) ~(E,, ¢)®+L or (2)
there exist filtrations consisting of ¢-invariant subsheaves E=E° > E!' >... o
E"=0and E' =E° > E'"' o2 E™ = 0 such that for every geometric point
t of T, their restrictions to X, provide us with Jordan-Holder filtrations of
((E)y» @) and ((E),, @), respectively, gr(E,, @)= @, (E//E™"),, @) is
T-flat and that gr (E, ¢) = gr (E}, ¢') ®; L, for some invertible sheaf L on T.

For a morphism ¢: T'— T in (Sc//S), ¢g* defines a map of par- f}{;b’/*X,S(T)
to par- X5y s (T'). Then par- X s is a contravariant functor of (Sch/S) to
(Sets). We denote by par- 2§y, the sub-functor of par- L% ¢ consisting of
all flat families of parabolic stable Q-pairs. Moreover for each non-negative
integer e, par-2g7is (or, par- Zgriti¢s) denotes a subfunctor of par- Zhsity o

(or, par-Z&iiixs, resp.) consisting of all flat families of strictly parabolic
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e-semi-stable (or, parabolic e-stable, resp.) Q-pairs. By virtue of Proposition 1.11,
if we assume that H(X,, Ox(1)® k(s)) =0 for all i >0 and all seS, then these
are open sub-functors of par- Z_g,*b’;*X,s.

2. Moduli of parabolic stable pairs

In this section, we shall construct a coarse moduli scheme Mgy s of the

functor par- Xgriy,s.  We shall fix the following situation:

(2.0.1) Let S be a scheme of finite type over a universally Japanese ring =
and let f: X - S be a smooth, projective, geometrically integral morphism such
that the dimension of each fiber of X over S is n. Let @x(1) be an f-very ample
invertible sheaf such that for all points s in S and all i > 0. H(X,, Ox(1) ® 'y ) =0.
Let D < X be a relative effective Cartier divisor and let Q be a locally free
(y-module.

Fix a non-empty family #s5(H. H,, a,). We assume that all «; are rational
numbers. By Proposition 1.8, there exists an integer N, such that for every
member (E,, ¢) of #5(H, H,, «,), the conditions 1), 2) in Proposition 1.9 and
the following conditions are satisfied.

(20.2) For all i and all m > N,, F,(E)(m) and (E/F,;(E))(m) are generated
by its global sections.

(20.3) Foralli allj>1and all m > N,. H/(F,(E)(m)) = 0 and H/((E/F(E))
(m)) = 0.

(2.04) For all m = N,, if an invertible sheaf L on a geometric fibre X, has
the same Hilbert polynomial as det (E(m)), then

Ext], (A"(V@:=SHRY)y), L) =0

for all j = 1, where r is the rank of E, V is a free Z-module of rank r and S*(2")
is the sheal @V "™5/(Qv).

Remark 2.1. 1) If (2.0.4) holds, then for all j > 1, all free =-modules V and
all invertible sheaves L on X, with the same Hilbert polynomial as det (E(m)),
we have

Ext{, (A"(V@®z5HRV)x), L)=0

2) In the previous paper [26], for a locally sheaf €2, we have denoted by
S¥(Q) the sheaf (—B?;é Si(£2). Lemma 1.2 of [26] was wrong. But it becomes
correct and hence all results in [26] hold good if we change the definition of
S*(Q) to @V, Si(Q). We must change, in the proof of Lemma 1.2, 1.17
in p.313 of [26]:

(or, {@'(x)" - @ (x,) " (/)N f€F,0<iy,niy <7 — 1}, resp)
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to the following.

m

(or, {@'(x,)" -+ @' (x,) (N feF, ) i;<(r—1)ym 0<ip,...,i,}, resp.)
j=1

We need the following result of the base change theory. (See for the proof
§1 of A. Altman and S. Kleiman [1].)

Proposition 2.2. Ler f: X —> S be a proper morphism of noetherian schemes
and let I and F be two coherent ('x-modules, with F flat over S. Then there exist
a coherent Og-module H(I, F) and an clement h(l, F) of Homy(I, F ®sH(, F))
which represents the functor

M — Homy (I, F Qs M)

defined on the category of quasi-coherent Cg-modules M, and the formation of the
pair commutes with base change: in other words, the Yoneda map defined by h(l. F),

2.2.1) y: Homy(H(I. F);, M) — Hom,, (I;. F ® x M)

is an isomorphism for every S-scheme T and every quasi-coherent (' p-module
M. Moreover if 1 is flut over S and if Ext,‘(s(l ® k(s), F ® k(s)) = 0 for all points
s of S, then H(l, F) is locally frec.

Corollary 2.3. Let f: X > S be a proper morphism of noetherian schemes
and let @: 1 — F be an Oy-homomorphism of coherent ('y-modules with F flat over
S.  Then there exists a unique closed subscheme Z of S such that for all morphisms
g: T-S, g*(p) =0 if and only if g factors through Z.

Proof. By the isomorphism (2.2.1), ¢ corresponds to an ('s-homomorphism
W:H(, F)—> 0g. The closed subscheme Z of S defined by the ideal sheafl
Image () is the desired one. O

Fix an integer m> N, and a free Z-module ¥, of rank H(m). Set

Q = Quot (¥, ®:0x. H[m]) and Q; = Quot (¥, ®=Cx. H;[m]). Let ¢: ¥, ®:
Cxy— E(m) (or, ¢;: ¥, &® =Cx,, = E;(m)) be the universal quotient on X, (or, X,
resp.). Let Q° be the open subscheme of Q such that for all algebraically closed
fields K,

Q°(K) = {xeQ(K)|Ely_is torsion free}.

Let U; be the maximal open subscheme of Q; such that for all points x of U,
and all j > 1, HI(E.(m)ly) =0 and [ (¢): ¥, ®=Cy, —>f,-*(E,~(m)|Xu',) is surjective
where f; is the projection of X, to U;. Note that _ﬂ*(E,-(m)|XU) is a locally free
(y,-module of rank H(m). Hence, the quotient map f;,(¢;) defines a morphism
of y;: U; > G, where G, = Grass (V, ® =0, H;(m)).

In §3 of [13], we have constructed a closed subscheme I" of Q° x ([]i_, U;
and a flat family of parabolic sheaves (E(m)y,, F, «,) of length I and a surjection
o1V, ®:04,— E(m)xl_ where F* is a filtration of E(’")xr such that
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E(m)Xr/FHI(E(m)x‘_) is isomorphic to Ei('”)x,- as quotients of ¥, ® =Cx,. These
have the following universal property.

(2.4.1) Let T be an object of (Sch/S). Assume that a flat family of parabolic
sheaves (E, F,, «,) of length [ on X, and a surjection ¢": ¥, ® =z Cx, — E have
the following properties.

1. For all geometric points t of T and all i, the Hilbert polynomial of E (or,
E/F.,,(E)) on X, is H[m] (or, H;,[m], resp.) and H’((E,/F;,,(E))) =0 for
all j> 1.

2. For all i, the natural homomorphism of ¥, @=Cr to (fr)(E/F;+(E)) is
surjective.

Then there exists a unique morphism of T to /" such that (E, F, «,) and ¢’ are
given by the pull back of (EX,_, F*, a,) and ¢r: ¥, @ =04, —»E(m)x,_.

As in [9]. let P be a finite union of connected components of Picy,s which
have a non-empty intersection with v(Q) where v is the morphism of Q to Picyg
determined by det (E(m)). Let Z be a Gieseker space such that Z is a PN-bundle
over P in étale topology and for each K-valued geometric point x of P, the fibre
Z . is isomorphic to

P(Homk A ( m ® HO(LV))V)

where L, is the invertible sheaf corresponding to x and r is the rank of E on
fibres. Then we have a morphism 7 of Q to Z defined in §4 of [9], roughly
speaking, it maps a point of Q which corresponds to a quotient v: ¥, ® =y - E
to a point

A(l)

"V, Q=) — AE —>det E

of P(Homg(A"(V, ®=K), H°(det E))*). Note that, by Proposition 4.9 of [9],
T|go is an immersion. Let ¥ be the restriction of T x [[7;: Q° x [[U; > Z x []G;
to I

r Zx[]i-,G

v
closed o Iy
immersion
Q i

*x [l U

By Proposition 2.2, there exists a coherent (- -module H(E (’")x, (E(m) ®
Q)x,) such that the scheme V(H(E(m)x,, E(m)@x ) represents a functor

(Sch/TM)>T—> HomXT(E(m)XT. (E(m) Xy Q

By Corollary 2.3, it is easy to see that there exists a closed subscheme R of
V(H(E(m)xl (E(m)®x x,)) which represents a sub-functor of the above
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(S('II/F)a T—>
{(p|q> E(m),(T (ﬁ,.(ﬁ(n1))®xQ)XT for all i and @ A @ =0}

where ¢ A ¢ is the homomorphism defined as in Definition 1.1. From now on.
let us denote E(m)XR (or, p®1:V, X= (fXR—>E(m)XR) by E(m) (or, ¢: V, ® = Oy, —

E(m) resp) Thus, on X, we have a universal family of parabolic pairs
((E(m), F a,), @) and a surjection ¢ where ¢ is a “parabolic” homomorphism

¢ Em — Em ®4Q
Since ¢ A @ =0, we have a homomorphism
E(m) Xy S*RY)— E(m)

which is naturally defined by .

Now. by the condition (2.0.4). Remark 2.1 and Proposition 4.7 of [26], there
exists a P-scheme Z such that Z is PV-bundle in étale topology and for a
K-valued geometric point x of P, the fiber Z . is isomorphic to

P(Hom,,, (A"(K, @ =S¥(2)x,). L,)")
By the argument in §4 in [26], we obtain a morphism
i:R—7Z
which is determined by the following homomorphism

A"(p® 1)

"V @=SHRY)y,) — A"(E(m) ®xSHRY))
e A"(E(m)) — det (E (m))
Therefore, by 7 and the morphism R—T 527 x [1i-:G:—~[]i-, G;, we obtain

a morphism

!
P:R—Zx ]G
i=1

By virtue of Proposition 1.11, there exists an open subscheme R* (or, R®) of R
such that a geometric point x of R is contained in R* (or, R®, resp.) if and only
if the corresponding parabolic Q-pair ((E(m), F*. o), @)y, is strictly parabolic
e-semi-stable (or, parabolic e-stable, resp.) and the homomorphism

(242) H(¢lx): ¥, @ =k(x) — HO(E(m)]y,)
is an isomorphism.
Proposition 2.5. The morphism ¥: R* - Z x [1:=, G; is an immersion.

Proof. Let Q 2 the Quot-scheme Quot (V, ®=S*(Q2"), H[m]) and let
d: V, ®=5*(Q")y5 — E(m) be the universal quotient. By QO, we denote an open
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subscheme of O consisting of all points x such that E m)lx is torsion free and
the restriction of ¢ ® k(x) to ¥, ®=Cx. =V, ®=5°(Q")y. SV, ®=S*Q")x.
surjective. ¢ ® k( (X)|y, @cyx, defines a morphism of 0° to QO. The surjection on
Xk

V. ® SHQY)y sel, E(m) Ry SHQRY) -, E(m)

defines a morphism of R to 0°. Moreover, the homomorphism

AV ® £SHR)xg) 5" AT(E(m)) —> det (E(m)
defines a morphism of O to Z whose restriction to Q° is an immersion by
Proposition 4.7 of [26]. The composite of these two morphism is clearly
T: R—>Z. Thus, we obtain the following commutative diagram.

R — 0 x[[Ui—Q° x[[Uie> T

’| l l ”

Z xJ]G; 2 0° x [1G; — 0° x [[G; = Z x []G;

Note that Q° is isomorphic to V(H(¥, ® (@' V™ Ds(Qv Nxo E(m))) as a
Q-scheme. Then using Corollary 2.3 repeatedly, we can easily show that the
morphism of R to 0° x []U; is a closed immersion.

In the proof of Proposition 3.1 of [13], we have constructed a subscheme
4? of Q x Q; x G; which is characterized by the following property For an
S-morphism ¢g: T—>Q x Q; x G, let go: ¥, ®=Cx, (9o, ¥ ®=Cyx, - E; or
d¢,: Vi ® =0 — ;) be the quotient correspondmg to the Tvalued point of Q (Q;
or G;. resp.) which is determined by ¢g. Then ¢ factors through 4? if and only
if (i) E; is a quotient of E and #; ® x,. as the quotient of ¥, &=y, and (ii)
in the exact commutative diagram obtained by (i)

0 "-—"JI®T(0XT — W, ®5(('XT —’ﬁ;@T(C‘xT —0

| | |

00— F,.,, — E — E;

i _)0*

Ji @Oy, - F;, is surjective.

Set 4 =49 xo--- x 4. Itis a subscheme of Q x [[Q; x [][G;. We have
proved in [13] that the projection i of 4 to Q x [[G; is an immersion. By the
Q-morphism of R to Q° x [[G; and to Q° x []U,, we obtain a morphism of R
to Q° x [[U; x []G;. By the conditions (2.0.2), (2.0.3) and the above property
of 47, the morphism of R* to Q° x [[U; x [|G; is factored by a subscheme

An(Q° x [U; x []Gy.
It follows that the morphism of R* to Q° x [JU; x []G; is factored by
4" =4n(Q° x [TU; x [1G)) x 00 0°
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The morphism R* — A’ is an immersion because R*— A" — Q° x [[U; is the
immersion. Moreover, the projection 7 x lgo of 4" to Q° x [[G; is also an
immersion. Thus, ¥|g. 1S a composite of the following three immersions

RS c 4, 0°x[]G e Z x[]G.. O

Set G = SL(¥,) which acts on R, Z and G, It is easy to see that ¥ is a
G-morphism and R* (or, R, resp.) is a G-invariant open set of R. We shall
say that a Q-invertible sheaf L has a G-linearization when there exists an integer
m such that L®" is an invertible sheaf and has a G-linearization. As in the case
of parabolic sheaves, we choose a G-linearized Q-invertible sheaf

1
L= Oz(par- Py (m) ® @ Cg,(&).
i=1

on Z x [1i-,G:. where E, is an underlying parabolic sheaf for some member of
Fo(H H,, 0,). g =0a;,, —a; for i=1... I (g4 = 1) and Oz(1) (or, O (1)) is
the tautological Q-invertible sheaf on Z (or, G,, resp.) which has the canonical
G-linearization. (@ + 1) is an invertible sheaf (n = dim (X/S)) but in general
(©3(1) is not invertible.) The open set consisting of all semi-stable (or, stable)
points with respect to this G-linearization is denoted by (Z x [['.,G)* (or.
(Z x []'., G). resp). Those are G-invariant open subsets of Z x [['_,G,.
Recall some facts on stable points of Z or G,. Let x be a K-valued geometric
point of Z x ]_'[?=l G;. We denote the point of Z(K) (or, G;(K)) determined by
x by T, (or, g;,., resp.). We use the same symbol ¢, . for the surjection
dix: ¥V, ® K = J; . which corresponds to x and moreover, we denote its kernel by
W.,. T, is regarded as a K-valued point of a Gieseker space Ps«qov), (V, @z
K, r, L) (cf. §3) where L, is the invertible sheaf corresponding to'p(x)eP(K).
For the convenience of readers, we shall recall some notations and definitions
on Gieseker spaces (cf. [26]). Let Po(V.r, L) = P(Homy(A"(V &), ), L)) be a
Gieseker space where X is a scheme over a field k, V is a k-vector space, 2 (or,
L) is a locally free Oy-module (or, an invertible sheaf, resp.) and r is a positive
integer. For vector subspaces 11,..., I/ of V; and non-negative integers r,,....r,.
we denote by [V, ; ry,.... ¥{; r,] an image of the following natural homomorphism:

A Qi) @y Rxp AN (K& Q) — A" (g Rk Q).

