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On the irreducible very cuspidal representations

By

Tetsuya TAKAHASHI

Introduction

The notion of ‘very cuspidal representation’ of the maximal compact modulo center
subgroup of GL, over a non-archimedean local field F was introduced by Carayol [C].
He has shown that the compact-induction to GL.(F) of an irreducible very caspidal
representation is irreducible and supercuspidal. If an irreducible very cuspidal repre-
sentation has an even level (cf. Definition 1.3.2), it has a simple description by a
generic element u (cf. Definition 1.2.1) and a quasi-character 8 of F(u)*. (See 5.6 in
[C1). But if it has an odd level, there is no simple description. When 7 is a prime,
any irreducible supercuspidal representation of GL,(F) is, up to twisting by quasi-
character of I, compactly-induced from an irreducible very cuspidal representation.
In this case, Kutzko and Moy [K-M] have calculated the e-factor of any irreducible
supercuspidal representation of GL,(F) and proved the local Langlands conjecture ([L])
for GL,(F). In the so-called tame case when n is relatively prime to the residual
characteristic p of F, Moy [M] has calculated the e-factor of any irreducible super-
cuspidal representation and proved the local Langlands conjecture. (Remark that the
irreducible supercuspidal representation is not always obtained from an irreducible very
cuspidal representation unless n is a prime.)

The purpose of this paper is to study very cuspidal representations with odd levels
in detail, in particular to calculate the e-factors of the induced supercuspidal represen-
tations of GL,(F) for general n and p. Our main result is Theorem 3.3.2. We note
that we shall not treat the level one very cuspidal representation since the e-factor in
this case is calculated in [G2].

In section 1, we review the definition and properties of very cuspidal representations
according to [C]. Section 2 is devoted to the construction of irreducible very cuspidal
representations. Our goal in this section is to show: after all, the irreducible very
cuspidal representation with an odd level can be described by a generic element u and
a quasi-character 6 of F(u)* not exactly but in a sense similar as in the even level
case. For the purpose, we want to apply the method of Moy (see Sections 3.5-3.6 in
[M]). But it is not directly applicable when p divides the order of the group
F(u)*/F*(14 Prcwy), so we find some quotient group F(u)*/F*{u">(1+4Ppcy) (cf. Sub-
sections 2.4 and 2.6) to which we apply Moy’s method with slight modification. Thus
we get information which is enough to calculate the e-factor, but not yet enough to
get a complete character formula. In section 3, we calculate the e-factor of the
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compact-induction to GL,(F) of the irreducible very cuspidal representation we construct
in section 2.

The author would express his sincere gratitude to Professor H. Hijikata and
Professor T. Yoshida for their helpful advice.

Notation. For a non-archimedean local field F, we denote by Op, Pp, Wg, kp, and
gr the maximal order of F, the maximal ideal of ©p, a prime element of O, the
residue field of F and the order of [ respectively. Let v, be the valuation of F
normalized by ve(wr)=1 and | |p=qr "+’ the absolute value of F.

The nXn zero and identity matrices are denoted by 0, and 1,, respectively. If X
is a matrix, det X and tr X stand for its determinant and trace, respectively. We
denote by |A| the order of the finite group A. Let G be a group, H be a normal
subgroup of G and X be a representation of H. We say X is lifted to G if there exists
a representation # of G whose restriction to H is equivalent to X, and then we call =
a lift of X.

1. Review of very cuspidal representations

1.1. Let F be a non-archimedean local field of residual characteristic p» and
G=GL,(FF). We set Vp=F" so that M,(})=End(Vy) and G=Autx(Vy). Suppose n is
decomposed into two factors » and s i.e. n=rs.

Definition 1.1.1. Let {L;|:=Z} be the set of Oglattices in Ve. {L;|icZ} is
said to be a lattice flag of length s if the following conditions hold for all integers 7:

(1) LiDLyy.

(2) PpLi=Lyys.

3) dimkF(Li/LiH):r-

Hereafter we fix the length s of lattice flags.

Definition 1.1.2. Let {L;|iEZ} be a lattice flag.

(1) We set K,={geG | gL;=L; for all icZ}. K, is a compact subgroup in G.

(2) Let z, be an element in G such that (z;)'=wp-1, and z;L;=L;,, for all 7. Let
Z, be a cyclic group generated by z,.

(3) For integers m, we set A"={feM,(F)| fLiCLiwn}. A is a ring and
A™=(z,)™ A= A" (z)™.

