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On evaluation of L-functions
over real quadratic fields

By
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§0. Introduction

Our purpose is to give an effective algorithm to compute special values of L-func-
tions over real quadratic fields and relative class numbers of totally imaginary quadratic
extensions of real quadratic fields.

In his paper [3], T. Shintani developped a method for evaluating L-functions over
totally real algebraic number fields at non-positive integers and wrote a class number
formula for totally imaginary quadratic extensions of totally real algebraic number fields.
His method is based on evaluation of certain kind of partial zeta functions. He also
described the detail of evaluation of such partial zeta functions over real quadratic fields.

But no method for computing the values of characters at ideals was explaind.
Moreover his class number formula involves a group index of form [Ej: Ng,pE x]
(see §1 for the definition) which has not been determined.

In this paper, we restrict ourselves to the case of L-functions associated with quadratic
characters and give a complete algorithm for computing special values of L-functions
associated with arbitrary quadratic extensions over real quadratic fields by filling those
two missing details. We describe an algorithm for computing the values of quadratic
characters at ideals and the unit indices [Er: Ng,rEx]. The computation of characters
at ideals are reduced to that at quadratic integers. The value of the characters at
quadratic integers are written by the Legendre symbols and the Hilbert symbols over
real quadratic fields and the Hilbert symbols are determined by propisition 4 in §2.
The unit indices are written by the Hasse’s unit indices which are determined by pro-
position 14 in §3.

After the above two jobs are done, we give some tables of special values and rela-
tive class numbers. For this purpose, we give an algorithm for enumurating quadratic
extensions of real quadratic fields in §4. The tables are given in §5.

The author wishes to express his sincere thanks to Prof. H. Saito for his helpful
advices.

§1. Preliminaries

We review some results of [3] in the case of real quadratic fields with modifications.
The following notations are used throughout the paper except in the argument on the
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Hasses’s unit index in §3. Let F=Q(+/d) be a real quadratic field and d its dis-
criminant, o=oy its ring of integers, E=FEr the group of units in F, E, the group of
totally positive units in F. We denote the non-trivial conjugation of F by a—a’, the
trace by tr=trp,o and the norm of ideals or numbers by N=Npr,. We write a»0 when
a is totally positive, and a<0 when «a is totally negative. Let ¢ be the fundamental
unit of F which is greater than 1 and set

&

2

{ e ife>»0,
B ¢? otherwise.

Let i be the class number of F, h* the narrow ideal class number of F and @,, -+, @+
a system of representatives for narrow ideal classes consisting of integral ideals. Let
¥ be an ideal character of conductor 9. The L-function L z(s, X) associated with X is
defined by

Ly(s, 1) = § " Xa)N(a)™*.
e e

In particular,
Cr(s)=Lp(s, 1)
is the zeta function of F.
T. Shintani has obtained the following formula.

Theorem 1 (T. Shintani). The special values of the L-function at non-positive integers
are evaluated by the following formula :

Lr1—-m, )= —2 N(a,$H™* ( 1)ri = X(xvy)a,NBn(A; x),

xERj((a,9)~h

where
7/1=2, r2=l,

1 1
A = (v, U;):( ),

ey €L

Ay = (vg, v3) = (1, 1),
Ri(S) = {x=@N(, 11)"J (row vectors)| xv;eS},

and Bn(A; *) are generalizations of Bernoulli polynomials which are writien as

1(2m\ 'moaf 2m—1 ‘ .
Bu(Ay, (x, 9) = 7( ) 2( . )(—1)’ tr (e¥*)(Bem(x)+ Bem(¥))
m

o \p—j—
1 (2m\  emoi (2m\ i (i—1\ (2m—i—1 N
+7( ) # ( ')'E | ) ‘ )"“r””)Bi(x)Bm_i(y),
m/) =P\ N \m—j—1
2
Bn(4,, JC)— Bzm W(x).

This formula is slightly modified from (2.1) in [3] (see also theorem 1 and 2 of
that paper). The modification is in the formula for Bn(A,, *) which is proved by
changes of variables in the second summation.
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We note that the ideal (xv;)a,$ in this theorem is an integral ideal. Thus, this
theorem gives an effective method for evaluating L z(1—m, %) when the sets R ;((a,3)")
are given extensionally and an effective method for computing the values of the char-
acter 2 at integral ideals is given. The sets R((e,9) ') are given by proposition 2 below.
We treat the zeta function and L-functions associated with quadratic characters over F
in this paper. The values of quadratic characters X are discussed in §2. “_

Let @, 9=Du[qu, (pp++/d)/2] with D,,q,, pp<Z and let [x, y] denote the Z-module
generated by x, y. Then

_ 1 —putd 1
1 ¢ _
@9 = 5 g, PG = 5ol @)
with
_ —putvd
" 24, .
Hence,
1 2 D
R ((a 179)_1) =1 A ’ —£ .
At {D,, D, D, }
Write
o= 23y pen)
and put
A+B
¢u = By, Qp = 2 fr
Then
€y = QptCpwy.
Hence

1 (0]
-1 — ; “ - c =
(¢, 'mod[l, e,] = { D, i+ D, 11i=1,2, -, Dy; j=1, 2, D#c#}.

Therefore we obtain :

Proposition 2. Notations being as above, the sets R;(a, ") are given explicity by

L2 _D_ﬂ}
D# y D/l i ’ D/‘ ’

R(a,9)") = {(<icg:6‘:‘#j >’ < ch >)|i=l, 2, -, Dy; j=1,2, -, D,;C,;}.

uCp
where {x>=(0, 1] and x—<Kx>=Z.

Rul(@ud)™) = {

We give some remarks on the values Lg(1—m, X). We denote the infinite primes
of FF by o0, ’. Let k be a non negative rational integer. We see

Lyp(-—2k, X) =0 &= X is unramified at co or oo’,
Li(1—2k, X) = 0& 1 is ramified at c or oo’,

from the functional equation. Hence we have
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Lp(—2k, %) =0, Lp(l—2k, X)=0 if X is ramified at only one of o and oo/,
Lp(—2k, %)+ 0, Lp(1—2k, ) =0 if X is ramified at both oo and oo,
Lp(—2k, X)=0, Lp(1—2k, X)# 0 if X is unramified at both o and oo’.