If r,=1, a symbol [---, ¥,---] is simply used instead of [---, ¥/; 1,---]. Moreover,
if ¥ is generated by one element e, then [---, e,---] is used. Let T be a K-valued
point of P,(V, r, L) which is identified as a non-zero homomorphism T: A" (V; &,
Q) — Lg. Vectors ey,....e; of V are said to be T-independent if T, .. yp-y #
0. Otherwise, those are said to be T-dependent. Note that those vectors may
contain same vectors. Let W be a subspace of V. Vectors e,...,e; in W is
called a T-basis of W if e,,....e; are T-independent and for all vectors e in W,
e,,....e;, e are T-dependent. The maximal (or, minimal) length of T-basis of W
is denoted by dim, W (or, dim; W, resp.) and called the maximal (or, minimal,
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resp.) T-dimension of W. In general, dim; W < dim; W and if equality holds.
then it is denoted by dim; W.
We need the following criterion of semi-stability of points of Z x n,{ﬂ G,;.

Lemma 2.6. Ler x be a K-valued geometric point of Z x [[\-,G;. Assume
that the point T, in Z(K) has the following property:

(2.6.1) For all subspaces W of V, ® K, dim; W = dim,_ W,

Then the point x is semi-stable (or, stable) with respect to the G-linearized invertible
sheaf L if and only if" for all non-trivial vector subspaces W of V, X =K, the
Jollowing inequality holds

par- P (m)(dimy W-dimy (¥, @ =K) — r dimy W)

1
+ Y g(dimg W-dimg W, — dimg (V, ® =K) - dimg (W, .nW)) >0
i=1

(or, >0, resp.).

Proof. Set T=T, V=V, ®=K and N=H(m)=dimgV. Let i be a
non-trivial one parameter subgroup of G and let e,..... ey be a basis of V such
that e} = oe; where r; <---<ry and Y r;=0. Then by Proposition 2.3 of
[16], we see easily that

20T, }) = — min fr oty | T
18 (Ts ) 1<d do<N UV dy + + d,-l I[ed,

.....

Let W' be the vector subspace generated by e,...,e;. Let k, be the minimum
integer such that e, is T-independent. If a sequence of integers k,,....k, are
defined, then let k,., be the minimum integer such that e¢,.....¢, , are
T-independent. Thus we have a sequence of integers k; <--- < k,. By the proof

of the claim (3.3.2) of [13], we have that
,u‘nf(”(T. )): _ Z Fi,-
i=1

If i appears a;-times in the sequence k...., k,, then dim; W' =dim; Wi™! + q,.
Thus we have that

N
'u(ffzm(r i) = — Z (dim, wi— dimy Wi_l)"i-

i=1
The rest of the proof is completely same as that of Lemma 3.3 of [13]. O
Let a(W. x) be the left-hand side of the above inequality. Since dimg (¥, ® =

K)= H(m) and dimg W, . = H(m) — H,(m), we have the following description of
a(W. x):
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1
a(W, x) = H(m)- (par- Pg (m) - dimp W— 3 ¢ dimg (W, .n W) — o, dimg W).
i=1
Proposition 2.7. 1) P (R®) < (Z x [[', G)*.
2) P(RY<(Z <], Gy.

3) If a point x is in R* but not in R*, then ¥ (x) is not in (Z X l_[£=, G).

Proof. Let x be a K-valued geometric point of R* and W be a non-trivial
vector subspace of 1, ® =K. Then we have a parabolic pair (E,(m), ¢) on X
and a surjection ¢.: ¥, ® =Cx_— E(m) which correspond to xe R*(K). Let ¢’
be the following surjection

0V, ®=S*(Q )y 25 E(m) @4 S*(27) - E(m)

and let ¢, be its restriction to ¥, @ =S¥(2")y,. The K-valued point Ty, of
Z corresponds to the homomorphism

ATV @ =SH(R2Y)x ) 15 AT(E(m)) —> det (E(m)).

By Lemma 3.7 in the next §3., we have that
(2.7.1) dimpg,, W= dimp, , W= rk (o;(W ®x SF(Q")x).

By Lemma 1.2 of [26] and Remark 2.1.2, ¢, (W& S¥(2")y,) is generically
isomorphic to ¢'(W @, S*(2V)y ). Let F(m) be a subsheaf of E(m) containing
O (WQgS*(2V)x,) such that E(m)/F(m) is torsion free and F(m)/o'(W Xk
S*(2Y)y,) is a torsion sheaf. Then by (2.7.1), dimg, W =rk(F). Since
HO(¢,): V, ®=K - H°(E(m)) is an isomorphism, we know that (cf. [13] (3.4.2)
and (3.4.3)) dimg W< h®(F(m)), dimg (WNW, g < h°(F(m)nF;,,(E(m))) and
therefore

1
a(W, P(x)) > H(m) - <par- Py (m) -tk (F) — J

0

h°(F,(m))doz>

where F,(m) has the induced structure. Since ¢ (W @ xS*(2Y)yx ) is @-invariant,
so is F(m). Hence, the assertions 1). 2) follows from Propositions 1.9. (2.7.1) and
Lemma 2.6. To prove 3), let E, be the ¢-invariant parabolic subsheaf of E,
given in 2) of Proposition 1.9. Note that the parabolic structure of E; is the
induced structure. Set W= HC®(E'(m)). Since E'(m) is generated by its global
sections and e@-invariant, @, (W @ S¥(2V)y) = E'(m). Hence, by the above
argument, dimg, W =rk (E') and

1
(W, ¥(x)) = H(m)- <par- Py (m)-rk (E') — J' hO(E;(m))doc> =0.

By Lemma 2.6, P(x) is not in (Z x 116 O
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Let R® be the scheme theoretic image of R* in (Z x []'_, G)*. Then by
virtue of Theorem 4 of [20], there exists a good quotient : R®*— Y and Y is
projective over S. Set MBiiws =Y — E(R*® — R¥). Then Mpiinss is quasi-
projective over S. Moreover M,’;;D“,‘X‘}S contains M gri$s = ¢(R) as an open

subscheme.

Theorem 2.8. M55 is a coarse moduli scheme of par-X oipys, that s,
MQ;‘l;"/*X,S has the following properties.

(2.8.1)  For each geometric point s of S, there exist a natural bijection:
. s Lok s Hy,as.0
0 par- Zg/ba/x?s(k(s)) — Mgjbiys (k(s)).

(28.2) For Te(Sch/S) and [(E,.@)lepar-Z4ipnis(T), there exists a
morphism

filewon: T— Mgiiiss

such that for all points t in T(k(s)), fig,.on() = O(Ey, @)lx). Moreover, for a
morphism g: T'— T in (Sch/S),

-fiwa-‘/"] °g = -fiflx X g (Ex )"
(2.8.3) If M'e(Sch/S) and maps
0.: par- X315 (k(s) — M'(k(s))
Sitwon: T— M’

have the properties (2.8.1) and (2.8.2), then there exists a unique S-morphism T of
Mgrsrss to M such that T (k(s)) = 0, = 0; and T < file. o = f..on JOr all geometric
points s of S and for all [(E,. ¢)]€par- Zg5r5s(T).

2.8.4) MUrxee s quasi-projective over S.
QID/X/S q pro

Proof. Though the proof is essentially the same as in the case of moduli of
stable sheaves, we give the proof for completeness. (2.8.4) is already proved. Set
2 =par-Znts and M = Mgrinés.  Let s be a geometric point of S. We have
a natural map

ne: RE(k(s))/G(k(s)) — Z(k(s)).

For each pair (E,, ¢) in Z(k(s)), by (2.0.3). h°(E(m))= H(m). Taking an
isomorphism V., X =k(s) ~ H°(E(m)), by (2.0.2), we obtain a surjective homomor-
phism ¢': ¥, @ =0x, — E(m). By the universal property of R*, (¢". (E,. ¢)) defines
a k(s)-valued point of R*. Hence, n, is surjective. Moreover, by the property
(2.4.1) for points of R*, =, is injective. Since &(k(s)): R*(k(s)) » M(k(s)) induces
a bijection R*(k(s))/G(k(s)) ~ M(k(s)), we obtain a bleCthl’l 0, Z(k(s)) ~ M(k(s)).
To prove (2.8.2), assume that Te(Sch/S) and [ qo)]eZ(T) are given.
Then by virtue of the properties (2.0.2) and (20 3), f, E(m)) is locally free
of rank H(m) and the canonical map (fp)*(E —>E(m) is SUI‘J@CUVC where f; is
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the projection of X, to T. Let T= (), T, be an open covering of T such that
E'|y, is free for each A Take an isomorphism f;: ¥, ® =0, ~ E'|;,. By the
universal property of R*, a surjection

B . ,
| ®5€’xr;‘ — (fP)*(E'|,) — E(’")|x“'

and (E,, @)y, defines a morphism h; of T, to R*. On T,, = T,nT,, a T,,-valued
point 8, B, of G transforms h; to h,. Since M is a geometric quotient of R*,
Eohy=¢oh, on T,,. Thus we have a morphism f3 , of T to M. Note that
by the same argument, fi, ., = fi&. »e. fOr €ach invertible sheaf on T. Clearly,
fi&..» 18 the desired one.

Finally, let us prove (2.8.3). The universal parabolic pair (E(m)*,@h"s
(simply denote by (E(rrz)*, @)) on X, determines a morphism

w: R* — par- X555,
Since o*((E(m)*, P)) ~ p§((§(m)*, @)), we have a commutative diagram

a

G x R* — R®
ll’z lw
Rs I . ZH*‘a*,v
— par-24/p/x/s-

where o is the action of G on R® and p, is the projection. The property (2.8.2)
implies that there exists a morphism & of par-Zfrn“¢ to M'. Moreover, we
have that

6 oW = fi(/l?(ml”‘m]'

Hence, we see that figm. s ° 0 = fi(Em..an ° P2- Since M is a geometric quotient
of R* by G. there exists a unique morphism T: M — M’ with T o & = fiiz,.. o
Then by the universality of R°, we know easily that T has the property in (2.8.3).

By the similar arguments as in §5 of [9], we know that there exists a unique
morphism v, . of M0 to Maipns if e <e'. Moreover. M{yss can be
regarded as an open subscheme of Mg:%'s through v, .. Taking inductive limit
of (M5}, an S-scheme M 3757y ,s is obtained.

Theorem 2.9. M {1, is a coarse moduli scheme of par- Z i 5. Moreover,
M5y s is separated and locally of finite type over S.

Proof. Since M = M {57y ,s is the union of open subschemes M°® = M {riis

which are quasi-projective over S, it is locally of finite type over S. Moreover,
M x¢M is covered by open subschemes M x M¢ Let 4 (or, 4°) be the
diagonal morphism M - M x¢M (or, M€ - M*® x¢M*®, resp.). Then AnM*¢ xg
Mc* is closed in M¢ xgM¢°. Hence, 4 is closed in M x¢M, i.e. M is separated
over S. For all K-valued geometric points s of S, M(k(s)) = J,M®(k(s)) and
2(k(s)) = U.2°(k(s)) where X = par-Zfany,s and X¢ = par- Zgriiw%s.  Hence,
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clearly M(k(s)) = Z(k(s)) in a natural way. It is easy to see that 2 = lim2* and

there exists natural commutative diagrams for ¢ < ¢’

¢ — 3¢
La" lq
M(, Ve.e’ M‘,,

where ¢g¢ is a morphism given by the property (2.8.2). Hence, there exists a
natural morphism g of 2 to M. Finally for each morphism h of 2 to M'e(Sch/S),
there is a morphism v° of M¢ to M’ such that v®-¢g°= h|z.. By the property

(2.8.3), we know that v* o v, . = v for e <¢'. Hence, we get a unique morphism
v of M to M’ whose restriction to M¢ is v°. Since the restriction of veog to X°
is the same as that of h, voeg =h. Clearly, such v is unique. O

3. GL(V)-orbits of Z x [[G;

In this section, we shall analyze orbit spaces of (Z x [1G)* with respect to
GL (V).

Let X be a smooth, projective variety over a field k and "x(1) a very ample
invertible sheaf. Fix a locally free ¢’y-module 2 of finite rank. As in §3 of
[26], for a k-vector space V of dimension N, a non-negative integer r and an
invertible sheaf L on X, we denote by Py,(V,r, L) a Gieseker space P(Hom,,
(A"(V®,2), L)Y) on which the algebraic group G = GL (V) acts and there is
the G-linearized invertible sheaf ¢'(1). Let a, = {«;,...,%] (or, N, = {N,....N})
be a set of rational numbers (or, positive integers, resp.) such that 0 <, <
<oy <l (or,0<N;<---<N/ <N,resp.). Seteg =2, —2 (4, =1). We
denote by G(V, N;) the Grassmann variety Grass(V, N;). On G(V. N,), we have
a natural G-linearized invertible sheal (g, y,(1). Moreover, we denote by
On(V.r, L. N, a,) the scheme

Po(V.r, L) x F(V, N,)

with a G-linearized Q-invertible sheaf
N =) &N, !
Coll) = 6(‘——’2}"“) ® @ Uy (&)
i=1

where F(V, N,) is a flag variety consisting of all flags Vo W, --- o W, with
dim, W,= N — N, and where ®:_, Og .y, (&) is regarded as a Q-invertible sheaf
on F(V, N,) by a canonical inclusion F(V, N,) l—[{'=1 G(V, N)).