(4) For positive integers m, we set K;"=1+A,™, which are normal subgroups of K.

Remark 1.1.3. We can construct all lattice flags explicitly by taking an appropriate
basis.

We can take e,, ¢;, -+, ¢,< L, such that {e,_,s4; mod L;, --+, €n-¢i-1y» mod L;} makes
a basis of L;/L;,, over kp for i=0, -+, s—1.
By Nakayama’s lemma, {e,, ---, e,} forms an Og-basis for L,/L,. Then L; (=0,

..., s—1) is expressed as follows:
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Lo:(Dpe,@ oo @05'@"
L120p61® see @0Fen-r®PFen-T+l® o @PFen

L, ,=0pe,D - DOre, DPrer 11D - DPren

and L;ins=wpkL,; for all integers m.
For this basis, we can express K,, z, A,° and A,' as follows:

@y Ay a4\ |6 EM(0F) i 1<)
Ks: Aoy Qg **° Aoy aitEGLr(OF)

.........

Agy Qg *** Ags !atjEMr(PF) lf l>]

0, 1, 0, veee 0,
0. 0, 1, e 0,
ZgT=|  reeeeeesseenens ,
0, 0, 0, 1,
wpls 0, 0, «+veer 0,
Al=1| @z Qo2+ s

(a“ B2 Qus\ | g e M) i i<

Qg Qso - Qg aijEA’lr(PF) if i>7

Qo G @i | g e ML(Op) if i< ]

Ast=3]| @2y Qa2+ Ay [
......... auEM.(Py) if i=)

Qg Qo " Qs

1.2. The multiplication by wj induces a ky-isomorphism between L;/L;,, and
Liio/Lirser. An element of A,° induces an endomorphism of L,/L;,,, so we have a
ring homomorphism :

R: A —> T Endu(Li/Les).

Since End;,(L;/L;;,) is identified with M.(ky) and Ker R=A,', R induces a ring
isomorphism :

AL/ Ad —> M, (kp)?it%,

We shall use the same symbol R for this isomorphism. The conjugate action of z; on
AL/At induces the cyclic permutation of M, (k)%/%%;

If Ri@)=(av, a,, -+, as-1) (@;EM,(kp)), then R(z; a z,7")=(as,, ao, -+, as-3).
We shall consider the map:
Asm/Axm+l — > AQO/ASl.

U —> wprp ™ut
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If we put u=z"u, with w,=A" and R(uo)=(a,, a;, -+, as_,) with a;EM,(kp), then
R(WF_mus):(ﬁO; ﬁly tty Bs—l) With:

,Bi:a'H(s—l)m CQiam &y
Definition 1.2.1. An element u=A;"/A™*" is said to be generic if the following
conditions hold :

(1) (m, s)=1 where ‘(,)’ is the greatest common divisor function.
(2) If R(wp™u®)=(Bo, B1, -, Bs-1), then the fields kp(8;) are extensions of kp of
degree » for /=0, ---, s—1.

We also say that an element ueM,(F) is generic of level m if usA,™ and u
mod A;™*! is generic.

Now we shall summarize the properties of generic elements without proofs. Proofs
may be found in 3.3 and 3.5 of [C].

Proposition 1.2.2. Let u be generic of level m.

(1) The field F(u) is an extension of F of degree n and its ramification degree over
Fis s.

2) FuwCZ,K; and Fu)*NK;=0j¢.. Moreover Fu)NA;™=Pru>™ for all integers
m and Fu)*NK"=14Pr.»™ for all integers m=1.

(3) Let x be an element of A,'. Suppose ux—xuc A"+ %, then x&F(u)+ A

1.3. Fix an additive character ¢ of F with conductor Pp.

Lemma 1.3.1. Let [, m be integers such that mZI<2m, (=1 and m=1. We shall
define the function ¢, on K™ by:

du(x)=¢(tr(u(x—1))).
Then the map u—¢, induces an isomorphism between A;"'*'/A,"™*' and the complex
dual, (K;™/K")", of K:™/K'.
Proof. See 2.7 and 2.8 of [C].

We call ¢, a generic character if u is generic.

Definition 1.3.2. An admissible representation p of Z,K; is said to be very cuspidal
of level N (N=2) if the following conditions hold :

(1) K,"cKer p.

(2) The restriction of p to K,¥!' is decomposed into a sum of generic characters.