When X is associated with a totally imaginary quadratic extension K=F(4/A), the class
number H of K is written as

H Wk

R L SE—
R~ [Er:NepEg] 2rOY

where wg is the number of roots of unity in K and Ng,rEg is the group of norms of
units in K. The constants wx and [Er: Ng,rEx] are discusses in §3.

After quadratic characters X, constants wx and unit indiced [Ep: Ng,#Ex] are
determined effectively, we can compute the values of L z(1—m, X) and the relative class
numbers H/h. We give some tables of the values of Lz(1—m, X) and the relative class
numbers H/h in §5.

§2. Computation of the character associated with a quadratic extension

In this section, we give a method to compute the values of quadratic characters at
integral ideals. We determine the character X=X, associated with arbitrary quardratic
extension K=F(4/A) of F with an algebraic integer A€ F. We determine the value of
the character in the following way. The computation of the value of the character at
an ideal is reduced to that at a quadratic integer. The character at the integer is
factored to the infinite part and the g-parts with prime ideals ¢ dividing the conductor
of X. The infinite part is written by the sign of the integer. A prime ideal is called
even when it divides (2) or called odd when it does not divide (2). Odd prime ideals
g dividing the conductor are easily deterimined and the g-parts of X are written by the
Legendre symbols. Even prime ideals ¢ dividing the conductor and their indices in the
conductor are determined by proposition 3 and the g-parts of X are determined by the
Hilbert symbols. We sum up the result of this section in theorem 6.

Let @ be the conductor of the character X. Let a be an integral ideal in /. Then
there is an odd prime ideal p prime to (A) such that ap is a principal ideal. This
prime ideal p is also prime to the conductor 9 since an odd prime ideal divides 9 if
and only if its index in A is odd. Let a be a generator of ap. Then X(a) is decom-
posed as

X(a) = X(a)X(p)~".
The value X(p) is given by the Legendre symbol over the quadratic field F, that is,

(0 =(3),

Here the Legendre symbol is the unique character of order 2 modulo p and is written
by the usual Legendre symbol
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(55 it N(p)=7",

@D =1 5 . -
(;> with d=Amod p, 6 Z if N(p)=p.

where p is the prime number in p. The value Z((a)) factors as
La((a)) = XA,m(a)XA,w(a)HgXA.q(a)

according to the factorization of the conductor. We omit the subscript A in the follow-

ings. X., X are the infinite parts of X and X, are the g-parts of X. The infinite parts
of X are given by

1 if A>0,
Lfa) = {
sgn(a) if A<O,
2.2)
1 if A’>0,

oot (@) = {
sgn(a’) if A’<0.

An odd prime ideal g divides 9 if and only if its index in A is odd. The g-part
of X is given by

1= (2),

When ¢ divides (2), the g-component of the conductor is given by the following
proposition (porbably due to D. Hibert).

Proposition 3. Let F be an algebraic number field, q an even prime ideal and e the
rami fication index of q in F/Q. Let § be the conductor of F(\/A)/F for an integer
A€oy which is not a square in F. Assume q* does not divide A. And let [ be the largest
integer f<2e+1 such that y*=A (mod q7) has a solution. Then, the behavior of q in
K/F is as follows:

q splits if f>2e,
q remains if f=2e,
g ramifies if f<2e.
In particular,
{ g |19 if g A,
@9 if g fA.

where [f/2] is the Gauss symbol.

Proof. Let F, be the completetion of F at q, = a generator of q. Then for every
integer @ in F,, we have

(14+2za)* = 1+4ra (mod q?%¢*?).
Thus
l+q26+lC(F;)2 .
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Therefore ¢ splits if f>2e and +/A generates a quadratic extension over F, if f<2e.
Assume f=<2e¢. Every integer in F(+/A) is written as

a+BvA
2

with integers a, 8 in F,. Let e, qe the least index such that

a+rnii/A
2

is an integer for some a. Then e,=e—[f/2]. Firstly e,<e—[f/2] since

yre U et SR
2

is an integer in Fy(+/A) for a solution 7 of 72=A (mod ¢*). Conversely, if

a+ny/A
2
is an integer, a*=nr%% (mod 4). Since ¢;<e, y=ar"® is an integer. This integer satisfies,
7*=A (mod ¢*¢~*1). From the definition of f, we have 2e—2¢,<f. Hence e,=e—[f/2].
We have proved e,;=e—[f/2]. The different of Fy(~/A)/F, is q*(~/A)=q* V' * U/ A).
Therefore the discriminant -9, of F(+/A)/F, is

9, = g*IBA).

If f=2e, there is a solution for 7*=A (mod ¢%). From the assumption on A, we see
that ¢ Y A. Thus §,=(1) and ¢ remains prime. If f<2e¢, clearly q | 9, and q ramifies.
This proves the first assertion.

The second assertion in the case of ¢ f A is already shown. If g | A, the congruence
7?=A (mod ¢?) has no solution. Hence f<2. The discriminant 9, is @*(A)=q?**.
This completes the proof. m

The characters X, for g dividing (2) are computed by the Hilbert symbol (&, A)r, in
the completion F, of Fat g (see [2] for the definition and the properties of the Hilbert
symbol). That is,

(a, Ar, if qla,

(2.3) X(a) = {
0 if gla.

when ¢ is ramified in K/F and
1 a)=1

when ¢ is unramified in K/F. By straightforward calculations, we obtain:
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Proposition 4. The Hilbert symbol (a, B)r, is determined by following tables.
(i) d=1 (mod8)
F/(F¥)? is generated by 5, —1, 2.