In this section, we shall fix @, hence we denote On(V,r, L, N, a,) (or,
Po(V.r, L)) simply by ©(V.r, L, N, «,) (or, P(V,r, L), resp.). Moreover for
O =06(V.r L, N, a,), the above [ (or, ¢) is sometimes denoted by /() (or, £(O);,
resp.) and [(@) is called the length of ©. For a K-valued point x of
OW.r, L, N,.a,), we denote by T, (or, g;,) the point of P(V.r, L)(K) (or.
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G(V, N)(K), resp.) determined by x. We use the same symbol g;  for the
surjection g; .: V&, K — J; . which corresponds to x and its kernel is denoted
by F; (V). Moreover, for each 0 < a <1, we set

Ve=Fio1 (V) il o <a<a,

where o =0, — 1. o4y =1 and Fy (V) =V &®,K. We denote by F(V, N,. a,)
the scheme F(V. N,) when this additional structure “o+— V;*” is given for each flag
F, (V) which corresponds to each point x on F(V, N,). Note that

1 1
(3.0.1) f dimg V¢da =N — Y &N, > 0.
0 i=1

From now on, set @ =60(V,r,L. N, a,), @ =60V ¢, L,N,, a,) and
O =0WV".r", L". N;, ay). Let us recall that the notion of extension of points
in Gieseker spaces (cf. [10] and [26]). It is generalized for our case.

Definition 3.1. Let T, T" and T” be K-valued geometric points of P(V, r, L),
PV',r’, L')yand P(V", ", L"), respectively and let ¢: L’ ® y L" — L be an injective
homomorphism. The point T is said to be a ¢-extension or, simply, an extension
of T” by T’ if the following conditions are satisfied ;

(B.L.1)y r=r+1+",

(3.1.2) there exists an exact sequence

00—V ®, K VRK -V ®RK—0
such that

(3.1.2.1) the following diagram is commutative (mod K ).

/\r,(Vl\” ®KQK) ®x,< /\ru(VK ®KQK) — A"(K ®K Q)

T'®(T"CA’"(!I®I'dQ))l l T
’ " K
LK ® Xk LK LI\

In this case. T’ (or, T") is said to be a subpoint (or, quotient point, resp.) of T.

Let x,x’ and x" be K-valued geometric points of 6@, 60 and O",
respectively. The point x is said to be a ¢-quasi-extension or, simply, a
quasi-extension of x" by x' if T, is a ¢-extension of T. by T, ie. the above
conditions (3.1.1) and (3.1.2) are satisfied and moreover, in (3.1.2), the following
holds.

(3.1.22) Forall 0<a< 1, f(V) < VX and g(VJ) < V]2

Moreover, the point x is said to be ¢-extension (or, extension) if, in addition,
the following induced sequence is exact for all 0 <o < 1.
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g

(3.1.3) 0—sVeELoys 2 ym Lo
Remark 3.2. If x is a ¢-extension of x” by x' as above, then by virtue of
(3.0.1) and (3.1.3), we have that
1 1 1"
(3.2.1) N— Y &Ni=(N'"—= Y &N)+(N"— ) &N/).
i=1 i=1 i=1
Definition 3.3. Let x, x’ and x" be K-valued geometric points of &, @ and
O, respectively and let ¢p: L' &y L” — L be an injective homomorphism. Assume
that x is a ¢-extension of x” by x’ and let

0V @K o VRK V' &K —0

be the underlying exact sequence of the extension. Then x is said to be a
¢-direct sum of x' and x” if there exists a K-linear map i: V" ®, K- V&, K
such that goi=idy.g, g, i(V*) SV for all 0 <o <1 and that T |wp)s.viir-s
=0 whenever s> r".

The notion of isomorphisms of K-valued geometric points is naturally defined,
for two K-valued geometric points x and y in O, x ~ y if and only if these are
in the same GL(V)-orbit. If x; and x, are two ¢-direct sums of x' and x”,
then we know that x; ~ x, (see Lemma 2.16 of [10]). Thus a direct sum of x’
and x” can be denoted by x' @ x". Moreover, let x{ be a K-valued geometric
point of @ (V'(i). I;, L'(i), N'(i),., 2'(i),) (1 <i<t) and put r,=1 +--+1[; and
Vi)=V'1)®---@® V'(i). Let ¢;: L(i — 1)® L'(i) - L(i) be a sequence of injective
homomorphisms (1 <i <1, L(O)= ). We can define ¢;-direct sum of x;_, and
x; inductively. Each x; is a K-valued geometric point of @ (V (i), r;, L(i). N(i),,
a(i),) and it is denoted by (---((x; @ x3) ® x3) ®---) ® x;). By a similar argument
as in Lemma 2.19 and Corollary 2.19.1 of [10], we can denote x; by x; @ --- @ x/.

Lemma 3.4. Let Z' (or, Z") be a GL (V') (or. GL (V"), resp.)-invariant closed
subset of O (or, O, resp.) and let ¢: L' QL' — L be an injective homomorphism.
Then there exists a GL (V)-invariant closed subset Z of @ such that for all
algebraically closed fields K containing k,

Z(K) = {x€@O(K)|x has one of the following properties (3.4.1), (3.4.2)}.

(3.4.1) x is a ¢-quasi-extension of x" in Z"(K) by x" in Z'(K).
(3.4.2) There exist points x' in Z'(K), x" in Z"(K) and an exact sequence

0- V,\fi VK—g> Vi >0 such that T wpw vy =0 and for all 0<a<l,
fWVH eV and g(vE) < Vix
Proof. We can find that there exists a subscheme U, of Hom, (V', V) x,

Hom, (V, V") such that for all fields K containing k, Uy(K) = {(f, g)|0 - V§ EA Vi

4 Vi =0 is exact} (cf. Lemma 2.6 of [10]) and on U,, we have a universal
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exact sequence

I J .
0— Vi, — W, — W, —0.

Let
P ATV @@ A (an®k — AW, @ Q)
be a homomorphism defined by

'))((U A AD »)®(V\’ A Myr"))
=(f® ), AS@DD) AW, A AW
where v; (or. w) are local sections of V), &, (or, I, ®,€, resp.). Taking

Homy, (-, Ly,)", we obtain a homomorphism

HOmXU"(Ar,(Vl;o®“‘Q)®XUO/\r“(VUO®kQ), LUO)V ;MUU

| K

Homxw) Voo ® 2 ), Ly,)” — Ny,

where M = Homy (A" (V' ®,2) Ry A" (V®,2). L)Y and N = Homy (A"(V®,
Q), L)Y. Let O, (1) be the tautological invertible sheal on P (M) ~ P(M) x,
U, and let M be the kernel of the natural quotient map

q*(My,) — (1)
where g is the projection of P(My,) to U,. Set
Zy = P(g*(Ny,)/q*(7) (M) = P(¢g*(Ny,)) = P(M) x, P(N) x, Us.
Then we obtain the following commutative diagram

o/ %o \r

() P(N) x, Uy -+ — P(M) x, U,

N A

Let x =(T,. (f..d,) be a K-valued geometric point of P(M) x, U, where
T, is a homomorphism (mod K™)

T A" (K @2 ® A (e ®,2) — Lg
and (f,.yg,) determines an exact sequence

A

0 — ¥ L5y 2 vy —o.

Then the fibre p'~!(x) is a closed subscheme of P(N), ~ P(V. r, L), and we can
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find that

(3.43) TeP(V.r. L)x(K) is in p'~'(x)(K) if and only if To(A"(f® 1) A
(A""id)) = T, as a point of P(V.r, L) (K), or To(A"(f® 1) A (A""id)) = 0.

On the other hand, from a surjection
ANV @1 2) @ xpy A (W @i Q) —> A (Vg @12) Ry A7 (Wi, @1 Q)
defined by § (i.e. (A" id) A (A" (§® 1))) and the injection ¢: L' @y L" — L, we
obtain a surjection
Homy,, (A" (V), @4 Q). Li,)* @u,Homy (A" (W, ®:Q). LY,)"
~ Homy, (A" (V5 @4 2) Qxpy A (W, @1Q). (L' @ x L')y,)"
—» MUu
Hence, by the Veronese embedding. we have a closed immersion:
PV, L)y x POV, 1", L") x Uy P(M) x, U,.

Now set F = F(V, N,.a,), F'=F(V', N, ay), F" =F(V", Ng, 0‘3_:) and F =
F x,F' x,F"”. Then there exists a closed subscheme U, of Uy x, F such that
for all algebraically closed fields K containing k.

(V' a, e pra
UI(K)={((f, g)’ V*’ V’*’ V"*) f( )C V*and (]( )C }

forall0 <o <1

Taking the product of (*) and F and combining natural isomorphisms
O x Uyx F'x F"~P(N) x UOXF,
O XxO" xUygx F~PWV',r,L'yx PV",r", L") x Uy x F.

we obtain the following commutative diagram.

Zo x F TUPM) x U F 7' x Z" x Uy x F
g !
G)onxF'xF”—ﬁ—» Uy x F > U,

Set
Z,=p "GN UNNIZ x Z" x Uy x F)).

By virtue of (3.4.3) it is easy to see that Z = n(§'(Z,)) is the desired set where
m is the projection of @ x Uy, x F' x F” to @. We must prove that Z is closed
and GL (V)-invariant. It is not difficult to verify that the properties (3.4.1) and
(3.4.2) are GL (V)-invariant, hence Z is GL (V)-invariant.

Set H=GL (V') x,GL (V"). It is easy to see that all morphisms in (x) are
H-morphisms and hence Z, is H-invariant. Moreover, U, is a principal H-bundle
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over the Grassmann scheme G(V, dim V') and Z, is proper over U, therefore
by Proposition 7.1 of [16] and its proof, Z, is a principal H-bundle over a
proper G(V, dim V')-scheme Z,. Since H acts on @ trivially, the projection
n: Z, — O factors through Z,. Therefore Z is closed because it is the image of
the complete k-scheme Z,. O

For a K-valued geometric point x of @, o(x) denote its G-orbit.

Lemma 3.5. Let x, x" and x" be K-valued geometric points of @, @ and 0",
respectively and let ¢: L' Q x L" — L be an injective homomorphism. Assume that

X is a ¢-extension of x" by x'. Then the closure of GL (V)-orbit o(x) contains
the orbit o(x' @ x").

Proof. Let R be a discrete valuation ring over K with residue field K. Let
i be a section of the underlying exact sequence

00— Vi — Wy —> V¥ — 0

of the extension x. Then Wy =U, @ U, with U, =u(V{) and U, = i(V{). We
may assume that i(V,"*) > V*. Take an automorphism g = idy,, @ 7 - idy, of Vg,
where 7 is a uniformizing parameter of R. Set x, = g(g, x). Using a natural
decomposition

Homy, (A"(Vx ® Q). L)
= @i-oHomy, (A(U; ®x Q) ® A" U, @ Lk), L),
T, can be denoted by Y '_ T with
TP eHomy, (A*(U; @k 2k ® AU, ®x 2k, Lg).

By the condition (3.1.2), for all s with r —s>r", TP =0 and T #0. Hence,
we have

7;.|=

S

»

Z T T‘\s

r

The point T= Yr_,.m 7T can be regarded as an R-valued point of
P(V.r,L). Since T, =T as point of P(V,r, L)(Q(R)), T(modn)=T! and
T! juyis.vrir—s) = 0 Wwhenever s > ", we know that T(mod 7) and the flag structure
for x determines a point x' @ x". O

Recall the definition of excellent points of Gieseker spaces (cf. [10], [26]).

Definition 3.6. A K-valued geometric point T of P(V.r. L) is said to be
excellent, if T has the following properties.

(3.6.1) For all vector subspaces W of I,

dim, W = dim; W.
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(3.6.2) For all subpoints T'eP(V',r. L')(K) of T and for all vector
subspaces W of Vg, if e,,....e, is a T'-basis of W. then f(e,),....f(e,) is a T-basis
of W where [: V' ®,K - V®,K is an injection which makes T’ the subpoint
of T.

A K-valued geometric point of @ is said to be excellent if T, is excellent.

Note that if T is excellent, then for all subpoints T'e P(V', ¥, L}(K) of T
and for all vector subspaces W of V,

dim,. W = dim;. W = dim, W.

The following lemma is (5.3.1) of [26] and is a natural generalization of a
part of Lemma 4.4 of [10]. We give a proof since it is omitted in [26].

Lemma 3.7. Let T be a K-valued geometric point of P(V,r, L). Assume
that there exists a surjective honmomorphism @: Vg @ Qx = E with E a coherent
Oy -module of rank r >0 such that det E ~ Ly and T is given by the following
hontomorphism.

ANV @i Q%) —5 AE —>det E ~ Ly.
Then T is excellent. Moreover, for all K-vector subspaces W of V.
dim; W=rk (p(W K 2)).

Proof. We may assume that k = K and det E = L. Since det E is torsion
free, for every submodule M of A"(V®,Q), Tly =0 if and only il Ti|y, =0
where ¢ is the generic point of X. Let e,...,e; be a T-basis of W. Then
Tl .....covir—ig 7 0. Therefore there exist elements w,,....w; of Q. and v,,...,v,_;
of (V®,£2); such that

T:((e, @wW) A A ®@W) AUy A Av,_) #0.

Hence, ¢(e, ® w,),...,p(¢e; ® w;) is linearly independent over k(). Since any
element e of W is T-dependent on e¢,....,¢;, we know that for any element w of
Q:. p(e®w) is linearly dependent on ¢(e; ® w,),...,¢(e; ® wy), and so is ¢(r)
for any element v of (W®),£),. Therefore, the length i must be equal to
k (@(W ®, Q). Thus the condition (3.6.1) and the last assertion of our lemma
were proved.

Next, let us prove the condition (3.6.2). Assume that T is a ¢-extension of
T eP(V",r", L")(K) by T'e P(V’', 1, L")(K). Let W be a K-vector subspace of
Vi. For vectors e...., e; in W, we have a following commutative diagram.
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[ev.nen Visr —i1® A" i

[elg...,ei. V’\,: r = j’ I/I'\’ r//]

Leg..... en Vis ' —i1@ A" WY i

Leys...nepy Vs r—i]

Tx® T.\-"l
i
L®L" 4 oL

By this commutative diagram, if e,,...,e; are T'-independent, then so are
T-independent. Conversely, assume that e,,...,¢; are T-independent. [t is easy to
see that dim; V¢ = and there exist vectors ¢;,,,....e, in Vg such that e;,...,e.
is a T-basis of Vg. Then T, . .. ver#0 Hence, T,  ..,#0 In
particular, e,,...,e; are T'-independent.

