On the irreducible very cuspidal representations

Ву

Tetsuya TAKAHASHI

Introduction

The notion of 'very cuspidal representation' of the maximal compact modulo center subgroup of GL_n over a non-archimedean local field F was introduced by Carayol [C]. He has shown that the compact-induction to $GL_n(F)$ of an irreducible very caspidal representation is irreducible and supercuspidal. If an irreducible very cuspidal representation has an even level (cf. Definition 1.3.2), it has a simple description by a generic element u (cf. Definition 1.2.1) and a quasi-character θ of $F(u)^{\times}$. (See 5.6 in [C]). But if it has an odd level, there is no simple description. When n is a prime, any irreducible supercuspidal representation of $GL_n(F)$ is, up to twisting by quasicharacter of F^* , compactly-induced from an irreducible very cuspidal representation. In this case, Kutzko and Moy [K-M] have calculated the ε-factor of any irreducible supercuspidal representation of $GL_n(F)$ and proved the local Langlands conjecture ([L]) for $GL_n(F)$. In the so-called tame case when n is relatively prime to the residual characteristic p of F, Moy [M] has calculated the ε-factor of any irreducible supercuspidal representation and proved the local Langlands conjecture. (Remark that the irreducible supercuspidal representation is not always obtained from an irreducible very cuspidal representation unless n is a prime.)

The purpose of this paper is to study very cuspidal representations with odd levels in detail, in particular to calculate the ε -factors of the induced supercuspidal representations of $\mathrm{GL}_n(F)$ for general n and p. Our main result is Theorem 3.3.2. We note that we shall not treat the level one very cuspidal representation since the ε -factor in this case is calculated in [G2].

In section 1, we review the definition and properties of very cuspidal representations according to [C]. Section 2 is devoted to the construction of irreducible very cuspidal representations. Our goal in this section is to show: after all, the irreducible very cuspidal representation with an odd level can be described by a generic element u and a quasi-character θ of $F(u)^*$ not exactly but in a sense similar as in the even level case. For the purpose, we want to apply the method of Moy (see Sections 3.5-3.6 in [M]). But it is not directly applicable when p divides the order of the group $F(u)^*/F^*(1+P_{F(u)})$, so we find some quotient group $F(u)^*/F^*(u)^*/(1+P_{F(u)})$ (cf. Subsections 2.4 and 2.6) to which we apply Moy's method with slight modification. Thus we get information which is enough to calculate the ε -factor, but not yet enough to get a complete character formula. In section 3, we calculate the ε -factor of the

compact-induction to $GL_n(F)$ of the irreducible very cuspidal representation we construct in section 2.

The author would express his sincere gratitude to Professor H. Hijikata and Professor T. Yoshida for their helpful advice.

Notation. For a non-archimedean local field F, we denote by \mathcal{O}_F , P_F , ϖ_E , k_F , and q_F the maximal order of F, the maximal ideal of \mathcal{O}_F , a prime element of \mathcal{O}_F , the residue field of F and the order of k_F , respectively. Let v_F be the valuation of F normalized by $v_F(\varpi_F)=1$ and $|\cdot|_F=q_F^{-v_F(\cdot)}$ the absolute value of F.

The $n \times n$ zero and identity matrices are denoted by $\mathbf{0}_n$ and $\mathbf{1}_n$, respectively. If X is a matrix, det X and tr X stand for its determinant and trace, respectively. We denote by |A| the order of the finite group A. Let G be a group, H be a normal subgroup of G and \mathcal{X} be a representation of H. We say \mathcal{X} is lifted to G if there exists a representation π of G whose restriction to H is equivalent to \mathcal{X} , and then we call π a lift of \mathcal{X} .

1. Review of very cuspidal representations

1.1. Let F be a non-archimedean local field of residual characteristic p and $G=\operatorname{GL}_n(F)$. We set $V_F=F^n$ so that $\operatorname{M}_n(F)=\operatorname{End}_F(V_F)$ and $G=\operatorname{Aut}_F(V_F)$. Suppose n is decomposed into two factors r and s i.e. n=rs.

Definition 1.1.1. Let $\{L_i \mid i \in \mathbb{Z}\}$ be the set of \mathcal{O}_F -lattices in V_F . $\{L_i \mid i \in \mathbb{Z}\}$ is said to be a lattice flag of length s if the following conditions hold for all integers i:

- (1) $L_i \supset L_{i+1}$.
- (2) $P_F L_i = L_{i+s}$.
- (3) $\dim_{k_{E}}(L_{i}/L_{i+1})=r$.

Hereafter we fix the length s of lattice flags.

Definition 1.1.2. Let $\{L_i \mid i \in \mathbb{Z}\}$ be a lattice flag.

- (1) We set $K_s = \{g \in G \mid gL_i = L_i \text{ for all } i \in \mathbb{Z}\}$. K_s is a compact subgroup in G.
- (2) Let z_s be an element in G such that $(z_s)^s = \varpi_F \cdot \mathbf{1}_n$ and $z_s L_i = L_{i+1}$ for all i. Let Z_s be a cyclic group generated by z_s .
- (3) For integers m, we set $A_s^m = \{ f \in M_n(F) \mid f L_i \subset L_{i+m} \}$. A_s^0 is a ring and $A_s^m = (z_s)^m A_s^0 = A_s^0 (z_s)^m$.
 - (4) For positive integers m, we set $K_s^m = 1 + A_s^m$, which are normal subgroups of K_s .

Remark 1.1.3. We can construct all lattice flags explicitly by taking an appropriate basis.

We can take e_1 , e_2 , \cdots , $e_n \in L_0$ such that $\{e_{n-ri+1} \bmod L_i, \cdots, e_{n-(i-1)\tau} \bmod L_i\}$ makes a basis of L_i/L_{i+1} over k_F for $i=0, \cdots, s-1$.

By Nakayama's lemma, $\{e_1, \dots, e_n\}$ forms an \mathcal{O}_F -basis for L_0/L_1 . Then L_i $(i=0, \dots, s-1)$ is expressed as follows:

$$L_{0} = \mathcal{O}_{F}e_{1} \oplus \cdots \oplus \mathcal{O}_{F}e_{n}$$

$$L_{1} = \mathcal{O}_{F}e_{1} \oplus \cdots \oplus \mathcal{O}_{F}e_{n-r} \oplus P_{F}e_{n-r+1} \oplus \cdots \oplus P_{F}e_{n}$$

$$\cdots \cdots$$

$$L_{i} = \mathcal{O}_{F}e_{1} \oplus \cdots \oplus \mathcal{O}_{F}e_{n-i} \oplus P_{F}e_{n-i} \oplus \cdots \oplus P_{F}e_{n}$$

$$\cdots \cdots$$

$$L_{s-1} = \mathcal{O}_{F}e_{1} \oplus \cdots \oplus \mathcal{O}_{F}e_{\tau} \oplus P_{F}e_{\tau+1} \oplus \cdots \oplus P_{F}e_{n}$$

and $L_{i+ms} = \varpi_{F_i}^m L_i$ for all integers m.

For this basis, we can express K_s , z_s , A_s^0 and A_s^1 as follows:

$$K_{s} = \begin{cases} \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1s} \\ a_{21} & a_{22} \cdots & a_{2s} \\ \cdots & \cdots & \cdots \\ a_{s1} & a_{s2} \cdots & a_{ss} \end{pmatrix} & a_{ij} \in M_{r}(\mathcal{O}_{F}) & \text{if } i < j \\ a_{ij} \in GL_{r}(\mathcal{O}_{F}) & a_{ij} \in M_{r}(P_{F}) & \text{if } i > j \end{cases},$$

$$z_{s} = \begin{pmatrix} 0_{r} & 1_{r} & 0_{r} & \cdots & 0_{r} \\ 0_{r} & 0_{r} & 1_{r} & \cdots & 0_{r} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0_{r} & 0_{r} & 0_{r} & \cdots & \cdots & 1_{r} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0_{r} & 0_{r} & 0_{r} & \cdots & \cdots & 1_{r} \\ a_{21} & a_{22} \cdots & a_{2s} \\ \cdots & \cdots & \cdots & \cdots \\ a_{s1} & a_{s2} \cdots & a_{ss} \end{pmatrix} & a_{ij} \in M_{r}(\mathcal{O}_{F}) & \text{if } i \leq j \\ a_{21} & a_{22} \cdots & a_{2s} \\ \cdots & \cdots & \cdots \\ a_{s1} & a_{s2} \cdots & a_{ss} \end{pmatrix} & a_{ij} \in M_{r}(\mathcal{O}_{F}) & \text{if } i < j \\ a_{21} & a_{22} \cdots & a_{2s} \\ \cdots & \cdots & \cdots & \cdots \\ a_{s1} & a_{s2} \cdots & a_{ss} \end{pmatrix} & a_{ij} \in M_{r}(\mathcal{O}_{F}) & \text{if } i \leq j \end{cases}.$$

1.2. The multiplication by \mathfrak{W}_F induces a k_F -isomorphism between L_i/L_{i+1} and L_{i+s}/L_{i+s+1} . An element of A_s^0 induces an endomorphism of L_i/L_{i+1} , so we have a ring homomorphism:

$$R: A_s^0 \longrightarrow \underset{i \in \mathbb{Z}/s\mathbb{Z}}{\prod} \operatorname{End}_{k_F}(L_i/L_{i+1}).$$

Since $\operatorname{End}_{k_F}(L_i/L_{i+1})$ is identified with $\operatorname{M}_r(k_F)$ and $\operatorname{Ker} R = A_s^1$, R induces a ring isomorphism:

$$A_s^0/A_s^1 \longrightarrow M_r(k_F)^{Z/8Z}$$
.