5 —1 2
5 +1 +1 —1
-1 +1 -1 +1
2 -1 +1 +1

(ii) d=5 (mod8)

F/(F5? is generated by 3+2+/d, —1, ﬁ-_ﬂ/%‘_ﬂ’ 2.
3+2vd -1 (=D d 2
3+2/d +1 +1 +1 —1
-1 +1 +1 —1 +1
(dD/2tvd +1 —1 —1 +1
2 -1 +1 +1 +1

(ili) d=4d,, d,=2 (mod4)
F/(F;) is generated by 5, —1, 1—+/d,, = with

{ 24++/d, if dy=2 (mod8),
T=
v do if dy=6 (mod8).

5 —1 1—-+/d, T

5 +1 +1 +1 —1
-1 +1 +1 -1 +1
1—+/d, +1 -1 —1 +1
T -1 +1 +1 +1

(iv) d=4d,, d,=3 (mod4)
FJ(F;) is generated by 5, 24+/dy, T+24/d5 14/,

5 24+/d, 742/, 1++/d,
5 +1 +1 +1 —1
2++/d, +1 +1 -1 +1
74+244, +1 —1 +1 +1
1++/d, -1 +1 +1 —1
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(v) d=4d,, d,=7 (mod4)
F/(F) is generated by 5, 24++/dy, T+2/d,, 14+4/d,.

5 2++/d, 7+2v/d, 1++/d,
5 +1 +1 +1 —1
24-+/d, +1 +1 —1 +1
7+2+/d, +1 -1 +1 +1
1++/d, -1 +1 +1 +1

Remark 5. When Ne=—1, the character X, for ¢|(2) can be determined by examin-

ing its values at units. For n=+1, +¢, let X aint=Xy8.0kpa. e, XyA.0dd= loIIm)XﬂA,.,
qiv,q

and x)yA.even:qm];]I:(z)X;yA.q- Then xr]A((a))zxr]A,inf(a)xr;A.odd(a)xﬂA.even(a) for acor. The

four characters X,s,044 are the same and the four pairs (X,a.intf(—1), X5a,in(e)) are dis-
tinct. On the other hand, the ideal factorization of (A)=(nA) determines the conductor
of X,a,even UP to a square. And there are exactly 4 characters with such conductors.
Therefore the system of two equations

{ 1= XqA.inf(_l)an.odd(_l)xﬂ:l.even(_'l)»
1= x)]A.inf(e)xﬂA.odd(e)x'r)ﬁ.even(s)v
determines X,a.even.

The conductor of the character and the value of the character at an ideal is deter-
mined by the following theorem.

Theorem 6. Let X be the character associated with a quadratic extension K=F(s/A)
and assume A is an integer in F. Then the conductor 9 is written as 9=9oqaFeven where
oaa 1S the product of all odd prime ideals which have odd index in A and even is the
product of powers of even prime ideals determined by proposition 3. Moreover when a is
a given integral ideal, one can choose an odd prime ideal p such that ep is a principal
ideal. Let a be a generator of ap. Then the value X(@) is written as follows:

Ha) = (5) el JT (5), T 20,

q190dd \q / F gideven

where the symbol (—)r is the Legendre symbol over F determined by (2.1), the characters
Yo and X are given by (2.2) and the character X, for an even prime ideal q is given by
(2.3) and proposition 4.

We note that the choice of p can be carried out by succesively applying continued
fraction algorithm to prime ideals (see [4]).
§3. Unit groups of totally imaginary quadratic extensions of real quadratic fields

We determine the number wx and [E r: Nk, rE k] related to the unit group of a totally
imaginary quadratic extension over a real quadratic field. Let K be a totally imaginary
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quadratic extension over F. Let E be the group of units in F, Ex the group of units
in K, px the group of roots of unity in K, wx=4#px and {, a primitive k-th root of
unity.

Proposition 7. The notations being above, we have

(i) 12 if K=F(/=I) and F=Q(v/3),
(i) 10 if 1<=F(4/_5+g/'5) and F=Q(+/5),

w | (i) 8 if K=F(y=T) and F=Q(/2),
(iv) 6 if K=F(+~/=3) and F+Q(V/3),
(v) 4 if K=F(W/=1) and F+Q(W/?2), Q(/3),
(vi) 2 otherwise.

Proof. Since K is quartic, wxg=2, 4,6, 8,10 or 12. If wg=8, 10 or 12, {,, gen-
erates a quartic extension over @ therefore K=@Q({.,) which are fields given in (i),
(ii), dii). If wxg=4 or 6, K=F({w,) since {.,, generates a quadratic extension over a
real quadratic field. And K+Q({s), Q(Lw), Q(L:2) in these cases. This proves the pro-
position. =

In the rest of this section, we assume that F is a totally real algebraic number
field and that K is a totally imaginary quadratic extension of F. Let Er be the group
of units in F, E. the group of totally positive units in F, E; the group of units in K,
px the group of roots of unity in K. The computation of the index [Ep: Ng,rEx]
is reduced to that of the Hasse’s unit index of K. We note that the following argu-
ment does not require K to be abelian over @ although the original proof of H. Hasse
in [1] does.

Definition 8 (Hasse’s unit index). For a totally imaginary quadratic extension K
of a totally real algebraic number field F, we define

Qrx=[Ex:pxEr].

Let ¢ denote the non-trivial conjugation of K/F. Then 14+0=Nk,r defines a
homomorphism ¢=1+40: Ex—Er whose kernel is px since %'*°=1 implies (7)'+ "*o*
=(n**?y=1 for each embedding = of K into C. Hence, 1—o¢ defines a homomorphism
¢=1—0: Ex—px. The kernel of ¢ is clearly Er.

Proposition 9. For é=Ex, the following conditions are equivalent to each other.
(i) é epxErp;
(ii) &’€E};
(iii) éepk.