Proposition 1.3.3 (Carayol). Let p be an irreducible very cuspidal representation of
Z,K,. Then the compact-induction of p to G (we denote this representation by ind%,x (o))
is an irreducible supercuspidal representation of G.

Proof. This is contained in Theorem 4.2 of [C].
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Remark 1.3.4. Let u be generic of level 1—N and m=[(N+1)/2] where ‘[ 1’
is the greatest integer function. Since K,™/K,¥ is an abelian group, the map
x—=d((tr(u(x—1))) (x€K,™) is a character of K,™ and a lift of ¢.. (We shall use the
same symbol ¢, for this character.) Therefore we can replace the condition (2) of
Definition 1.3.2 by the condition (2'):

(2") The restriction of p to K,™ contains a sum of characters of the form ¢,
where u is generic of level 1—N.

2. Construction of very cuspidal representations

2.1. From now on, we fix a generic element u of level 1—N and set E=F(u). E
is an extension of F of degree n whose ramification degree over F is s. We shall
start with the following lemma.

Lemma 2.1.1. Let H, be a stability group of ¢. in ZK, ie H,=
{82 ZK, | ¢u*=¢.} where ¢ *(x)=¢u(gxg™"). Then H,=E*- KN,

Proof. See 5.5 of [C].

First we shall treat the even level case N=2m. This case is essentially contained
in 5.6 of [C]. We note that H,=FE~*-K;™ in this case.

Proposition 2.1.2. (1) Indﬁ;‘m(gb,,) is decomposed into a sum of one-dimensional rep-
resentations of H,, each of which is a lift of ¢..

(2) Let n be any such lift of ¢. to Hy,. Then v is written in the form 6-¢. where
0 is a quasi-character of E* with the property that 0(1+x)=¢.(14+x) for xEPg™ and
0-¢. is defined on H, by 0-¢,(t-R)=0()-¢p (k) for t€E* and k€K™

) If we put a(0; u)'zlndf,st(ﬂ-cp,,), then o(0; u) is an irreducible very cuspidal
representation of level N of Z,K, and every irreducible very cuspidal representation of
level N of Z,K, is equivalent to some representation o(0; u).

Proof. The proof of (1) and (2) follows immediately from the fact that H,/Ker ¢,
is abelian. As for (3), Ind%sXs(6-¢,) is evidently very cuspidal from the definition of
very cuspidal representation and its irreducibility is a consequence of the application of

the Clifford Theory (cf. 50.6 of [C-R]). The rest of (3) follows from the Frobenius
reciprocity.

2.2. Now we shall treat the odd level case N=2m—1, which is more complicated.
In this case, we cannot lift ¢, to H, since H,=E*-K,™"!. So we need to investigate
the space K," '/K,"=A;""'/As™ more carefully. Let W=A""1/A,™ and write x—%
for the natural map from A,™"' to W. W 1is a vector space over kp We denote
I€End, W by the conjugate action of u i.e. I(¥)=uxu™* for x€W. Let s=p'-t and
(¢, p)=1. We note p is an odd prime since (1—N, s)=1. Set h=———g"‘_} -t and

—

J=I"€End, W. Until otherwise stated, we omit the subscript F of ¢p.
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Lemma 2.2.1. (1) (J—1)?'=0.

(2) dim, Ker(J—1)=r.

Proof. Since |E*/F*(1+4Pg)|= qq—_’—»lrlﬂs, (u")?" belongs to F*(14Pg) and thus
J?'=1. So (J—1)?'=0 from the fact k has characteristic p. For the proof of (2), we
shall use the isomorphism R between A;°/A;' and M, (kr)?/*%. Let wg be a uniformiser
of E. We may and shall assume m=1 since the multiplication by w4 ™ induces a
k p-isomorphism between A;™"!'/A,™ and A,/ As' which is compatible with the conjugate
action of E*. It is obvious that ¥=Ker(/—1) if and only if u"x—xutec A 1= If
we put u=2z"V-u, R(u))=(ao, -, as-,) and R(x)=(7,, -+, 7s-1), the relation
uhx—xu"c A=Y is equivalent to the following relations:

Aitch-1DO-NXitn-220-3) " Aig1-NAi]i

=T i+nQ-NAith-1D-N) " A= NI (¢=0,1, -, s—1).
Each a; is non-singular since u is generic, so:
Tirna-n»=Ci7:C7? (#=0,1, -, s—1)

where Ci=aiian-a-mAitn-2-8) = Qig1- N

If we determine 7., 7., -, and 7,.,, then 7, 741, =+, 7s-1 are automatically
determined by the above relations since (1—N, s)=1 and (4, s)=t. Therefore
dim, Ker(/—1)=r?*. But dim, Ker(J—1)=r* since (j—l)”'=0 and dimg IV =r?%s,
whence our lemma.