We shall use the same symbol R for this isomorphism. The conjugate action of z_s on A_s^0/A_s^1 induces the cyclic permutation of $M_r(k_F)^{\mathbf{Z}/s\mathbf{Z}}$:

If
$$R(a)=(\alpha_0, \alpha_1, \dots, \alpha_{s-1})$$
 $(\alpha_i \in M_r(k_F))$, then $R(z_s \ a \ z_s^{-1})=(\alpha_{s-1}, \alpha_0, \dots, \alpha_{s-2})$.

We shall consider the map:

$$A_s^m/A_s^{m+1} \longrightarrow A_s^0/A_s^1.$$

$$u \longrightarrow \varpi_F^{-m}u^s$$

If we put $u=z_s^m u_0$ with $u_0 \in A_s^0$ and $R(u_0)=(\alpha_0, \alpha_1, \dots, \alpha_{s-1})$ with $\alpha_i \in M_r(k_F)$, then $R(\varpi_F^{-m}u^s)=(\beta_0, \beta_1, \dots, \beta_{s-1})$ with:

$$\beta_i = \alpha_{i+(s-1)m} \cdots \alpha_{i+m} \alpha_i$$
.

Definition 1.2.1. An element $u \in A_s^m/A_s^{m+1}$ is said to be generic if the following conditions hold:

- (1) (m, s)=1 where '(,)' is the greatest common divisor function.
- (2) If $R(\varpi_F^{-m}u^s)=(\beta_0, \beta_1, \dots, \beta_{s-1})$, then the fields $k_F(\beta_i)$ are extensions of k_F of degree r for $i=0, \dots, s-1$.

We also say that an element $u \in M_n(F)$ is generic of level m if $u \in A_s^m$ and u mod A_s^{m+1} is generic.

Now we shall summarize the properties of generic elements without proofs. Proofs may be found in 3.3 and 3.5 of [C].

Proposition 1.2.2. Let u be generic of level m.

- (1) The field F(u) is an extension of F of degree n and its ramification degree over F is s.
- (2) $F(u) \subset Z_s K_s$ and $F(u)^{\times} \cap K_s = \mathcal{O}_{F(u)}^{\times}$. Moreover $F(u) \cap A_s^{m} = P_{F(u)}^{m}$ for all integers m and $F(u)^{\times} \cap K_s^{m} = 1 + P_{F(u)}^{m}$ for all integers $m \ge 1$.
 - (3) Let x be an element of A_s^l . Suppose $ux xu \in A_s^{m+l+1}$, then $x \in F(u) + A_s^{l+1}$.
 - 1.3. Fix an additive character ϕ of F with conductor P_F .

Lemma 1.3.1. Let l, m be integers such that $m \le l \le 2m$, $l \ge 1$ and $m \ge 1$. We shall define the function ψ_u on K_s^m by:

$$\phi_u(x) = \phi(\operatorname{tr}(u(x-1)))$$
.

Then the map $u \rightarrow \phi_u$ induces an isomorphism between A_s^{-l+1}/A_s^{-m+1} and the complex dual, $(K_s^m/K_s^l)^{\hat{}}$, of K_s^m/K_s^l .

Proof. See 2.7 and 2.8 of [C].

We call ϕ_u a generic character if u is generic.

Definition 1.3.2. An admissible representation ρ of Z_sK_s is said to be very cuspidal of level N ($N \ge 2$) if the following conditions hold:

- (1) $K_s^N \subset \operatorname{Ker} \rho$.
- (2) The restriction of ρ to K_s^{N-1} is decomposed into a sum of generic characters.

Proposition 1.3.3 (Carayol). Let ρ be an irreducible very cuspidal representation of Z_sK_s . Then the compact-induction of ρ to G (we denote this representation by $\operatorname{ind}_{Z_sK_s}^G(\rho)$) is an irreducible supercuspidal representation of G.

Proof. This is contained in Theorem 4.2 of [C].

- **Remark 1.3.4.** Let u be generic of level 1-N and $m=\lceil (N+1)/2 \rceil$ where ' $\lceil \rceil$ ' is the greatest integer function. Since K_s^m/K_s^N is an abelian group, the map $x \to \phi((\operatorname{tr}(u(x-1))) \ (x \in K_s^m))$ is a character of K_s^m and a lift of ψ_n . (We shall use the same symbol ψ_n for this character.) Therefore we can replace the condition (2) of Definition 1.3.2 by the condition (2'):
- (2') The restriction of ρ to K_{\bullet}^{m} contains a sum of characters of the form ψ_{u} , where u is generic of level 1-N.

2. Construction of very cuspidal representations

2.1. From now on, we fix a generic element u of level 1-N and set E=F(u). E is an extension of F of degree n whose ramification degree over F is s. We shall start with the following lemma.

Lemma 2.1.1. Let H_n be a stability group of ψ_n in Z_sK_s , i.e. $H_u = \{g \in Z_sK_s \mid \psi_n{}^g = \psi_n\}$ where $\psi_n{}^g(x) = \psi_n(gxg^{-1})$. Then $H_u = E^x \cdot K_s^{\lceil N/2 \rceil}$.

Proof. See 5.5 of [C].

First we shall treat the even level case N=2m. This case is essentially contained in 5.6 of [C]. We note that $H_u=E^{\times}\cdot K_s^m$ in this case.

Proposition 2.1.2. (1) Ind $H_{K_s}^u(\phi_u)$ is decomposed into a sum of one-dimensional representations of H_u , each of which is a lift of ϕ_u .

- (2) Let η be any such lift of ψ_u to H_u . Then η is written in the form $\theta \cdot \psi_u$ where θ is a quasi-character of E^\times with the property that $\theta(1+x) = \psi_u(1+x)$ for $x \in P_E^m$ and $\theta \cdot \psi_u$ is defined on H_u by $\theta \cdot \psi_u(t \cdot k) = \theta(t) \cdot \psi_u(k)$ for $t \in E^\times$ and $k \in K_s^m$.
- (3) If we put $\sigma(\theta; u) = \operatorname{Ind}_{H_u}^{Z_s K_s}(\theta \cdot \phi_u)$, then $\sigma(\theta; u)$ is an irreducible very cuspidal representation of level N of $Z_s K_s$ and every irreducible very cuspidal representation of level N of $Z_s K_s$ is equivalent to some representation $\sigma(\theta; u)$.
- *Proof.* The proof of (1) and (2) follows immediately from the fact that $H_u/\text{Ker }\phi_u$ is abelian. As for (3), $\text{Ind}_{H_u}^{Z_SK_S}(\theta \cdot \phi_u)$ is evidently very cuspidal from the definition of very cuspidal representation and its irreducibility is a consequence of the application of the Clifford Theory (cf. 50.6 of [C-R]). The rest of (3) follows from the Frobenius reciprocity.
- 2.2. Now we shall treat the odd level case N=2m-1, which is more complicated. In this case, we cannot lift ϕ_u to H_u since $H_u=E^\times\cdot K_s^{m-1}$. So we need to investigate the space $K_s^{m-1}/K_s^m\cong A_s^{m-1}/A_s^m$ more carefully. Let $W=A_s^{m-1}/A_s^m$ and write $x\to \bar x$ for the natural map from A_s^{m-1} to W. W is a vector space over k_F . We denote $I\in \operatorname{End}_{k_F}W$ by the conjugate action of u i.e. $I(\bar x)=\overline{uxu^{-1}}$ for $\bar x\in W$. Let $s=p^t\cdot t$ and (t,p)=1. We note p is an odd prime since (1-N,s)=1. Set $h=\frac{q_F^r-1}{q_F-1}\cdot t$ and $J=I^h\in \operatorname{End}_{k_F}W$. Until otherwise stated, we omit the subscript F of q_F .