Proof. It is easy to see (i) implies (ii) and (iii). If (ii) is satisfied, &/=5"% for
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some pEp. Then (§7)?=1, that is, épepg. Hence, (ii) implies (i). We can prove
that (iii) implies (i) in the same way. B

Corollary 10. The map ¢ induces an isomorphism

¢1 EK/.UKEF —> Ng,rEx/E}.
In particular,
[NkirEg: E}] = Qk
and
1 Qx

[EF: NgrEx] o2man

Proof. The first assertion is clear from the proposition. The second assertion
follows from the fact 2(F:Q1= [Er: NgrEx][Ng,rEx : EE].

Corollary 11. E.+#E} if Qx=2.
Proof. This assertion is clear from the inequality [E,: E}]=[Ng/rErp: E}]=Qr. 1

Corollary 12. The map ¢ induces an injection

@ Ex/pxEr — pr/pk.
In particular,
{ Qx=2 if ¢ is surjective,

Qx=1 otherwise.

Theorem 13. Let £ be a generator of the 2-sylow subgroup of px. Then, one has

2 K=F(/—7) with n€ENE} -

(i) Qx= ) when ~—1épx;
1 otherwise
2 K=F(/=1)and 1-{)1—-8)'e(F" ) Er

(i) Qx= when /=I€ k.
1 otherwise

Proof. Qx=2 if ¢ is surjective to px and otherwise Qx=1. Since px is cyclic,
tx=pxNCpk. Therefore, Q=2 if and only if {=£¢ for some é€Ex.

In case (i), {=—1. Suppose £&*={=—1. Put p=E&cEp. Then 7>0. From pro-
position 9, ¢ E}. Since & °=&=—1, £=—§"*"=—y. Therefore K=F(/—7) for
some nEEr such that »0, n&E;  Conversely. if these conditions are satisfied, the
unit §=+/—7 satisfies &=—1.

In case (ii), K=F(~/—1) and v/—I€Eg. Suppose {=£&?=¢£'"°, Then we see a=
=L(E—E%)=+/—1(1—)&° is preserved by ¢ and hence is in F. Taking the norm, we
have a?=(1—-8)(1—-8)?&%. Since &*cEr, (1-0(1—-8)°s(F*)*Er. Conversely if this con-
dition is satisfied, there is an integer a<F such that, (a®)=((1—{)X(1—-£)?). Put &=
—Ta/(1=C°). Then {=£'"7=¢¢ m

As a specialization of this theorem we obtain the following proposition.
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Proposition 14. Assume F is a real quadratic field. Then one has
2 if K=F(&/=¢) and ¢>0,
Qx=1{ 2 if K=F(~/=1) and 2e=(F*),
1 otherwise.
Proof. Since K is a quartic field, {=—1, ~/—1 or &. If =&, K=Q:)=Q(\/ 2,

—1). Qk=1 in this case, since N(e)=—1 for F=Q(~/2). The proposition follows
since 2=(1—-¢)1-Q)° for {=+/—1. m

§4. Description of quardratic extensions

In this section, we describe the set of quadratic extensions over a real quadratic
field. For convenience, we write F(4/A)=F for A€(F*). There are many choices of
field generators of form /A for a given quadratic extension. For example, Q(+/3,
V=2=Q(v3, v—2—+/3) and Q(V6, v—=3)=Q(+/ 6, v—5—24/6). It is important
to know whether given 4/A; and +/A, generate the same field or not, when one applies
proposition 4 or proposition 7. Clearly F(~/A)=F(+/4,) if and only if AA,e(F*).

Proposition 15. Let AcsF*. If

_xty/dN\
a=(=57%)
for x, yeZ,
(X)_( +Vtr A+2vNA ) . (x)_( +Vir A—2vNA )
y +v(tr A2~ NAY/d y + V(tr A+2vVNAYd |

Proof. The assertions can be easily verified by calculations. &

We describe the set
{F(VA) | AeF~}

by constructing a system of representatives for F*/(F*)2. We introduce some notations.
Let I'r be the ideal group of F, Py the group of principal ideals of F in the wide sense,
Sp=I}Pp the group of ideals in square ideal classes of F and Ap={acly: a’<c Pr}.
Put g=#Ar/Pr and let integral ideals b,, b,, ---, b, be a system of representatives for
Ar/Pp. We consider the following diagram, in which all homomorphisms are surjec-
tions, and construct systems of representatives from the right, using auxiliary functions
0, M, G and = which are described later.

¢ K A
F*/(F*? —> Pp/P§ —> Pp/A} —> Sp/I%

The homomorphism ¢ is defined by ¢(A(F*)*)=(A)PZ The homomorphisms £ and A are
natural homomorphisms. The set

Sr/I: = {a=SFr | a is a square free integral ideal}

is a system of representatives for Sr/I3. The homomorphism A is an isomorphism
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since Aj=PrNI% and Sp=PrI}. There exists an ideal function 0 : Sg—1I such that
ap(a)¥e Pr. And the set

Pr/A} = {ap(a) | acSy/T3}

is a system of representatives for Pr/A%. Clearly, the set {b.%, b2, ---, b,*} is a system
of representatives for A%/PZ which is the kernel of the homomorphism at the middle.
Let M(a) be the representative of a in a fixed system of representatives of ideal classes.
Then the set

Pr/PE = {aM(p(a)b.) | acS,/T8 i=1,2, -, g)

is a system of representatives for Pr/P# Let G(a) be a generator of a for a principal
ideal @. Then, the set

F*/(F*)E r = {G(aM(p(a)b;)) | aSs/1}, i=1,2, -, g}

is a system of representatives for F*/(F*)Er. Clearly, the set {+1, +¢} is a system
of representatives for (F*)*Er/(F*)* which is the kernel of the homomorphism at the
left. Let 7(a) be the representative of « in a fixed system of representatives for F*/EZ.
Then, the set

F/X—/(\f‘&)2 = {r(+A), 7(+eA) | A=G(aM(p(a)b;)*) for aem, i=1,2 -, g}

is a system of representatives for F*/(F*)%.

