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Estimates for degenerate Schrodinger operators
and hypoellipticity for infinitely degenerate
elliptic operators

By

Yoshinori MORIMOTO

Introduction and main theorems

In Chapter II of [1] Fefferman and Phong estimated the eigenvalues of Schrédinger
operators —A+V(x) on R"* by using the uncertainty principle. Inspired by their idea,
in the present paper we give some LZ%-estimates for degenerate Schrddinger operators
of higher order, which are versions and extensions of Theorem 4 in Chapter Il of [1].
As applications, we consider the hypoellipticity of infinitely degenerate elliptic operators
of second order. Some parts of the present paper (Theorem 1, 2 and 6 below) are
announced in [13].

Consider a symbol of the form

o) a(x, &)= élak(x)lfkl“"%V(X)» xR,

where g, are positive rational numbers, V(x)=0 belongs to L{°°(R™) and

a(x)=1,
@) k-1 _
(Zk<.x): Z |Xj12“k']) fOl' k\éz.
j=1
Here k(k, j) are non-negative rational numbers. If x,=R" and if §=(d,, -, d,) for
0;>0, we denote by Bs(x,) a box )
) {(x,8); 1 x;—x0;1£0;/2, 16,1 05'/2}.

Clearly the volume of Bs(x,) is equal to 1. Let ¢ denote a set of boxes By(x,) for all
%o and all . We denote by m,(-) the Lebesgue measure in R'. We set m,=p,—1 if

. . . n
#e is integer and m,=[p,] otherwise. Set m,= > m;.
k=1

Theorem 1. Let a(x, &) be the above symbol and let W(x) be a real-valued con-
tinuous function in R*. Assume that there exists a constant 1—2""0<c¢<1 such that for
any B=Bsx,)EC
4) m,,({(x, §)€B; a(x, § =z max W(x)P=c,

T (Bx*)
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where w is a natural projection from RY': to R} and B** denoles a suitable dilation of
B whose modulus depends only on p, and k(k, j). Then for any compact set K of R
there exists a constant ¢ >0 such that

5) (a(x, Dyu, wy=ZcxgW(x)u, u) for any ueCy(K).
where (,) denotes the L* inner produci. (cf. Theorem B in [11]).

Remark. The lower bound of ¢ in (4) is 0 when all g,<1. If all g,(x)=1 then
the constant ¢y in (5) can be taken independent of K. The theorem holds even if each

variable x; is replaced by the vector x;=(x{, ---, x{,). The rationality assumption of
¢« and k(k, j) can be removed.

In the polynomial potential case the theorem becomes fairly simple. In order to
explain this fact, for a 0<h <1 we redefine a set C, of boxes

(6) Bsa(x)={(x, §); | x;—x0;1£0;/2, |&;| S ho3'/2}
for all x, and all 4.

Theorem 2. Let a(x, &) be the symbol of the form (1) with V(x) replaced by a
polynomial U(x) in R™ of order d, which is nol always non-negative. Then for any

compact set K of R™ there exists a positive h=hg <1 satisfying the following property:
If the estimale

) max a(x, £)=0

holds for any B,=B; ,(x0)&EC,, then we have
®8) (a(x, D)u, u)=0 for any ueC(K).

Here the positive h depends only on d, n, p, and «(k, j) except K.

Remark 1. When all a,(x)=1 then we can take 2>0 independent of K. Further-
more, if all g,=1 then Theorem 2 is nothing but one part of Theorem 4 in Chapter
II of [1].

2. When V(x) and W(x) in Theorem 1 are polynomials, Theorem 1 follows from
Theorem 2 by putting U(x)=V(x)—h**W(x), where pg,= max u,. In fact, this is

1sksn

obvious if we note that for 0<h <1

max {a(x, &) —hoW(x)} = h**o{max a(x, §)— max W(x)}.
By B, (B

Next we consider the case that the potential V(x) depends on a large parameter
M>0. Assume that V(x)=V(x; M)< C= satisfies the following: There exists a £>0
such that for any multi-index « the estimate

) sup [0gV(x)|=C. M*
R™
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holds with some constant C,. Then we have the intermediate between Theorem 1
and 2 as follows:

Theorem 3. Let a(x, &) be the same as in Theorem 1. Assume that V(x)=V(x: M)
=0 satisfies (9). Set

(10) w(x,)= inf max a(x, §).
& Bj(zg)
If w(x) satisfies with ¢>0 and ¢,>0
11 inf w(x)=c,M*
R
then for any compact set K of R® there exists a constant cx>0 such that
(a(x, Dyu, wyzcx(w(x)u, u)  for any u=CHK),

provided that M is sufficiently large.

We remark that the function w(x) defined by (10) is upper semi-continuous. If all
coefficients a,(x) of a(x, &) are constants, by analyzing the right hand side of (10)
Theorem 3 becomes more clear as follows:

Theorem 4. Assume that a(x, &)= é [&x 24+ V(x) and that V(x)=V(x; M)=0

k=1

satisfies (9). Let #,, ,, ---, 7, be positive integers satisfying r;u;=r, for any j=1, ---, n
and set for an integer d>0

(12) ma(x)= 3 |09V (x)|2rorciarisere)
1 r|<d

where |a: r\zéa;r,. If there exist a d>0, a ¢,>0 and a ¢>0 such that
(13) i}?nf Mma(x)=coM? 07

then with a ¢>0 we obtain

(14) (alx, Dyu, u)y=c(mq(x)u, u) for ues,

provided that M is sufficiently large.

We remark that if V(x)=0 is polynomial then Theorem 4 still holds without as-
sumptions (9) and (13). Theorem 4 in the case of all pg,=1 is due to Mohamed-
Nourrigat [6] (see Proposition 3 of [6]). In [6], they also studied the lower bound
for the Schrédinger operator with magnetic vector fields of the form

(15) a(x, D)= é(D;—A;(x»%V(x)

with V(x)=0 and A4,(x) real-valued. Their interesting result (Proposition 4 and Theo-
rem 7 of [6]) leads us to the following extention of Theorem 1:
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Theorem 5. Le! a(x, D) be the operator of the form (15) and let V(x)& Licc(R™)
and Aj(x)eCYR"™. If Bj(x)=(0A,;/0x,—0A,;/0x;) we assume that

(16) Bix(x)=0 or =<0 in R".
Let W(x) be a real-valued continuous function in R™ and let
(17) a(x, = TEHV(D+ 3 1Bl
7= k=
If there exists a 0<c<1 satisfying (4) with a(x, &) replaced by a(x, &) théen we have
with a coustant ¢’>0
(18) (a(x, Dyu, u)y=zc'W(x)u, u) for any ues.

As an application of Theorem 1 we consider a second order elliptic operator with
infinite degeneracy as follows:

19) L=Di+x Di+xt* 23" Di+ f(x)Dt in R*,
where [, b and m are positive integers and

f()=exp (=1/x,|"=1/| 25| ") +exp (= 1/ 2,1 * =1/ | x2|").
Here we assume that

(20) >0, 0<k <, 0<A<min ((+1, k41).

Theorem 6. Let L be the operator of the form (19) with (20).
(i) Suppose that I=k. If 0<o<m+(k+1)/(I+1) then L is hypoelliplic in R* and
moreover for any us D' (R*) we have

@n WF Lu=WF u.
(i1) Suppose that k>1. If 0<o<mm+1 then we have (21).

The proof of Theorem 6 will be carried out by using the LZapriori estimate
method as in [8-10]. Theorem 1 will be used in order to derive some fundamental
estimates (see Lemma 5.1 and 5.2). In the case of (i) of Theorem 6, the assumption
of ¢ is optimal under the additional condition on 7 as follows:

Theorem 7. Let L be the operator of the form (19). Assume that
(22) 0<k<1, 0<a<k+1,

(23) = k+14+m+1).

If ozm+(k+1)/(I+1) then L is not hypoelliptic in any neighborhood of the origin
in R*.

This non-hypoellipticity result follows from the analogous method as in Theorem
1 of Hoshiro [4] (see Lemma 6.1 in Section 6, where we also use Theorem 1 requiring
the condition (22)). The assumption (20) of Theorem 6 on A (resp. k) seems to be
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necessary because it is necessary for the operator frozen with respect to the variable
X, #0 (resp. x,#0) (see the remark in the end of Section 6).

The operator discussed in Theorem 6 and 7 is fairly complicated. As a simple
example of the operator of the form —(Xi+X3%) with X, real vector fields, we con-
sider the following :

Theorem 8. Let a(t)eC=(R") salisfy a(t)#0 for t+0 and be monotone in (—oo, 0]
and [0, ), respectively. Lel L be a differential operator of the form

(24) L=Di+a(x)’(D:+ f(x)g(x:)Ds)*  in R®,
where f, geC> satisfy f'(t)+0, gt)>0 for t+0. Assume that
(25) ltinnq tlog g(t)=0,

(26) }IT ta(t) log | f'(t)1 =0 (cf., (1.7) of [4]).
Then L is hypoelliptic in R® and moreover for any us @' (R*) we have (21).

The plan of this paper is as follows: In Section 1 we state an inequality of
Poincaré type (see Lemma 1.1). Though it seems to be known but we prove it be-
cause the suitable reference can not be found. In Section 2, using the inequality given
in Section 1 we prove Theorem 1 following the spirit of Fefferman-Phong [1-3]. The
proof of Theorem 2 in Section 3 is almost parallel to the one of Theorem 4 of [1]
except that we repeatedly use the polynomial property (b) in Lemma 3.1. In Section
4 we first prove Theorem 3 by reducing to the polynomial potential case, and prove
Theorem 4 by using an elementary lemma (see Lemma 4.1) together with Lemma 3.1.
In Section 4 we also prove Theorem 5. Section 5 is devoted to the proof of Theorem
6, where Theorem 1 really works. In Section 6, we prove Theorem 7 by solving an
eigenvale problem (see Lemma 6.1) similarly as in [7] and [4]. In Section 7 we prove
Therem 8 using the idea of proof of Theorem 1 and Theorem 5.

Though Theorem 1 is stated for operators of higher order, its application in the
present paper is restricted to the second order hypoelliptic operators because the hypo-
ellipticity in higher order case seems to be more delicate (cf., [8]). The author wishes
to treat higher order case in the future.