Lemma 2.3 is rewritten for @ as follows.

Lemma 3.8. Let x be a K-valued geometric point of ©. Assume that T,
has the property (3.6.1). Then the point x is semi-stable (or, stable) with respect
to Og(1) if and only if" for all non-trivial vector subspaces W of Vi, the following
inequality holds

1
(3.8.1) (N =Y ¢N)dimg_ W—rf dimg (WnVHda >0
i 0
(or, >0, resp.).

Lemma 3.9. Letr x, x' and x" be K-valued geometric points of @, @ and 0"
respectively and let ¢: L' Q x L' — L be an injective homomorphism. Assume that
x is excellent and is a ¢-extension of x" by x' with underlying exact sequence

0— v Loy vy —o.

Then X' and x" satisfy the condition (3.6.1) and for all vector subspaces W of Vy,

the following inequality holds

(3.9.1) dim; W>dim;_f~'(W) + dim;_, g(W).

Moreover, if W contains f(Vy), then

(3.9.2) dimy W=7+ dim;_, g(W).

Proof. We regard V| as a subspace of V. by f. Let vy,...,v, be a T.-basis
of WnV{ and let w,,....w, be elements of W such that g(w,),...,g(w,) is a
T..-basis of g(W). Then, by virtue of (3.1.2.1), we obtain a following natural
commutative diagram
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(01t Vs B —d]1 Q@ [Wes..owy, Vs 1" — €]

I

[os..hvg Vi ¥ —d, wy,..., W, Vg1 —e]
(1t Vs ¥ = d1 @ [gOvi)occglv). or =] |
[Opseitgs Wiy we, Vs —d — €]

Tv® T.wl
g

L®L - L

va.Vir' —d] # 0 and T\‘"|[g(w|)‘..,.y(wg}.V,'(':r”—e] # 0’ we have

Tx’ ® Tx”l[m ..... va, Vi’ —dl®lg(wi)..... glwe) Vgir' —e] ;é 0

v oweViir—d—e) 7 0. 1t follows that

(3.9.3) dim, W>d +e.

Since x is excellent, x’ satisfies (3.6.1) and hence d = dim,_, f~'(W). It is sufficient
to prove that x” satisfies the condition (3.6.1) and that for W 2= Vi, (3.9.2) holds.

If W2 Vg, then d =dimy, Vg =1. Fix a T.-basis v,,...,v,.. For vectors
Wi....,w, of W, the injection i in the above diagram is an isomorphism. Hence.
we know that T, ver—r—e 7 0 if and only if Tl giwo v —e
# 0. This fact implies that g(w,),....g(w,) is a T.-basis of g(W) if and only if
UlseenDps Wi,...,w, is a T.-basis of W. Hence each T..-basis of g(W) has the
same length dim; W— . Thus x” satisfies the condition (3.6.1) and we obtain
the equality (3.9.2). |

e UdsWiy oo s Wey

Lemma 3.10. Under the same situation as in Lemma 3.9, assume, moreover,
that

1 I i
(3.10.1) —(N=Y&N)==(N"=YeNj)=—(N"=Y &N/).
r i i r i

r
Then

(1) x" and x" are semi-stable when x is semi-stable.
(2) If x' and x" are excellent and semi-stable, then x is semi-stable.

Proof. (1) Assume that x is semi-stable. For each vector subspace W # 0
of V¥, by (3.6.2), (3.8.1) and (3.10.1), we have

1
0<(N =Y gNydim, W— ;-J dimg (Wn V) da
i 0
. 1
= L’<(N’ — Y &/Nj)dim; , W—r J dim, (Wn V\f,“)da)

! 0
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Hence, by Lemma 3.8, x' is semi-stable.
To prove that x” is semi-stable, take 0 # W < V). Since the sequence (3.1.3)

is exact, we have an exact sequence
I _ ¢ "
0— Vg ' w)nvi L wnv —o.

Then. by (3.8.1), (3.9.2) and (3.10.1),
1

0<(N—Y¢gN)dimy_g " (W) — rj dimg (g~ (W)n V) da

0

=(N =Y &N)(dimy_ W+ r)

1 1
- r(J dimg (Wn V%) da + J dimy V\f?doz>

0 0
1

= L<(N — Y ¢/N/)dim; , W— IJ dimy (Wn [{\’f?‘)daz).

F 0

Hence, by Lemma 3.8, x” is semi-stable.
(2) Assume that x" and x” are excellent and semi-stable. Let W #0 be a

vector subspace of J;. Then, by the exact sequence (3.1.3), we obtain the

following exact sequence

0 — VIAW — VI W — V22 ng(W).

Hence, by (3.8.1), (3.9.1) and (3.10.1), we have that

1
(N =Y &N)dimp W—r | dimg(WnV)da

0

> (N =3 &N)dim,_ (Wn V) + dim;_g(W))

1

- "J (dimg (VA0 W) + dimg (V) ng(W)))d«
0

1

- Q<(N' — Y &/ N)dim,_ (Wa V) —r f dimy (V.20 W)doc)
r i

0

r . b
+ - ((N” — Zz:,f’N,-”) dim;_, g(W) — " f dimy (V\Tf?‘ﬂg/(W))doc>
r i 0
> 0.
Therefore, by Lemma 3.8, x is semi-stable. 0

Proposition 3.11. Let ¢;: L;_, ® L; > L; be injective homomorphisms (1 < i
St Ly=0x), O0<r),<--<r,=r be a sequence of integers and let D; be a
GL (W)-invariant closed set of ©; = @(V. r,;, L;, N;, fx‘;k) (1 <i<un). Assume that
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Sfor every algebraically closed field K containing k, all the points of DK) are
excellent and that
1 1O, 1 10,
(3.11.1) —(N' = Y &@);N})=-=(N'"—= Y &0,
F1 j=1 F i=1
Let S; be a k-rational, stable, excellent point in ©] = @(V/, r{, Ly, Ny, aj)(k) where
ri=r,—ri_, and k is the algebraic closure of k. Then there exists a
GL (¥)-invariant closed set Z, = Z(S,....S,) of DF¥ = D0 (1)® C}) such that
for every algebraically closed field K containing k,

Z(K)={xeD,(K)|x has the following property (x),}.

(*),: There exists a K-valued geometric point x; in each D = D¥(Ug, (1)@ Op,)
such that x, ~ S, x; is a ¢;-extension of S; by x;_,(2<i<t) and x = Xx,.

Moreover if Z(S,,....S,) is not empty, then GL (V)-orbit o(S,,...,S,) of
S, @D BS, is a unique closed orbit in Z(S,,...,S,).

Proof. 1f (%), holds, then by (3.2.1), we have that

(3.11.2) N =Y &Ny
j
= (V= TN — (N TN
Jj i

where &) =¢(0,); and ¢} =¢(0]);. Hence, we may assume that (3.11.2) holds
because otherwise Z, = @ is desired one.

We prove the first assertion by induction on t. When =1, set
Z, =o0(S,). Since S, is stable, Z, is closed in DY. Obviously, Z, is desired
one. Assume the assertion holds for r — 1. Then there exists a GL(V_,)-
invariant closed set Z,_, of D,_, such that Z,_| satisfies the property (x),_,. Let
Z,_, (or, 0(S,)) be the closure of Z,_, (or, o(S,), resp.) in D,_, (or, O,. resp.). Then
by Lemma 3.4, we obtain a GL (¥)-invariant closed subset Z of @, such that a
K-valued geometric point x of O, is contained in Z(K) if and only if x has one
of the following properties.

(3.11.3) x is a ¢,-quasi-extension of a x” in o(S)(K) by a x' in Z,_, (K).

(3.11.4) There exist points x' in Z,_,(K), x" In 0(—S,)(K) and an exact
sequence

0— ¥, @K 1o @KV, ®K—0

such that Tliyw, ewkrir vienke =0 and for all 0<a <1, f7HOY) 2 (K- )%
and g((K)) = (V)5

We claim that Z, = ZnD;* is desired one. Let x be a K-valued geometric
point of Z,. 1If x has the property (3.11.4), then dim;_f(V_, ®,K)<r_,. By
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virtue of (3.11.1), we have that

1

(N, — Zs Ny dimq f(¥_, ®kK)_’rJ dimg (f(V_; @ K)n(K)})dx
0
1

<(N, =Y &iNYr,_, — r,J dimg (V_ )% da = 0.
j

0

By Lemma 3.8, this inequality contradicts to semi-stability of x. Hence, x satisfies
the condition (3.11.3).

We claim that x is not only a ¢,-quasi-extension but also a ¢,-extension. Let

00— H_, @K @K -5V, ®,K—0

be the underlying exact sequence of the quasi-extension. We must prove that for
all 0<a<|1, fFHUW)Y) = (V) and g((V)) = (V,)e.. These are trivial for
a=0. By the condition (3.1.2.2), f ~"((V))2(¥_ )% and g((¥)?) =(V/)%.. Hence,
it is enough to prove that

1
J dimg f 1 ((H))/(¥- )y de=0 and
0
1
f dimg (V)% /g((¥)7)da = 0.
(4]
Since x is excellent and semi-stable, by Lemma 3.8, Lemma 3.9, (3.0.1) and (3.11.1),

1
OSJ dimg S~ )/ ) do

0
1
< —(N'"=Y &Ny dimy f(V_, ®,K)— (N1 =Y & 'Ni™h)
r, i i
o L ZBN (NP =Y &7 INiTY
¥ ;
=0.

Hence, for all « with 0 <a <1, f~'((¥)*) = (V_,)%. Therefore we obtain that
g((NX) ~ W)/ fUV_)%). Hence by (3.0.1) and (3.11.2), we have that
~1
dimg g((¥)}) da
Jo
r1
= | dimg (N SV -5 da
Jo
1
= dimg (V)% do.
Jo

Hence, for all 0 <« < 1, we have that g((¥)}) = (V)%

X
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By equalities (3.11.1), (3.11.2) and r, — r,_, = r/, we get easily equalities

ZCN)_ (Nl 1 Zf‘l lNl 1)_7N" 28 Nq)
'y Fe—y ry
Hence, by virtue of Lemma 3.10, x' and x" are semi-stable. Therefore x’ (or, x")
is in Z,_(K)=Z,_ 10D (K) (or, o(S)(K)= 0(_5,)00,’”(K), resp.). Thus x
satisfies the condition (x),.

Conversely, if a K-valued geomeric point x in D,(K) satisfies the condition
(*),. then x is a ¢-extension of a x" in o(S,) by x" in Z,_; and by Lemma 3.10,
x is semi-stable. Hence, x is in Z,(K) = ZnD*(K).

Let us prove the last assertion by induction on t. If t = 1, then Z(S;) = o(S )
is closed in D$. Assume that our assertion holds for t — 1. Then o(S;..... S._1)
is a unique closed orbit of Z(S,,....S,_;). Let x be a K-valued geometric pomt
of Z(S,,....S,) such that o(x) is closed in Z(S,....,S,). Then by (x),_,, there
exists x" in Z(S,....,S,~;)(K) such that x is a ¢,-extension of S, by x'. By virtue
of Lemma 3.5, o(x’ ®S,) 2 0(S,,...,S,). Hence.

o(x) = 0(x) 2 0(xX ®S,) 2 0(S,.....5).
Hence. o(x) = o(S,.....S,). O

4. Moduli of parabolic semi-stable pairs

In this section, under the situation (2.0.1), we shall show that the functor
par-Z i s has a moduli scheme. We may assume that S is connected and
F = Fo(H, H,. a,) is not empty. r or r; denotes the rank of members of #. Set

H‘; = H — Z,.SiH,-
Pz =Hz/rs.

H; is the parabolic Hilbert polynomial of members of #. Let % be the family
of parabolic Q-pairs such that (E, ¢’) is contained in % if and only if there is
a strictly parabolic e-semi-stable Q-pair (E,, ¢)€.# and a Jordan-Holder filtration
E=E°>E'>-.2E"=0 of (E,. ¢) such that (E}. ¢') is isomorphic to some
((E'/E)), @, ;) where (E'/E’), has the induced structure defined by the parabolic
structure of E, and ¢,; is the parabolic homomorphism of (E/E’), to
(E'/E)), ® 2 induced from ¢. For such (Ej, ¢'), we have par-Py = P,.
Therefore there exists an integer M depending only on # such that
deg E' > M. By virtue of Corollary 1.2.1 of [12]. it is easy to see that ¥ is
bounded. Hence, there is a finite set of families

F = FoH', Hy, 0y),..., Fy = Fo(HY. HY o)

such that ¥ = U\, Z and 9nZ # 0 for all i. Note that for all i, Pz = P,. We
may assume that & = .



Compactification of moduli 481
By Proposition 1.9 and the proof of Proposition 2.5 of [13], we have

Lemma 4.1. For each non-negative integer e, there exists an integer m, such
that if m > m,, then for all geometric points s of S and for all strictly parabolic
e-semi-stable Q-pairs (E,, @) on X, which is contained in some F;, the conditions
(2.0.2), (2.0.3). (2.0.4) and the following condition are satisfied:

(4.1.1) for all @-invariant parabolic subsheaves E, of E, with E" # 0,

1
J h°(E,(m))da < 1k (E') - par- Py (m)
0

and moreover, the equality holds if and only if
par- Pg; (m) = par-Pg (m) = Pg(m).

We may assume that m, >m, if e >¢'. Set Ff=F4H . H ,a). LetV
y e e i 2 * *

be a free Z-module of rank H'(m,) and let R; and P; be the schemes constructed
in §2 for #¢ and ¥, instead of #4(H, H,, «,) and ¥,. On X.. we have a flat
family of parabolic sheaves (E'(m,), F;, %), a universal parabolic homomorphism
@' El(m,), — E'(m,), ®x Q2 and surjections;
Ho ®=0xa, —» Elmg) 2 Eii(m,) " - s B (m,),

where Ei(m,) is E'(m,)/Fi,  (E'(m,)).