Lemma 2.2.1. (1) $(J-1)^{p^l}=0$. (2) $\dim_{k_F} \text{Ker}(J-1)=r^2t$.

Proof. Since $|E^\times/F^\times(1+P_E)| = \frac{q^r-1}{q-1} \cdot s$, $(u^h)^{p^l}$ belongs to $F^\times(1+P_E)$ and thus $J^{p^l}=1$. So $(J-1)^{p^l}=0$ from the fact k_F has characteristic p. For the proof of (2), we shall use the isomorphism R between A_s^0/A_s^1 and $M_r(k_F)^{Z/sZ}$. Let \mathfrak{W}_E be a uniformiser of E. We may and shall assume m=1 since the multiplication by \mathfrak{W}_E^{1-m} induces a k_F -isomorphism between A_s^{m-1}/A_s^m and A_s^0/A_s^1 which is compatible with the conjugate action of E^\times . It is obvious that $\bar{x} \in \text{Ker}(J-1)$ if and only if $u^h x - x u^h \in A_s^{1+h(1-N)}$. If we put $u = z_s^{1-N} \cdot u_0$, $R(u_0) = (\alpha_0, \cdots, \alpha_{s-1})$ and $R(x) = (\gamma_0, \cdots, \gamma_{s-1})$, the relation $u^h x - x u^h \in A_s^{1+h(1-N)}$ is equivalent to the following relations:

$$\alpha_{i+(h-1)(1-N)}\alpha_{i+(h-2)(1-N)} \cdots \alpha_{i+1-N}\alpha_{i}\gamma_{i} = \gamma_{i+h(1-N)}\alpha_{i+(h-1)(1-N)} \cdots \alpha_{i+(1-N)}\alpha_{i} (i=0, 1, \dots, s-1).$$

Each α_i is non-singular since u is generic, so:

$$\gamma_{i+h(1-N)} = C_i \gamma_i C_i^{-1}$$
 (i=0, 1, ..., s-1)

where $C_i = \alpha_{i+(h-1)(1-N)}\alpha_{i+(h-2)(1-N)} \cdots \alpha_{i+1-N}\alpha_i$.

If we determine $\gamma_0, \gamma_1, \cdots$, and γ_{t-1} , then $\gamma_t, \gamma_{t+1}, \cdots, \gamma_{s-1}$ are automatically determined by the above relations since (1-N, s)=1 and (h, s)=t. Therefore $\dim_{k_F} \mathrm{Ker}(J-1) \leq r^2 t$. But $\dim_{k_F} \mathrm{Ker}(J-1) \geq r^2 t$ since $(J-1)^{p^l} = 0$ and $\dim_{k_F} \mathrm{W} = r^2 s$, whence our lemma.

We define a k_F -alternating form on W by:

$$\langle \bar{x}, \bar{y} \rangle = \operatorname{tr}(u(xy - yx))) \mod P_F$$
.

Remark 2.2.2. We note that $rad\langle , \rangle = Ker(I-1)$ and the conjugate action of E^{\times} on W preserves this alternating form. We also remark that $\dim_{k_F} rad\langle , \rangle = r$ by Proposition 1.2.3 (3).

2.3. We shall define $T \in \operatorname{End}_{k_F} W$ by $T = I^{h-1} + \dots + I + 1$ and set $W_0 = (J-1)^{(p^l-1)/2} W$, $W_1 = (J-1)^{(p^l-1)/2} TW$. Now we shall investigate the spaces W_0 and W_1 in the following lemmas.

Lemma 2.3.1. (1)
$$\dim_{k_F} W_0 = r^2 t \cdot \frac{p^l + 1}{2}$$
. (2) $\dim_{k_F} W_1 = r^2 t \cdot \frac{p^l - 1}{2} + r$.

Proof. We set $r_i = \dim_{k_F} (J-1)^i W - \dim_{k_F} (J-1)^{i+1} W$ $(i=0, 1, \dots, p^l-1)$, then $r_i \leq r^2 t$ by Lemma 2.1.1. On the other hand:

$$\sum_{i=0}^{pl-1} r_i = r^2 s$$

from the definition of r_i . Hence $r_i=r^2t$ for all i. Therefore we have:

$$\dim_{k_F} W_0 = r^2 t \cdot \frac{p^l + 1}{2}.$$

As for the proof of (2), it suffices to see that:

$$\dim_{k_F} \operatorname{Ker} T = r^2 t - r$$

since $W_1 = TW_0$ and Ker $T \subset W_0$. The map I-1 induces an injective homomorphism from Ker(I-1)/Ker(I-1) to Ker T, so we have:

$$\dim_{k_E} \operatorname{Ker} T \geq r^2 t - r$$
.

(See Lemma 2.2.1 and Remark 2.2.2.) Since $\ker T \cap \ker(I-1) = 0$, $\ker T \oplus \ker(I-1) = 0$. Therefore:

$$\dim_{k_F} \operatorname{Ker} T \leq r^2 t - r$$
.

Hence our lemma.

Lemma 2.3.2. $W_1^{\perp} = W_0$ with respect to (W, \langle, \rangle) i.e. $\{\bar{x} \in W \mid \langle \bar{x}, \bar{y} \rangle = 0 \text{ for all } \bar{y} \in W_1\} = W_0$.

Proof. Using Remark 2.2.2 and the fact that $(J-1)^{(p^{l-1})}T\bar{x} \in \text{rad}\langle , \rangle$, we can see that for $\bar{x}, \bar{y} \in W$:

$$\langle (J-1)^{(p^{l-1})/2}T\bar{x}, (J-1)^{(p^{l-1})/2}\bar{y}\rangle = 0.$$

Hence $W_0 \subset W_1^{\perp}$.

On the other hand:

$$\dim_{k_E}(W_0/\operatorname{rad}\langle,\rangle)+\dim_{k_E}(W_1/\operatorname{rad}\langle,\rangle)=\dim_{k_E}(W/\operatorname{rad}\langle,\rangle)$$

by Lemma 2.3.1. Therefore $\dim_{k_F} W_1^{\perp} = \dim_{k_F} W_0$, whence our lemma.

Lemma 2.3.3. Let $A_s^{m,0}$ (resp. $A_s^{m,1}$) be the total inverse image in A_s^{m-1} of W_0 (resp. W_1). Set $K_s^{m,0}=1+A_s^{m,0}$, $K_s^{m,1}=1+A_s^{m,1}$ and define a function $\tilde{\psi}_u$ on $K_s^{m,1}$ by:

$$\tilde{\phi}_u(1+x) = \psi\left(\operatorname{tr} u\left(x-\frac{x^2}{2}\right)\right)$$

for $1+x \in K_s^{m,1}$, which is equal to ψ_u on K_s^m . Then $K_s^{m,0}$ and $K_s^{m,1}$ are normal subgroups of $E^{\times} \cdot K_s^{m-1}$ and $\tilde{\psi}_u$ is a character of $K_s^{m,1}$ whose stability subgroup, \tilde{H}_u , in $E^{\times} \cdot K_s^{m-1}$ is $E^{\times} \cdot K_s^{m,0}$.

Proof. Since W_0 (resp. W_1) is invariant by the conjugate action of E^{\times} , it is clear that $K_{\mathfrak{s}}^{m,0}$ (resp. $K_{\mathfrak{s}}^{m,1}$) is normal in $E^{\times} \cdot K_{\mathfrak{s}}^{m-1}$. If x and y lie in $A_{\mathfrak{s}}^{m,1}$, then:

$$\tilde{\phi}_{u}((1+x)(1+y)) = \tilde{\phi}_{u}(1+x) \cdot \tilde{\phi}_{u}(1+y) \cdot \phi \left(\operatorname{tr} \frac{1}{2} u(xy-yx)\right).$$

Lemma 2.3.2 tells us $W_1 \subset W_0 = W_1^\perp$, so $\operatorname{tr} \frac{1}{2} u(xy - yx) \equiv 0 \mod P_F$. (We note $p \neq 2$.) Thus $\tilde{\psi}_u$ is a character of $K_s^{m,1}$. As for the normalizer \tilde{H}_u of $\tilde{\psi}_u$ in $E^\times \cdot K_s^{m-1}$, we remark that $\tilde{H}_u \subset H_u = E^\times \cdot K_s^{m-1}$. If $x \in A_s^{m,1}$ and $y \in A_s^{m-1}$, then

$$\tilde{\phi}_{u}^{(1+y)}(1+x) = \tilde{\phi}_{u}(1+x) \cdot \phi(\operatorname{tr} u(xy-yx)).$$

Therefore $\tilde{H}_u = E^{\times} \cdot K_s^{m,0}$ since $W_1^{\perp} = W_0$.