1. Inequality of Poincaré type

In this section we give a simple but important estimate to the proof of Theorem
1, which is an extension of the one given in [1, p. 148]. Let %k be a positive integer
and write k—1= 3 b2/ for b;=0 or 1. We denote (—1)* by sgn # and for a non-

jzo0
negative integer m and v C$(R™) we set

Gi(x, y)=§l (sgn R){v(x+k(y—x)/N)—v(x+(k—1)(y—x)/N)},

where N=2™,
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Lemma 1.1. Let Q be a convex set in R". If m is a non-negative integer, there
exists a constanl ¢y, ,>0 depending only on m and n such that
(giam Q)-2m+n
QI

Furthermore, if 0<A<L there exists a constant cl ,>0 depending only on m and n
such that

(L.1) = SQ|D%(x>|2dx§cm,n

faj=m+1

Gr(x, dxdy.
[,/ CRCE, 1% xdy

| DBy(x)—DPu(y)|®

2 S
(1.2) 181=mJ@xQ [x—y|m+22

dxdy

o (diam Q)-2(m+®
m,n |Q|

v

GMx, y)|*dxdy.
[,.,/67C »idxdy

The estimates (1.1) and (1.2) seem to be known but we shall give the proof be-
cause the suitable reference can not be found. We prepare the following :

Lemma 1.2. Let m be a non-negative integer and let Fe C~(R'). Then we have

(1.3) :ﬁl(Sgn II{F (k27 ™) = F((k—1)2"")}

1 1
—(__1\n-19-m(m+3 m+1)
=(=1y-izmmenn |l pongea)an,
where 6=(0,, 0., ---, 8 )ER™™ and
PO)=2""0,+27 "0, +27 "yt +27 0,

Proof. 1f I denotes the left hand side of the above formula we have

(14) 1:2~mS:{§(sgn /Z)F/(()oz-m+(k_1)2_m)}d00
:2—m§:{2’:"§“11(sgn 2B)(F (0,2 ™ +(2k —1)2-")

—F(0:2-"+2k 22" ")} 0,
because sgn (2k—1)=—sgn 2k. Since sgn2k=—sgn k we have

(1.5) 1=2'2'"S:S:{2§‘(sgn BYF7 (000,27 +(k— 102"} d6,d0,.

Note that the integrand in the right hand side of (1.5) is similar as the one in the
middle member of (1.4). The repetition of the preceding procedure yields the desired
formula (1.3). Q.E.D.

Proof of Lemma 1.1. For veC% set F(@)=uv(x+#y—x)). Then it follows from
Lemma 1.2 that

1

W6 Gpr, =(=prizemennf’.

0

S:’ la|=zm+1 Dav(x+¢(0)(y—x))'(y—x)“d(?
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In view of the Schwartz inequality, we have

|G (x, J’)|2§CmS:"'Sl P lID“v(x-i-(p(ﬁ)(y-—x))lzly_x|z(m+1>d0

0 la|j=m+

Integrating with respect to x and v over @ X@Q and noting that |y—x|<diam Q and
@ is convex we see that

(diam o>—2<m+1>50 ,|GR(x, )Itdxdy

\ a __ 2
<Ca 2 || 1D 40Xy ) *dxdydd,

where /=[O0, 1]™*. If J,={0<]; ¢(0)=1/2} and J,=/J\J,, by means of change of
variables we have

[, 1Dt o) y—x)Itddydo
JJQ~Q

édex ‘\ill{.\.q 1D 1(2)] 2dz/go(ﬁ)”}afo

+|,a0\, -{.\.Q| D) (*dw/(1—g(0)"} 6 .

Since ¢(6)=1/2 on J, and 1—¢(#)=1/2 on J, we obtain (l.1). We shall prove the
estimate (1.2). It follows from the formula in Lemma 1.2 with the right hand side
integrated by 6, that

G, y>:cm§ g S (DAu(w)— D)y —x)PdBy - df -y ,

1
0 0 181=m

where w=x+¢(0’, 1)(y—x) and z=x+¢(4', 0)(y—x). Here (§’, 8,)=0. When (x, y)
varies on QX@Q, (u, z) belongs to QX because @ is convex. Since w—z=(y—x)/2
and |d(w, z)/0(x, y)|=(1/2)" we have

(diam Q)‘“"‘”’"”SQ QIG:,"(x, i*dxdy

| DPu(w)—DPu(z)|®
Cm'"|ﬁ§m50><0 |w—z|n*2A

IA

dwdz,

which is our desired estimate (1.2). Q.E.D.

2 Proof of Theorem 1

Write pr=q./pr and &(j, k—7)=q(j, k—7)/p(j, k—J), respectively, by using rela-
tively prime integers p., ¢,>0 and p(j, k—7)>0, g(j, k—7)=0, respectively. We

n k-

take a convention with p(j, k—j)=1 if g(j, k—7)=0. Set r,=II (g« pr(j, k—7). 1If
k=1 j=1

K is a compact set of R", we take a sufficiently large integer [, such that

(2.1) KC{x; 2| x;| K2y, =1, -+, n}.
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If Iozjﬁ QY denotes the rectangle in the right hand side and if Q) are intervals in
=1

n
R., we cut I, into []27¢/#i congruent smaller rectangles by cutting Q9 into 27/%
=1

subintervals with equal length. It should be noted that all »,/y; are integers. Further-
more we cut each small rectangle by the same way. Starting with I,, we repeat this

n

procedure [, times. If I,= }'[Q; is one of rectangles in some step of this procedure,
=1

we have

(2.2) (diam Q) *w=(diam @)1,  j=2, -, n.

Hence, if Cx= max max a;(x), we have
1sjsn z€ly

(2.3) a;(x)(diam Q52" <CkR,, 7=2, -, n.

Here and in what follows R, denotes (diam @Q})~*#t. Furthermore, noting that diam Qj
>1, for any 0<e<l1 and any j={2, ---, n} we have

(2.4) a,(x)diam Q) *ize* R, on {x&l,;|x,|=ediam Q3, (=1, -, n—1},

k-1
where x,= max [[«(, k—J).
2sksn j=1
On and after /,+1 step, we modify the way how to cut a rectangle /, as follows;
in order that (2.4) remains valid. For [=1, ---, n—1, let 3, denote a hyperplane x,=0
and let o(v, D=1 if 3Nl #@, =0 otherwise. We cut I,= T Q} into T[27¢/#s
Jj=1 j=1
congruent smaller rectangles I, (1,=2,1yr) by cutting Q% into 2"¢ /#j subintervals
with equal length. Here 7(v, j) are determined succesively by (v, 1)=r, and for
257=n
j-1 .
(2.5) r(v, J')=ro-l—l§]1 oy, D, 7—Dr(v, Dur’ .

It should be noted again that all r(v, j)/p; are integers. For /{1, .-+, n—1} let 1.«
be the smallest rectangle in the cutting procedure such that /.., DI, and 0l,.,N 2,

+@. Clealy, v’()=v if o(v, {)=1. It is easy to see that for a patch /, = ﬁQ;' of

j=1

I, and j={2, ---, n} we have
(2.6) a;(x)(diam Q%) **i=R, .
if x=(x,, -+, x,) satisfies

| x;|=min (d;, 1) for Ie{1, ---, n—1},

where d,=2-7¢""Dimdiam Q¥"P. Here we take a convention with »(v”(l), [)=r, if
diam Q¥"»>1. Note that

2.7) 1, N {x; |x;|=min{d,, 1)},
ed,

where &, is a subset of {1, .-, n—1} such that /=4, means ¢(v, [)=0. If follows
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from (2.6) and (2.7) that (2.4) still holds for I, because diam Q¥ =d, for I={l, ---,
n—I1}\4,. Since we have

(2.8) LoV x5 x| S2revanbimd,),

it follows from (2.6) that

2.9) ax)diam Q)= TLM;. )R,

where M; ;=max (22¢-i-broend. bl mlaxlxllz‘("f‘“). If r, for Ile{l, ---, n—1} are
0

defined succesively by (2.5) with all o(v, /)=1 then we get »,=#(v, /). So, with another
constant C% we have (2.3) for any [, in the cutting procedure. In the last of this
paragraph we remark that if »*=1+4 max r;/g; and if (/,)* denotes the 27* times

lsjsn-1

dilation of I,, then we have
(2.10) I,c,)*.

We may assume that

(2.11) Ai max W(x)= R, (=(diam Q?) 2"),

z€l,

where A is a large number that will be chosen later on. Indeed, the theorem is trivial
otherwise because of the usual Poinceré’s inequality. We repeat the above cutting
process and stop the cutting whenever we arrive at /, satisfying

(2.12) l max W(x)< R, (=(diam @Q3%)-2*1),
A zer,

This will eventually happen, since each time we cut /, the left hand side shrinks,
while the right hand side grows. Consequently, the rectangle /I, in (2.1) is patitioned
into subrectangles {I,} each of which satisfies (2.12) and

21

(2.13) A max W(x)=R, .

TEUL)*

Indeed, in view of (2.10), the estimate (2.13) holds because I, in (2.12) arose by cutting
a rectangle for which (2.12) fails. By means of (2.3), (2.4) and the arguments in the

preceding paragraph, for each /,= InI Q% of the partition /,=\J I, we have
j=1 S
(2.14) a;(x)diam Q¥ 2 <CYR,, j=2, -, n.

for a constant C% independent of v and moreover we see that for any 0<e<1 there
exists a subset I; of I, satisfying

(2.15) m(I5z(1—e)* |1,
and where
(2.16) aj(x)(diam Q;)—Z/zjzeh'on ’ 7=2, T, N

For j=1, -, n and ueC%(K) we set
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Ii(xg, 355 Vi =0 Yions Xjan, o, x)=Ggi(x;5, ;).
where v;(-)=u(¥1, *=+, ¥jo1. *, Xj41, =, Xa). In what follows we write yi='=(y;, -+, ;1)

and x377=(xj4,, -+, x,). Under this notation a;(y)=a;(yi™").

Lemma 2.1. When py; is integer, there exisis a ¢,>0 such that

(diam Qy)-24s
11|

@.17) S a,(x)| Diiu(x) Pd x = c,
I,

ng x1 a;(I (x5, y55 ¥17Y x2-))|*dxdy

If p; is not integer, we have the same estimate as above with the left hand side replaced
by

| Djsu(x)—Diu(xi™, y;, X379
(2.18) SILXQ}‘ (lj(X) Ixj_yjllw(pj—mj)

Proof. Apply Lemma 1.1 in the case of the dimension n=1. From the estimate
(1.1) of Lemma 1.1 with v=v;, we obtain

[, 1D, w2379 0
J

iam Q%)~%ti )
zc,wg [I'f(x;, y55 17t 227 2dx;dy; .
| Q51 Q4 <%

Multiply a;(»{~)1@Q%|11.|-" in both sides and integrate with respect to (x{-!, y»-/) and
(yi-t, x777) over li= kl'[.Qz. Then we obtain (2.17) because of
#J

[, dxtdyii=1011Q517.

The rest of the lemma also follows from the estimate (1.2) of Lemma 1.1. Q.E.D.

When all p; are integers, we have

(2.19) (a(x, D)u, u):é}lglo af(x)|D7j“(x)lzdx+S! Vo uto) |t
=3{3, s Dpurac| violue)d} .
Consequently it follows from (2.17) of Lemma 2.1 that
(2.20) (a(x, D)u, u)zcz:}{jém—l—gl V(x)lu(x)|zdx}
=c2S.,

where £4 denote the right hand side of (2.17). If some p; is not integer, we see that
for a constant C
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CSa,(x)I | D, 73u(x) 2 x

| Dfsu(x)—Diu(x{™", y;, x5 )
| x;—y;|trecemmp

gSloKIelaj(x) dxdy; .

= ZSILXRI{ Hdxdy;z $S

v

{-}dxdy;.

