On the homology of $BU(2n, \dots, \infty)$

By

Kazumoto Kozima

§ 1. Introduction

We denote by $X(n, \dots, \infty)$ the (n-1)-connective fibering over X. The cohomology ring $H^*(BU(2n, \dots, \infty); F_p)$ was determined by the work of Adams [1], of Stong [9] and of Singer [8]. The purpose of this paper is to calculate the image of

$$i_{n*}: H_*(BU(2n, \dots, \infty)) \longrightarrow H_*(BU)$$

(where i_n is the fiber inclusion) in the stable range *<4n. Our method can be outlined as follows. First we construct a map t_n from the n-fold smash product CP^{∞} to $BU(2n, \dots, \infty)$. Using this map, we get a system of elements

$$\beta_I \in H_{2+I+}(BU(2n, \dots, \infty))$$

where $I=(i_1, i_2, \dots, i_n)$, $i_j>0$ and $|I|=\sum i_j$. We shall show that β_I generate $H_*(BU(2n, \dots, \infty))/T$ or in the stable range. To prove this, we will use a result of Adams [2] on $H_*(bu)$.

I'd like to thank Professor A. Kono for his valuable advices.

§ 2. Construction of maps and elements

We write X^{n} for the *n*-fold smash product of a space X.

Let $t_n: BU^{\wedge n} \to BU$ be the *n*-fold tensor product of virtual bundles of virtual dimension zero. We use the same t_n for its restriction to $(CP^{\infty})^{\wedge n}$. Since $(CP^{\infty})^{\wedge n}$ is (2n-1)-connected, we have a map

$$\tilde{t}_n: (CP^{\infty})^{\wedge n} \longrightarrow BU(2n, \dots, \infty)$$

such that $i_n \circ \tilde{t}_n = t_n$.

Let E be a complex oriented theory. Then $E_*(CP^\infty)$ is a free $E_*(pt)$ -module generated by $\beta_1, \beta_2, \dots, \beta_k, \dots$, where β_k is the dual element of the k-th power of the Euler class $x^E \in E^2(CP_\infty)$. (See Adams [2], part II.) So $E_*((CP^\infty)^{n})$ is a free $E_*(pt)$ -module generated by

$$\beta_i \otimes \beta_{i_0} \otimes \cdots \otimes \beta_{i_n}$$
 where $i_1, i_2, \cdots, i_n > 0$.

We denote $\tilde{t}_n(\beta_{i_1} \otimes \beta_{i_2} \otimes \cdots \otimes \beta_{i_n}) \in E_*(BU(2n, \dots, \infty))$ as

$$\beta_{(i_1,i_2,\cdots,i_n)}$$
.

Remark. In the case of n=2, $BU(4, \dots, \infty)$ is BSU and $\{\beta_{(i,j)}\}$ generate $E_*(BSU)$ as algebra. This can be proved by the same way as in Baker [5] or Kozima [7]. (See also Kochman [6].)

§ 3. The proof of the main result

Let $\mu_n: (CP^{\infty})^{\setminus n} \to MU(2n)$ be the map induced from the external product of line bundles. Then we have the following lemma.

Lemma 3.1. The diagram

$$(CP^{\infty})^{\wedge n} \xrightarrow{\mu_n} MU(2n) \xrightarrow{\iota_n} \Sigma^{2n} MU$$

$$\tilde{t}_n \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \Sigma^{2n} t \downarrow$$

$$BU(2n, \dots, \infty) \longrightarrow \Sigma^{2n} bu$$

commutes up to homotopy where t is the Thom map and c_n the inclusion as the 2n-th term of spectrum.

Proof. Since $bu^*((CP^{\infty})^{\wedge n}) \to K^*((CP^{\infty})^{\wedge n})$ and $K^*((CP^{\infty})^{\wedge n}) \to K^*((CP^{\infty})^n)$ are monic, we show it in $K^*((CP^{\infty})^n)$. Let $\pi_i: (CP^{\infty})^n \to CP^{\infty}$ be the *i*-th projection and ξ the canonical line bundle. Clearly $\iota_n \circ \check{\iota}_n$ represents

$$u^{-n} \cdot (\xi_1 - 1) \cdot (\xi_2 - 1) \cdots (\xi_n - 1)$$

Where $u \in K_2(pt)$ is the generator and $\xi_i = \pi_i^* \xi$. On the other hand, by the multiplicativity of Thom class, we have

$$t(\xi_1 \times \xi_2 \times \cdots \times \xi_n) = t(\xi_1) \cdot t(\xi_2) \cdots t(\xi_n)$$
$$= u^{-n} \cdot (\xi_1 - 1) \cdot (\xi_2 - 1) \cdots (\xi_n - 1).$$

Proposition 3.2. The image of the composition

$$H_*(MU) \xrightarrow{t_*} H_*(bu) \longrightarrow H_*(bu)/\text{Torsion}$$

is epic.