We define a £ p-alternating form on W by:
(x, y>=tr(u(xy—yx))) mod Pp.

Remark 2.2.2. We note that rad{,>=Ker(/—1) and the conjugate action of E* on
W preserves this alternating form. We also remark that dim,,rad{,>=r by Prop-
osition 1.2.3 (3).

2.3. We shall define T<End, W by T=I"""4 .- +I1+1 and set Wo=(J—1)t-nrw,
W,=(J—1)®'"2TW, Now we shall investigate the spaces #, and W, in the following
lemmas.
p'+1

5 -

Lemma 2.3.1. (1) dim, W,=r%-

sl

(2) dim, W,=r%-
Proof. We set ri=dim (J—1)'W —dim, (J-1)""'W (=0, L, ---, p'—1), then r;<r’
by Lemma 2.1.1. On the other hand:

pl-1
Nri=ris
i=0

from the definition of r;. Hence r;=7% for all ;. Therefore we have:
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L
dim,,FW.,=r2t-£2il—.

As for the proof of (2), it suffices to see that:
dim, Ker T=r*—r

since W,=TW, and Ker TCW,. The map /—1 induces an injective homomorphism
from Ker(j—1)/Ker(/—1) to Ker T, so we have:

dim, Ker Tzt —r.

(See Lemma 2.2.1 and Remark 2.2.2.) Since Ker TNKer(I—1)=0, Ker T®Ker(/—1)
cKer(J—1). Therefore:

dim, Ker T<r’t—r.

Hence our lemma.

Lemma 2.3.2. W, *=W, with respect to (W, {,D>) i.e. {ZEW | %, 3>=0 for all
yew,}=W,.

Proof. Using Remark 2.2.2 and the fact that (J-1)®"-DTierad(, ), we can see
that for %, yeW .
(J=1)@' 1T, (J=D'Drt5y=0,

Hence W,CW,*.
On the other hand:

dim ,(Wo/rad(, >)+dim; ((W,/rad{, >)=dim, (W /rad<, >)

by Lemma 2.3.1. Therefore dim,W,*=dim, W, whence our lemma.

Lemma 2.3.3. Let A™° (resp. As™?') be the total iuverse image in A™ ' of W,
(resp. W,). Set K,™'=14+A™"°, K™ '=14+A™" and define a function Gy on K™ by:

Full+0)=¢(tr u(x—%z))

for 1+xeK,™*, which is equal to ¢, on K,™. Then K,™° and K,™' are normal
subgroups of E*-K,™ " and §, is a character of K,™" whose stability subgroup, H.,, in
Ex-K™ ' is EX-K,™°.

Proof. Since W, (resp. W,) is invariant by the conjugate action of E*, it is clear
that K,™° (resp. K;™') is normal in E*-K,™'. If x and y lie in A,™!, then:

G DA+ =1+ Full+9)-¢(tr 5 uCxy—yn).

Lemma 2.3.2 tells us W,CcW,=W,*, so tr—;—u(xy—yx)EO mod Pr. (We note p#2.)

Thus ¢, is a character of K,™'. As for the normalizer , of ¢, in E*-K,™! we
remark that H,CH,=E*- K™ If x€A,™"' and yeA,™!, then
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~ ~

GO+ x0)=¢(1+x)-(tr u(xy—yx)).
Therefore H,=E*-K,™° since W,*=W,.

2.4. Weset U=F*Cu")(1+Pg) where <u") is a group generated by u*, Ho=U-K™°
and H,=U-K,™'. In the same way of Proposition 2.1.1 (3). we can lift Jy to EX K™
and any lift of ¢, to E*-K,™"! is written in the form 6-.J,, where @ is a quasi-character
of EX. We denote a quasi-character 0-§. of EX-K,™* by 7.4 and a quasi-character
(0ly)-¢u of U-K;™*' by 9,5 where 0|y is the restriction of 8 to U.

Lemma 2.4.1. (1) H, and H, are normal subgroups in E”-K,™° and the stability
subgroup of Nu4 is EX- K™,
(2) We set that:
{x, Y, =tru(xyx~'y~'—1) mod Pp

for x, yeH, Then <{,>y, induces a nondegenerate alternating from on H,/H,.