- **2.4.** We set $U=F^\times\langle u^h\rangle(1+P_E)$ where $\langle u^h\rangle$ is a group generated by u^h , $H_0=U\cdot K_s^{m,0}$ and $H_1=U\cdot K_s^{m,1}$. In the same way of Proposition 2.1.1 (3), we can lift $\tilde{\psi}_u$ to $E^\times\cdot K_s^{m,1}$ and any lift of $\tilde{\psi}_u$ to $E^\times\cdot K_s^{m-1}$ is written in the form $\theta\cdot\tilde{\psi}_u$, where θ is a quasi-character of E^\times . We denote a quasi-character $\theta\cdot\tilde{\psi}_u$ of $E^\times\cdot K_s^{m,1}$ by $\eta_{u,\theta}$ and a quasi-character $(\theta|_U)\cdot\tilde{\psi}_u$ of $U\cdot K_s^{m,1}$ by $\eta_{u,\bar{\theta}}$ where $\theta|_U$ is the restriction of θ to U.
- **Lemma 2.4.1.** (1) H_0 and H_1 are normal subgroups in $E^{\times} \cdot K_s^{m,0}$ and the stability subgroup of $\eta_{u,\hat{\theta}}$ is $E^{\times} \cdot K_s^{m,0}$.
 - (2) We set that:

$$\langle x, y \rangle_{H_0} = \text{tr } u(xyx^{-1}y^{-1}-1) \mod P_F$$

for $x, y \in H_0$. Then \langle , \rangle_{H_0} induces a nondegenerate alternating from on H_0/H_1 .

- (3) The induced representation $\operatorname{Ind}_{H_1}^{H_0}(\eta_{u,\bar{\theta}})$ is a homogeneous sum of an irreducible representation $\kappa_{u,\bar{\theta}}$ of degree $q^{(r^2t-r)/2}$.
 - (4) We can lift $\kappa_{u,\bar{\theta}}$ to $E^{\times} \cdot K_s^{m,0}$ and the number of those lifts is h.
- *Proof.* Part one of the above lemma follows from the fact that $(J-1)W_0 \subset W_1$. Part two follows from Lemma 2.3.2. Part three is a consequence of the Heisenberg construction (cf. [G1]). The last part follows from 5.4 and 5.5 in [C].
- **Proposition 2.4.2.** Let $\tilde{\kappa}_u$ be one of the lifts of $\tilde{\kappa}_{u,\bar{\theta}}$ to \tilde{H}_u . Then $\operatorname{Ind}_{\tilde{H}_u}^{Z_sK_s}(\tilde{\kappa}_u)$ is an irreducible very cuspidal representation of level N of Z_sK_s and every irreducible very cuspidal representation of level N of Z_sK_s is equivalent to some representation $\operatorname{Ind}_{\tilde{H}_u}^{Z_sK_s}(\tilde{\kappa}_u)$ with an appropriate generic element u of level 1-N.

Proof. This can be proved in the same way of Proposition 2.1.2 (3).

2.5. Now we shall construct the lifts of $\tilde{\kappa}_{u,\bar{\theta}}$ explicitly. We imitate the method of Moy (see Sections 3.5-3.6 in [M]). For simplicity, we shall start with the case that r=1 and t is a prime. We put $L=E^*/U$, then L is a cyclic group of order t.

Lemma 2.5.1. There are $(q^{t-1}+t-1)/t$ double cosets of $E^{\times} \cdot K_s^{m,1}$ in $E^{\times} \cdot K_s^{m,0}$.

Proof. It suffices to see that the conjugate action of E^{\times} on $K_s^{m,0}/K_s^{m,1}$ has no fixed point. This follows from the fact that I-1 induces an automorphism on W_0/W_1 .

We denote by $\tilde{\kappa}_{u,\bar{\theta},i}$ $(i=1,\cdots,t)$ the lifts of $\tilde{\kappa}_{u,\bar{\theta}}$ to $E^{\star}\cdot K_{s}^{m,0}$. Let a_{i} be the multiplicity of $\tilde{\kappa}_{u,\bar{\theta},i}$ in $\mathrm{Ind}_{E^{\star}\cdot K_{s}^{m,0}}^{E^{\star}\cdot K_{s}^{m,0}}(\eta_{u,\bar{\theta}})$.

Lemma 2.5.2. The multiplicities a_i ($i=1, \dots, t$) satisfy the following equations:

$$a_1+a_2+\cdots+a_t=q^{(t-1)/2}$$

 $a_1^2+a_2^2+\cdots+a_t^2=(q^{t-1}+t-1)/t$.

Proof. We can prove this lemma by the same way of Lemma 3.5.30 in [M] by virtue of Lemma 2.5.1.

We use the next lemma to solve the above equations.

Lemma 2.5.3 (Lemma 3.5.33 in [M]). If c_1, c_2, \dots, c_n are nonnegative integral solutions to the system of equations:

$$c_1+c_2+\cdots+c_n=m$$

 $c_1^2+c_2^2+\cdots+c_n^2=(m^2+u-1)/n$,

then either n-1 of the c_i 's are equal to (m+1)/n and one is $\{(m+1)/n\}-1$, or n-1 of the c_i 's are equal to (m-1)/n and one is $\{(m-1)/n\}+1$.

Applying Lemma 2.5.3 to the equation in Lemma 2.5.2, we obtain the next lemma.

Lemma 2.5.4. The nonnegative solutions to the equation in Lemma 2.5.2 have t-1 of the a_i 's equal to $\left\{q^{(t-1)/2} - \left(\frac{q}{t}\right)\right\} / t$ and one of the a_i 's is equal to $\left\{q^{(t-1)/2} - \left(\frac{q}{t}\right)\right\} / t + \left(\frac{q}{t}\right)$. (We denote by $\left(-\right)$ the Legendre symbol.)

We denote by $\tilde{\kappa}_{u,\,\theta}$ the $\tilde{\kappa}_{u,\,\theta,\,i}$ corresponding to the a_i which is different from others. By the Frobenius reciprocity and the Heisenberg construction, we have the next result on the character of $\tilde{\kappa}_{u,\,\theta}$.

Lemma 2.5.5. Let $\chi_{\tilde{\kappa}_{u,\theta}}$ be the character of $\tilde{\kappa}_{u,\theta}$. If γ belongs to $E^{\times} \cdot K_s^{m,0}$, then we have:

$$\chi_{\tilde{\kappa}_{u,\,\theta}}(\gamma) = \begin{cases} q^{(t-1)/2} \eta_{u,\,\tilde{\theta}}(\gamma) & \text{for } \gamma \in H_1 \\ \left(\frac{q}{t}\right) \eta_{u,\,\theta}(\gamma) & \text{for } \gamma \in E^\times \cdot K_s^{m,\,1} \backslash H_1 \\ 0 & \text{if } \gamma \text{ is not conjugate to an element of } E^\times \cdot K_s^{m,\,1}. \end{cases}$$

We summarize the result in the next proposition.

Proposition 2.5.6. Assume r=1 and t is a prime.

(1) Every irreducible representation of $E^{\times} \cdot K_{\mathfrak{s}}^{\mathfrak{m},0}$ whose restriction on $K_{\mathfrak{s}}^{\mathfrak{m},1}$ contains $\widetilde{\varphi}_u$ is written in the form $\widetilde{\kappa}_{u,\,\theta}$ where θ is a quasi-character of E^{\times} with the property that $\theta = \widetilde{\varphi}_u$ on $E^{\times} \cap K_{\mathfrak{s}}^{\mathfrak{m},1}$. And the character $\chi_{\widetilde{\kappa}_{u,\,\theta}}$ of $\widetilde{\kappa}_{u,\,\theta}$ is given in the next formula:

$$\chi_{\tilde{\kappa}_{u,\,\theta}}(\gamma) = \left\{ \begin{array}{ll} q^{(t-1)/2} \eta_{\,u,\,\tilde{\theta}}(\gamma) & \text{for } \gamma \! \in \! H_1 \\ \left(\frac{q}{t}\right) \! \eta_{\,u,\,\theta}(\gamma) & \text{for } \gamma \! \in \! E^\times \! \cdot \! K_s^{\,m,\,1} \! \! \setminus \! H_1 \\ 0 & \text{if } \gamma \text{ is not conjugate to an element of } E^\times \! \cdot \! K_s^{\,m,\,1}. \end{array} \right.$$

(2) Every irreducible very cuspidal representation of level N of Z_sK_s is equivalent to some representation $\operatorname{Ind}_{R_u}^{Z_sK_s}(\tilde{\kappa}_{u,\,\theta})$ with an appropriate generic element u and an appropriate quasi-character θ of E^{\times} .