We now give choices of auxiliary functions so that the functions are computable.
We note that the class group of a real quadratic field is effectively determined by the
continued fraction algorithm (see [4]). Firstly, the function p(a) can be constructed as
an ideal class funcion on Sr. For each ideal a=Syr, there is an ideal b such that aPr
=(bPr)"? in the ideal class group. This time, ab?*<e Pr. One can find such b by ex-
amining the class group of F. We can put p(a)=b. The set F*/(F*)* is independent
of the choice of the function p because we multiply by b; for i=1, 2, ---, g and apply M.
Secondly, we let M(a)=[a, (b++/d)/2] with a>0 and 0<b<2a be the representative
of the ideal class a Pr which is the minimum in the lexicographical order in a and b.
Next, the generator G(a) of @ can be found by the continued fraction algorithm (see
[47). The set F%)2 is independent of the function G because we finally apply z.
Lastly, we define v(«). We embed F in R and assume +/d >0. We define z(a) to be
the unique element 8, of aE} which satisfies

{(i) [tr Bl = |tr Bol ;
(i) 1BI<1Bol if [tr Bol=Itr B|;

for any f=aE}. The number t(a)=p, is well defined, since there is clearly the mini-
mum a=|tr 8|, there are at most two solutions for the equation X*—aX+c=0 with
c=N(a)=N(B) and elements of aE} have different magnitudes.

§5. The table of special values and relative class numbers

We present some special values of L-functions associated with quadratic extensions
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of real quadratic fields and of zeta functions of real quadratic fields. Let d, be a square
free rational positive integer, F=Q(+/d,) a real quadratic field, d its discriminant, ¢ the
fundamental unit in F which is greater than 1, e, the generator of the group of totally
positive units in F which is greater than 1, i the class number of F in the wide sense,
h. the class number of F in the narrow sense. We consider a quadratic extension K=
F(+/A) of F. Let X be the character associated with the extension K/F, 9 its conductor,
w, the number of roots of unity in K, H the class number of K. And let Qx be the
Hasse’s unit index (see definition 8) of K when K is a totally imaginary field. For
convenience, we treat the case of X=1 as the case of A=1. We note that Lz(1—m, X)
is non-zero only when m is odd and X is associcated with a totally imaginary extension
or m is even and X is associcated with a totally real extension.

Firstly, the tables of special values L0, X), Lyp(—1, X), Lp(—2, X), Lp(—3, X), with
N9)<50 over base fields Q(+/2), Q(v/3), Q(+/5) and Q(+/6) are listed. Next, the
tables of class numbers of totally imaginary quadratic extensions with N(3)<100 are
listed. The base fields listed in the tables of class numbers are Q(+/2), Q(+/3), Q(+/5),
QWV6), QWT), QWI0), QWII), QVI3), AV, QVI5), QVIT), Q(V19), A(+/2]),
Q(vV22), Q(v23), R(V26), Q(v28), Q(v/29), Q(+/30), Q(~/31), Q(/33), Q(+/34), A(V/35),
Q(+/37), Q(V38), Q(+/39), Q(~/79) and Q(+/229). The last two base fields are chosen
because their class numbers have odd prime factors. The generator A is normalized
as described in §4. To eliminate a duplication due to a conjugate pair of A, we have
adapted the one which has the greater magnitude in a fixed embedding of F' in R and
excluded the other. Entries for wx=2 and Qx=1 are left blank. The symbol [x, y]
denotes the ideal which is generated by x, y as a Z-module.

F=Q(v/2), d=8, e=1++/2, e.=3+2v2, h=1, h,=1

A 9 L#(0,X) Le(—=2,0) | Lp(—4,%)
—2—/2 [8,4v2] 2 274 1651234
-3 [3,3v2] 2/3 92/9 15940/3
—7 [7,7v21 4 6336/7 11594880
—5—2v2 [17, 114427 2 64 98944
-1 [2,2v/2] 1/2 3/2 285/2
A | 9 Le(—=LX) | Lp(—3/%)
2472 [8,4v72] 10 15898
3 (6,642 12 24012
5 [5,5v2] 28/5 6308
7+2v/2 [41,24++/21] 12 35652
1 (1L,v72] 1/12 11/120
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F=Q(v/3), d=12, e=2++/3, e,=2++/3, h=1, h,=2

A 9 Lr(0,%) Le(—2,2) | Lp(—4,%)
—9—4v'3 [33,27++/31] 4 928 12136768
—5 [5.5v/3] 4 480 3493824
—7 (7,743 4 16832/7 71596160
—1 [1,v3] 1/6 1/9 5/3
—2—+/3 [4,4v3] 2 138 454290
A 9 Lp(—1,%) Lr(—3,%)
9+44/3 [33,27++/3] 16 68944
5 (5,543 48/5 25776
7 [7,74/73] 32 278432
1 [1,v3] 1/6 23/60
2+v3 [4,4+/3] 6 5742
F=Q(+/5), d=5, e=(1++/5)/2, ¢2=3++/5)/2, h=1, h,=1
A 9 Lr(0,%) Lp(—2,%) | Lp(—4,%)
-3 [3,(3+3v5)/2] 2/3 32/9 1984/3
(=5—+5)/2 | [5,(6++5)/2] 2/5 4/5 1172/25
-7 [7,(7+74/5)/2] 2 1728/7 1355904
(—18—+/B5)/2 | [41,(13++/5)/2] 2 160 608320
-1 (4,24+2+/5] 1 15 8805
A 9 Lp(—1%) Lp(—3,%)
(15+3+5)/2 | [15,(15+3+v5)/2] 8 10088
(11++5)/2 | [29,(11++/5)/2] 4 2164
1 [1,(1++/5)/2] 1/30 1/60