I»XQJ

From this and the second part of Lemma 2.1 we also have (2.20) in the general case.

For x, yel, we consider z(y; x)=(z,(y; x), ==+, 2,(y; x))€[, such that each com-
ponent z;(y; x) equals one of x;+#k(y;—x;)2 " for ke{l, .-, 2"}. The number of

considerable z(y ; x) is equal to Ny=2"¢ (m,= i m;) and so we denote them by z7(y; x),
j=1

r=0, -, N,—1 with a convention 2°(y; x)=y.

Lemma 2.2. For any x&1, there exists a subset I . of 1, satisfying

(2.21) m,(I? 2)=cl 1], >0,
such that
(2.22) Vi'(y)zaR,  for yel ;.

Here ¢, and c, are positive consiants independent of v, r and x.

Proof. Set JI={z"(y; x); yel,} for a fixed x<l,, which is a rectangle contained
in /,, and so write /)= Jln[lQ;' " for intervals Q%" in sz. Setting J;=diam Q% ", we
have
(2.23) d;<diam Q4= N,0;,
where N1=m]ax 2™i. Consider a box B¢ such that

n

B=Jx(1118: 16,1 05/21).

j=
It follows from (2.14) that
max|a—V | EN¥#o{(n—1)Ck+1}R,,
B

where pgo=max y;. If we choose A in (2.11) is large enough to satisfy A=
J
28roriNZ{(n—1)Cx+1} we have
(2.24) max|a—V|<2'max W .
B

o1,*
If the modulus of the dilation (-)** in the theorem is larger than N,27**' times then
we get

(2.25) max W< max W .

I O* 7 (B*%)

In view of (2.23) and (2.24), it follows from the hypothesis of the theorem that there
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exists a subset J,:2 of J, with m,(J'9)=c| /)| such that

(2.26) V()22 ' max W =220 AR, if zeJI'2,

T(B¥*)

where the last estimate follows from (2.13) and (2.25). Let I7:? be the preimage of
J5:2 of the mapping y—z"(y; x). Since m,(I7'0)=c|l,| and ¢>1—N7' we see that

m,(I5 2Nz (L] for r,te(l, -, Nof,

N
where ¢'>1—2Nj'. By induction we obtain (2.21) for ¢,>0 if we set [0 .= ﬂolv’;;’,
. =1
for whose point we have (2.22) because of (2.26). Q.E.D.

Let z"(y{; x))€R’ denote the first ; components of z'(y, x). Set w; .(x, y)=
[I"(x5, ;55 27(yi"'; x{7Y), x29)|%. Then, in view of change of variables (x, z'(y]™;
™), yat)—(x, 207, yaoi*'), we have

(diam Q#)-2#5

2.27) 7 S: ‘Xl‘aj(z"(y{“, x{ Nw;, +(x, y)dxdy

éNlQ; ’

because |0(x, z{~!, y:-7*Y)/d(x, y)|=1/N,. For a z'(y; x) we also have

(2.28) Sz o Vi (y; ) uz (y, x)|*dxdy

gN,SI L V@lu@|*dxdz

because |d(x, 2)/0(x, y)|=1/N;.
Note that JT (cl,) is the contraction of [/, whose modulus is not smaller than

1/N,. In view of (1.6) and (1.16), we see that for any fixed x/, and any z"(y7 !, x7°!)
we get

(2.29) ay(@’ (37", 2/ (diam Qy)~*
Z(e/NR, i eI,

where I¢ is the same subset of I, as in (2.14) and (2.15). Indeed, this follows easily
if we remined the way how to find I:.
Choose an ¢ satisfying (1—e)*"'=1—c,/2 and set I® ,=1%.NI:. Then we have

(2.30) mu(I% )=27"¢ol ..
In view of (2.29) and (2.22), it follows from (2.27) and (2.28) that for a constant C
independent of v we have

R,

2.31) Sz S“d"grg,,{é S (5, N+Afdy,

where we have set A,= 3 |u(z"(y; x)|%

We shall show that
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(2.32) 3 Swy, (5, WA= 27 [u(x)].
Jj=1 r
Note that the first term of [, equals u(y?™!, x,). Since w, %, y)=1|1"»|? we have

20, o(x, MZTu(yt ", 2a)ls

—16 3 lu(yt™, k(ya—xa)27mn)|%.
kz1
Since similar estimates also hold for w, .(x, y), we get
22w, (x, y)Z ;Iu(Z"(y’f“, x17Y), x2)|*—16A,

=A,—16A4,.
Here for ;=1 we have set

A= BluE (i xi7), i)
Noting the first term of /7,_, and so on, we get
22(0”_1_ A(x, ¥)=ZA.,—16A,,
Repeating this procedure, finally we obtain

2w,,6(x, ¥)Z| u(x)|*—16A,-,.
Hence we obtain (2.32).
It follows from (2.31) and (2.32) that for a constant ¢>0 independent of v we
obtain

(2.33) SzeR| | Ju()|*dx

because of (2.30). Noting (2.12), from this and (2.20) we get the estimate (5) of
Theorem 1.

In the rest of this section, we shall show remarks stated in Introduction. The
constant ¢k in (5) can be taken independent of K if all a,(x)=1. Indeed, if we parti-
tion R" into congrusnt large rectangles like /, and apply the above argument to each
rectangle, we can easily see this fact because another dependence of K derives only
from the constant C% in (2.14). Theorem 1 holds even if each variable x; is replaced
by the vector x;=(x{, -, x{j). Actually, the preceding argument is still valid for a
cube Qf in RY. The rationality assumption of g, and «(k, /) can be removed. In
order to find this we consider one of the simplest case; a(x, §)=§&}4-&3#4+V(x). In the
cutting procedure, instead of (2.2) it is only required that with a C>0

2.2) C-(diam Q%) *=(diam Q%) * < C(diam Q%)°%.

The modification of the ratio of cutting numbers in each step enables us to obtain
(2.2). The general case can be also found by this modification of cutting intervals.
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3. Proof of Theorem 2

The properties in the following lemma can be seen essentially in Chapter II of
[1], but we state and prove them for the convinience of the reader.

Lemma 3.1. Let [ be a rectangle in R" and let P(x) be a polynomial in R™ of
degree d.

(a) If It denotes the dilation of I of the modulus N>1 then there exists a constant
C>0 depending only on N, d and n such that

(3.1) max|P(x)| £C max|P(x)]|.
It I
Furthermore, there exists a constant C' depending only on N, d and n such that
3.2) max P(x)— min P(x)<C’{max P(x)— min P(x)}.
It It 1 I

(b) In addition, assume P=0 on I. Then there exists a similar rectangle I'C 1 with
diam I’=c diam I on which we have

3.3) min P= l max P.
I 2 I

Here ¢ is a positive constant depending only on d and n.
(¢) If P and I are the same as in (b) then for any 0<S<1 there exists another
similar rectangle 1”CI with diam 1”=8 diam [ on which

(3.4) max P—min P<C”B max P.

I I 1
Here C” 1s a constant depending only on n and d.

Proof. If T, is a unit cube in R™ and if F(y) is a polynomial ]Z]d a,y* in R
lals

then for a C4,,>0 we have

(3.5) Ci'amax |aql Emax | F(y)| £Cq, »max |aql.
a T a

0

Indeed, this follows from the equivalence of two norms of a finite dimensional vector
space. Let I be centered at x, and let I={x=x,+ty; yeT,} for a t=(,, -, t,)ER™,
where ty=(tyy, =+, ta¥a). If P(x)= X bo(x—x,)* then it follows from (3.5) that

Cz',max |bat®| €max | P(x)| < Cq,, max |bat*].
a I a

Since we have the analogous estimate for max |P(x)| we obtain (3.1) because
It

max |b,t*| N < N® max |b,t*|. Set
Q(x)=P(x)— min P(x).
I

Then by (3.1) we see that
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max P(x)—min P(x)<max|Q(x)|
It I It
<C max|Q(x)|
1
=C{max P(x)— min P(x)}.
I I

Note that we have the same estimate for —P(x). Then we get (3.2) with C'=2C—1
because max—P=—min P and so on. We shall prove (b) and (c). Since similar esti-
mates as (3.5) hold for 9,F(y), we see that for a C"=Cj .

max |VF|Z<C” max | F|
Ty Ty

So, if =0 we have
(3.6) [F(y)—F(y0l éC”(mTaX F)X 13—,
0

If F(y)=max F then we get
Ty
1z(y)gmrax Fr/2 for |y—y,| £C"/2.
0

Applying this to F(y)=P(x,+ty) we have (3.3). The estimate (3.4) also follows from
(3.6) if F(yy)= rrTlin F(y). Q.E.D.
[

We shall prove Theorem 2 by the almost similar way as in the proof of Theorem
4 in [1]. For a compact set i we take the same rectangle I, as in the section 2. If
U(x) is a constant the theorem is trivial because we see U=0 by means of the hypo-
thesis (7). So we may assume that U is not constant. Taking a sufficiently large I,
we may assume that

max U(x)—min U(x)=R,.
I, Iy

We cut I, by the same way as in the section 2 and repeat the cutting procedure.
However, we stop the cutting whenever we arrive at [, satisfying

3.7) mlax U(x)—n}in U(x)ZR,,

instead of (2.12). In view of (2.10) and (3.2), it follows from the same reason as in
the section 2 that for a constant C,>0 depending only on d and n we have

(3.8) C‘{mz?X U(x)— n}m Ux)=R,.

In place of Lemma 2.2 we prepare the following:

Lemma 3.2. Set P(x):U(x)—n}zn U(x). Then for any x&l, there exist a subset
10 . of 1, salisfying

(3.9 my(I} 2)=col 1. co>0,

such that for any r=0,1, ---, Ny—1
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(3.10) P (y; v)zaR, i yell..

Here ¢, and ¢, are positive constants independent of v, v and x.

Proof. Note that P=0. If follows from (3.8) that
(3.11) max P=CT'R,.

Apply the part (b) of Lemma 3.1. Then there exists a subrectangle /,(0) similar to
I, with diam 7,(0)=c diam /, such that

(3.12) min P=(2C,)'R,.

1,00

Set J.(0, ») be the image of [,0) by the mapping y—z'(v; x), where r=0. If ()
denotes the 4N,/c times dilation, we see that (J.(0, »))'D/,. By means of (3.1) we
have

(3.13) max P=(CCy)'R,

JyC0, 1)
for an absolute constant C. Apply the part (b) of Lemma 3.1 again. Then there
exists a subrectangle J/(0, ) similar to /,(0, ») with diam J(0, »)=c diam J,(0, ) such
that
(3.14) min P=(2CC,)'R,.

J,00,7)
Let 1,(0, ) be the preimage of j/(0, ») by the mapping y—z"(y; x) and let J,0, r, 7")
be the image of 1,0, r) by the mapping v—z"'(y: x), where r'#0, . Note that
(J O, r, WL, if ()M=((-)")'. The repetition of (3.1) yields

(3.15) max Pz=(C*C)'R,.