2.6. Now we get rid of the assumptions for r and t. Set $L=E^\times/U$ and $X=H_0/H_1$. We note that L is an abelian group of order relatively prime to p and the conjugate action of U on X is trivial. We denote by σ the conjugate action of L on X and regard X as an $F_q[L]$ -module where F_q is a finite field of order q. Then X is completely reducible as an $F_q[L]$ -module. For N a subgroup of L, let $\Omega_N = \{x \in X \mid \sigma(n)x = x \text{ for all } n \in N\}$. Ω_N is an L-invariant subspace of X. Let X_N be the L-complement in Ω_N of the $F_q[L]$ -module:

$$\sum_{N \subset M \subset L} \Omega_M$$

where the sum is over those subgroups of L which properly contain N.

Lemma 2.6.1. (1) $X = \bigoplus_{N \in I} X_N$.

- (2) We denote by \langle , \rangle_X the nondegenerated alternating form on X defined in Lemma 2.4.1 (2). If $X_N \neq \{0\}$, the restriction of \langle , \rangle_X to X_N is also nondegenerate.
- (3) Let H_N (resp. \tilde{N}) denote the subgroup of H_0 (resp. E^*) such that H_N/H_1 (resp. \tilde{N}/U) is X_N (resp. N). Then $\tilde{N}\cdot H_1$ and $\tilde{N}\cdot H_N$ are normal in $E^*\cdot H_N$ and for $g\in E^*\cdot H_N\backslash E^*\cdot H_1$:

$$g^{-1}E^{\times} \cdot H_1 g \cap E^{\times} \cdot H_1 = \tilde{N} \cdot H_1$$
.

Proof. We set $\bar{X}=X\otimes_{F_q}\bar{F}_q$, $\bar{X}_N=X\otimes_{F_q}\bar{F}_q$ where \bar{F}_q is an algebraic closure of F_q . From the definition of X_N , it is obvious that:

$$X = \sum_{N \in I} X_N$$
.

Therefore it suffices to see that:

$$\bar{X} = \sum_{N \in I} \bar{X}_N$$
.

Let $\bar{\sigma}$ be the representation of L on X defined by σ . Since L is abelian, we can show:

$$\bar{X} = \bigoplus_{\alpha \subset \bar{\sigma}} \bar{X}_{\alpha}$$

where the sum is over those one-dimensional representations which are contained in $\bar{\sigma}$ and $\bar{X}_{\alpha} = \{x \in \bar{X} \mid \bar{\sigma}(g)x = \alpha(g)x \text{ for all } g \in L\}$. Then from the definition of \bar{X}_N , we have:

$$\bar{X}_N = \bigoplus_{\substack{\alpha \subset \bar{\sigma} \\ \kappa \in \Gamma \ \alpha = N}} \bar{X}_{\alpha}$$
.

Therefore $\bar{X} = \bigoplus_{N \subset L} \bar{X}_N$.

(2) This follows from the fact that:

$$\langle \sigma(g)x, \sigma(g)y \rangle_X = \langle x, y \rangle_X$$

for $x, y \in X$ and $g \in L$. (See Remark 2.2.2).

(3) This is obvious from the definition of X_N .

We set $\eta_{u,\theta_N} = (\eta_{u,\theta})|_{\tilde{N} \cdot H_1}$. By the above lemma, the next lemma is proved by the same way of Lemma 2.4.1.

Lemma 2.6.2. (1) The stability subgroup of η_{u,θ_N} in Z_sK_s is $E^{\times} \cdot H_N$.

- (2) Let $2D_N = \dim_{k_F} X_N$. The induced representation $\operatorname{Ind}_{N \cdot H_1}^{N \cdot H_N}(\eta_{u,\theta_N})$ is a homogeneous sum of an irreducible representation κ_{u,θ_N} of degree q^{D_N} .
- (3) Let $M_N = |E^*/\tilde{N}|$. We can lift κ_{n,θ_N} to $E^* \cdot H_N$ and the number of those lifts is M_N .

We denote by $\tilde{\kappa}_{u,\,\theta_N,\,i}$ $(i=1,\,\cdots,\,M_N)$ the lifts of $\kappa_{u,\,\theta_N}$ to $E^\times \cdot H_0$. Let b_i be the multiplicity of $\tilde{\kappa}_{u,\,\theta_N,\,i}$ in $\mathrm{Ind}_{E^\times \cdot H_1}^{E^\times \cdot H_0}(\eta_{u,\,\theta})$. By Lemma 2.6.2 (2), we have the following analogue of Lemma 2.5.2.

Lemma 2.6.3. The multiplicities b_i ($i=1, \dots, M_N$) satisfy the following equations:

$$b_1 + b_2 + \dots + b_{M_N} = q^{D_N}$$

 $b_1^2 + b_2^2 + \dots + b_{M_N}^2 = (q^{2 \cdot D_N} + M_N - 1)/M_N$.

We can apply Lemma 2.5.3 to the equation in Lemma 2.6.3 to conclude that either

- (a) M_N-1 of the b_i 's are equal to $(q^{D_N}+1)/M_N$ and one is $\{(q^{D_N}+1)/M_N\}-1$ or
 - (b) M_N-1 of the b_i 's are equal to $(q^{D_N}-1)/M_N$ and one is $\{(q^{D_N}-1)/M_N\}+1$.

We set S(N)=-1 (resp. S(N)=1) in case (a) (resp. in case (b)). In both cases, $(q^{D_N}-S(N))/M_N$ is an integer. We denote by $\tilde{\kappa}_{u,N,\theta}$ the $\tilde{\kappa}_{u,\theta_N,i}$ corresponding to the b_i which is different from others. Next lemma is the counterpart of Lemma 2.5.5.

Lemma 2.6.4. Let $\chi_{\tilde{\kappa}_{u,N,\theta}}$ be the character of $\tilde{\kappa}_{u,N,\theta}$. If γ belongs to $E^{\times} \cdot K_s^{m,0}$, then we have:

$$\chi_{\hat{\mathbf{x}}_{n,N,\theta}}(\gamma) = \begin{cases} q^{D_N} \eta_{u,\theta}(\gamma) & \text{for } \gamma \in \tilde{N} \cdot H_1 \\ S(N) \eta_{u,\theta,N}(\gamma) & \text{for } \gamma \in E^{\times} \cdot H_1 \setminus \tilde{N} \cdot H_1 \\ 0 & \text{if } \gamma \text{ is not conjugate to an element of } E^{\times} \cdot H_1. \end{cases}$$

Since $H_0/H_1 = \bigoplus_{N \subset L} X_N$ and $(\kappa_{u, \theta_N})|_{H_1} = q^{D_N} \cdot \eta_{u, \theta}$, we can define a representation $\tilde{\kappa}_{u, \theta}$ of $E^{\times} \cdot K_s^{m, \theta}$ as follows:

$$\tilde{\kappa}_{u,\theta}(e \cdot g) = \left(\bigotimes_{N} \tilde{\kappa}_{u,N,\theta}(e) \theta(e)^{-1} \right) \theta(e) \cdot \left(\bigotimes_{N} \tilde{\kappa}_{u,N,\theta}(g_N) \right) \tilde{\kappa}_{u,N,\theta}(g_1).$$

Here $e \in E^{\times}$, $g \in H_0$ and $g = \left(\prod_N g_N\right)g_1$ where $g_N \in H_N$ and $g_1 \in H_1$. It is obvious that $\tilde{\kappa}_{u,\theta}$ is a lift of $\kappa_{u,\bar{\theta}}$. Since the number of lifts of $\kappa_{u,\bar{\theta}}$ to $E^{\times} \cdot K_s^{m,0}$ is equal to the number of lifts of $\bar{\theta}$ to E^{\times} , any lift of $\kappa_{u,\bar{\theta}}$ to $E^{\times} \cdot K_s^{m,0}$ is given in the form $\tilde{\kappa}_{u,\theta}$ where θ is a lift of $\bar{\theta}$ to E^{\times} . By Lemma 2.6.4, the character $\chi_{\tilde{\kappa}_{u,\theta}}$ of $\tilde{\kappa}_{u,\theta}$ is given as follows.

Lemma 2.6.5.

$$\chi_{k_{u,\theta}}(e \cdot g) = q^{\left(\sum_{e \in N}^{D} N\right)} \cdot \left(\prod_{e \neq N} S(N)\right) \theta(e) \widetilde{\psi}_{u}(g)$$

for $e \in E^{\times}$ and $g \in K_s^{m,1}$ where N runs over the subgroups of L which contain (resp. do

not contain) $e \mod U$ in $\left(\sum_{e\in N} D_N\right)$ (resp. $\left(\prod_{e\notin N} S(N)\right)$), and

$$\chi_{\tilde{\kappa}_{u,\theta}}(\gamma) = 0$$

if γ is not conjugate to an element of $E^{\times} \cdot K_s^{m,1}$.