Evaluation of L-functions

F=Q(/6), d=24, ¢=5+2v6, e+=5+2+/6, h=1, h,=2

A 9 L#(0,X) Le(—2,%) Lp(—4,%)
—3—v6 [12,4v6] 4 11716 1436217220
—25—10v6 (5,561 4 2528 78409664
=7 [7,7v61 4 13376 1618987136
—1 [2,2v6] 1 23 19925
—5-2v6 [1,v/6] 1/3 2/3 38
A 9 Lp(—1,2%) Lr(—3,0
3+VE [12,4v6] 100 3076132
5 (5,56 ] 136/5 291608
354146 [7,7V6] 80 3083696
1 [1L,v6] 1/2 87/20
54+24/6 [2,24/6] 2 506

F=Q(v2), d=8, e=1++2, &4=3+2v2, h=1, h,=1

A 9 H/h | wg Qx
—2—72 [8,44v21] 1
-3 [3,3v2] 1 6
-5 10,104+ 27] 2
—7 [7,7v2] 2
—5—2v72 [17,11++/27] 1
—9—2v72 [73,41++/27] 1
—11—44/72 [89,25++/27] 1
—13—-64/2 [97,83++/21] 3
-1 [2,2v/2] 1 8
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F=Q(W73), d=12, e=24++/3, e,=24++/3, h=1, h,=2

A 9 H/h W Qx
—3—4/3 [24, 12+4+/37] 2
—9—4/73 [33,27++/3] 2
=5 (5,543 2
=7 [7,7v3] 2
—5-2V'% (26, 184-2+/737] 2
—11—4/3 [73,21++/3] 4
—17—8V3 [97,87++/3] 2

—1 [1,+/3] 1 12 2

—2—+/3 [4,4v/3] 2 2

F=Q(/5), d=5, e=(14++4/5)/2, e.=(3++/5)/2, h=1, h,=1

A 9 H/h wx Qx

-2 [8,44+4+4/5] -1

-3 [3, (3+3+v5)/2] 1 6
(—=5—+/5)/2 | 1[5, 6++5)/2] 1 10

-7 (7, (7+7v/5)/2] 1

(—=13—+/5)/2 | [41,(134++/5)/2] 1
(—=17—34/5)/2 | [61, 87++/5)/2] 1
-1 [4,242v5] 1 4




Evaluation of L-functions

F=Q(~/6), d=24, e=54+2+6, &.=5+2v/6, h=1, h.=2

A 9 H/h W Qx
—9—-2v6 [57,33++6] 4
—3—+/6 [12,4v/6] 2
-5 10,1046 4
—25—104/6 (5,546 ] 2
-7 [7,74/6] 2
—17—6v6 [73,15++/6] 6
—31—124/6 [97,43++/6] 4
—1 [2,24/6] 2 4 2
—5—2v6 [1,v6] 1 6 2
F=Q(VT), d=28, ¢=8+3+/7, ,=84+3v7, h=1, h,=2
A 9 H/h W Qx
—3—v/7 [8,4+4+/ 7] 2
-3 [3,3v/7] 2 6
—13—4v/T [57,46++/71 6
—43—16/7 [57,49++/ 7] 2
—71—2vT [42,28+2+4/ 7] 4
-5 [5,5¢7] 2
-1 [1,v/7] 1 4 2
—8—3VT [4,4v/7] 4 2
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F=Q(+/10), d=40, ¢e=3++/10, £.=19+6+/10, h=2, h,=2

A 9 H/h Wy Qx
—4—+/10 [24, 16+4+/10] 6
—8—2v10 [24, 16+4+/10] 2
-3 [3,3+/10] 2 6
—6 [3,3+/10] 2
—15—4+/10 (65, 20++/10] 6
—30—8+/10 (65, 20++/10] 2
—7 [7,7+/10] 2
—14 [7,7+/10] 4
—9—2+/10 [41, 25++/10] 2
—18—4+/10 [41,25++/10] 4
—27—8+v/10 (89, 59++/10] 2
—54—16+/10 [89,59++/10] 8
—1 [2,2+/10] 1 4
-2 [2,2+/10] 1
F=Q(VII), d=44, e=10+3+/11, e,=10+3+11, h=1, h,=2
A 9 H/h Wg Qxk
-3 [3,3+/11] 2 6
-5 [5,5+/11] 4
—7—2+/11 [10, 2+2+/T1] 2
—4—+/T1 [20, 16+4+/11] 2
-7 [7,7+/11] 4
—67—20+/11 [89, 79++/11] 4
—41—124/11 [97,60++/T1] 8
—1 [1,+/11] 1 4 2
—10—3+/11 [4,4+/11] 2 2




F=Q(v13), d=13, e=(3++/13)/2, e+=(11+3+/13)/2, h=1, h.=1

Evaluation of L-functions

A 9 H/h wg Qx
—2 [8,44+4+/13] 3
-3 [3, (3+3+/13)/2] 2 6
(=17—+/13)/2 [69, (17+~/13)/2] 2
(—5—+/13)/2 [12,104+2+/13] 2
=7 [7, (7+7+/13)/2] 1
(—13—3v13)/2 [13, (13+4/13)/2] 1
(—9—+/13)/2 [17, 9++/13)/2] 1
—9—2413 [29, (19+/13)/2] 1
—1 [4,2+2+/13] 1 4

F=Q(v/14), d=56, e=15+4+/14, e,=15+4v 14, h=1, h,=2

A 9 H/h Wk Qx

—4—+/14 [8,44/14] 2
-3 [3,3+/T4] 2 6

—45—12+/14 [6,6+/14] 4
—5 [10, 10+/T4] 4
—75—20+/14 [5,5+/14] 2
—53—14+/T4 [65, 27+ +/14] 2
—31—8+/T4 [65, 12++/T4] 6

-1 [2,2v14] 4 4 2

—15—4+/14 [1,v14] 1 2
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F=Q(+/15), d=60, e=4+4+/15, e,=4++/15, h=2, h,=4

A 9 H/h wg Qx
—9—2+15 [42,30+2+/15] 4
—12—2+/15 [42, 12+2+/15] 4
-7 [7,74/15] 4
—56—14+/15 [7,74/15] 4
-1 [1,+/15] 1 4
—4—4+/15 [4,44/15] 4 2
-2 [4,44/15] 2
—8—2v15 [1, V15] 1 6