Jy0, 1)

By the part (b) of Lemma 3.1, for /.0, », ') we have the similar estimate as (3.14)
with C in the right hand side replaced by C% Recall z°(y; x)=y and repeat the
above procedure for r={l, 2, -+, Np—1}. If weset I ,=1,0,1, ---, N,—1), we obtain
(3.9) and (3.10) with co=(¢/4N,)'"¥0 and ¢,=C'"Yo/2C,, respectively, because

([v(or ]-r Tttty k))TD[v(Or 1, Tty k_‘l)
21,0, 1, -, k). Q.E.D.

Using Lemma 3.2 instead of Lemma 2.2, by means of the arguments in Section 2
after Lemma 2.2 we have (2.33) with V(x) replaced by P(x). That is, we obtain

5 2+, Uluen 7
Jj=1 1,

(' Rt min U | luen)|*dx,

where the constant ¢’ is independent of K because the constant ¢, and ¢, in Lemma
3.2 are independent of K.
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Hence, for the proof of the theorem it only remains to prove

(3.16) 'R+ mlin U(x)=0

provided that h is sufficiently small. To prove (3.16) we use the part (c) of Lemma
3.1. Note that rrIlin P=0. Then in view of (3.7) we see that for any 0<BS<1 there

exists a rectangle /” similar to /, with diam //=f diam I, on which

(3.17) max U—lr}in U<C"BR,.

1y

Set 0;=p(diam Q%) for I,= I"[ Q% and consider a box B,&(C, such that
j=1

1

Bu=1rx( 111651 18,1 <h87'/2}}) -

Jj=1
It follows from (2.14) that
a(x, )=U(x)=h** g*nCLR, on By,

where Ci=(n—1)Cx+1, ¢'=min p; and p,=max p;. Using the assumption (7) for the
1sjsn 1sjsn

above B, we have

max U(x)z—h* B2 ChLR, .

ll-/

From this and (3.17) we get
(3.18) n}in Uz=—(C"B+h**' B2 CLIR, .

Fix a small 8 satisfying C”8=c¢’/2. Then, if h is sufficiently small such that
h*# 20 Cl.<c¢'/2 we have (3.16). The proof of Theorem 2 is completed.

To end this section we remark that the upper bound of % is independent of K if
all aj(x)=1. Indeed, the constant in (3.18) that depends on K is only C%, which
derives from (2.14).

4. Proofs of Theorem 3-5

The proof of Theorem 3 is carried out in the almost same way as in Section 2.
For a compact set K take a rectangle /, and divide /, into \J I, by the same way as

in Section 2 such that (2.14)-(2.16) hold. The proof will be completed if we show that
Lemma 2.2 still holds under the assumption of Theorem 3.
It follows from (10) that with §;=diam Q we have

4.1) max W(x,)< max max a(x, &)
v el zoely BotTod

< max a(x, §),
Bt

where B'=I}X{&; |£;1<07'/2} and I¥* denotes four times dilatoion of I*. By means
of (2.14) we have |a(x, §)—V(x)|<CkR, on B'. If A is chosen sufficiently large then
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if follows from (2.13) and (4.1) that
4.2) max V=cR,.

nt
In view of (11) and (2.12), we get diam Q;<CM-"" with ¢'=¢/2p,. Using (2.16) we
have for some >0

diam Q3<CM-7, =1, -, n.

Taking P(x) to be the part of the Taylor expansion of V(x) about the center of I, up
to [k/6]+2, by (9) we have

4.3) [V(x)—=P(x)| <CM-? on [},

If M is large enough, we see P+1=0 on [} because V =0. Applying Lemma 3.1-(a)
to P41 and noting that R,=cM’, from (4.2) and (4.3) we get max V=¢'R,. Since we
1,

can utilize Lemma 3.1 for V(x) in the help of (4f3), by the same way as in the proof
of Lemma 3.2 we see that Lemma 2.2 still holds. Now the proof of Theorem 3 is
accomplished.

The proof of Theorem 4 requires an elementary lemma.

Lemma 4.1. Let f(t)=t""+ %‘, a;¥ with r>0 and a;=0. Then there exists a con-
=
stant C=C(d, »)>0 such that

d d
(4.4) C-! 2 a;l(j”)é inf f(t)éCZ‘, a}‘/(j+r) .
J=0 t>0 J=0

d .
Proof. We may assume that a,=0and a,+0. Note that f/(t)=¢""1( 2 ja;t’*" —7r).
j=1
Let = be a simple positive root of f’(#)=0. Let z; be a positive root of ja/7*"—r=0

if a;#0 and =oo otherwise. Set r4= min r;. Since 74=7, we have

ozjzn
. . d n
inf f(O< flre)=1%"+ 2 atd,
t>0 j=1
thus we get the second estimate of (4.4) becauss a,=rz;9*7’/j. The first estimate is

also obvious in view of f(t)=t " +a;t/ and the Holder inequality. Q.E.D.

Remark. Set g(t):ia,t" and set gu«(t)=g() for t=(0, v4] and gu«(t)=g(rx) for
=
t>74. Since f(r)<f(rx)=(d/r+1)g(rx) We see that
(4.5) inf fA)<(d/r+1)inf (7" +g4@)).
>0 >0
We shall prove Theorem 4. We may assume that d>»«x/c. Since a(x, & is non-

degenerate, each rectangle I, of the partition ]0:\‘J1b satisfies (2.2). Hence, in order

to derive (4.1) we need only (10) with 6=(d,, ---, d,) satisfying 0,=01s/"1 if r»; are
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integers given in Theorem 4. For the proof of Theorem 4 it suffices to show that
mq(x,) is equivalent to w(x,) defined by (10) with the above restriction. That is, if
we set §,=t"1, the proof of Theorem 4 is reduced to the following:

Lemma 4.2. Let V=0 satisfy (9) for £>0 and let my(x,) be defined by (12) for a
large integer d>r/o. [f mg(x) satisfies (13) then there exists a constant C=C(d, n)
independent of M such that for any x,=R"

(4.6) C 'mg(xe)< inf {17270+ max V(xo+0y)} < Cmg(x,),
t>0 veTy
provided that M is large enough. Here 6y=("1y,, ---,t"2y,) and T, is unit cube.

Proof. Set ty=min(t, oM7) for a large constant p which will be fixed later on.
If @(x,) denotes the middle member of (4.6) then we have

4.7 W(xy)= inf {t72704+ max V(x,+0xv)},
>0

yeT,

where 04y is defined by the formula for dy with ¢ replaced by t4. Setting P(y)=

' 2|<d8f:V(xo)tl,:”‘y“' we have
a.r

(4.8) max |V (x,+dxv)—P(3)| <1

yely

if M=M, for a sufficiently large M,>0 because of (9) and d>«/c. Since P(y)+1=0
on T, it follows from the equivalence of the norm that for a ¢=c(d, n)>0

max (P()+DZ (V) +1+ S S 109V (o) )t} =g(ts).

yeTy Jj=1l 1a:ri=j

In view of (4.7) and (4.8) we have
W(xo)+2= gl;f {t2r 04 g(t)}.

We shall prove the first mequality of (4.6). We may assume |D20V(x,(]|)#0 for some
a, with 0<|a,: r|<d. In fact, otherwise, the first inequality of (4.6) is obvious.
Apply Lemma 4.1 to f(t)=t"?"o+g(¢) and note that the infinimum is attained at r with

0<r<7t4= min (Fa;/2r,) '/ *270)
0<i<d
where a;= X ; | D2V (xo)|. It follows from (13) that r<rz.<pM~" if we choose a
la:r |=
sufficiently large p. In view of Remark of Lemma 4.1 we see with a constant ¢>0
inf {t-*"o+g(t5)} = c inf {270+ g(B)}.
t>o0 t>0

By means of (4.4) of Lemma 4.1 we get w(x,)+2=cmq(x,) for a ¢>0. The first in-
equality of (4.6) is proved in the help of (13). We shall prove the second inequality
of (4.6). Note that
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(4.9) max | V(x,+0y)—P(y) | < CaM* 1.

yeT,

Since P(y)+C M+ t*=0 on T, it follows that

max (P(y)+CaM S CIV(x)+ 2 (5 108V (xo) D+ Cat)

j=1 Ja:ir|=j

=h(t).
By Lemma 4.1 we see that

wW(xo) < ,'Eof (t=*"o+h(@®)

= C,(md(x.))-'—MZ"”'ol(d+Zro)) .

In view of (13) we obtain the second inequality of (4.6). Q.E.D.

As stated in Introduction, if V(x) is polynomial then Theorem 4 is valid without
assumptions (9) and (13). In fact, those assumptions were employed only on the poly-
nomial approximation of V(x).

In the rest of this section we shall prove Theorem 5. If Y,=D;— A;(x) then
Y; =iV )Y ;4+Y »)=Y3+Y}i;—DB,,(x). Hence we have [Y,ul>+|Y ull?=(Bj.u, u).
Exchanging 7 and k, if necessary, in view of (16) we obtain

(4.10) n(a(x, D, 0z SNV ulP+UV+ 33 1Bl hu, w),
Ji=1 =

J» 1

where a(x, D) is the operator of the form (15). Let /Nlj(x) be a primitive function of
Aj(x) with respect to x;, that is, asz,(x)zA,«(x). Substituting v(-)=u(y{"?, -, x279)
-exp{iA;(yit, -, xx~9)} into (1.1) with m=0 and n=1 as in the proof of Lemma 2.1,

we obtain for a rectangle /= ﬁ Q; (QJCR,].)
j=1

(diam Q)"

(4.11) SI|Yju(x)|2dx§co 7]

x|, At wpnen—ao], i) tdady,

where #i(x)=u(x)exp {—i;l,(x)}. Use (4.11) instead of (2.17) by regarding Y; as D;.
Then in view of (4.10) we can proceed the proof of Theorem 5 by the same way as

in Section 2 because Sllﬁ(x)lzdngllu(x)lzdx.

5. Proof of Theorem 6

Throught this section let L denote a differential operator defined by (19) that
satisfies (20) and 0<o <min{m+1, m+(k+1)/({+1)}. It follows from the usual Poin-
caré inequality that for any compact KCR* there exists a Cx>0 such that

(5.1) lullP<Cr(Lu, u) for ue CYK),
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because of (Lu, u)=|Du|?. For a real >0 set
L,=Di+x3'Di+x 3" Di+f(x)n®  in R®.

Then we have
(5.2) (Lyv, v)=IDwl*+ [ x{Devl|?

Hlxix3 Davl*+(f()9*v, v),  for vECTRY).

Lemma 5.1. For any s>0 and any compact KCR*® there exists a (s, K)=1 such

that
(5.3) | xtx3(log p*Wwl*<(L,v, v)  for ve CFHXRY)
if n=n(s, K).

Proof. For »>0 and s>0 set
a(x, §)=& x5 +exp (—1/x,[* =1/ x| )n*,
W(x)=x3*x3"(log 7°).