Moreover, let Z; be a P;-scheme such that Z, is a PM-bundle in étale topology
and for a K-valued geometric point x of P;, the fiber (Z,), over x is a Gieseker

space

PS:(QV)XK(I{&‘@ K“ r?i’ L\) !

where L, is an invertible sheaf corresponding to x. Then as in §2, we have a
GL (¥ ,)-morphism 7;: R, - Z; and

R; i’zl X l_lei.j

\/

where G; ; is a Grassmann scheme Grass (V/,, H}(rm)).

By virtue of Proposition 1.11, for each integer ¢’ with 0 < ¢’ < ¢, there exists
an open subscheme R{*(e, ¢') (or, Ri(e, ¢')) of R, such that a geometric point x
of R; is contained in Rj*(e, ¢') (or, Ri(e, ¢'), resp.) if and only if the corresponding
parabolic Q-pair ((E'(m,), Fi, «l), ') ® k(x) is strictly parabolic ¢'-semi-stable (or,
parabolic e'-stable, resp.) and the homomorphism

vz is slightly different from Z which is defined in §2, that is, if we define Z, as in §2, then the
fibre (Z;), must be Pg (ov) (W.®:K,rz,L,). But all arguments in §2 hold good for this

modification because we have a relation r>r ;.
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4.1.2) H(¢' ® k(x)): ¥, ® k(x) —> H°(Ei(m,) ® k(x))

is an isomorphism.
By virtue of Proposition 2.5 and Proposition 2.7, the GL (¥ )-morphism

'17’;2 R (e, ¢) — (Z, X n Gi.j)ss
J

is an immersion. Let R¥ (e, ¢') be the scheme theoretic closed image of R¥(e, )
in (Z; x []i-, G, )™

Lemma 4.2. For all k-valued geometric points 'y of P, every geometric point
of Ri(e, €), is excellent in (Z;), = Psygvy, (V.. @ =k, 15, L,).

Proof. Let Q; be a Quot-scheme Quot (¥, ®=S*(Q"), H [m,]) and let
' Ve @ =SHR )xg, — E'lm,)
be the universal quotient. The homomorphism

AT @ =SHR )xg) " Arei(Ei (m,)) — det (Ei(m,))
defines a morphism of Q; to Z.. Let us denote its scheme theoretic image by
Q.. By virtue of Lemma 3.7, every geometric point of (Q,), is excellent in
(Z,.)y. Since the morphism 7;: R, — Z, is factored by Q;. Ri*(e, ¢)) is a subscheme
of 0, x [1G:; Therefore, every geometric point of R¥ (e. e’), is excellent. O
i

"

Let s be a k-valued geometric point of S and let (E,. @), (E,, ¢') and (EZ, ¢")
be parabolic Q-pairs on X, satisfying the conditions (2.0.2) and (2.0.3) with
N, =0. Assume that we have an exact sequence of parabolic pairs

(4.3.0) 0 — (E}, ¢') = (E,. ¢) =5 (EL. ") —> 0.

Set V=HCYE), r=rk(E), L=detE, N, =dim, H*(E/F,,,(E)) and let a,,....2,
be weights of E,. For Ej (or, E), let us denote similarly those for E, (or, EJ)
by attaching ' (or, ”. resp.), for example V' = H°(E’). We have a natural
surjections 1: V&, Oy, — E and also have »’ or n” for E" or E” respectively. Then
n defines a k-valued point of Pg. v, (V. r. L) by

AV, SHRY) 2 ATE — det E = L.

where 7j = ¢* - (y ® 1). Moreover, for each i, a natural surjection ¢;: V = H°(E)
— H°(E/F,, (E)) defines a k-valued point of G(V, N;). Thus, n and ¢,,....¢,
defines a k-valued point x of @ = Og v, (V. r. L, N, 2,). Similarly, we get a
k-valued point x" (or, x") of @ = Og v, (V'. 1, L'. Ny, o) (or, " = Og v,
V", r", L", Ny, o), resp.).

Lemma 4.3. Under the above situation, x is an extension of x" by x' with
the underlying exact sequence
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Ho(f) _ HOg)

(4.3.1) 0—0V —>SV—V"—0.

Moreover, x is a direct sum of x" and x" under (4.3.1) if and only if the sequence
(4.3.0) splits as an exact sequence of parabolic pairs.

Proof. Set @ = S*(2Y). We have an exact commutative diagram

~ HO(f)®1 ~ Ho(g)®1

0—V @2 —>S VR 5 V' ®2—0

l:r lﬂ 1»7”
o— E L E L g 0
The condition (3.1.1) is clear. To prove the commutativity of the diagram in
(3.1.2.1), we may assume that Q. E, E and E" are free and E ~ E' @ E" because
it is enough to prove that on a open set U of X, with codim (X, U)<2 and
moreover, the question is local on X,. For a,....,a,€V' ®,£ and b,,....b.. €
V®, Q2. we have that

(T (ay,....a,) @ T (g (by),.... 9" (b))
=¢((7(ay) A A1) @ (g (b)) A= AR(g'(by)))
=@ (ay) A A (a)®(gUi(b) A -+ A gli(h,))))
= [ (@) A AL (ae) Adiby) A Ad(by)
=0(f"(a) A Ad(f (@) Adiby) A A d(b,)
= T.(f'(a)..... f'(a,), by,....b,)

where "= H°(f), ¢ = H°(9)® | and ¢ is a natural isomorphism of L'® L" to
L. Thus, the condition (3.1.2) is proved. For each 0 <a < I, V*=ker(¢'™")
and E, = F,(E) when o;,_, <« <a; By virtue of (2.0.3), ker (¢'~') = H(F(E)).
Hence. we have that H°(E,) = V* for each 0 < a < 1. Therefore, the condition
(3.1.2.2) and (3.1.3) hold by the exactness of (4.3.0).

To prove the second assertion, assume that there exists a k-linear map
i: V" -V satisfying the conditions in Definition 3.3. Let E” be the image of
Heo(i®1): V" ®,S*(QV)—> E. Then E” is g-invariant. Since i is a section of
g, g(E")y=E". Hence, E'+ E”"=E. If EEnE" is not zero, then r" =rk (E")

>rk (E”") =r". Take local sections a,....,a,- of E” and a,..,,,...,q, of E' so that
a,,...,a, are linearly independent over k(&) where ¢ is the generic point of X,.
Moreover, take local sections b,,...,b,.. of i(V")®,S*(R2") and b, 4,....b, of

SV) R, S*(2Y) such that #j(b) =a; for all j. Then T(b,....,b)# 0 which
contradicts the condition T, |y, y.p-p) = 0 in Definition 3.3.  Hence, E”NE’ is
zero and so ¢g|p.: E” — E” is the isomorphism. Applying this argument to E_,
we know that the image of f-(i®1): V)*®,S*(Q2V)—> E is a ¢-invariant
submodule E; of E” such that g|.: E;’ - E; is an isomorphism. Thus gl is
the desired section. Conversely, if (4.3.0) splits as an exact sequence of parabolic
pairs. If i is the given section, then H(i) is clearly the section of H°(g) and
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HOU) (V2 < V. Since 5" (HO() (V) @ Cx) > E” and its rank is 1, Tyl -yss.y s
=0 for s>1r". O

By virtue of Proposition 3.11, we obtain the following results on
GL (W ,)-orbits of RY (e. €).

Proposition 4.4. Let s be a k-valued geomcetric point of S and let
((E))y» ©1)s....((E))y» @) be parabolic ¢'-stable Q-pairs on X such that @ ((E),, @)
is in F =%,. Let y be a k-valued point of P, corresponding to an invertible
sheaf ®'_, det(E;(m,). Then there e\ists a GL (W )-invariant closed subset
Z(((El)*, q)l),...,((f,)*, ¢) of (RY(e, e)), =(v))~ Y(Y)NRS (e, &) such that

44.1) PUZWE )y @) (Eyo 0)) s closed in (Z, x [],G, ).
(4.4.2) for every algebraically closed field K containing k,

Z(((El)*’ (pl)’---'((El)*w (P,))(K) =
{xe(RY(e, €)),(K)lgr (E'(m,),. ")) =~ @, (Ei(m, )*, (m))g)s

(4.4.3) the GL (V, ,)-orbit of x, wrrespona’mg 1o @ (E(m,),, ¢i(m,) is the
unique closed orbit in Z ((E, Jir @1)ses ((Eyer 0)))

Proof. Assume that ((E),, @) (or. @'_, ((E),. @) is in F, (or. . resp.)
and let y; (or, y;, resp.) be the k-valued geometric point of P, (or, P, resp.)
corresponding to L= det (E;(m,)) (or, L; = &® -, det (E;(m,)), resp.). Then we
have a natural isomorphism ¢;: L;,_; ® L; - L,. Note that #, = # = 4, hence,
1, = 1. By virtue of Lemma 4.1, E;(m,) is generated by its global sections for
each i. Hence, we have a surjection

Ke ®=zCx, — E.(m,).

Let x{ be a k-valued point of R (e, ¢'),, corresponding to (7;. (E;(m,),, ¢;(m,))).
Set

zi = Py (x)e(Zy x [] Gy, ;-
J

By virtue of Lemma 4.2, applying Proposition 3.11 to the case where
D; = ﬁff(e, ¢),, and §; = z/, we obtain a GL (}{ ,)-invariant closed set Z(z;....,z,)
of R = R}(e, ¢'), which satisfies the condition (), in Proposition 3.11. For a
permutation 6 of {I,...,t}, a GL ()} J)-invariant closed set Z(z;,.....25,) Is
similarly defined. Set Z' = U;cy, Z(251),...-25,) Where & is the permutation
group of {1,...,t}. Then Z' is the GL (¥ ,)-invariant closed set of R’ (hence, of
Z1 x [:G,. ,)Ss We claim that Z' is closed subset of R’ = ¥, ((RS(e. e),).
Since C = R'— R" is a GL (V] ,)-invariant closed set, if Z'nC is not empty. it
contains the unique closed orbit o(zy,...,z)) of z1 @ --- @z, in Z'. By virtue of
Lemma 4.3, o(zy,...,z)) =¥ ¥ Lo, @;(E, (M) @(m,))) where # is a natural
surjection
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Ve @s((‘x_.. ~ @ [é.',e ®E(0Xs — ®; Ei(’ne)-

Hence, Z'nC is empty. Set Z = Z(E)y, @1),...,(E)y. ) = P71 (Z'). Let us
prove that Z is the desired set. Since ‘i’l(Z) =2, (44.1) and (4.4.3) are already
proved.

Finally, let us prove (44.2). Let x be a K-valued point of (R}(e, ¢')), such

that gr( (E‘(m o)) ~ P, (E(m )xes (p(m ). Then we can find a Jordan-
Holder ﬁltratlon of (Ey. @) = = (E! (M,)ys @)y

0=Jo(E)c J(E) < J,(E) =

where J;(E) are g@-invariant subsheaves of E. Set J (E)=J,(E)/J;_(E). Then
(J;(E)y. ;) and (J( E),. ¢;) are strictly parabolic e’-semi- -stable (see Lemma 35
of [10] which can be easily extended to our case) with respect to the induced
structures where ¢; and ¢; are the canonical induced parabolic homomorphisms.
By our assumption, there is a permutation & of {I....,t} such that (J;(E),. @;) ~
(Es(mo)s. @5, (m))x. Now by virtue of Lemma 4.3, we conclude that #,(x) is
in Z(z3)....,250)(K) € Z'(K). Hence, x is in Z(K).

Conversely, assume that x is in Z(K). Take a Jordan-Holder filtration as
above. Then (f,(E)(—me)*. ¢;(—m,) is a member of some &,. Hence. we
obtain a K-valued point w; of (Z,L_ x [1;Gs ). where u; is a K-valued point of
P;, corresponding to det (J,(E)) as z; is obtained from ((E)),, ¢;). Moreover, we
know that ‘i’ (x) is in Z(wi,...,w;). On the other hand, '7’ (x)isin Z'(K ). Since
Z(wy,....,w/) and Z'(K) are GL( I o)-invariant closed subsets of R’ = R”(e e,
Z(wi....,w)NZ'(K) contains a closed orbit. By the uniqueness of the closed orbit
in Z(wi,..., w,) or Z'(K), we conclude that o(zy,...,z/) = o(wy,...,w;). Therefore,
@,.(E,.(me)*. ¢@(m,)) and @,.(fi(E)*. ¢;) are in the same orbit, equivalently
@i (E;(m,),, @(m,)) = @i(ji(E)*e ¢ U

By virtue of Theorem 4 of [20], there exists a good quotient
E:RS(e, ) —> Y
and Y is projective over S. Set
Msess = Y — &R (e, ) — R (e, €)).

Then M g5 is quasi-projective over S. Moreover, it contains Mo =
E(R5 (e, €')) as an open subscheme.

Proposition 4.5. M {:5n5s" has the following properties:
(4.5.1)  For each geometric point s of S, there exists a natural bijection
0, par- Z {35755 (Spec (k(s))) — M firss (k(s)).
(4.5.2) For Te(Sch/S) and a flat family of strictly parabolic e'-semi-stable

Q-pairs (E,., @) on X1/ T. there exists a morphism f:¢. o Of T to Mt such that
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J&80 (0 = O0,(LE, ®rk(0), @ @1k(1)])
Sfor all points t in T(k(s)). Moreover. for a morphism g: T'— T in (Sch/S).

fiE* @) ° f(l;\ X g)*(Ex.@) "

(4.5.3) If M'e(Sch/S) and maps 0: par- Zl:i5 (Spec (k(s))) = M’ (k(s)) /nue
the above property (4.5.2), then there exists a unique S-morphism ¥ of MY QDTS
to M’ such that P(k(s)) o0, = 0. and ¥ - /u-: «m /(E* o Jor all geometric points s
of S und for all (E,, @), wherce j(,;*_“,, is the morphism given by the property (4.5.2),
for M’ and 0.,

Proof. For two K-valued geometric points x, and x, of R¥(e. ¢).
&(x,) = &(x,) if and only if o(x,) N o(x,) is not empty. Let K be an algebraically
closed field. For K-valued point x of (R¥(e, €)),. set gr(x) = gr (E'(m,),. ¢1),)
If gr(x) ~ @;(E(m,),, ¢:(m,)). by Proposition 4.4, x is contained in GL (¥ ,)-
invariant closed subset Z(x)=Z((E,),, @,).....(E),, @) of (R (e. ¢'), satisfying
conditions (4.4.1), (4.4.2) and (4.4.3). By (44.2), x is in Z(x). By (44.1) and
(4.4.3), we conclude that for x and x" in (RY(e, €)),(K), &(x) = &(x) if and only if
gr(x) =~ gr(x). Moreover, if xe(RY (e, ¢)), (K) and x eﬁ“(e €') — R (e, ¢), since
ﬁ“f(e. €) — RY (e, ¢') and Z(x) are closed in R‘s(e ¢'), &(x) # &E(x'). Thus (4.5.1) is
proved. The construction of the morphisms in (4.5.2) is completely same as that
of (2.8.2). Finally, the morphism of (4.5.3) is similarly constructed as in the proof
of (2.8.3) by the isomorphism a*((E(m)*, Q) ~ pg‘((E(m)*, ¢)) and the fact that
M@sno¢ is the geometric quotient. ]

The construction of a moduli scheme of the functor par- 85y s is completely
same as in §4 of [10]. that is, M{prns = @Mg;bﬁ*;;;.