(3) The induced representation Indf%n..s) is a homogeneous sum of an irreducible
representation k.5 of degree q¢*t="I2,

(4) We can lift k4,5 to E*-K;™° and the number of those lifts is h.

Proof. Part one of the above lemma follows from the fact that (/—1)W,CW,.
Part two follows from Lemma 2.3.2. Part three is a consequence of the Heisenberg
construction (cf. [G1]). The last part follows from 5.4 and 5.5 in [C].

Proposition 2.4.2. Let &, be one of the lifts of #..5to Hy. Then Ind%slf"s(ku) is an
trreducible very cuspidal representation of level N of Z,K; and every irreducible very
cuspidal representation of level N of Z,K; is equivalent to some representation lnd,%*zf"s(ﬁ,,)
with an appropriate generic element u of level 1—N.

Proof. This can be proved in the same way of Proposition 2.1.2 (3).

2.5. Now we shall construct the lifts of £,.; explicitly. We imitate the method
of Moy (see Sections 3.5-3.6 in [M]). For simplicity, we shall start with the case that
r=1 and ¢ is a prime. We put L=E*/U, then L is a cyclic group of order t.

Lemma 2.5.1. There are (¢*~'+t—1)/t double cosets of E”-K,™" in E*-IK™°.

Proof. It suffices to see that the conjugate action of E* on K ™°/K,™' has no
fixed point. This follows from the fact that /—1 induces an automorphism on W,/W,.

We denote by £,4: ((=1,--,t) the lifts of £,5 to E<-K,™° Let a; be the
multiplicity of Z,.4.¢ in IndZ} %o \(7,,0).
Lemma 2.5.2. The multiplicities a; (i=1, ---, t) satisfy the following equations:
at+ap+ - Fa=q¢To”

al4at 4 4al =g+t 1)/t
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Proof. We can prove this lemma by the same way of Lemma 3.5.30 in [M] by
virtue of Lemma 2.5.1.

We use the next lemma to solve the above equations.

Lemma 2.5.3 (Lemma 3.5.33 in [M]). If ¢y, ¢ -+, Cn are nonnegative integral
solutions to the system of equations:

CitCot e Fea=m

clt4elt+ - e lt=(m+u—1)/n,
then either n—1 of the c¢;’s are equal to (m+1)/n and one is {(m+1)/n}—1, or n—1 of
the c¢;’s are equal to (m—1)/n and one is {(m—1)/n}+1.

Applying Lemma 2.5.3 to the equation in Lemma 2.5.2, we obtain the next lemma.

Lemma 2.5.4. The nonnegative solutions to the equation in Lemma 2.5.2 have t—1

of the a;’s equal to {q“")’z—(—(t]—)}/t and one of the a;’s is equal to {q“‘”’z—<%)}
/t+(%). (We denote by (——) the Legendre symbol.)

We denote by #,., the £, ; corresponding to the a; which is different from others.
By the Frobenius reciprocity and the Heisenberg construction, we have the next result
on the character of %, 4.

Lemma 2.5.5. Let Xz, o be the character of £, 9. If v belongs to E*-K,™°, then

we have:
q(hl)ﬂﬂu.@(r) for TEH,

Xz, o(N)= < N, 6(T) for TEE*-K,™\H,
t

0 7f r is not conjugate to an element of E*-K;™".
We summarize the result in the next proposition.

Proposition 2.5.6. Assume r=1 and t is a prime.

(1) Every irreducible representation of E*- K™ whose restriction on K,™"' contains
@y is written in the form &, o where 0 is a quasi-character of E* with the property that
0=¢, on ENK;™'. And the character Xe, , of Ru,o is given in the next formula:

gy, r)  for YEH, |
Liy o= (‘(t]‘)vu.o(ﬂ for yYEE*-K,™'\H,
0 if 7 is not conjugate to an element of E*-K,™*.

(2) Every irreducible very cuspidal representation of level N of Z.K, is equivalent
to some representation Ind%‘u’“(ﬁu,g) with an appropriate generic element u and an appro-
priate quasi-character 6 of E*.