For the proof of (5.2) it suffices to show that the estimate (5) of Theorem 1 holds if
n=7s x for a sufficiently large 7, x. We shall check the condition of (4) in the case
of [=k. If K is a compact set of R? and if p={k+14+m{+1)}"! and ¢g=(+1)p we
set &1 ={xcK; |x|<p,(log 7)7?, | x.| <ps(log 7)~%. Here p; are small positives and
in what follows we require that

(5.4) P4 p0:K1/s, 0:L1/r*,

where »* denotes the modulus of the dilation of (-)**. Suppose that B&( satisfies
n(B)C®Q,. Then it follows from (5.4) that max W(x)<(log 7°)*?. Noting that &>

T (B¥¥)
(4p)7*(log 9)*» on a half of B, we get (4) in view of (5.4). If n(B) is contained in

{12 <pi(log )/ E+*OINK then we obtain (4) because we see that -rggtﬁiW(x)g

Cx(log *)*#*Y and &2=(4p,)"%(log 7)¥** on a half of B. If B satisfies
(5.5) T(B)C{] x:| £ polog ) }NK,

(5.6) b= max | x,| = p.(log 9)° 7,
7(B)

then we see that max W(x)<(br*)**(log n*)*~**™ and x}'£4>(b/4)*"(80,)~*(log 7)*? on a

T(B*x)
quater of B. In view of /=% and (5.6), we obtain (4) for this B. The condition (4)
for other BEC is also obvious because we see that exp (—1|x,|*—1/x,|")p*=» on

6.7 {1211 2(p:/2)(dog )1/ **D, | x,] Z(p2/2)(log 7))}

if 5 is large enough that (2/p,)*(log »)*/¢**» and (2/p,)’(log 7)*" are less than log 7'/2.
In the case of k>/, the condition (4) is checked by the same way as above if we
replace ¢ only in (5.5) and (5.7) by 1/(m+1). Q.E.D.
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Lemma 5.2. Let X(t)eC=(R') satisfy suppXC{|t|=1}. For any 6>0, any s>0
and any compact KCR® there exists a 50, s, K)=1 such that if p=7(3, s, K) then we
have

(5.8) lxiog " (x2/OW|*<(L v, v) for ve CYKXRY),
and moreover
(5.9) [(log 7*X(x:/0w|*P<(L v, v) for ve CY(KXRY).
Proof. Setting
a(x,, &)=E&+exp(—d ") exp(—1/]x,|")n?,
W(x)=xt'(log 1),
we see that the estimate (5.8) is reduced to (5) because (a(x,, D)X(x./0)a, X(x,/0)v)<
(Lyv, v). The condition (4) is fulfilled. In fact, when Be&cC is contained in {|x,|<
o(log n)~'/¢"*Y} the condition (4) holds with a sufficiently small p<s~'. In other case,
(4) is obvious because A<</41. The estimate (5.9) is also reduced to (5) by setting
a(xs, &)=E407" exp (—077) exp (—1/[x.])7p*,
W(x2)=(log 7%,
because (L,v, v)=0*(a(xs, D)X(x1/8)v, X(x,/0)0). Q.E.D.
We shall prove that if ve9’'(R*) and p,=(0, (0, 0, 0, £1)) then p,&WF Lv implies
poEWF v, Let A(t) be a C3(R') function such that ~=1in |¢t|<1and h=0 in |f|=3/2.

For a 0>0 let ¢s(6)e C=(R*\0) satisfy ¢s=1in {£06, 2|6 [}N{1£]=3/20} and ¢;=0 in
{308,218 |} U{I€1<d)"'}. Here £&=(&, &) and we choose one of =+ signs according

to p,=(0, (0, 0, 0, 1)) or (0, (0, 0, 0, —1)). Set ¢(x)= k[i[ h(xy) and set ps(x)=¢(x/0). If

we set Ts&)=h((M~"'|&,|—3)/0)ps&) for a parameter M=1, then for any a there exists
a C, such that

(510) ID?W,;Iéc,;M"’(EV'“'”

with any real 0<s<|a| because with a C>0 we have C'<M/<><C on supp Dg¥'y
Fix an integer N>0. Take a sequence {¥;(&)}/L,CS} , such that

U=0c¥.cl.c ¥\ .&¥Uy=V,;
and for any a the estimate
(5.11) | DEW ;| SCo NI Mgy 1atts 0s=|al,

holds with a constant C, independent of N and ;. It should be noted that ¥; can be
taken of the form ¥;=h;(&,; M)p;&) with ¢,=1 in {+66,=1&'|}N{|£]=3/26}. Here
one of + signs is chosen following the above convention. Similarly, take a sequence
{@;(x)}H L. C C5(R*) such that

Pi=PeEPIEPE - EPN-1EPN =25
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and for any a the estimate
(5.12) | D2g;| S C4HN!
holds with a constant C, independent of N and ;. We may assume that ¢; can be

written as in ¢ ,(x)= fI hj(xy). Here ¢&¢ means that ¢=1 in a neighborhood of supp ¢.
k=1

Lemma 5.3. i) Let g(x) be a C™-function satisfying the similar estimates as (5.12).
Then there exisls a constant C, independent of N, M and j such that for any real s>0
the estimate

(5.13) Re ([g(x), T (D) u, u)S(CoNPM'(14C N> M=%)|lull?, UES,

holds with a constant C, independent of N, M and j.

ii) Lel K be a fixed compact set in R* and g(x) be a polynomial of degree d with
coefficients independent of N and M. Then there exists a constant C,=C, x independent
of N, M and i such that for any real s=d the estimaie

(5.13) Re ([g(x), Ti(D)Ju, w)S(CNPM(14+C . N*M)|ull?, usCHK),

holds with a constant C, independent of N, M and j.

Proof. 1If g(x) is C=-function, in view of (5.11) and (5.12), it follows from the
Calderdn-Vaillancourt theorem that for any integer ¢>0

-1
(5.14) Re ([g(x), WD), WE{ Z CNM I+ CN M} [ullr,  ues .
If ¢g=[s]+1, for the proof of (5.13) it suffices to show that for some C; we have
(5.15) S C,NY ML CN M 24 CoN*M-") .
Jj=1

In fact, if N*M*< min min (C,/2C;, 1/2)=R then we have

2<jsq-1
[s]
21 CN¥M-71<C,N*M~(1+ 3 2-7)=2C,N*M~" .
=
If N*:M-'=R then we have

:2: CszjM—l:N2M—l§ Cj(Nz/M)j"‘s(Nz/M)-‘
<NIMSS C RN/ MY
i=

Cs]
Thus we have (5.15) with cszj_zlc,-Rf—l-x/c,. When g(x) is polynomial it follows
from (5.11) that

(5.14Y Re ([g(x), ¥ D)Ju, W< S CNMlule,  ueC3(K).
Jj=1



356 Yoshinori Morimoto

By means of (5.15) we have (5.13)' for any s=>d. Q.E.D.

Lamme 5.4. Let K be a fixed compact set satisfying Ksupp ¢s;. There exist a
constant C, independent of M ana N such that for any s>0 and some C,>0 we have

(5.16) (log M*)* Re ([L, 0;(x)¥D)]u, ¢;(x)¥ (D)u)
S(CoNP{(Lu, u)+Co N2+ M- u|f?}, ueCyK),
provided that log M*>=C\N and M=M; for a sufficiently large M>0.

Proof. Note that
(5.17) [L, @)W (D)]=LL, ¢ (x)]¥ (D)+@;(x)[L, ¥D)] .
We see that
Re ([xt* x5 D5, o i(x)]u, i(x)u)<(CN)||xtxpul>  for ues.

Here and in what follows we denote different constants independent of N, M and s
by the same notation C. From this we have

(5.18) (log M*)* Re ([x}*x3™ D3, o (x)1¥ {D)u, @;(x)¥ (D)u)
S(CNY|(log M*)xtx¥ ,(Dyul*
S(CNY{li(log M*Y¥ ;(D)xixful*+(log M*)*|| [xbx, ¥(D)]u||?}
Using (5.3) of Lemma 5.1, for any s>0 we have
I(log M¥ (D)xixful*< Cll(log | Dy HA((M| Ds| —3)/28) x4 x 7 u)?
<C(Lu, u) for ue C3(K),
if M=M, for a large M,>0. It follows from (5.13) and (5.1) that
(log M| [xixg, ¥(D)Iu|?
=(log M*)*M~{Cx(Lu, u)+CN***M~*|u|*}, ueC3(K),

if log M*=C,N, where C,=C,, x is the same as in (5.13)'. Therefore, if log M*>=C,N
and M=M), for another large M}>0 such that 5!s*/(log M{)<1, we have

(56.19) (log M*)* Re ([x1* x5™ D3, ¢(x)1¥ (D), ¢@;(x)¥ (D)u)

S(CNP{(Lu, W)+ C N¥ M- u|?}=0, ueCyK).
Note that
(log M,)* Re ([x3' D3, ¢ (x)]¥ (D)u, @(x)¥ (D)u)

S(CN)(log M*)*|X(x2/0)xiW ;(D)u|®
S(CN){li(log | Dy|)RYM ™| Dy| —3)/20) xiX(x2/O)ue|?
+(log M*)* | [X(x2/0)xi, ¥5(D)Iul*},
where X(f) is the same as in Lemma 5.2. Using (5.8) and (5.13) (and also (5.13)") to
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estimate the first term and second one, respectively, we obtain
(5.20) (log M*?Re ([x3 D}, ¢;(x)]¥(D)u, o x0T D)u)<Q, ucsCHK),
if M satisfies the same condition as in (5.19). Similarly, using (5.9) we get
(6.21) (log M*)* Re ([ D}, @;(0)I¥ (D, o) ¥ (D))<,  usCHK).

Since f'?<Cy nxixy for a constant C, , we have

Re ([f()D%, ¢i(x)]u, @ (x0)u)<(CN*| f(x)'*u|*®
<(CNY||xtxlul? for ucsS.
Noting the middle term of (5.18), we have
(5.22) (log M*)* Re ([f(x)D3, (x)]¥ (D), @i(x)¥ (D)u)
=0, welCyK).
Summing up (5.19)-(5.22) we obtain with a constant C=C,
(5.23) Re ([L, @,(x) ¥ (D)u, ¢,(x)¥(D)u)
S(CNP{(Lu, u)+C N M ul}, ueCHK).

if log M*=CN and M=M};. On the other hand, since coefficients of L are independent
of x4, by noting the form of ¥'; we see that

(5.24) (log M*)*Re (p;(x)LL, ¥i(D)]u, ¢x)¥ (D)u)
S(log M*PCNY ([ Xo(D)ull®+Co NP M= u|?),
where X,ES},, satisfies
supp XoC {20161 2 €1 20186, IN{2= |64 /M= 4}.
Note that with some 0<ux=<1/2 we have
(5.25) M X(DYu P < CIl1 D" | Ful®
<Cxk(Lu, u) for ue Cy(K).

which follows from the well-known Ho6rmander theorem (and also Theorem 2). If
log M*=CN then we have

(log M*Y(CNM-2*<(log M*)*M-2+<1
provided that M=M?? for a large M?>0. So under this condition we have
(5.26) (log M?*)* Re (¢;(x)[L, ¥ (D)]u, ¢(x)¥ (D)u)
S(CNM{(Lu, w)+CN** "M |lu|?*},  ueCH(K).
Together with (5.23) we obtain (5.16) in view of (5.17). Q.E.D.