Theorem 4.6. [n the situation of (2.0.1), there exists an S-scheme M,’;,*b’/*x/s

with the following properties:

(46.1) M ,';,,;*X,S is locally of finite type and separated over S.

(4.6.2) Ther_e exists a coarse moduli scheme M35y s of par- Ximin s and it
is contained in M{fiiy s as an open subscheme.

(4.6.3) For euch geometric point s of S, there exists a natural bijection
0,: par- E81im s (Spec (k(s)) — M 15y s (k(s)).

(4.6.4) For Te(Sch/S) and a ﬂat Sfamily of parabolic semi-stable pairs (E,. ¢)
on X1/ T, there exists a morphism f(E o of Tto M}zfoa?*X/s such that for all points

t in T(k(s)), j(E*“,,,(t (L([(E R k), 0 Q1 k( . Moreover, for a morphism
g: T'> T in (Sch/S),

.I‘(E*.tpi oy = A/(lx X9 Ex. @) "

(4.6.5) If M'e(Sch/S) and maps 0): par- Efii s (Spec(k(s))) = M'(k(s)) have
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the above property (4.6.4), then there exists a unique S-morphism ¥ of MY QIbixs
to M’ such that P(k(s)) 0, =0, and V= fig. ») = fii..r Jor all geometric points s
of S and for all (E,. ¢), where f(E*_v,, is the morphism given by the property (4.6.4)
for M and 6.

Proof. The proof of (4.6.1) is completely same as Theorem 2.9. (4.6.2) is
already proved. (4.6.3) is clear, because we have that

par- Ll s (Spec (k(s))) = U par- Zhis (Spec (k(s))).

Moreover, (4.6.4) and (4.6.5) are easy by Proposition 1.11 and the proof of Theorem
29. O

If Zg455%s is bounded, then there exists an integer e such that Zj3%)s
= /g'f*Df‘}fs Hence, we have

Corollary 4.7.  If F3I5%s is bounded, then M Oibixss IS quasi-projective over S.

5. Compactness of moduli spaces

In this sction, we shall prove some compactness theorems. As in the case
of semi-stable Higgs bundles, we shall construct a morphism from the moduli
scheme of parabolic semi-stable pairs to an affine space of characteristic poly-
nomials and prove the properness of the map along the method of S. G. Langton
[8].

First of all, let us generalize the notion of (u-)semi-stability of parabolic
pairs. Let k be a field. For a parabolic sheaf E, on a fibre X,, set

z w(E)m"” i

i=1

d-m"

par-Pp, =

where d is the degree of X, and n is the dimension of X,. Let us introduce
the lexicographic order into R x --- x R, i.e. (uy,...,1,) < (uy,...,p)) if and only
if u;<pj for j=min {i|y; # pi}. In §1. (u-)semi-stability was defined only on
parabolic pairs on schemes over algebraically closed fields, but we need them over
arbitrary fields.

Definition 5.1. Let k be a field over S and let (E,, ¢) be a parabolic Q-pair
on a fibre X,. (E,, ¢) is said to be semi-stable of level i, if for all @g-invariant
coherent subsheaves F of E; with 0 # F # E; and with torsion free quotient Eg/F,
we have

(ul(F*)’wﬂ.“i(F*)) < (/ll(E*)’---»/li(E*))

where k is the algebraic closure of k and F, has the induced structure, i.c.
F,=Fn(E)



488 Koji Yokogawa

Remark 5.2. Semi-stability of level 1 is equivalent to p-semi-stability and
semi-stability of level n = dim X, is equivalent to semi-stability. Clearly, for each
i, semi-stability of level i implies that of level i — 1.

Definition 5.3. Let k be a field over S and let (E,, ¢) be a parabolic Q-pair
on a fibre X,. A filtration of (E,, ¢)

0c(EL oYYy (E;, ¢') =(E,, ¢)

is said to be a Harder-Narasimhan filtration of level i, if for each j, the following
conditions are satisfied ;

(5.3.1) (EL, ¢ has the induced structure.

(5.32) E/=EJ/E‘~" is torsion free.

(5.3.3) ((EY),, ¢’) with the induced structure is semi-stable of level i.
(5.3.4) (g (EL), ..o ED) > (uy (BT Yo i (ELT ).

Harder-Narasimhan filtrations of level 1 (or, of level n) are sometimes called
u-Harder-Narasimhan filtrations (or, Harder-Narasimhan filtrations, resp.).

Proposition 5.4. Ler k be a field over S. Every parabolic Q-pair (E,. @) on
a fibre X, has a unique Harder-Narasimhan filtration of level i.

Proof. First of all, let us prove the proposition by induction on the rank
of E under the situation that the base field k is algebraically closed. If rk (E) = 0.
there is nothing to prove. Assume the assertion holds for all parabolic pairs
of rank < rk (E).

Let # be a set of all g-invariant coherent subsheaves F of E such that E/F
is torsion free and that

(,lll(F*),...,ﬂ,‘(F*)) > (.UI(E*)v-'-’Hi(E*))a

where F, has the induced structure. Note that by Riemann-Roch theorem,

1 ¢ (X) wt (E,)
E)= - Ey+ ‘=2 B
i (Ey) o m{(/t( ) + 5 >+ rk(E)}

Moreover, we have inequalities 0 < wt(E,) <rk (E)degD. Hence, the set of
degrees of members of # is bounded below. By virtue of Corollary 1.2.1 of
[12], .# is bounded and hence, the set of polynomials

{par-Pp (m)|Fe.# and F, has the induced structurej

is a finite set. Thus, there exists a member F in .# such that (u,(F,),...,1;(Fy))
is maximal among all members of .# (with respect to induced structures). Let
us take such a member F in .# whose rank is maximal among all such
members. Then (F,, ¢) with induced structure is semi-stable of level i. By our
induction hypothesis, ((E/F),, ¢) with induced structure has a unique Harder-
Narasimhan filtration of level i;
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0c((E'/F)y @) - ((E'/F)y, @) = (E/F),. 9).
We claim that the filtration

gives a Harder-Narasimhan filtration of level i where each (E. ) has the induced
structure. We may assume that E/F # 0. It is enough to prove that

(3 (F )y ii(F ) > (1 ((EY/ ) i ((ET/F)).
We have an equality
par-  (F(m)) + par- x(E'/F),(m)) = par-x(E (m)).
Hence, we get
rk (F)(par- Py, (m) — par- Pg; (m)) = rk (E'/F)(par- Py; (m) — par- Pgi;p, (m)).
Therefore, by the choice of F,

(1 (F ) os fi(F 1)) > (4 (EQ)es 6(EQ)) > (i ((ET/F) ) i ((ET/F),)).

Now we shall prove the uniqueness. The following lemma is easily proved, so
we omit its proof.

Lemma 5.5. Ler (E,. ¢) and (E. ¢') be parabolic pairs which are semi-stable
of level i. If there exists a non-zero homomorphism of parabolic pairs of (E,, ¢)
1o (E,., ¢'). then the following inequality holds

(1 (E). o i (EL)) < (py (E), . 1i(EQ)).

Let 0c(E,, ¢)c-- <= (Ey, ¢)=(E,, ¢) be another Harder-Narasimhan
filtration of level i. If F< EY and F¢ EY~! (E® = 0), then we have a natural
non-zero homomorphism of parabolic pairs

(F*, (P) _’((E/j/E,j_l)*v (P)
Hence, by Lemma 5.5, we obtain an inequality
(M (F ) ti(F ) < (uy ((EYJE™ )00 i ((EPJET ™).

If j > 2, then the right-hand side is less than (u,(E}),...,;(E})). It contradicts
the choice of F. Hence, j = 1. Then by the above inequality and the choice of
F, we conclude that F = E’'. This and our induction hypothesis imply the
assertion.

Now let us prove our proposition over arbitrary fields k. Let k be the
algebraic closure of k. By induction on the rank of E, it is enough to prove
that the first term of the Harder-Narasimhan filtration of level i of (E,, ¢); is
defined over the base field k. Set Q = Quot (E/X,/k). The first term of the
Harder-Narasimhan filtration of level i of (E,. ¢); corresponds to a k-valued
point of Q. Let x be the scheme point of Q defined by the k-valued point. We
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claim that the residue field K of the local ring (", , must be k. Note that the
extension of fields K/k is a finite extension. If K/k is not purely inseparable,
then there exist at least two embeddings of fields of K to k over k. It contradicts
the uniqueness of the Harder-Narasimhan filtration of level i. Hence, K/k is a
purely inseparable field extension. Set B= K ®,k. B is an artinian local ring
with residue field k. We have an exact sequence of (/y, -modules

0—F-LE 56 —0

such that Fj gives the first term of the Harder-Narasimhan filtration of level i
of (Eg,. ¢p). Note that F and G are ¢g-invariant and torsion free because these
hold over k. Hence, setting F,=(E,)xnNF, (F,, @) becomes a parabolic
pair. Let us consider the following homomorphism

gk® 1p

¢: F@A'Bi’EB———’G Rk ®iB.

Let m be the maximal ideal of B. If ¢ is not zero, then for some i, we have

EFR®kB SGRik®im and &(FRxB) &G Xik@im' ™', Hence, we get a
non-zero homomorphism

& Fr~F®xB®pB/m — G @ik @im'/m'™*! ~ G @;m'/m™*!.

There is an element & of Homg(m'/m'*' k) such that (I5 ®3)-¢& is not
zero. Since E(F, ®xB) <= G, ®k ®rm', we obtain a non-zero homomorphism
of parabolic pairs

(1(;,:® o) EZ (F*),;——»(G*)k—

By the same argument used in the above proof of the uniqueness of
Harder-Narasimhan filtrations, such a non-zero homomorphism does not

exist. Hence, we conclude that ¢ must be zero. It implies that two quotients

Jk® 1B

Ey 25 Gy and E;"™"5 G @4k ®;B

are same quotients. Hence, corresponding B-valued homomorphisms of Q are
also the same one, i.e.

(Ksa—a®1leB)=(Kaa — | @ ueB).
Therefore, K =k and F is defined over k. 0
Corollary 5.6. (E,. @) is semi-stable of level i if and only if for all @-invariant
coherent subsheaves F of E with 0 # F # E, the following inequality holds
(B (F oo ii(F Q) < (g (E ),y ti(E)).
where F, has the induced structure.

From now on, let R be a discrete valuation ring over S and let K (k or 7m)
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be the quotient field (residue field or uniformizing parameter, resp.) of R. For
a coherent ('y, -module E, we denote E/nE =E ® gk by E.

Theorem 5.7. Let (E..¢) be a flut family of parabolic Q-pairs on
Xg/R. Assume that (E,. @) is semi-stuble of level i. Then there cxists a
p-invariant Oy-submodule E' of E such that Ex = Ex and (E,, ¢') is a flat family
of parabolic pairs on X g/R and (E},. ¢'), is semi-stable of level i where E,; = E'NE,
for o« 20 and @' is a parabolic homomorphism induced from .

Proof. Let (F*, ¢) be the first term of the Harder-Narasimhan filtration of
level i of (E,, ). Set E=ker(E—E—E/F) and E{" =E,nE" for all
2>0. Then E!" is ¢-invariant.

We claim that (EY, ¢) is a flat family of parabolic Q-pairs on X/R. It is
sufficient to prove that for all « >0, EV/E" is R-flat, E}), = E{Y (- D) and
that E'“ is torsion free (@g-module. Since nE/nE" ~E/E" ~E/F and
F~ EY/nE, we have an exact sequence

(5.7.1) 0——E/FLED 2 F 0.

Hence, E'" is torsion free. For all o >0, since EV/E!" is a subsheaf of a
torsion free R-module E/E,, E'V/E!" is R-torsion free, i.e. R-flat. Finally, since
E,/E!" is a subsheaf of a torsion free Og-module E/E'"), we get natural injections

E.(= D)/E{" (= D) ~ (E,/E{")® Ox(— D) = E,/E}” = E/E'".
Hence, E!Y), = E'VnE (— D)= E"(— D).
Let (FY", @) be the first term of the Harder-Narasimhan filtration of level i
of (E{", ¢). We claim that
(5.7.2) (#I(F(*l')*""#i(ﬁ(*l’)) < (I‘I(F*)*"'*:ui(ﬁ*))'

where the equality holds only if g maps F"' to F injectively. Let o be a
non-negative real number. Note that F ~ E"/zE and that E, ~ E, + nE/nE.
We have natural isomorphisms

EW = EW + nEW/nED,
(E/F),=E,+ F/F~E, + EV/E"Y ~ gE, + nE"V/zE" and
F,=FnE,=(E'"n(E, + nE))/nE = E{" + nE/nE,
where (E/F), has the induced structure from E,. Moreover, since
rEN(E" + nEY) = (rEnE'"VNE,) + nE" = nE, + nE'",

we have an exact sequence

0 — nE, + nEV/nEW L5 EO 4 gEO gED L5 EO) 4 nE/7E — 0.

Compatibility of f (or, g) and ¢ is easily verified. Thus, the sequence (5.7.2)
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induces an exact sequence of parabolic pairs
— 7 — _ = _
0 —> ((E/F)yy @) = (EY", ¢) == (F,, §) — 0.

Now, let us provide (f ~'(F"),, @) (or. (g(F'"),, @)) with the induced substructure
(or, quotient structure, resp.) from (F{), ¢). Then (f~'(F"),. @) (or. (9(F"),. @)
becomes a sub-pair of ((E/I*:)*, @) (or, (F*, ¢), resp.) and we have an exact
sequence of parabolic pairs

00— (fHFY),. @) — (F). ¢) —> (g(F"),.. ¢) — 0.
If g(F) is not zero, then we have

(e (F), s a(F)) < (f/(F“’)*) Ha(g(FM),)

If f~Y(F") is not zero, then

(5.7.3) (e (ST ED) i THEM)) < (i (F s iil(F ).