Corollary 2.6.6.

$$\chi_{\tilde{\epsilon}_{u,\theta}}(u \cdot g) = \left(\prod_{u \neq N} S(N)\right) \theta(u) \tilde{\phi}_u(g)$$

for $g \in K_s^{m,1}$.

Proof. Since the map I-1 induces an automorphism of X, $D_N=0$ if $u \mod U \in N$. We summarize the result of the odd level case. (cf. Proposition 2.4.2.)

Proposition 2.6.7. Let u be a generic element of level 2-2m $(m \ge 2)$ and $\tilde{\psi}_u$ be a character of $K_s^{m,1}$ defined by $\tilde{\psi}_u(1+x) = \psi\left(\operatorname{tr} u\left(x-\frac{x^2}{2}\right)\right)$ for $1+x \in K_s^{m,1}$. (cf. Lemma 2.3.3.) Let θ be a quasi-character of E^\times with the property that $\theta(1+x) = \psi(\operatorname{tr} ux)$ for $x \in P_E^m$ where E = F(u).

(1) Let κ be any irreducible component of $\operatorname{Ind}_{K_s^{m,0}}^{E^{\times} \cdot K_s^{m,0}}(\widetilde{\psi}_u)$. (cf. Lemma 2.3.3.) Then κ is written in the form $\tilde{\kappa}_{u,0}$ which is determined by its character formula:

$$\chi_{\tilde{\epsilon}_{u,\theta}}(e \cdot g) \! = \! q^{\binom{\sum\limits_{e \in N} D_N}{\cdot}} \cdot \left(\prod\limits_{e \in N} S(N)\right) \! \theta(e) \tilde{\phi}_u(g)$$

for $e \in E^{\times}$ and $g \in K_{s}^{m,1}$, and

$$\chi_{\tilde{\kappa}_{u,\theta}}(\gamma) = 0$$

if γ is not conjugate to an element of $E^{\times} \cdot K_s^{m,1}$. (As for the definition of $\left(\sum_{e \in N} D_N\right)$ and $\left(\prod_{e \in N} S(N)\right)$, see Lemma 2.6.5, Lemma 2.6.1 and the paragraph above Lemma 2.6.4.)

(2) $\operatorname{Ind}_{E^{\times}.K_sm,0}^{Z_sK_s}(\tilde{k}_{u,\theta})$ is an irreducible very cuspidal representation of level 2m-1 of Z_sK_s and every very cuspidal representation of level 2m-1 of Z_sK_s is equivalent to some representation $\operatorname{Ind}_{E^{\times}.K_sm,0}^{Z_sK_s}(\tilde{k}_{u,\theta})$ with an appropriate geneic element u of level 2-2m and an appropriate quasi-character θ of E^{\times} .

We need determine the term $\left(\prod_{u\in N}S(N)\right)$ to calculate the ε -factor of $\operatorname{ind}_{E^{\times}\cdot K_{\mathfrak{S}}^{m_{i,1}}}^{\operatorname{GL}_{n}(F)}(\tilde{\kappa}_{u,\theta})$ in the next section.

Proposition 2.6.8. In the above notation,

$$\left(\prod_{n \in N} S(N)\right) = (-1)^{r-1} \cdot \left(\frac{q}{t}\right)^r$$

where (-) denotes the Jacobi symbol.

Proof. We first recall that S(N) is determined by the property that:

$$\frac{q^{D_N} - S(N)}{|L/N|}$$
 is an integer.

For any element x of E^{\times} , we set $\bar{x}=x \mod F^{\times}\langle u^h\rangle(1+P_E)$. Let u_0 be an element of \mathcal{O}_F^{\times} such that $u_0 \mod (1+P_E)$ generates the cyclic group h_E^{\times} and M be a subgroup of L generated by \bar{u}_0 . We note that $L=E^{\times}/F^{\times}\langle u^h\rangle(1+P_E)$ is generated by \bar{u}_0 and \bar{u} . We shall omit the symbol '-' when there is no fear of confusion. Since $(J-1)^{(p^{l-1})/2}$ induces an L-module isomorphism between X and $\mathrm{Ker}(J-1)/\mathrm{Ker}(I-1)$, we can easily show that:

$$\dim_{k_F} \Omega_{\langle u_0^j \rangle} = [k_E : k_F(u_0^j)] \cdot rt - r$$

from Lemma 2.2.1 and its proof. From the definition of D_N and S(N), $D_N=0$ and S(N)=1 if N_1 properly contains N and $\Omega_N=\Omega_{N_1}$. So if $S(\langle u_0^j \rangle)=-1$, then $j=\frac{q^r-1}{q^r-1}$ where r' is a positive divisor of r. We set $j(r')=\frac{q^r-1}{q^r-1}$ for any positive divisor r' of r. We shall quote the next lemma from [M].

Lemma 2.6.9 (Lemma 3.6.54 in [M]). Suppose j, Q are integers greater than 1 and A is a nonnegative integer. If $(Q^A+1)/\{(Q^j-1)/(Q-1)\}$ is an integer, then j=2 and A is odd.

Since $X_{\langle u_0^j(r')\rangle}$ is a $k_F(u_0^{j(r')})$ -module, $D(\langle u_0^{j(r')}\rangle)$ is a multiple of r' and we can apply this lemma for j=r/r', $Q=q^{r'}$ and $A=D(\langle u_0^{j(r')}\rangle)/r'$. We consider two cases according to the parity of r.

Case r odd. From the above lemma, S(N)=1 if N does not contain $\langle u_0 \rangle$. Here:

$$\left(\prod_{u \in N} S(N)\right) = \left(\prod_{j \mid t} S(\langle u_0, u^j \rangle)\right)$$

where i runs over the positive divisors of t.

Therefore we have only to determine the signature of $S(\langle u_0, u^j \rangle)$ for $j \mid t$. From the definition of $X_{\langle u_0, u^j \rangle}$, $\sum_{i \mid j} 2D_{\langle u_0, u^i \rangle} = \dim_{k_F} \Omega_{\langle u_0, u^j \rangle}$. It is easily seen that $\dim_{k_F} \Omega_{\langle u_0, u^j \rangle} = jr - r$. (See the proof of Lemma 2.2.1.) So we have:

$$2D_{\langle u_0, u^j \rangle} = \begin{cases} r\varphi(j) & \text{for } j > 1 \\ 0 & \text{for } j = 1 \end{cases}$$

where φ denotes Euler's φ -function, and

$$\frac{(q^r)^{\varphi(j)/2} - S(\langle u_0, u^j \rangle)}{j}$$
 is an integer.

Then $S(\langle u_0, u^j \rangle) = -1$ if and only if j is a power of a prime, say $j = l^m$, and $\left(\frac{q^r}{l}\right) = -1$. Hence

$$\left(\prod_{j \mid t} S(\langle u_0, u^j \rangle)\right) = \left(\frac{q^r}{t}\right).$$

$$= \left(\frac{q}{t}\right)^r.$$

Case r even. From Lemma 2.6.7 and the argument of the odd case, S(N)=-1 if and only if $N \cap \langle u_0 \rangle = \langle u_1 \rangle$ and $\dim_{k_{F(u_1)}} X_N \equiv 2 \mod 4$ where $u_1 = u_0^{(q^2-1)/(q-1)}$. By the argument of the odd case, $\dim_{k_{F(u_1)}} X_N \equiv 0 \mod 4$ if $N \supset \langle u_0 \rangle$. Therefore in order to

observe $\left(\prod_{u\in N}S(N)\right)=-1$, it is sufficient to see that there are an odd number of subgroups $N\supset \langle u_1\rangle$ such that $\dim_{k_{F(u_1)}}X_N=2 \mod 4$. This follows immediately from:

$$Q_{\langle u_1 \rangle} = \bigoplus_{\langle u_1 \rangle \subset N} X_N$$

and

$$\dim_{k_{F(u,t)}} \Omega_{\langle u,t \rangle} = 4t - 2$$
.

Hence our proposition.