Lemma 5.5. For any integer N=1 there exists a constant C, independent of N
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and M such that for any real s>0 and some constant C; independent of N and M we
have

(56.27) (log M2 sul|*< CoN(log M) ¥ ysp0s Lullu
F{(CoNPV+H*M?+Cy(log M*)*Y N*+1O M5} ||u]?, UES,

provided that M=M; for M, the same as in Lemma 5.4.

Proof. We may assume that log M*=C,N because of the term (C,N)**+**M?||u|® in the

right hand side of (5.27). It follows from the expansion formula of pseudo-differential
operators that for any s>0 we have with a C;>0

(5.28) (Loi¥u, o;¥;u)<Re (o;¥;Lu, ¢;¥;u)
+Re([L, 0¥ 10,0 ¥ ratt, @ j0;.¥ j010)
+C NBHOM-3u|?, UES,
In what follows we denote by R(s) the last term of the right hand side. We see that
(5.29) (@1 Lu, ¢, ¥ ) <llp;¥; Lul|ull
SI¥ospaaLullllull+ R(s)

because ;=¥ ;¥ 5025+ ¢;¥ i(1—¢25). In view of ¢;=¢, ¥:=¥,, it follows from
(5.1) and (5.28) that with C,=Cx we have

(5.30) lossull? < Co(Lpo¥ o, 0o out)
< Cof{Re (¢ Lu, ¥ u)
+Re ([L, o] ¥ u, o o0, ¥ 1)+ R(s)}, ues.
Using (5.29) and (5.16) to estimate the first term and the second one we have
loa¥ s P < Cof1¥aapes Lulllull+ R(s)}
+Co(log M*)*(CoN{(Lo:¥1u, . ¥ 1)+ R(s)}.

Apply (5.28) to estimate the term (Lo, ¥ u, ¢;¥,u) in the right hand side and repeat
this procedure N times. Then we have

o sul'< Co 3 (log M) (CoN AW sapus Ll 1]+ R(s))
+Co(log M*) 2N (CoNYPM {(Lon¥ vu, on¥ yu)+R(s)}
SCoNUIW eopes Lullllul 4 R(s))
+(Co NP+ (log MOV M ul®,  ues,

because of ¥'y=¥,; and M2|¥,;ull?<Cllul?. Q.E.D.

It follows from (5.27) that for any N=1 and any s>0
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(5.31) (log M*)¥|lps¥ su || < Co(N+1)(log M*)V(1¥ 55020 Lullllu])!®
H{(Coe) "M (N+1)+CsN* 2} N lulf, uss,

where we used N¥<e"N! and (log t)¥t'<N!. We may assume that (5.30) holds with
N=0. Multiply both sides of (5.31) by &¥/N! with a fixed 0<e, <1 satisfying

min { Coee,, 2¢,} <1 and sum up with respect to N=0, 1, 2, ---. Since log M <M®*/¢,
we have
(5.32) Mo | sull <25 CoM > (| soea Lufllul))/*+CoMull

L2637 ' CoM 0% | yspas Lull+CsMllul, uESs,

where C; denotes the different constant depending on s but independent of M. Since
¢, is independent of s>0, by setting e,s=s'+s”+1 for any s’, s”=1 we obtain with a
constant C independent of s’, s” and M

(5.33) M¥ o sullP S CMP W gspps Lu P+ Cor oM [u]?,  u&ES,

if M=M(s', s”) for a sufficiently large M(s’, s”)>0. Even if ISM<M(s', s”) the
estimate (5.33) holds if we choose another sufficiently large Cy . Since ¥spps=
gfam@aWa—FWam(pa(l-Wa), it follows from (5.10) that

(5.34) M | ¥ s0pau P < M lps¥ sull®+ Cor sl 25 .

Substituting ¥,;u into (5.33) and noting that ¥,50,5 LT ;5= 55005 L +¥ 5025 L(1—¥45), by
means of (5.34) we have

(5.35) M (W s0psu P < CMS " [Wospes Lu [P+ Cor sol|ull2er,  uss.

Here we estimated M~2*"||¥;ul|? by C|ull%s» because of (5.10). If ¢, />0 then it follows
from (5.35) that

(L M) M =1 ¥ 5051 |*
SCo o f(Le M) M "W 5005 Lu||*+M* 250}

Note that M and the symbol of A=(1+|D|?%"? are equivalent on supp ¥,;. Replacing
s’ by s'+1 we have for any M>0

(5.36) (14~ 505 l)%
=Cy o{l(1+e A)“lwzéﬂoz&Lu 55 vasres M2 w250}

We prepare the following :

Lemma 5.6. [f h(t) is as above ana vES then we have

oo

G logl@—a/+an| lwordt <[ T{[Tr =380 ddamym

<log {(2+8)/2—8)} | 120 dt
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Proof. The estimate follows from the exchange of the order of integration.

Integrate with respect to Me&[l1, o) after dividing both sides of (5.34) by M.
Then we obtain by Lemma 5.6

(5.38) I(1+eA) " Psrapsue |l
SCo sl Pasas Luilisr agnsat el 2sn, UES,

for any real s’, s”>0.

We are now ready to prove that p,=(0, (0, 0, 0, £1))e&e WF Lv implies p,& WF v
for any v=9’(R*). Without of loss of generality we may assume that v=&’(R*) and
hence veH_;, for a large s”>0. Choose />0 such that [=4s'+4s”+5. Then by
taking a sequence {w;}3,CS such that

w;—>v in Hog,
from (5.38) we see that

(5.39) ||(1+5/1)_l¢’5/2§067/“§’ =Cy o ”(1+SA)_Isz&(Pz&LU”«izs’+4s"+3+ vl s/}
SCy seillpaatpas LVIIEs 4asnes+ lvli2s}

if >0 is sufficiently small such that ¢psp:sLvES. Letting ¢ tend to 0 in (5.39), we
have ¢s.0sveHs. Since s’ is arbitrary, we have p,&s WF v.

We consider the case where po={x,, (0, 0, 0, +1)) with x¢=(%o1, Xoz, ¥os, X0s)FO0.
If §>0 is the minimum of |x,;|/2 for j with x,;#0, we have (5.39) with ¢;(x) replaced

by ga,;(x):jf! h((xj—x,4;)/0). In fact, Lemma 5.4 still holds with the corresponding ¢,

to ¢, because supp h'((x;—x0;)/0)N{x;=0}=@. Therefore, we also see that p,& WF Lv
implies p,&« WFv. The case where p,=(x,, (3, ,) with #’+0 is reduced to Corollary
2 of [10] because we have with x>0

D" [ *ul*<Cx(Lu, u)  for ueCHK).

It should be noted that the microlocal version of Theorem 1 of [10] holds (see Lemma
1.1 of [10]). Now the proof of Theorem 6 is completed.

6. Proof of Theorem 7

For an ¢>0 we set Q,={x=R?; |x;|<a, 7=1,2}. As in [7] and [4], we con-
sider the eigenvalue problem with a parameter >0 as follows:

{ (A+fOpw=pg(x)y in .

Ula.o,,:O ’

6.1

Whel‘e'J[:Df_{_x';’ng_*_Dzh(g(le'_a)/a)D2’ g(x)=x2*x" and

(6.2) ()= exp (—1/]x1|"=1/x:1)+ exp (—=1/| x1|* —=1/] x| ") .

Here h(t)e C3(R) is the same as in the biginning of Section 5. Throughout this sec-
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tion, we assume that
6.3 0<k<l, 0<a<k+1,
(6.4) t=k+1+m(+1), c=m+(k+1)/(l+1).

Lemma 6.1. The eigenvalue problem (6.1) can be solved. The smallest eigenvalue

w(n) and the corresponding eigenfunction v(x; n) with SQ lv(x; p)|*dx =1 satisfy the

following :
(I) For any a>0 there exists a constant C, independent of a and v such that

(6.5) wm=Cillog 9)*  if 927

for a sufficiently large 1,>0.
(Il) For any fixed positive b<a we see that

(6.6) IimS [u(x; 9)|*dx=1.
n=o JLp

Proof. Consider the Dirichlet problem
(6.7) L v=F, vlae, =0,
where £,=A+f(x)7*. For u, veC7(L2.) we have

(6.8) (Lyu, v)=Du, Dw)+(x{Deu, x1Dw)+(hDoyu, Dov)+(fn*u, v).

Let 4 be the Hlibert space that is the completion of C%(2,) by the norm |ju] 4=
~(u, w)g. Here (u, v)sx denotes the right hand side of (6.8) and it is the positive
Hermitian form. It follows from the Poincaré inequality that [u]ieco,;<Celulls for
any u€ 4. Since .L, is elliptic in a neighborhood of 92  and subelliptic in 2, there
exists a Green operator &, from %' onto 4 such that .£,G,=I in %' and G,.L,=]
in 4, where 4’ denotes the dual space of 4. Furthermore, ¢, is a compact positive
Hermitian operator in L%*Q,) (see Mizohata [5, Chapter 3]). We shall show that the
smallest eigenvalue p(%) is given by

(6.9) pp=inf (L0, v)/(gv, v)>0.

vECT (Rqe)
V#£0

The positivity of the right hand side follows from the Poincaré inequality. Since
C3(RQ,) is dense in L%(2,) we have

p)™'= sup (G,8G,u, w)/(G,u, u).
uECTRq)
u#0

If H=g;?gg;/* then we have
u(n)'= sup (Hw, w),

weCH (Rq)
lwl=1

because the image of g;/* from C%(£2.) is dense in L*2,). Take a sequence {w;}C
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C%(L2.) such that |lw;|=1 and (Hw;, w;)—pu(y)"'. Note that
0= 1 Huwy— pn)” ",
=[Hw;|*=2p(n)"'(Hw;, w)+p(n)* —>0  (j—o0).

We see that ¢,g6;/*w,—a}/*w,/p(9)—0. Since G, is compact and {gg}/*w;} is a bounded
set in L*#,), there exists a subsequence {w;,} such that {gG,gg;*w;,} is convergent
and so {g;*w;,} is also convergent. If v0=,leim Gy*w;, = L*2.) then we have p(7)@,gvo

=v, and v,#0 because &, is positive. Therefore, .£,v,=p(n)gv, and volae,=0. For
the proof of (6.5) we set

(6.10) Q,={xeR*; 1/2< x,(log 9*)P <1, 1/2< x,(log 9?0< 1},

where p={k+1+m(+1)}"' and ¢g=(l+1)p. We see that 2,C82,,, for a large 7>0.
It follows from (6.4) that

f(x)1;2§2, g(x)g4p—(k+m+l)(]0g ﬂ)zp—z in ‘Q” .