Proof. Let Q_p be the localization of Z at a prime p. Since $H_*(bu)/\text{Torsion} \subset HQ_*(bu)$, it is sufficient to show

$$\operatorname{Im} \rho \circ t_* = \operatorname{Im} \rho$$

where $\rho: H_*(bu) \to HQ_{p*}(bu)$ for all prime p. By the result of Adams ([2], part III, proof of 16.5.), $HQ_{p*}(bu)$ is the Q_p -subalgebra of $Q_p[u]$ generated by u and u^{p-1}/p . Since $H_*(MU) = Z[b_1, b_2, \cdots, b_k, \cdots]$ where $b_k = \sigma^{-2}(\ell_{2*}\beta_{k+1})$ and an easy calculation shows $t_*b_1 = u/2$ and $t_*b_{p-1} = u^{p-1}/p!$, the result follows.

By (3.1), we have

Homology of
$$BU(2n, \dots, \infty)$$

233

$$\sigma^{-2n} \epsilon_{n*} \beta_{(i_1, i_2, \dots, i_n)} = t_* (b_{i_1-1} b_{i_2-1} \dots b_{i_n-1})$$

where $i_k > 0$ and $b_0 = 1$. Since

$$\ell_{n*}: H_*(BU(2n, \dots, \infty)) \longrightarrow H_*(\Sigma^{2n} bu)$$

is isomorphic for *<4n, the proof of the following theorem is clear.

Theorem 3.3. $\{\beta_I\}$ generate

$$H_*(BU(2n, \dots, \infty))/Torsion$$
 for $*>4n$.

Corollary 3.4. $\{i_{n*}\beta_I\}$ generate $\text{Im } i_{n*}$ for *<4n.

Remark. The condition on the degree is needed in these cases. The first problem is $H_{12}(BU(6,\cdots,\infty))/\text{Torsion}$. Using an easy argument on the Serre spectral sequence, one can prove that $H_{12}(BU(6,\cdots,\infty))/\text{Torsion}$ generated $\beta_{(4,1,1)}$ and $\frac{1}{4}\cdot\beta_{(1,1,1)}^2$, (thus $H_*(BU(2n,\cdots,\infty))/\text{Torsion}$ is not a polynomial algebra). On the other hand, $\text{Im}(t_{3*})$ is generated by $\beta_{(4,1,1)}$ and $\beta_{(2,2,2)}-3\cdot\beta_{(4,1,1)}=\frac{1}{2}\cdot\beta_{(1,1,1)}^2$ at this degree.

§ 4 Relations between $i_{n*}\beta_I$

In this section we will give some relations of $i_{n*}\beta_I$ in $E_*(BU)$. We write β_I for $i_{n*}\beta_I$ in this section. Let

$$\beta(x_1, x_2, \cdots, x_n)$$

be the formal power series

$$1 + \sum_{I(I)=n} \beta_I x^I \in E_*(BU)[x_1, x_2, \dots, x_n]$$

where l(I) is the length of I and $x^I = x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$ if $I = (i_1, i_2, \dots, i_n)$.

Let $+_E$ be the sum defined by the formal group of E. Then we have the following formulae.

Theorem 4.1.

- (1) $\beta(x_{\tau(1)}, x_{\tau(2)}, \dots, x_{\tau(n)}) = \beta(x_1, x_2, \dots, x_n)$ for any permutation τ .
- (2) $\beta(x_1, \dots, x_{k-1}, x_k + E x_{k+1}, x_{k+2}, \dots, x_n) = \beta(x_1, \dots, x_n)$. $\beta(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n) \cdot \beta(x_1, \dots, x_k, x_{k+2}, \dots, x_n)$ for all k.