662 Tetsuya Takahashi

2.6. Now we get rid of the assumptions for » and ¢t. Set L=E*/U and X=H,/H,.
We note that L is an abelian group of order relatively prime to p and the conjugate
action of U on X is trivial. We denote by ¢ the conjugate action of L on X and
regard X as an F,[L]-module where I, is a finite field of order q. Then X is com-
pletely reducible as an F,[ L]-module. For N a subgroup of L, let Qy={x=X | s(n)x=x
for all n=N}. Q, is an L-invariant subspace of X. Let Xy be the L-complement
in 2y of the F,[L]-module:

2 Qy

NcMcCL

where the sum is over those subgroups of L which properly contain N.

Lemma 2.6.1. (1) X= & Xy.
NCL

(2) We denote by {,>x the nondegenerated alternating form on X defined in Lemma
2.4.1 (2). If Xy+#{0}, the restriction of {,>x to Xy is also nondegenerate.

(3) Let Hy (resp. 1\7) denote the subgroup of H, (resp. E*) such that Hy/H, (resp.
1\7/U) is Xy (resp. N). Then N-H, and N-Hy are normal in E*-Hy and for
gEE*-HyNE*-H,:

g 'Ex-HgNE*-H,=N-H,.

Proof. We set X=X®¢ Fo, Xy=XQp F, where F, is an algebraic closure of F.
From the definition of Xy, it is obvious that:

A’r—‘ 2 ng.
NCL

Therefore it suffices to see that:

>

= 2 /?N-
NCL

Let & be the representation of L on X defined by ¢. Since L is abelian, we can
show :

=

= X,
aCa

where the sum is over those one-dimensional representations which are contained in g
and X,={xeX | d(g)x=a(g)x for all geL}. Then from the definition of Xy, we
have:
XN: @_Xa .
Kearcaa=N

Therefore X= @ Xn.
NCL

(2) This follows from the fact that:

<0(g)?€, o(2)y>x=Xx, ¥>x

for x, yeX and g L. (See Remark 2.2.2).
(3) This is obvious from the definition of Xy.

We set 9,.0y=(9u.0)| 5.4, By the above lemma, the next lemma is proved by the
same way of Lemma 2.4.1.
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Lemma 2.6.2. (1) The stability subgroup of Ny in Z:K; is E*-Hy.

(2) Let 2Dy=dim;, Xy. The induced representation Indf\:V,jZ{V(n,,, 0 ) is a homogeneous
sum of an irreducible representation k.9, of degree g°v.

3) Let MN=|E*/1\~7|. We can lift k.04 to E*-Hy and the number of those lifts

iS MA\".

We denote by £.,0y.: G=1, -+, My) the lifts of k.4, to E*-H,. Let b; be the
multiplicity of #u,¢,.: in Indgij’lj?(r]u_o). By Lemma 2.6.2 (2), we have the following
analogue of Lemma 2.5.2.

Lemma 2.6.3. The multiplicities b; (=1, ---, My) satisfy the following equations:

by Abe+ oo Fby y=q"¥
Db+ byt =" PV +My—1)/ M .

We can apply Lemma 2.5.3 to the equation in Lemma 2.6.3 to conclude that either
(a) My—1 of the b;’s are equal to (¢°#+1)/My and one is {(¢g°¥+1)/My}—1
or
(b) My—1 of the b;’s are equal to (¢°~¥—1)/My and one is {(gP¥—1)/My}+1.
We set S(N)=-—1 (resp. S(N)=1) in case (a) (resp. in case (b)). In both cases,
(g°¥—S(N))/My is an integer. We denote by &, x.9 the £. ¢,.: corresponding to the
b; which is different from others. Next lemma is the counterpart of Lemma 2.5.5.

Lemma 2.6.4. Let X
then we have :

be the character of ku x.6. If T belongs to E*-K™°,

'?u, N.O
4PN .. o() for yeN-H,

X2, v, dM=9 SINIDuwony()  for reE*-HNN-H,

0 if 7 is not conjugate to an element of E*-H,.

Since Ho/leNGCBLXN and (Ku,9 )| n,=¢"¥+7w.0, We can define a representation £y,

of EX-K™° as follows:

Fuoe @)=(Qku. .00 )0) (D, v.0(@ ), v 0(80)-

Here e E”, g H, and g:(];[g,»g, where gveHy and g,=H,. It is obvious that

£u.q is a lift of k, 4. Since the number of lifts of x,; to E*-K,™° is equal to the
number of lifts of § to E*, any lift of x,5 to E*-K,™° is given in the form £,
where 6 is a lift of § to E*. By Lemma 2.6.4, the character Xz, , of Eu.¢ is given as
follows.