Since h(3(|x.] —a)/a)=0 on £,, the right hand side of (6.9) is estimated above from
the constant times of (log #)*-*” multiplied by

inf ~ ((Di+(log n*)~**'Di+2)v, v)/(v, v)=0((log 7)*"),
vECT (24
V#0

so that we obtain (6.5). Since v,=u(x; %) belongs to C7(2.) we have

(£ a0 v Z| ) (1D 154 61 Dav, P4 ()72 v, 1*) dx

26, 11Dy " +exp (=1/x 1977 v, [ dx
21

where 2,=2.N{| x| Zb}. Since a(x,, §&)=8+exp (—1/|x,|")n* and W(x,)=2"*(log »)*/*
satisfy the condition (4) of Theorem 1 we have

Cottn)2 p(nXgvy, vr)Zcilog | [0, 17dx

In view of k<1, it follows from (6.5) that lim SQ lv,12dx=0. If Q:=02.N{|x.|=b}
1

N0

and 2,,=2,N{|x,| =(log »)~'/¢*+>} then we have

(L vy, v,,)zc{,’ggz{ | Dy |2 4exp (—1/1 2,1 )n* v, dx

2
;c{{nggzlllvql dx,

so that lim Sg v, 17dx=0. If 2(x)=h(xi(log 7)"/**) then
o0 Jig
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(L yXvy, X)) ZL‘A’SQZ{ | DiXv, |*+exp (—1/[ x| )n*[Xv, [* dx

>¢,(log n)*"SQZIXv,,lzdx .
Here the last inequality follows from Theorem 1. Since
(L vy, Xvy)=p(n)gvy, Yvy)+Re ([, v, Xv,)
< Cap(n)log n) **/ D4 Cl(log p)P/k+

we see that limsq [Xv,|*dx=0. In view of 2,\Q2,=2,UQ, we obtain (6.6). Q.E.D.
o0 J8y
Proof of Theorem 7. Suppose that L is hypoelliptic in some neighborhood £ of
the origin in R* It follows from the Banach closed graph theorem that for any
integer »>0 and for any open sets wGw’'C {2 there exists an integer »' >0 and a con-
stant C satisfying
(6.11) IDiullecr=Ct 5 1D Lullizcos +Nulizecost  for any ue Cxa@").

fals

If w,={xeR*; |x;|<a} for a sufficiently small ¢>0 and if

Uy (x)=exp {+/ () xs+inxv(x,, x5 7).

for u(xi, x,; %) in the above lemma, we have Lu,=0 in w,./,,. Substituting u, into
(6.11) with w=w.,,"\{x,>0} and w'=w,.;;, by means of (6.5) and (6.6) we have 0<can"
<C'yp* with p=C}{"*a/2 if 5 is sufficiently large. If we choose r=p then the estimate
is absurd for large ». The proof of Theorem 7 is completed. Q.E.D.

Remark. As stated in Introduction, the other hypothesis 0<A<min (k+1, (+1)
(resp. 0<k<1 under the condition ¢=1) seems to be necessary because it is necessary
for the operator frozen with respect to the variable x,#0 (resp. x,#0). In fact, for
example, the operator frozen with respect to x,#0 is equal to D+ x? D34 x2*D?4
exp(—1/|x,|*)D? after the change of the scale. We can construct the solution uy(x)
= exp (v p(n) x;+inx)v(x,) contradictory to (6.11) by considering the eigenvalue problem

{ {Di+ exp(=1/| x| )ptlv=xPpu(n)v  in (—a, a),
v=0 on x,=+a,

where s=min (/, k) and j=2 or 3 according to s=/ or =k.

7. Proof of Theorem 8

In the proof of Theorem 8 we may assume that f(0)=0 by taking the change of
varibles, otherwise,

,
Zg
]

=xp (=1,2), x3=x;+f<o>5 2t .
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We may also assume that @, f and g are bounded because our consideration is local.
At first we shall prove the theorem in the case when a vanishes infinitely at the
origin. Then we may assume that «=0. As in Section 5 we set for a real 3 (not
always positive)

Y, =D+ f(x1)g(x2)n , Ly,=Di+a(x,)’Y;.

Noting that for an integer 2>0
7.1 P¥P,=(D,+ixta’Y )(D,—ixta®Y ;)

=D+ x*a'Vi+ixta’ [V, Di]—(kxi"'@*+2xfaa’)Y ,,
for any compact set KCR? we have

Ha¥(xtfgntv, vISCx(Ly, v), veCy(K).
In fact, this follows from

[(kxt'a?+2xtaa)Y v, )| SCk(laY pl*+vl*),  veCTK)

and the Poincaré inequality
(7.2) IIP< Cx I DS Cu(Lyp, v),  vECTUK).

Here and in what follows we denote by Cx different constants depending on a fixed
compact set K. If we also consider (7.1) with P, replaced by P} then we have with
k=1 or 2

(7.3) (latxtf'gnlv, NS Cr(Lyv,v), vECTK),

because x*f’(x,) has the definite sign if we choose & even or odd, suitably. If follows
from (7.3) that

(7.4) Cx(Ly, 0)ZIDwl+llaY pl*+(la’xif'gnlv, v),  veCHK).

From now on, for the proof of the theorem we shall show that for any s>0 and
any compact KCR? the estimate

(7.5) la(x)(log |7 5 WI*S(Lyv, v)  for ve CT(K)
holds if |9|=7(s, K) for a large 5(s, K) (cf., Lemma 5.1).

In order to make the idea clear, at first we shall prove (7.5) assuming g(0)>0.
Since (26) still holds with f' replaced by a®(t)t* f'(t), in view of (7.4) the estimale (7.5)
is a direct consequence of

Lemma 7.1 (cf., Proposition 3.1 of [4]). Let a, reC>(R") satisfy r(0)=0 and
(7.6) a(t)>0, 7(1)>0, ta’(£)=0 if t#0.

Furthermore, assume that

7.7) ltizrollta(t)l |log 7(1)|=0.
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Then for any s>0 there exists a (>0 such that for any usCHR') with suppuC
{l|x| =1} we have

(7.8) UD*HCr(o)bu, u)zs(a(x)*(og {*u, u)  if £=Ls.

Proof. Set a(x, §)=&+V(x) with V(x)={7(x) and W(x)=sa(x)*(log {)* for s>0.
The direct application of Theorem 1 does not work when a vanishes infinitely at x=0
(see Remark 1 below). We have to return to its proof. It follows from (7.7) that for
any s>0 there exists a d(s)>0 such that

7.9) 0 —|xla(x)log r(x)<1/s if |x|<d(s).

For the brevity we assume that a(x) is even function. Since a(x) is monotone in
[0, o), for any >0 there exists a unique positive root x; such that

(7.10) sa(xg) log {=x7'.

We may assume that x; is smaller than d(s) if  is sufficiently large. It follows from
(7.9) that if x(<|x|<d(s) then

7(x)¢= exp{log {+log r(x)}
= expilog {—(s|x|a(x))'}=1.
Since 7(x)=¢s>0 on {0(s)<| x| Z1}, we see that
(7.11) 7(x)X=1 on {x&R'; x;=|x|<1},

if £{={, for a sufficiently large {,. Divide J=[—1, —x¢]\U[x¢, 1] into four congruent
intevals J, (k=1, ---, 4) and divide each J, into two congruent intervals. We repeat
this cutting until the decomposition J= 31, satisfies

(7.12) {r<(diam 1,)2,
Then we have {'*=(2diam [,)"%. If follows from (7.11) that

(7.13) Vx)=¢ on [, if { is sufficiently large.

If Ke=[—x;, x7] and if ueC5({|x|<1}) then we have

(7.14) 2a(x, Dy, u)gg ‘leu(x)|2dx+S V@)lux)|*dx
KO Ko

+3 Sl IDu(x)|2dx+Sl‘V(x)| w(x)|?d x
EQ0+ Z‘Qv ’

where K% is four times dilation of K,. It follows from Lemma 1.1 that
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Q(,zcgh, [5 {(diam K,)*] u(x)—u(.v>12+v<.v>|z«<y>\2}d,v}/\1<o|dx
oL K,

Z¢'sa(xP(log O lu(x)|*dx

| u
Ky
because of (7.10) and (7.13) with [, replaced by K¥\K,. By means of (7.12) and (7.13)
and Lemma 1.1 we have

.szc”c*ﬂg, ()| *dx .

Summing up above two estimates, in view of (7.14) we get the desired estimate (7.8).
Q.E.D.

Remark 1. We can apply Theorem 1 directly if the condition (7.7) is streng-
theened to
7.7 l{ino1 [ta(A)] |log r(t)| =0

with a sufficiently large A>1 which depends on the modulus of the dilation B** in the
condition (4).

2. The lemma still holds with 7(x) replaced by 7(x)sin?l/x. In fact, since {'/*=>
(2diam /,)"* we see that sin*(1/x)=C{ '/ on a half of /.. Consequently, it fqllows
from (7.11) that

(7.13) m({xel,; V(x)=£"*H=1/2]1.]
Using this instead of (7.13) we get the same conclusion.
In the case when g(0)=0, the estimate (7.5) is obtained from the following lemma

because Y, can be regard as if D,, as stated in the proof of Theorem 5 (see (4.11) in
Section 4).

Lemma 7.2. Let a, ¥ be the same as in Lemma 7.1 and let g(t)e C(R') satisfy
(25), g(0)=0 and g®)>0 if t#0. If V(x)=L7(x)g(x:) and if Ii={xeR*; |x;| <1}
then for any s>0 there exists a (>0 such that for any ueC3(l,) we have

(7.15) ({Di+a(x 2 Di+V()u, u)Zs(a(x)*(log OPu, u)  if £={;.
Proof. 1t follows from (25) that for any s>0 there exists a ;>0 such that if
{={; then
(7.16) g(x)f=1  on {(slog )'=|x.| <1}.
If x; is the same as in the proof of Lemma 7.1 and if y;=(slog {)™' we set

o={xely; | x| <xz}
and
w={x&ly; | x| <yl
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Then I,\(w,\Jw,) is composed of four congruent rectangles. We divide each rectangle
into four smaller congruent rectangles. We repeat this cutting procedure. Let I,=
QiXQ; (CR: XR;,) denote one of congruent rectangles on some step (, that is,
lo\(wlu(z)z):&le,). We repeat the cutting and stop it if /. satisfies

7.12) g <(diam 1,)"2 .

Then we have '/?*>(2diam /,)"%. Noting that diam [, is equivalent to diam Qj with
J=1, 2, by means of (7.16) and (7.11) we have

(7.17) V(x)={® on [, if { is sufficiently large.