F=Q(v17), d=17, e=4++/17, £+=33+8+17, h=1, h,=1

A 9 H/h W Qx
—2 (8, 4+4/17] 2
(=5—+17)/2 [8, (9++/17)/2] 1
-3 [3, (3+3vI7)/2] 1 6
—7 (7, (7+74/17)/2] 5
—9-2/17 [13, (11++/17)/2] 1
—6—+/17 L76, (25++/17)/2] 4
—19—4v17 [89, (27++/17)/2] 7
-1 [4,2+2+/17] 2 4




F=Q(v19), d=76, ¢=170+39+/19, ¢,=170+39+19, h=1, h,=2

Evaluation of L-functions

A 39 H/h Wg Qx
—109—25+/19 [24,4+4+/19] 10
—5—+/19 [24, 20+4+/19] 2
—3 [3,3v19] 2 6
—19—4+/19 [57, 19++/19] 10
-5 [5,5+/19] 8
—9—24/19 [10,4+2+/19] 2
—48—11+/19 [20, 12+44/19] 6
-7 [7,74/19] 2
—279—64+/19 [17,114++/19] 4
—53—12+/19 [73,47++/19] 6
-1 [1,+/19] 1 4 2
—170—39+/19 [4,44/19] 6 2
F=Q(v21), d=21, e=(5++/21)/2, e+=(5++/21)/2, h=1, h,=2
A 39 H/h wg Qx
-2 [8,4+4+/21] 2
—5—+/21 [8,4+44/21] 4
(—=25—5v2D)/2 | [5, (5+5+/21)/2] 2
(—37=7v21)/2 | [85, (151++/21)/2] 2
—13—2v21 (85, (49++/21)/2] 2
(—13—+/21)/2 [37, (13++/21)/2] 2
-1 [4,2+2+/21] 2 4
(—5—+/21)/2 [1, A++2D)/2] 1 6 2
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F=Q(v/22), d=88, e=197+42+/22, e,=197+42+/22, h=1, h,=2
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A 9 H/h wg Qx
-3 [3,3v/22] 4 6
—591—126~/22 [6,6+/22] 4
—61—13+/22 [12, 4+4+/22] 6
—319—68+/22 [33, 11++/22] 8
—5—+/22 [12,8+4+/22] 2
-5 [10,10/22] 12
—985—2104/22 [5,5+/22] 4
—7 [7,74/22] 4
—441—94/22 [89, 17++/22] 10
—85—18+/22 [97, 64++/22] 2
-1 [2,24/22] 2 4 2
—197—42+/22 [1,+22] 1 2
F=Q(v23), d=92, £=2445+/23, £.=24+5+/23, h=1, h,=2
A 9 H/h Wk Qx
—5—+/23 [8,4+4+/23] 2
-3 [3,3+/23] 4 6
—5 [5,5+/23] 2
—7 [7,7+/23] 8
—29—6+/23 [26, 14+2+/23] 4
—77—16+/23 [41,33++/23] 2
—21—4+/23 [73,60++/23] 10
—1 [1,+/23] 3 4 2
—24—5+/23 [4,4+/23] 4 2




F=Q(v/%), d=104, e=5++/6, ¢+=514+10+/26, h=2, h,=2

Evaluation of L-functions

A 9 H/h Wi Qx
-3 [3,3+/26] 2 6
—6 [3,3v/26] 4
-5 [10, 10+/26] 4
—10 (10, 10+/26] 8
—13—2+/26 (65, 39++/26] 10
—26—4~/26 (65, 39++/26] 2
—7 [7,7+/26] 6
—14 [7,7+/26] 4
—11—2+/26 [34, 284-2+/26] 4
—22—4+/26 [34,28+2+/26] 4
-1 [2,2+/26] 3 4
-2 [2,2+/26] 1

F=Q(v29), d=29, e=(5++/29)/2, ¢,=(27+5v29)/2, h=1, h.=1

A 9 H/h Wk Qk
—2 [8,4-+4+/29] 1
(—21—-3+/29)/2 | [15, (21+3+/29)/2] 2
-3 [3, (3+3+/29)/2] 3 6
(—41-7v29)/2 | [65, (43++/29)/2] 4
(—=17—+/29)/2 [65, (17++/29) /2] 2
(=7—+/29)/2 [20, 14+2+/29] 2
=7 [7, (74+7+/29)/2] 2
(=9—+29)/2 [13, (9++/29)/2] 1
(—29—5+29)/2 | [29, (29++/29)/2] 1
—13—2+/29 [53, (33++/29)/2] 1
—1 [4,2+2+/29] 3 4
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F=Q(+/30), d=120, e=1142+/30, €+=11+2+/30, h=2, h,=4

A 9 H/h wx Qx
—6—4/30 [24,44/30] 8
—12—2+/30 (24, 4+/30] 4
=7 L7,74/30] 4
—77—144/30 [7,74/30] 4
-1 [2,2+/30] 2 4
—11—2+/30 [2,2+/30] 4 2
—2 [1,+/30] 1
—22—4+/30 [1,/30] 1 6

F=Q(v/31), d=124, ¢=1520+273+/31, €+=1520+273+/31, h=1, h,=2

A 9 H/h W Qxk

—39—7+/31 [8, 4-+4+/31] 4
-3 [3,3+/31] 2 6

—3697—664+/31 [33,25++/31] 10
—23—4+/31 [33, 14++/31] 2
—5 [5,5+/31] 4
—6—+/31 [20,4+4+/31] 4
—657—118+/31 [10,8+2+/31] 4
—7 [7,7+/31] 4
—45—8+/31 [41,21++/31] 2
—401—72+/31 [97,15++/31] 22