3. Calculation of the \(\epsilon\)-factors

3.1. At first, we review the ε -factors of supercuspidal representations of $GL_n(F)$. Godement-Jacquet [G-J] have defined the L- and ε -factors for admissible representations of $GL_n(F)$. If π is an irreducible supercuspidal representation of $GL_n(F)$, then $L(\pi)=1$ and the ε -factor is a scalar factor defined by:

$$\int_{\mathrm{GL}_{R}(F)} \hat{f}(g) \pi(g^{-1}) |\det g|_{F}^{(n+1)/2} \mathrm{d}^{\times} g = \varepsilon(\pi, \psi) \int_{\mathrm{GL}_{R}(F)} f(g) \pi(g) |\det g|_{F}^{(n-1)/2} \mathrm{d}^{\times} g,$$

where f is a locally constant, compactly supported function on $M_n(F)$, ϕ is an additive character of F, d^*g is a Haar measure of $GL_n(F)$ defined by $d^*g = d\mu(g)/|\det g|_F^n$ where μ is a self dual Haar measure on $M_n(F)$ with respect to the Fourier transform:

$$\hat{f}(y) = \int_{\mathbf{M}_{\mathcal{D}}(F)} f(x) \phi(xy) d\mu(x).$$

The next lemma is well-known.

Lemma 3.1.1. Let π be an irreducible supercuspidal representation of $G=GL_n(F)$. If π is compactly-induced from compact modulo center subgroup H, say $\pi=\operatorname{ind}_H^G \kappa$, then:

$$\varepsilon(\pi, \, \phi) = \int_{H} \kappa(g^{-1}) |\det g|_{F^{(n+1)/2}} \psi(\operatorname{tr} g) d^{\times}g.$$

3.2. We start with the even level case. Let u be a generic element of level 1-2m and $\pi=\operatorname{ind}_{E^{\times}\cdot K_{\delta}m}^{\operatorname{GL}_{n}(F)}(\theta\cdot \psi_{u})$. (As for the notation, see 2.1).

The next lemma is proved by the same way of Lemma 2.2.1 in [K-M].

Lemma 3.2.1. Let μ be a self-dual Haar measure on $M_n(F)$ with respect to $\psi \circ tr$. Then $\mu(A_s^m) = q^{r^2s \cdot (1-2m/2)}$.

From Lemma 3.1.1, we have:

$$\begin{split} \varepsilon(\pi,\,\phi) &= \int_{E^{\times} \cdot K_{\delta}^{m}} (\theta \cdot \phi_{u})(g^{-1}) |\det g|_{F}^{(n+1)/2} \phi(\operatorname{tr} g) \mathrm{d}^{\times} g \\ &= \int_{E^{\times} \cdot K_{\delta}^{m}/K_{\delta}^{m}} \left(\int_{K_{\delta}^{m}} (\theta \cdot \phi_{u})((h\,k)^{-1}) |\det h\,k|_{F}^{(n+1)/2} \phi(\operatorname{tr} h\,k) \mathrm{d}^{\times} k \right) \mathrm{d}^{\times} h \\ &= \int_{E^{\times} \cdot K_{\delta}^{m}/K_{\delta}^{m}} (\theta \cdot \phi_{u})(h^{-1}) |\det h|_{F}^{(n+1)} \left(\int_{K_{\delta}^{m}} (\theta \cdot \phi_{u})(k^{-1}) \phi(\operatorname{tr} h\,k) \mathrm{d}^{\times} k \right) \mathrm{d}^{\times} h \,. \end{split}$$

And in the above expression:

$$\begin{split} &\int_{K_s^m} (\theta \cdot \phi_u)(k^{-1}) \phi(\operatorname{tr} h k) \mathrm{d}^{\times} k \\ = &\int_{A_s^m} \phi_u^{-1}(1+k) \phi(\operatorname{tr} h(1+k)) \mathrm{d} \mu(k) \\ = &\phi(\operatorname{tr} h) \int_{A_s^m} \phi(\operatorname{tr} (h-u)k)) \mathrm{d} \mu(k) \\ = &\phi(\operatorname{tr} h) \mu(A_s^m) f_{1-m}(h-u), \qquad \text{for } (A_s^m)^{\perp} = A_s^{1-m}. \end{split}$$

Since u belongs to A_s^{1-2m} , h-u belongs to A_s^{1-m} if and only if h belongs to $u \cdot K_s^m$. Thus:

$$\varepsilon(\pi, \phi) = \mu(A_s^m) \phi(\operatorname{tr} u) (\theta \cdot \phi_u)^{-1}(u) |\det u|_F^{(n+1)/2}$$

= $\mu(A_s^m) \phi(\operatorname{tr} u) \theta^{-1}(u) |u|_E^{(n+1)/2}$.

From Lemma 3.1.1 and Proposition 1.2.3, $\mu(A_s^m) = q^{r^2s(1-2m)/2}$ and $|u|_E^{n/2} = (q^{-r})^{rs(1-2m)}$. So we get the next proposition.

Proposition 3.2.2. Let
$$\pi = \operatorname{ind}_{E^{\times} \cdot K_{\mathbb{R}}^{m}}^{\operatorname{GL}_{n}(F)}(\theta \cdot \phi_{u})$$
 and $\phi_{E} = \phi \cdot \operatorname{tr}_{E/F}$. Then
$$\varepsilon(\pi, \phi) = \phi_{E}(u)\theta^{-1}(u)|u|_{E^{1/2}}.$$

3.3. We shall treat the odd level case. Let u be a generic element of level 2-2m and $\pi=\inf_{E^\times \cdot K_3^m, 0}(\tilde{\kappa}_{u,\theta})$. (As for the notation, see 2.3 and 2.6). By the same argument of the even level case, we have:

$$\begin{split} \varepsilon(\pi, \, \phi) &= \int_{K_{\delta}^{m,0}} \tilde{\kappa}_{u,\,\theta}((u\,k)^{-1}) |\det \, u\,k \,|_{F}^{(n+1)/2} \phi(\operatorname{tr} \, u\,k) \mathrm{d}^{\times} k \\ &= |\, u\,|_{E}^{(n+1)/2} \!\! \int_{K_{\delta}^{m,0}} \!\! \tilde{\kappa}_{u,\,\theta}((u\,k)^{-1}) \phi(\operatorname{tr} \, u\,k) \mathrm{d}^{\times} k \,. \end{split}$$

The above integral is calculated as follows:

$$\begin{split} & \int_{K_{s}^{m,0}} \tilde{\kappa}_{u,\,\theta}((u\,k)^{-1}) \phi(\operatorname{tr}\,u\,k) \mathrm{d}^{\times}k \\ &= \sum_{h \in K_{s}^{m,\,0}/K_{s}^{m,\,1}} \left(\int_{K_{s}^{m,\,1}} \tilde{\kappa}_{u,\,\theta}((u\,h\,k)^{-1}) \phi(\operatorname{tr}\,u\,h\,k) \mathrm{d}^{\times}k \right) \\ &= \sum_{y \in A_{s}^{m,\,0}/A_{s}^{m,\,1}} \left(\int_{A_{s}^{m,\,1}} \tilde{\kappa}_{u,\,\theta}((1+x)^{-1}) \phi(\operatorname{tr}\,u(1+y)(1+x)) \mathrm{d}\mu(x) \right) \tilde{\kappa}_{u,\,\theta}((u(1+y))^{-1}) \\ &= \sum_{y \in A_{s}^{m,\,0}/A_{s}^{m,\,1}} \left(\int_{A_{s}^{m,\,1}} \phi\left(\operatorname{tr}\,u\left(yx + \frac{x^{2}}{2}\right) \mathrm{d}\mu(x)\right) \phi(\operatorname{tr}\,u(1+y)) \tilde{\kappa}_{u,\,\theta}((u(1+y))^{-1}) \right). \end{split}$$

By taking the trace of the last term, we have:

Since I-1 induces a k_F -automorphism on $A_s^{m,0}/A_s^{m,1}$, there exists an element z in $A_s^{m,0}/A_s^{m,1}$ such that uy=[u,z] where [u,z]=uz-zu for any y in $A_s^{m,0}/A_s^{m,1}$. Set S=u(1+y). Then an easy calculation shows:

$$(1+z)S(1+Z)^{-1} = u(1+u^{-1}[z, uy])(1+u^{-1}[S, z]z) \mod K_s^{2m-1}$$
.