We also divide &, w, (and @, w,) into congruent smaller rectangles as follows:
o o=\ [, Jw=[—xg xIXQ
@0 =\) Jor, =0 X [—ys v2]

where the diameter of Q) (resp. Q%") is equal to that of Q3 (resp. Q%). Set K,=
w;Nw, and let K¥ denote four times dilation of K,. If ueC%(l,) then we have

(7.18) AU D4 a(x )P D3+ V (x)tu, 1)

2| (1Dl laGe)Du V(e dx

+3), et 3]

I,

{-}dx+§§ {-}dx

‘,Ix«’ v

=0,+ ;Q,Jr ;Qwr 20,

+
J3

where [, =[—2x: 2x:]X Q% and J3..=Qy" X[—2v;, 2y:]. If follows from Lemma 1.1
and (2.17) of Lemma 2.1 that

(7.19) QochKO[S {221 u(x)—u(yy, )]

Ko\ @y my)

+a(y)?ye®lu(y,, xz)—u(y)lzﬂ-‘f’(y)lu(y)lz}dy]/lKoldx

Zc'satxolog O] |u(x)'dx

because of (7.10) and (7.17) with I, replaced by K*\(w,\Jw,). Exchanging the order
of D} and a?Dj} and noting that (diam Qy")*~{'/* we also have

(7.20) Q,,,,_Z_CS [\ {aCx)ve? | u(x)—u(xy, )|
Joyn= ng\‘”z
0 s, ) —uD V)3 |/ el dx
zc'saogc)ﬂ laCx)u(x)|%dx .

Joy
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Similarly we have

(7.21) Q.. =c"sa(x)*(log C)ZS lu(x)|*dx .

Iyt
(7.22) 2.ze0r| junldx.

Summing up (7.19-22), in view of (7.18) we obtain the desired estimate (7.15). Q.E.D.

Let 2(t) be C=(R') function such that suppXC{|t|=1}. Then, by substituting
A(x,/0)v into (7.5), in view of (7.2) we see that for any 6>0, any s>0 and any compact
KCR? there exists a 5(d, s, K)=1 such that

(7.23) [dog|plHX(x /owIP=(Lyw, v)  for veCHK),

provided that [9|=%(d, s, K)(cf., Lemma 5.2). We remark that if compact set K of
R® is contained in {|x,|=6d} for a 0>0, then for any ¢>0 there exists a constant
C=C(e, k) such that

.(7.24) I(log Mul*<e(Lu, w+Clul?, ucCHK).
In fact, it follows from (7.23) that

[(log (| Ds| +Dull*se(Lu, u)+Clull?, ueCy(K).
This yeilds (7.24) because we have with a ¢;>0

(7.25) 2Lu, Wz |Dwu|*+laDeull*—(suplg|)llafDsul*
Z||DyulP+coll DaulP—C4 I Dyull?,  ueCy(K).

The formula (21) in the region {|x,|+#0} is clear by means of (7.24) and Corollary 2
in [10].
To consider (21) in the region near x,=0 we prepare the following:

Lemma 7.3. Let ¥(&)ES?, satisfy 0<X<1 and suppAC{|&'|=08,|&|} for a §,>0,
where &'=(&,, &). If K is a compact set in R® ana if 6>0 is sujficiently small then
there exists a Cy such that

(7.26) la(x)| DIXDu|* < Cr(Lu, u)
for ue CYK) satisfying
(7.27) suppucC{|x,| £448}.
Proof. Let X, (§)e Sy, satisfy 0=<X,<1 and suppX.C{|&|=0,1&:1/2}. Since the

first inequality of (7.25) holds for any u<S and f vanishes infinitely at the origin, by
substituting Xo(D)h(x,/40)u into (7.25) we have

2(Lu, w)Z [ DXo(D)ull®+ & DeXo( DYue|f?
—C{ollah(x,/40) DaXo(D)ue[|*+ e ||?} .
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Here h(t) is the same as in Section 5. If 6>0 is sufficiently smaller than d, then we
have

2(Lu, W)z21/2{| DXo(D)ul*+ la DXo(D)u |t — C” [[ulf®

for ueS satisfying (7.27). Since (5.1) still holds, from (7.28) we obtain the desired
estimate (7.14) because of ||D,u|*<(Lu, u). Q.E.D.

We shall prove that if p,=(0, (0, 0, +1) and if ve&’ then

(7.29) 0 EWF Lv implies p,&EWF v.

As in Section 5, for a sufficiently small >0 we define @s(x) and ¥4é) with xeR*
and £=(¢&’, £&)ER* replaced by x&R® and £=(&, &)=R®, respectively. Then the
implication (7.29) is obvious, if we show Lemma 5.4 for the corresponding {¢;}, {¥;}
to those ¢;, ¥s.

We shall derive (5.16) in the present case, assuming K ={]|x;| <4d}. Recall (5.17),
that is,

(L, @) (D=L, @()]¥ (D) +,;(x)LL, ¥(D)].

We see that
Re([a®(Do+ fgDs), @(x)]u, @i(x)u)

<(CN)2|aul? for ues.

As in the proof of Lemma 5.4, for a moment we denote by the same notation C
different constants independent of N, M and s. Therefore,

(log M*)* Re([@*(D:+ fgDs)*, @i(x)]¥ (DY, ¢;(x)¥ ;(D)u)
S(CNYHli(log MH¥ (Dyau|*+(log M| [e, ¥ ;(D)l[uf*} .
Using (7.5), for any s>0 we have
[(log M ¥ ;(D)aull*< Cll(log | Ds|*)h((M | D3| —3)/20)au|?
<C(Lu, u) for ueCyK),

if M=M, for a large M;>0. Since (5.1) still holds (cf., (7.2)), by means of (5.13) we
see that

(log M*PI|[a, ¥ ,(D)]ulf?
S(log MM - Cx(Lu, u)+C:N***M=*|ul®}, ueCHK),

if logM*=CN. Therefore, if log M*=CN and M is sufficiently large such that
(log M*)*M-'<1 then we have

(7.30) (log M*) Re ([a¥(Do+ f g Ds), 01% u, o u)
S(CNY{(Lu, w)+C, N> M ~lu|*} =0, ue=CHK).

Note that
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(log M*)* Re (LD}, ¢s(x)]¥ (Dyu, ¢(x)¥ (D))
S(CNY(log M |X(x1/ 0¥ (D)ul®
S(CNYHlIAog | Dy HA((M =] Da| —3)/200X(x1/d)u |*
+(log M*PII[X(x,/0), ¥ 5(D)Jull®},

where X(¢) is the same as in (7.23). Using (7.23) and (5.13) to estimate the first term
and second one, respectively, we obtain

(7.31) (log M*? Re ([ D}, ¢;(x)J¥ (D), ¢ (x)¥ (D))= 2, ueCH(K),

if M satisfies the same condition as in (7.30). From (7.30) and (7.31) we obtain (5.23).
On the other hand, since coefficients of L are independent of x,, by noting the form
of ¥'; we see that

(7.32) (log M*)* Re (p,(x)[L, ¥ (D)]u, ¢;(x)¥ ;(D)u)
< C(log MPP{N NaXo(D)ul>+N>(laa’ | Xo(D)u, Xo( D))
+N¥(ala” | +a"Xo(D)u, Xo(D)u)
+NMHu P4 Co N2 M =2},
where X, 5}, satisfies
suppXeC{201&1 2 1§'1201&: 1 IN{2= 16, 1/M <4}.
Note that the assumption a=0 implies [a’|<C+a and that (vVaNP<aN2+(aN?)?.
If log M*=CN then it follows from (7.32) that
(7.33) (log M*)? Re(p;(x)[L, ¥(D)u, o;,(x)¥(D)u)
S CN*{(log M*)'llaXo( D)u|?

+(14-(log M*Y'M D ul*4-Co N2+ M == u |2},
because we have

(aXout, Xou)Z(log M laXou|*+(log M*)-2|lu]®.
By means of Lemma 7.3 and (5.1) we have
(7.34) Xoau|2<CM 2| | D Xoau|?’<CM~*(Lu, u) for ueCy(K).

Using this to estimate the first term of the right hand side of (7.33) we get (5.26) if
log M=CN and M is sufficiently large such that (log M*)*M -'<1. Since (5.23) and
(5.26) still holds we obtain (5.16). "Therefore, we get (7.29) if p,=(0, (0, 0, +1)).

The implication (7.29) for po=((0, Xos, Xo3), (0, 0, :£1)) With (xg, x0)#(0, 0) is ob-

3
vious. In fact, Lemma 5.4 still holds for ¢;(x) corresponding to ¢s(x)= Hl h((x;— x,;)/0),
je
where x,=0. In view of Lemma 7.3, the preceding argument also yields (7.29) for
00=(x,, &) with £(0, 0, £1) if we modify ¥;&) to correspond to the direction &,.

Thus the proof of Theorem 8 is accomplished when «(x,) vanishes infinitely at the
origin.
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In the finite vanishing case, the above arguments can be carried out until (7.32)
(without serious change). Instead of (7.32), we employ

(7.32) (log M*)2 Re(p;(x)[L, ¥ {(D)]u, @;(x)¥ (D)u)
= C(log MePEN Y Xo(D)ul?+Cs NP+ M =5~ u |2}
If a vanishes of order [ at x,=0, by the well-knowun Hérmander theorem we have
D M PulP< Cr(I Dl +lla(x)Deull®)  for ueCH(K).
This and (7.26) give
(7.24) [Xo(D)ullP S CM -2 <+D| | D [1+DL(D)ulf?
SCM MY (Lu, u) for ueCyK).

By (7.32)" and (7.34)" we get (5.26) and hence (5.16) in the finite vanishing case. The
rest of the proof is the same as in the infinite vanishing case. Now the proof of
Theorem 8 is completed.

To end this paper we state a conjecture about the assumptions (25) and (26).
That is, (25) and (26) seem to be close to necessary under the additional condition that
f’ and g are monotone in (—oo, 0] and [0, o). For instance, as for (26) we consider
a little weaker condition as follows: For a positive k<1 we have

(26)’ lim ta(xt) log | £'(5)| =0,

Suppose that (26)’ does not hold. Then, without loss of generality we may assume
that there exist ¢,>>0 and a sequence of positive numbers 1>¢,>¢,>--->t;—0 such that

(7.35) | f't)] sexp{—eo/t;lalat;)|}  (cf., (1.5) of [4]).

If we take the change of variables x;=y; (=1, 2) and x3=y3+f(yl)g:2g(t)dt then the

operator L of Theorem 8 becomes '

(7.36) a(e ) DDy — (x| gOdtDoY,

where x denotes the new variables instead of y. Let {; be a positive such that

(7.37) tilakt;)log {i=¢,.

Then £, tends to oo as j—oo. For each {; we consider a small box in T*(R. XR.,)
Bi={et;=x:=t5, | x| £1/2, 161 S1/2(0—k)ty, 16,851 =1/2} .

Since f’ and a are monotone in [0, o), it follows from (7.35) and (7.37) that on ﬁjz
{x2; |x.] 1} X B; we have

(7.38) &= £ g ®digs] /1 ax)]

S HCLPEDIEH Lalkt))]
<C’logg;.
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In view of (7.38), the operator L of the form (7.36) might be seen “hyperbolic” with
respect to D, on éj in a certain microlocal sense (see also Introduction of [12]). We
might expect the propagation of wave front set along the null-bicharateristic curve of
D, passing (0, (0, 0, {;)eT*(R*®), and hence L might be not hypoelliptic in a neigh-
borhood of the origin. The similar consideration can be done to the assumption (25)
without the change of variables.
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