-1 [1,+/31] 3 4 2

—1520—273+/31 (4, 4+/31] 8 2




Evaluation of L-functions

F=Q(v/33), d=33, ¢=23+4+/33, £,=23+4+/33, h=1, h,=2

A 9 H/h | wk Qx
-2 [8,4+4+/33] 4
—46—8+/33 [8,4+4+/33] 2
(—121—21+/33)/2 | [88, (33++/33)/2] 8
—81—14+/33 [93. (39++/33)/2] 4
—6—+/33 (12, (94-+/33)/2] 2
—115—20+/33 [5, (54+5+/33)/2] 4
=7 [7, (74+7+/33) /2] 6
—13—2+/33 [37, (25++/33)/2] 2
—47—8+/33 [97, (115++/33) /2] 14
-1 [4,2+2+/33] 2 4
—23-44/33 [1, (1++/33)/2 1 6 2
F=Q(+/34), d=136, ¢=35+6+/34, £.=35+6+/34, h=2, h,=4
A 9 H/h Wk Qx
—6—+/34 [8,4v34] 4
=3 [3,3v34] 2 6
—105—18+/34 [3,3+34] 2
—47—8/34 [33,10++/34] 6
—13—2+/34 [33,23++/34] 10
-5 (10, 10/34] 12
—175—30+/34 (10, 10+/34] 4
-7 [7,7v/34] 4
—245—42+/34 [7,74/34] 20
—17—24/34 (17, v34] 2
—1 [2,2+/34] 4 4 2
—35—6+/34 [2,2v34] 4 2
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F=Q(+/35), d=140, e=6++/35, ¢+=6++/35, h=2, h,=4

A 9 H/h | wg Qx
-3 [3,3+/35] 4 6
—36—6+/35 [3,3v/35] 4
—25—4+/35 [65,55++/35] 8
—20—2+/35 (65, 10++/35] 4
-1 [1,+/35] 1 4
—6—4/35 [4,4+/35] 8 2
-2 [4,4v/35] 2
—12—2v/35 [1,v35] 1

F=Q(v/37), d=37, e=6++/37, ¢+=73+12+/37, h=1, h,=1

A 9 H/h Wk Qx

-2 [8,44+4+/37] o

-3 [3, (3+3+/37)/2] 4 6
(—13—+/37)/2 [33, (13++/37)/2] 2
(=7—v3D)/2 [12,2+2+/37] 2
—13—2+/37 [21, (17++/37)/2] 2
-7 [7, 7+ (¥/37) /2] 2
(—=81—13v/37)/2 | [77, (101++/37)/2] 2
—37—637 [37, (37+/37)/2] 1
(—33—=5437)/2 | [41, (234++/37)/2) 3
(—45—=74/371)/2 | [53, (67++/37)/2] 3
(—25—3+/37)/2 | [73, (67+4/37)/2] 7

-1 [4,2+2+/37] 1 4




Evaluation of L-functions

F=Q(v/3R), d=152, e=37+6+/38, €,=37+6+/38, h=1, h,=2

A 9 H/h | wk Qx
-3 [3,3+/38] 4 6
—111—18+/38 [6,6+/38] 4
-5 [10, 10+/38] 4
—185—30+/38 [5,5+/38] 8
-7 [7,7+/38] 10
—25—4+/38 [34,4+2+/38] 4
—13—2+/38 [17, 15++/38] 2
—99—16+/38 [73, 29++/38] 4
—1 [2,2+/38] 6 4 2
—37—6+/38 [1,v/38] 1 2

F=Q(+/39), d=156, e=25+4+/39, ¢,=25-444/39, h=2, h,=4

A 9 H/h | wk Qx
—5 [5,5+/39] 4
—125—20+/39 (5, 5+/39] 8
—7 [7,7+/39] 4
—175—28+/39 [7,74/39] 4
—13—2+4/39 [26,2+/39] 4
-1 [1,+/39] 2 4
—25—4+/39 [1,+/39] 2 6 2
—2 [4,4+/39] 2
—50—8+/39 [4,4+/39] 6
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F=Q(~/79), d=316, e=80+9+79, ¢,=80+9+/79, h=3, h,=6

A 9 H/h wg Qx

—9—+/T9 [8,4+4+/79] 8
—3 [3,3+/79] 6 6

—267—304/79 [42,8+24/79] 4
—89—10+/79 [42, 22424/79] 12
-5 [5,5+/79] 8
—43—4+/79 (65, 27++/79] 24
—19—2+/79 [10,4+2+/79] 4
—249—28+/79 [65,53++/79] 4
—98—114/79 [20, 12++4+/79] 12
-7 [7,7+/79] 4
—409—46+/T9 [26, 24+2+/79] 16
—107—12+/79 [73, 15++/79] 34
—145—16+/79 [89, 48++/79] 14
—77—8+/T9 [97, 46++/79] 4

-1 [1,+/79] 5 4 2

—80—9+4/79 [4,4+/79] 8 2




F=Q(v/229), d=229, e=(15++/229)/2, ¢+=(227+15+/229)/2, h=3, h.=3

Evaluation of L-functions

A 9 H/h | wg Qx

—2 [8,4+4+/229] 13
—93—6+/229 [15, (9+3+v/229)/2] 4

-3 [3, (3+34/229) /2] 6 6
(—321—21+/229) /2 [57, (37++/229)/2] 12
—16—+/229 [12,24+2+/229] 10
(—57—3+/229)/2 | [33, (41++/229)/2] 10
(—49—3+/229)/2 | [85, (73++/229)/2] 16
—41—2+/229 [85, (63++/229)/2] 2
—31—24/229 [20, 6+2+/229] 6
-7 [7, (7T+7+/229) /2] 3
(—29—+/229)/2 | [17, (29++/229)/2] 5
(—21—+/229)/2 | [53, (21++/229)/2] 5
(—89—5+/229)/2 | [61, (91++/229)/2] 7
(—61—+/229)/2 | [97, (61++/229)/2] 7

—1 [4,2+2+/229] 5 4
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