Hence, the inequality (5.7.2) always holds. Suppose that the equality holds, then
g(FY) is not zero and we obtain the equality

(u (FO)e i (FY) = (1 (9(F M), (g (FY))
If f7Y(F'")) is not zero, then by the equality
rk (f TH(F™) - (par- Py, (m) — par- Pia (m))
= rk (g(F™")) - (par- P (m) — par- Py, (m)),
we get
(e (S THE) D THEM) D) = (g (FY) el F)).

which contradicts (5.7.3). Thus we conclude our claim.

Let us construct (E{", ) and (F{", @) inductively. Set (E{, ¢) = (E,. ¢)
and (FQ, ¢) = (F,, ¢). Repeating the construction of (E{’. ¢) from (E,. @), we
obtain a sequence of flat families of parabolic pairs (E{". ¢) (m =1, 2....) which
is called the sequence of elementary transformations of level i of (E,. ¢). Let
(Fﬁ,:"’, @) be the first term of the Harder-Narasimhan filtration of level i of

(E{™, @). Then E™*! = ker (E™ — E™/F"™). By virtue of the above argument,
we have that for all m,
(i (FO0) L (FOD) < (g (FY) o i (FYM),

where the equality holds only if the natural map ¢, of F™*" to F™ is
injective. We can easily prove the theorem using the following lemma
successively.

Lemma 5.8. Let (E,, ¢) be a flat family of parabolic pairs on Xg/R.
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Assume that (E, @) is semi-stuble of level i and (E, @) is semi-stable of level
i— 1. Let (EY", @) (m=1.2,...) be the sequence of elementary transformations
of level i.  Then for sufficiently large integer m, (EY", @) is semi-stable of level i.

Proof of Lemma 5.8. We have inequalities
(G (F )y ti(F ) = (y (FOY. L (FLY)
> (i, (FP), ... (F2Y))
> 2 (B y(Ey)).
Since E, is semi-stable of level i — I, we have
(1 (F)eooos oo (F ) < (uy(Ey),opti—  (EQ)).
Hence, for all m, we have
(B (Pt = (FE) = (0 ()= (EQ)).
Therefore, we have a descending sequence of rational numbers
wi(F ) > i(F8) > i (F@) > - > i(E ).
Since the system of weights of F{" is a subset of that of E{" i.. that of E,,

. = 1 .
there exists an integer M such that for all m, ;4,.(F§,:"')EA—/I Z. Hence, for sufficiently

large integer N,

#i(ﬁi«m) = /‘i(F;N+ )y ==
Then the natural homomorphism ¢, of F™*! to F"™ is injective for all
m>N. We may assume that rk (F¥) =rk (F¥*")=...=p. For all m> N,
we have

| ! - -
0 (F(m)) _ N (F(m+ 1)) J deg (F;m)/qu(F;m+ 1))) dG(.
Pn— l)‘

0

Hence, deg F" = deg F"*" for all x>0 and for all m> N. We may assume
without loss of generality that N =0. We claim that u; = j(E,), then since
(i (FE) i (FEM) = (u (EY™), . i (EY™) for m > N, (EW™, @) is semi-stable of
level i. We may assume that R is complete.

By the argument in the proof of Lemma 2 in §5 of [8]. we have the following.

Lemma 5.9 (S. G. Langton). Assume that R is complete. Let E be a torsion
free coherent ' y-module of rank r and let E=E® 2EY2...2E™ 2... he a
sequence of Oy-submodules such that E™*Y 2 gE™ and E™/E™*Y is a torsion
free Cg-module for all m. Let F™ be the image of the natural homoniorphism
G, EMTYV S EMC Assume that for all m, $,, maps F"*Y 1o F™ injectively,
tk (F"*Y) =tk (F™) = p and deg(F"™*V) =deg(F"™). Then there exists an
integer N such that for all m> N, ¢, : F"*D = F™ s an isomorphism and there
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exists a coherent Oy-submodule F of E™ such that F/a"F ~ E™*N /gmEMN,
Let us apply this lemma to our sequence
E,=EQ2EY2...2FEM™>...

for « > 0. Then we obtain an integer N, such that for all m > N, ¢,,: F"*" -

m*

F{™ is an isomorphism and there exists a coherent (’y-submodule F, of EXY such
that

(58]) Fm/anz ~ E;"'+N“j/7'[m ELN)'

Since E{Y, = E{™(— D), we may assume that N, is independent on «. Set
N = N,. By virtue of (5.8.1), we have that F, + z"EN) = E*M_ Hence,

F — n (F +n.mE(Ni): ﬂ E('"+N).
m=0 m>0

Therefore, for all « >0, F, is ¢@-invariant and F, = FNEM(F = F,).

We claim that (F,, ¢) is a flat family of parabolic pairs. We must prove
that F is flat over R, F/nF is a torsion free @y, -module and that for all « >0,
F/F, is flat over R and F,,, = F,(— D). We have a natural injection

F/anF ~ EN*V /g™ 5 EN g EN),

Hence, F/nF is a torsion free Oy -module and E™/F is flat over R. Since for
all « >0, F/F,c EM/EM and E™/E® is R-torsion free, F/F, is R-torsion free
ie. R-flat. EN/F, is relatively torsion free. In fact, EMV'/F, is a subsheaf of
E™/F which is flat over R. Hence. EXN/F, is flat over R. We have an
isomorphism

(N)/ ~ (N) (N+1)
(Ea /Fa)k—Eaz /E1 .

Therefore, (E{N'/F,), is a torsion free ('y,-module. Since torsion freeness is open
property (cf. [12]), (E{M/F,)x is also torsion free 'y, -module. Thus, by Remark
1.10, the natural homomorphism

EN(=D)/F,(= D)~ (E{"/F)®xx(— D) — E/F, — EV/F

is injective. Therefore, F,,, = EXN'(— D)nF = F,(— D).
Now, (F,, @) is isomorphic to (fikN', ¢@). In fact, by (5.8.1), for all z >0,

F /7'(F ~ E(N+lb + nE(N)/nE(N) ~ F;N)‘
(F,, @)k is a sub-pair of (E{", ¢)x. Hence,
(1 (F ks s t((F)R)) < (1 (ER), o i ((ER )

Since (F,, ¢) and (E{", ¢) are flat families of parabolic pairs, by the above
inequality, we obtain
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(a (FE)o st (F) = (1 (F i) ((F )
< (uy (EM), ... i (ED)).

In this inequality, the equality holds because (F(™. @) is the first term of the
Harder-Narasimhan filtration of level i of (E{", ¢). Thus our claim holds. [

Now, let us define a morphism of the moduli scheme to a space of charac-
teristic polynomials. For a parabolic Q-pair (E,. ¢) on X,, its characteristic
polynomial is defined as follows. Let ¢t be an indeterminate and let

(=@ EQxS*(Q[1] — E®xS*(Q)[1]
be an S*(Q)[t]-homomorphism defined by
(t—o@)e®a)=e@at — ple)a

where e (or, a) is a local section of E (or, S*(Q)[t], resp.) and ¢(e) is regarded
as a local section of E® Q2 < EQR xS*(Q2)[t]. Let r be the rank of E. Taking
r-th exterior product over S*()[t], we get a homomorphism

At = @) (A"E) ®x S*(2)[1] — (A"E) @ x S*() [£].

Let U be the maximal open set of X, such that E|, is locally free and let n be
the natural inclusion of U to X,. Since E is torsion free, codim (X, — U, X,) > 2.
Hence, det E ~n,(A"E|y). Thus we obtain a homomorphism

Ny (A"t — @)ly): (det E) @ x S*(2)[t] — (det E) Q@ x S*(Q) [¢].

Tensoring (det E)Y and taking the image of 1 of S*(2)[t]. we obtain an element
Piea. () Of HO(X,, S*(2)[]y,). Let us call it the characteristic polynomial of
(Ey. ©). &, ., (1) is determined by its restriction on U. Moreover, for each open
set U' = U such that E|y. is free, ¢, , (t)|y is in fact the characteristic polynomial
of the r x r matrix with elements in H°(U', 2,). Therefore, O, (1) is in

® 7o Ho(X . S (Q)x )" e HO(X,, $*(Q)[1]y,)
and the coefficient of " is 1. Set
d)(E*.(p)(t) =t + Cll((E*, (p))rr—l + e+ a,((E*, (P))

where a,((E,. ¢)) is in HO(X,. S'(Q)y,).
By Proposition 2.2, there exists a coherent (‘s-module H(C'y, @ ;S (2))
such that A = V(H(Cy, @, S'(€))) represents a functor

(Sch/S)s T— Homy (O, D5 S (Q)y,)-

In particular, for a field k over S, we have the natural identification

r—1
Alk) = @ HO(X,, S (Q)y,).

i=0

The polynomial ¢, , () is regarded as an element of A(k) which corresponds
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to (a,((Ey, 9)),....,a,((E,, ¢))) under the above identification.
Characteristic polynomials determine an S-morphism @ of the moduli scheme
MBiisis to A. In fact, we have constructed M{ir s as an inductive limit

1 \J Hx, 25,0, \ [ Hy,ax 000 5, H Dss -
ll(}'n Mgy and Moriygs is a good quotient of RY (e, ¢).  On X s, ) We have a

universal (parabolic) homomorphism
¢ E—E®,Q.

Let U be the maximal open set of X gy, such that E|, is locally free. Then
we know that

ne(det E|U) = det E

where n is the natural inclusion map of U to Xjgss.. (cf. the proof of Lemma
4.2 of [9]). Thus n,(A"(t — @)) determines a morphism @, of R (e, ¢) to A.  This
is clearly a GL (¥, e)-morphism with respect to the trivial action of GL (¥, e)
on A. Since Mizni¢ is a categorical quotient of R$(e. e), @, induces a
morphism @, of M35 to A. It is easy to see that for ¢’ >e, &, =, o], .
for the natural open immersion j, .: M@ty = Masids”. Thus we obtain a
morphism @ of M{iiey s to A. Clearly, for each parabolic pair (E,. ¢) on a
geometric fibre X, which corresponds to a k-valued point x of M.
&(X) = Qg , as a point of A(k).

Theorem 5.10. Letr R be a discrete valuation ring over A.  Then the natural
map v: Hom , (Spec (R)., M 3557y ,s) = Hom,, (Spec (K), M {757y s) is bijective.

Proof. By Theorem 4.6, M3tiy,s is separated and locally of finite type over
S. Hence, @ is separated and locally of finite type. Therefore, by the valuative
criterion of separatedness, v is injective. To prove the surjectivity, let us take
an A-morphism g of Spec (K) to Mfsn,s. Then g is contained in M g5 for
some e. Hence, there exist a finite extension K' of K and a K’-valued point x
of Rﬁ“’(e, ¢) such that £(x) is the K'-valued point

g': Spec (K') — Spec (K) — M iy s-

Let R' be an extension of R whose quotient field is K'. Thus we have a
commutative diagram:

Spec (K') — Spec (K) —s Mgirsss

1 l

Spec (R') — Spec (R) — A

If ¢’ is extended to an A-morphism of Spec (R’) to M}{;b’/*x,s then since R'nNK = R,
we obtain a desired extension of y. Hence. we may assume that R =R, K = K’
and g =¢'. The K-valued point x corresponds to a strictly e-semi-stable
parabolic pair (Ey, ¢') on a fibre Xs. Let E’ be a coherent ('x -submodule of
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i.(E') such that i*(E') = E' where i is a canonical open immersion of X to
Xg. Set

@ =i (") I (E") — i (E'R®yQ)~i (E") ®xQ.

Since @ A ¢ =0, ¢ induces a homomorphism ¢*: i (E') ®yS*(QY)—i,(E").
Let E be the image of E'®yS*(2") by the homomorphism ¢“. Then E is
@-invariant.

We claim that E is a coherent ¢’y ,-module. Let U be an open subset of
Xy such that E'|, is locally free. Then, by virtue of the Cayley-Hamilton
theorem, ¢ 1 ,1)(¢")ly = 0 as a homomorphism of E'[; to (E' @ S"(€2)),. Since
E' is torsion free, ¢ ,1,(@') =0. Let ¢p(1)e @®i_o HO(Xg, S'(Q)y,)1" " be the
polynomial which corresponds to the given morphism Spec (R) = A. Since ¢(f)ly,
is given by 1,1 (f). ¢(t) is monic. Set

pt)y=1t"+a, " '+ +a,

where a; is in H(Xg, S'(Q)y,) for each i. Since ¢(¢)ly, = 0 as a homomorphism
of E' to E' ®xS"(2). ¢(¢) =0 as a homomorphism of i (E') to i (E") ®x
§$"(22). Hence, for each local section 6 of QY, a local section of algebras
S*(QY)xp:

O+ 0@)0 "+ + 0(a,)

annihilates i, (E'). Therefore, we know that the image E = ¢“(E' @ x S*(2")) is
same as @“(E' @xS¥(2Y)) (cf. the proof of Lemma 1.2 of [26] and Remark
2.1.2). Thus E is coherent. By Proposition 6 of [8], there exists a coherent
Oy .-module E" i, (El|x,) such that i*(E') = E|y, and Ej, is torsion free. We
prove this fact by giving E’ explicitly as follows.

Lemma 5.11. Let E be a coherent Oy, -module flat over R. Assume that El|y,
is Oy -torsion free. Then E' = EYYni, (Elx,) is a relatively torsion free coherent
Oy -module and the restriction of a natural injection E g E' to the fibre X ¢ (or, X))
is isomorphism (or, generically isomorphism, resp.) where EYY and i (Ely,) are
regarded as submodules of 1, (EYY|y,).

Proof. Note that i, (Ely,) is quasi-coherent. Hence, the module E’ is
coherent because it is a quasi-cherent submodule of a coherent module EVY. Let
U be an open subscheme of Xy such that E|, is locally free and Un Xy is not
empty. Then clearly E|, = E'|,. Hence, Ely, = E'ly, and Ely, is generically
isomorphic to E'[y,. Since E’ is R-torsion free. it is R-flat. By the assumption,
E'ly, = E|x, is torsion free. To prove the torsion freeness of E’ly,, we may
assume that X, = Spec (B) and E is the sheaf associated with a torsion free finite
B-module M. We must prove that MYV nM,/z(M”"nM,) is a torsion free
B/nB-module. Note that an element m/n"e M, is in M V" if and only if for all
elements fe MY, f(m) is in n"B. Take an element m/n"e M¥¥ N M, and assume
that there is an element be B\ nB such that b-m/n"en(M"¥ nM,). Then for
all elements feMY, f(bm)=bf(men"*'B. Since f(m)en"B and b¢nB, f(m)
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is in #"*'B, i.e. m/n" is in T(MYYnM,).