(See (3.5.39) in [M].) The last two terms lie in K_s^{2m-2} and hence are scalars under $\tilde{\kappa}_{u,\theta}$. Therefore:

$$\begin{split} \chi_{\tilde{\kappa}_{u,\,\theta}}(S^{-1}) &= \chi_{\tilde{\kappa}_{u,\,\theta}}((1+z)S(1+z)^{-1})^{-1}) \\ &= \chi_{\tilde{\kappa}_{u,\,\theta}}(u^{-1})\phi(\operatorname{tr}[z,\,u\,y])\phi(\operatorname{tr}[S,\,z]z) \\ &= \chi_{\kappa_{u,\,\theta}}(u^{-1})\phi(\operatorname{tr}[z,\,u\,y])\phi(\operatorname{tr}[uz,\,z] + [u\,yz,\,z])) \\ &= \chi_{\tilde{\kappa}_{u,\,\theta}}(u^{-1}). \end{split}$$

Moreover:

$$\phi(\operatorname{tr} u y) = \phi(\operatorname{tr} [u, z]) = 1$$

and

$$\psi\left(\operatorname{tr} u\left(yx + \frac{x^{2}}{2}\right)\right) = \psi\left(\operatorname{tr} \frac{1}{2}ux^{2}\right)\psi\left(\operatorname{tr} u(z - u^{-1}zu)x\right)$$

$$= \psi\left(\operatorname{tr} \frac{1}{2}ux^{2}\right)\psi\left(\operatorname{tr} u(zx - xz)\right)$$

$$= \psi\left(\operatorname{tr} \frac{1}{2}ux^{2}\right), \quad \text{for } W_{1}^{\perp} = W_{0}.$$

Therefore:

$$\varepsilon(\pi, \, \psi) = \psi(\operatorname{tr} \, u) | \, u |_{E^{1/2}} C \int_{A_{\delta}^{m, 1}} \psi\left(\operatorname{tr} \frac{1}{2} \, u \, x^{2}\right) d\mu(x)$$

where $C = (\deg(\tilde{\kappa}_{u,\theta}))^{-1} |u|_{E^{n/2}} |A_{s}^{m,0}/A_{s}^{m,1}| \chi_{\tilde{\kappa}_{u,\theta}}(u^{-1}).$

Let $W_2 = (J-1)^{(p^l+1)/2}W$ and $A_s^{m,2}$ be the total inverse image in A_s^{m-1} of W_2 . Then:

since $\psi(\operatorname{tr} u x y) = 1$ if $x \in A_s^{m,2}$ and $y \in A_s^{m,1}$. Thus:

$$\varepsilon(\pi, \psi) = \psi(\operatorname{tr} u) |u|_{E^{1/2}} C' \Big(\sum_{\mathbf{r} \in W_{\mathbf{r}} \setminus W_{\mathbf{r}}} \psi(\operatorname{tr} \frac{1}{2} u x^{2}) \Big)$$

where $C' = (\deg(\tilde{\kappa}_{u,\theta}))^{-1} |u|_E^{n/2} |A_s^{m,0}/A_s^{m,1}| \mu(A_s^{m,2}) \chi_{\tilde{\kappa}_{u,\theta}}(u^{-1}).$

By Proposition 2.6.8, Lemma 2.4.1 (3), Lemma 3.2.1 and Proposition 1.2.2, we can see that $C'=q^{-r/2}\cdot\theta^{-1}(u)\cdot(-1)^{r-1}\left(\frac{q}{t}\right)^r$. Hence:

$$\varepsilon(\pi, \phi) = \phi_E(u)\theta^{-1}(u)|u|_E^{1/2}q^{-r/2} \cdot M$$

where $M = \sum_{x \in W_1/W_2} \phi \left(\operatorname{tr} \frac{1}{2} u x^2 \right)$.

The rest of our work is to calculate M.

Lemma 3.3.1.
$$M = \sum_{x \in I_E} \phi \left(\operatorname{tr}_{I_E/I_E} \left(\frac{1}{2} \gamma x^2 \right) \right) \text{ where } \gamma = (-1)^{(p^l - 1)/2} t \cdot u \otimes_E^{2m - 2} \operatorname{mod} P_E.$$

(We note that since 2m-2 is even, the right side dose not depend on the choice of ϖ_{E} .)

Proof. Since W_1/W_2 is a one-dimensional vector space over k_E , $M = \sum_{x \in k_E} \phi \left(\operatorname{tr} \frac{1}{2} u(x \, k_0)^2 \right)$ where k_0 is any element in $W_1 \backslash W_2$. Let k_1 be an element in A_s^0/A_s^1 such that $k_0 = \varpi_E^{m-1} (J-1)^{(p^1-1)/2} T \, k_1$. Then:

Here we recall that A_s^0/A_s^1 is identified with $M_r(k_F)^{z/sz}$ by way of the map R. Let $R(k_1)=(\mathbf{1}_r,\,\mathbf{0}_r,\,\cdots,\,\mathbf{0}_r)$, then $R(Ik_1)=(\mathbf{0}_r,\,\cdots,\,\mathbf{0}_r,\,\mathbf{1}_r,\,\mathbf{0}_r,\,\cdots,\,\mathbf{0}_r)$ where $\mathbf{1}_r$ lies in the $(3-2m\,\mathrm{mod}\,s)$ -th position. Since $(2-2m,\,s)=1$ and $I^sk_1=k_1$, we have:

$$R((J-1)^{(p^{l-1})}Tk_1) = \frac{q^r - 1}{q - 1}R((I^{s-1} + \dots + I + 1)k_1)$$

$$= R((I^{s-1} + \dots + I + 1)k_1)$$

$$= (\mathbf{1}_r, \mathbf{1}_r, \dots, \mathbf{1}_r).$$

Therefore $R((J-1)^{(p^{l-1})}Tk_1\cdot k_1)=(\mathbf{1}_r,0_r,\cdots,0_r)$. We note that if $x\in A_s^0$ and $R(x)=(\gamma_0,\cdots,\gamma_{s-1})$, then $(\operatorname{tr} x)\operatorname{mod} P_F=\sum\limits_{i=0}^{s-1}\operatorname{tr} \gamma_i$. Hence to prove the lemma it suffices to see that $\operatorname{tr}_{k_E/k_F}(e)=\operatorname{tr} e_0$ if $R(e)=(e_0,\cdots,e_{s-1})$. This follows from the fact that $k_E=k_F(\varpi_F^{(2-2m)}u^s\operatorname{mod} P_E)$ and $\operatorname{tr}_{k_E/k_F}(\varpi_F^{(2-2m)}u^s\operatorname{mod} P_E)=\operatorname{tr} \beta_i(i=0,\cdots,s-1)$ if $R(\varpi_F^{(2-2m)}u^s)=(\beta_0,\cdots,\beta_{s-1})$.

Theorem 3.3.2. Let u be a generic element of level 1-N ($N \ge 2$) and E=F(u), which is an extension of F whose ramification degree is s and residual degree is r. Let $m = \left \lceil \frac{N+1}{2} \right \rceil$, $s = p^l \cdot t$ where (t, p) = 1, ψ_u be as in 1.3 and θ be a quasi-character of E^\times which coincides with ψ_u on $1+P_E{}^m$. When N is even, let $\pi_{u,\theta} = \operatorname{ind}_{E^\times \cdot K_s}^{GL_n(F)}(\theta \cdot \psi_u)$. When N is odd, let $\tilde{\kappa}_{u,\theta}$ as in 2.6 and $\pi_{u,\theta} = \operatorname{ind}_{E^\times \cdot K_s}^{GL_n(F)}(\tilde{\kappa}_{u,\theta})$. (As for the definitions of K_s^m and $K_s^{m,0}$, see 1.1.2 and 2.3.3). Let $\psi_E = \psi \circ \operatorname{tr}_{E/F}$. Then:

- (1) $\varepsilon(\pi_{u,\theta}, \phi) = \phi_E(u)\theta^{-1}(u)|u|_E^{1/2}$ when N is even,
- (2) $\varepsilon(\pi_{u,\theta}, \phi) = \phi_E(u)\theta^{-1}(u)|u|_E^{1/2}(-1)^{r-1}\left(\frac{q}{t}\right)^r \frac{1}{\sqrt{q_E}} \sum_{x \in k_E} \phi\left(\operatorname{tr}_{k_E/k_F}\left(\frac{1}{2}\gamma x^2\right)\right) \text{ when } N \text{ is odd}$

where $\gamma = (-1)^{(p^{l-1})/2} t u \varpi_E^{N-1} \mod P_E$.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY CURRENT ADDRES
DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF OSAKA PREFECTURE

References

- [C] H. Carayol, Représentations cuspidales du group linéaire, Ann. Sci. E.N.S. Paris, t. 17 (1984), 191-226.
- [C-R] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
- [G1] P. Gerardin, Weil Representations associated to finite fields, J. of Algebra, 46 (1977), 54-101.
- [G2] P. Gerardin, Cuspidal unramified series for central simple algebras over local fields, in Antomorphic Forms, Representations, and L-functions, P.S.P.M. 33, A.M.S., (1979), 157-169
- [G-J] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math., vol. 260, Springer-Verlag, 1972.
- [K-M] P. Kutzko and A. Moy, On the local Langlands conjecture in prime dimension, Ann. of Math., 121 (1985), 495-517.
- [L] R.P. Langlands, Problems in the theory of automorphic forms, Lecture Notes in Math. vol. 170, Springer-Verlag, 1970, 18-86.
- [M] A. Moy, Local Constants and the tame Langlands correspondence, Amer. J. Math., 108 (1986), 863-930.