Proof. We use the same notations as is the proof of (3.1) and put $\eta_i = \xi_{i-1}$. Then t_n classifies $\eta_1 \eta_2 \cdots \eta_n$ and the Boardman image of t_n is $\beta(x_1, x_2, \dots, x_n)$. Since $\eta_{\tau(1)} \eta_{\tau(2)} \cdots \eta_{\tau(n)} = \eta_1 \eta_2 \cdots \eta_n$, (1) is clear. (2) follows from the fact that $\beta(x_1, \dots, x_{k-1}, x_k + x_{k+1}, x_{k+2}, \dots, x_n)$ is the image of the classifying map of

$$\begin{split} & \eta_{1} \cdots \eta_{k-1} (\xi_{k} \xi_{k+1} - 1) \eta_{k+2} \cdots \eta_{n} \\ & = \eta_{1} \cdots \eta_{k-1} \eta_{k} \eta_{k+1} \eta_{k+2} \cdots \eta_{n} + \eta_{1} \cdots \eta_{k-1} \eta_{k} \eta_{k+2} \cdots \eta_{n} + \eta_{1} \cdots \eta_{k-1} \eta_{k+1} \eta_{k+2} \cdots \eta_{n} \\ \end{split}$$

and the Whitney sum of bundles corresponds to the product in $E_*(BU)[x_1, x_2, \dots, x_n]$. (See Ravenel-Wilson [8] and Kozima [7].)

Example 4.2. For example, in H_* , we have

$$\beta(x_1, x_2+x_3) = \beta(x_1, x_2, x_3) \cdot \beta(x_1, x_2) \cdot \beta(x_1, x_3)$$
 by (4.1)(2).

So one can easily obtain

$$\beta_{(1,i,j)} = {i+j \choose i} \cdot \beta_{(1,i+j)}$$
 for $i, j>0$

and

$$\beta_{(2,2,2)} = 6 \cdot \beta_{(2,4)} - 6 \cdot \beta_{(1,3)} \beta_{(1,1)} - \beta_{(1,2)}^2$$

We have also

$$\beta(x_3, x_1+x_2)=\beta(x_3, x_1, x_2)\cdot\beta(x_3, x_1)\cdot\beta(x_3, x_2)$$

and, by (4.1)(1)

$$\beta(x_1, x_2+x_3)\cdot\beta(x_2, x_3)=\beta(x_1+x_2, x_3)\cdot\beta(x_1, \beta_2).$$

This last equation gives the relations between $\beta_{(i,j)}$.

KYOTO UNIVERSITY OF EDUCATION

References

- [1] J. F. Adams, On Chern characters and the structure of the unitary group, Math. Proc. Camb. Phil. Soc., 57 (1961), 189-199.
- [2] I.F. Adams, Stable homotopy and generalized homology, Chicago University Press, 1974.
- [3] J. F. Adams and S. B. Priddy, Uniqueness of BSO, Math. Proc. Camb. Phil. Soc., 80 (1976), 457-509.
- [4] R. D. Arthan and S. R. Bullet, The homology of $MO(1)^{A\infty}$ and $MU(1)^{A\infty}$, J. Pure Appl. Algebra, 26 (1982), 229-234.
- [5] A. Baker, More homology generators for BSO and BSU, Current trends in algebraic topology, Part 1, CMC Conf. Proc., 2, Amer. Math., Providence, R. I., 1982, 329-435.
- [6] S. O. Kochman, Polynomial generators for $H_*(BSU)$ and $H_*(BSO; \mathbb{Z}_2)$, Proc. Amer. Math. Soc., 84 (1982), 149-154.
- [7] K. Kozima, On polynomial generators for the generalized homology of BSU, J. Math. Kyoto Univ., 27 (1987), 563-568.
- [8] D. C. Ravenel and W. S. Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra, 9 (1977), 241-280.
- [9] W.M. Singer, Connective fiberings over BU and U, Topology, 7 (1968), 271-303.
- [10] R. E. Stong, Determination of $H^*(BO(k,\dots,\infty), Z_2)$ and $H^*(BU(k,\dots,\infty), Z_2)$, Trans. Amer. Math. Soc., 107 (1963), 526-544.
- [11] W. S. Wilson, Brown-Peterson homology: an introduction and sampler, CBMS Regional Conference Series in Mathematics, 48. Amer. Math. Soc., Providence, 1982.