Now, set E'= EVYni,(Ely,). Then E’is ¢-invariant and relatively torsion
free. By the properness of Quot-schemes, there exists a unique coherent subsheaf
E, of E' such that E |y, = E; and E'/E, is flat over R for each 0 <« <. Since
E' @xCx(— D)lx, = E'lx, is injective, E'/E' @y ('x(— D) is flat over R. Hence.
E{=E ®xCx(— D). Thus, we obtain the flat family of parabolic pairs
(Ey, ¢). By virtue of Theorem 5.7. we have a ¢-invariant coherent subsheaf E”
of E" such that (E,, ¢) with the induced structure is a flat family of parabolic
pairs, (EZ, @)k = (E,, @)k and (E}, ¢), is semi-stable. Thus by virtue of Theorem
4.6, we can extend the given A-morphism of Spec (K) to Mﬁ;g‘,*x/s over Spec (R).

If #,(H. H,, x,) is bounded, then for some e, My ,s = M{iprnss which
iIs quasi-projective over S. Hence @ is a quasi-projective morphism. By the
valuative criterion of properness and Theorem 5.10, we have the following.

Corollary 5.12. If the family Fo(H, H,. a,) is bounded, then the morphism
@ Mgipixs = A is projective. In particular, if S is a noetherian scheme over a
field of characteristic zero, then @: M };;g;x,sa A is projective.

In the case that @ =0, we have that A= and that M {ipy,s = Mpris.
Therefore we have

Corollary 5.13. If the family ¥ (H, H,, x,) is bounded, then the moduli

scheme of semi-stable parabolic sheaves M ,')*,*,‘(’;‘s is projective over S. In particular,

if S is a noctherian schame over a field of characteristic zero, then Mpii is

projective over S.

A. Compactification of moduli of parabolic sheaves in the case of characteristic
zero

In this appendix, we shall deal with only parabolic sheaves and assume that
Z contains a field of characteristic zero. Then we have the following “strong”
boundedness results (see for the proof, [11]).

Proposition A.1. For each positive integer r, there exists a non-negative integer
e such that all p-semi-stable sheaves with its rank <r are of c-type e.

By Proposition 3.4 1) of [13], we have a morphism ¥: I —(Z x [[ G)*.
If. in §2, we set Q =0, then ¥ =¥, I'™ = R* and (Z x [[G)* =(Z x [[ G)*.
Hence, we use notations in §2 assuming 2 = 0. The construction of ¥: /I —
(Z x ] G)) depends on m fixed at the first part of §2. Hence, we denote ¥, I, Z
and G, by ¥,.I,.Z, and G, respectively. Our aim in this section is to prove
the following.

Proposition A.2. Assume that oy > 0. Then there exists an integer m such
that the morphism W, Iy —>(Z,, % l_['.=1 G, is proper. Hence. it is a closed
immersion.
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In the case of curves, this is proved by U. N. Bhosle [2] Proposition 3. Since
we deal with higher dimensional cases, we need some boundedness results.
For an integer L, we set

P4 (H, H,, a,) = {E*

E, is a parabolic sheaf on some fiber XS}
with the properties (A.2.1) and (A.2.2).

(A.2.1) The Hilbert polynomial of E (or, F;,,(E)) is H (or, H;, resp.) and
the system of weights of E is a,.

(A2.2) For some integer m > L, there exists a generically surjective
homomorphism ¢ of ¥, ® (’x to E(m) such that

(A.2.2.1) for all i, there exists a vector subspace W, of ¥, ® k(s) of dimension
H(m) — H,(m) such that H®()(W) < H°(F;,,(E)(m)) and

(A.2.2.2) the point of Z, x [[G,, determined by V¥, ® k(s) > ¥, ® k(s)/ W,
and A"@: AT(V, ® k(s)) » HO (det (E(m))) is contained in (Z,, x [] G, )" (k(s)).

Lemma A.3. There exists an integer Lo such that the family 2o/ (H, H,, a,,)
is bounded.

Proof. We need the following lemma which is equivalent to “Fundamental
lemma” in [9].

Lemma A.4 (Lemma 2.6 in [13]). Let S be a locally noetherian, connected
scheme, f: X — S be a smooth, projective, geometrically integral morphism of relative
dimension n and let Oy (1) be an f-very ample invertible sheaf on X. Let a be a
rational number, r be a positive integer and P(m) be a polynomial of degree n with
the highest term hm"/n! where h is the degree of Uy (1) on fibers of f. Then there
exist integers L and M such that if F is a torsion free coherent ('y -module of
rank ¥ <r for some geometric point s of S and if F has the properties;

1) for general non-singular curves C =D, -D,-----D,_,. D;e|Cy (1)|, every
coherent subsheaf E(# 0) of F &y (¢ has a degree <tk (E)a,
2) uF)y<M,

then for all m > L, the following inequality holds:

hO(F(m)) < 1" P(m).

Apply Lemma A.4 to the case where a = u,+e (o= u(E) and e is a
non-negative integer as in Proposition A.l), P(m) is a polynomial such that
P(m) < par- Pg (m) and r =r. Then there exist integers L, and M such that if
a coherent sheaf F of rank <r on a fiber X, satisfies the above conditions 1)
and 2), then for all integers m > L,, we have

hO(F (m))/1k (F) < P(m).

We may assume that for all m > L,, P(m) < par- P, (m). Hence, for all m > L,,
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we have
(A4.1) h°(F(m))/rk (F) < par- Py (m).

To prove the boundedness of 2.«/"(H, H,. x,), it is sufficient to prove that
there exists an integer f such that for all members E, of Z«/*(H. H,, 2,), E is
of type f. Let E, be a member of 2o/"(H, H,, 2,) and E’ be the last term of
the Harder-Narasimhan filtration of E. Set

W = ker (¥, ® gk(s) — H°(E(m)) — H°(E'(m))).
If x is the point defined in (A.2.2.2), by Lemma 2.6, we have
0<a(W,x)
= H(m)(par- Py (m)dim_ W — Y & dim, (Win W) — o, dim,, W).
By the condition (A.2.2.1),
dimg, (W,n W) > dim,,, W, — h°(F;,, (E'(m)))
where F;.,(E'(m)) = Image (F,,,(E(m)) g E(m)—> E'(m)). Hence we have
0 < par- P (m)dimyp W — Y &, dimy, W, — o, dim, W
+ Y e h®(F iy (E'(m)))
= par- Pg (m)(dimy W — rk (E)) + «, dimy, (V,, ® k(s)/ W)
+ 2.6:h° (Fisy (E'(m)))

1
< — par- Py (m) rk (E') + J hO(E.(m))da
0

where E, (m) has the induced struture. Therefore

1
(A.4.2) par- P (m) < J hO(EL(m))da/rk (E

0

On the other hand, by virtue of Proposition A.l, for general non-singular
curves C=D,-D,-----D, ;. D;e|Cx (1)] and for all non-trivial coherent sub-
sheaves E” of E'|¢.

WE ) < WE ) +e<py+e=a.

Clearly, all E, (0 < a < 1) satisfies the above condition.” Hence, by (A.2.1), if
u(E') < M (hence, p(E,) < M), then for all m > Ly, we have

j h°(E.(m))da/rk (E') < par- Py, (m).
0

Therefore, if we take L= L, pu(E') > M. It follows that there exists a integer f§
depending only on po, M and r such that E is of type f. O
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Therefore, there exists an integer L, > L, such that for all m > L, and
E,e2d"™ (H, H,, a,), we have

(A.4.3) h(E(m)) =0, h'(F,(E)(m)) =0 and h'((E/F(E))(m)) =0 for all j and
i>0.

(A.4.4) E(m), F;(E)(m) and (E/F;(E))(m) are generated by its global sections.

Lemma A.5. Let E, be a member of Pl (H, H,, o) and let m be an
integer > L. If a generically surjective homomorphism ¢: V, & Oy _— E(m) and
W, < ¥, ® k(s) satisfy the conditions (A.2.2.1) and (A.2.2.2), then H®(¢): ¥, ® k(s) —
HC°(E(m)) is an isomorphism. Hence ¢ is surjective. Moreover, there exists an
integer L, > L, such that all members E, of 2/ (H, H,. a,) are parabolic
semi-stable.

Proof. Set W =ker (H°(p)). Then dim; W=0 and by the condition
(A.2.2.2), we have

W, . .
< oW, x) _ — Y&, dim (W,n W) — «, dim W.
H(m)
Since we assume «; > 0. we have W =0. By the condition (A.4.3), H%¢) is an
isomorphism.
Set

B“(H. H,. a,)= {E;

E, is the last term of the Harder-Narasimhan
filtration of some member E, of 2./ (H, H,. «,))

Since the Harder-Narasimhan filtration is unique, the family 4% (H, H,, x,) is
bounded. Therefore, there exists an integer L, such that for all members E,
al0<a <1 andall j>0, W(E]) =0 and par- Pg.(m) < par- Pp (m) for all m > L,
if E"# E. Note that the inequality (A.4.1) hold for E,. Hence for all members

E, of #"2(H. H,, ,). we see that there is an integer m > L, such that
par- P, (m) < par- Py (m).
It follows that E' = E. O

Proof of Proposition A.2. Let m be an integer > L,. We use the valuative
criterion. Let R be a discrete valuation ring with the residue field k and the
quotient field K. Set C = Spec (R). Assume we have the following commutative
diagram:,

C—p — r

l lr

c Lzx[l6y

where p is the closed point of C. /'™ is the subscheme of Q x [[Q;. Since
Q x []Q; is prober over S, the S-morphism of C —p to Q x [10Q; is uniquely
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extended to a S-morphism 6 of C to Q x []Q;. Hence on X, there exist
surjections ¥, ® Ox.— E(m) and ¥, ® ('x.— E;(m).

Consider the canonical homomorphism E(m)— EYY(m). Since EY"(m) is a
torsion free @y .-module, it is flat over C. Moreover it is easy to see that E¥ " (m)
is fe-torsion free. If the Hilbert polynomial of E*Y on fibers is H’, then
E(m)@rK o EVY (m) ®g K defines a morphism of Spec (K) to the Quot-scheme
Quot (EVY(m), H — H[m]) and by properness of Quot(E"Y(m), H — H[m])
over C, it is extended to a unique morphism d of C to Quot (EV"(m), H' — H [m]).
The kernel E(m) of the quotient map defined by & is fo-torsion free and its
Hilbert polynomial on fibers is H[m]. Then we have injections:

E(m) CL. E(m) c— E¥" (m),

where ¢ has the following properties:
(AS.1) E®gK:E(m ®gK — E(m) ®yK is an isomorphism.

(A52) E®gk: E(m) ®gk — E(m) @k is generically isomorphism and its
kernel is the torsion sheaf of E(m) ® k.

Since we have surjections on Xy:
Em @gK ~Em @gK —» E;(m) g K —» - —>» E, (m) Qg K.
There exist surjections of ('y.-modules flat over C;
E(m) —> E,(m) —» --- —» E(m)

which induce the above sequence of surjections on X;. We obtain a flat family
of parabolic sheaves on X.. Hence, on X,, we have

V, ® Oy, —> Em) @ gk —» E((m) @ gk —» -+ —> E | (m) ® g k,

where ¥, ® 'y, » E(m) @ gk is generically surjective. Let x be the k-valued point
defined by the morphism g of C to (Z x [[G)". Easily we see that the
homomorphism ¥, ® k > HY(E(m)® (y,) maps W, to H°(F;, (E(m)® Cy,)
where F,,,(E(m)) = ker (E(m) —» E}). Therefore E(m), ®Rk is a member of
2" (H. H,. a,). By virtue of Lemma A.5, we see that V, ® Oy, — E(m) @ gk
is surjective and E(m) @ gk is parabolic semi-stable. Hence, &£ @ rk: E(m) ® gk
— E(m) @ gk is an isomorphism and therefore the image of p in Q x []0: is

contained in 5.

Remark A.6. In the case of x; =0, if we change the system of weights by
o, +e=1{a, +¢&...,0+¢ so that 0<o, +e<--<ao+e<1, then we can
apply Proposition A.2. Changing weights, (semi-)stability may be different to the
original one. But by such a change as above, pu-(semi-)stability is not
changed. Hence, in the case of curves. or. in higher dimensional cuses if
u-(semi-)stability is same as (semi-)stability. we can recover the case “a, = 0”.
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ss

By virtue of Theorem 4 of [21], there exists a good quotient M of I'**. Let
s be a k-valued geometric point. If we prove the following (1) and (2), then we
can easily prove the next Corollary. The proof of (1) and (2) is easier than the
analysis of orbits in (Z,, x [];G;,)" given in §3. so we omit its proof.

(1) For parabolic stable sheaves (E,),....,(E), on X such that @;(E),
corresponds to a k-valued point of I'**, the orbit of x, of I'*(k) corresponding
to @;(E), is closed.

(2) For each semi-stable parabolic sheaf E, corresponding to a k-valued
point x of I'**, the closure of orbit of x contains the point corresponding to gr (E,).

Corollary A.7. M has the following properties.
1) For each geometric point s of S, there exists a natural bijection:
0, par- L (k(s)) — M(k(s)).

2) For Te(Sch/S) and a flat family of parabolic sheaves E, on X /T such
that E, has the property (1.14.1) of [13] and for every geometric point t of T, E_|y,
is parabolic semi-stable, then there exists a morphism

Je.: T—M

such that for all points t in T(k(s)), fg, (1) = F)([E*le]) where [ -] means the
equivalence class defined by (1.14.2) of [13]. Moreover, for a morphism g: T'— T
in (Sch/S), we have

Je.o g =fux~ 9P (Ex)"
3) If M'e(Sch/S) and maps
0. par- TP (k(s)) —> M'(k(s))

have the above property 2), then there cxists a unique S-morphism T of M, to
M’ such that T (k(s)) - 0, = 05 and T = f§, = fg, for all geometric points s of S and
Sor all E,, where fg is a morphism given by the property 2) for M' and 0.

4) M s projective over S.
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