Lemma 2.6.5.
X, o0 @)=0(E") - [LSN)B()u(2)

for esE* and g K,™"' where N runs over the subgroups of L which contain (resp. do
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not contain) e mod U in (EVDN) (resp. (I;IS(N))), and

Xz, ,(N=0

if v is not conjugate to an element of E*-K,™".

Corollary 2.6.6.

Xe,. o @)=( TL SIN))0G)F(8)
for g K™,

Proof. Since the map I—1 induces an automorphism of X, Dy=0 if « mod U= N.

We summarize the result of the odd level case. (cf. Proposition 2.4.2.)

Proposition 2.6.7. Let u be a generic element of level 2—2m (m=2) and &, be a

-2
character of K™ defined by </7,,(1+x)_—_¢:(tr u(x—%)) for l+xeK,™*'. (c¢f. Lemma

2.3.3.) Let 6 be a quasi-character of E* with the property that 0(14x)=¢(tr ux) for
xEPg™ where E=F(u).

(1) Let & be any irreducible component of Indr";,’;"m
K '

) 'O(Ju). (c¢f. Lemmna 2.3.3.) Then
K is written in the form k. g which is determined by8 its character formula:

= D >
Xe,, ol @)=q(:Ex") (11 SIN)B()F ()
for e E* and g K,™*, and
Le, o(N=0
if v is not conjugate to an element of E*-K,™'. (As for the definition of (g‘_l,v DN> and
(I’IIVS(N )), see Lemma 2.6.5, Lemma 2.6.1 and the paragraph above Lemma 2.6.4.)
eg .

2) Indz";’f}“,sm,o(fcu,o) is an irreducible very cuspidal representation of level 2m—1 of
ZKs and every very cuspidal representation of level 2m—1 of Z,K, is equivalent to some
representation Indii'flf.sm_o(k.,,g) with an appropriate geneic element u of level 2—2m and
an appropriate quasi-character 6 of E*.

We need determine the term (HVS(N)) to calculate the s-factor of indzﬁfll:_?ﬂ,l(ﬁ,,,g)
uE]

in the next section.

Proposition 2.6.8. In the above notation,
— (1)1, ﬂ_ ’
(I san)=c=1r=(3)

where (—) denotes the Jacobi symbol.

Proof. We first recall that S(NV) is determined by the property that:

9Pr—S(V)
|L/N|

is an integer.
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For any element x of E*, we set ¥=x mod F*{u">(1+Pg). Let u, be an element
of OF such that u, mod(1+4 Py) generates the cyclic group k; and M be a subgroup of
L generated by &, We note that L=E*/F*{u")14Pg) is generated by i, and #.
We shall omit the symbol ‘-’ when there is no fear of confusion. Since (J—1)pt-nr
induces an L-module isomorphism between X and Ker(j—1)/Ker(/—1), we can easily
show that:

dim,,F.Q«,%):[IeE: kp(ud)]-ri—r

from Lemma 2.2.1 and its proof. From the definition of Dy and S(N), Dy=0 and

S(N)=1 if N, properly contains N and Qy=8y, So if S(Ku{>)=-—1, then j=Eq;—:11—

for any positive divisor #»’

T—1
where #’' is a positive divisor of ». We set ]'(r')=?]qr,~:—1

of ». We shall quote the next lemma from [M].
Lemma 2.6.9 (Lemma 3.6.54 in [M]). Suppose j, Q are integers greater than 1

and A is a nonnegative integer. If (Q*+1)/{(Q’—1)/(Q—1)} is an integer, then j=2
and A is odd.

Since X o, is a b p(ui¢?)-module, Dui“"?)») is a multiple of »' and we can
apply this lemma for j=r/r, Q=¢" and A=DEKu}i""*))/r'. We consider two cases
according to the parity of r.

Case » odd. From the above lemma, S(N)=1 if N does not contain {u,>. Here:

(ILS(V)=(11S s, w)

where j runs over the positive divisors of ¢.
Therefore we have only to determine the signature of S({u,, u’) for jlt. From
the definition of Xcu,, us 1IZjZDW,_.,l>=dirn,,FQ<.lo, w1t is easily seen that dimy,Qcu,. ui
1
=jr—r. (See the proof of Lemma 2.2.1.) So we have:
ro(s) for j>1
2D<"0- uly=— X
0 for j=1

where ¢ denotes Euler’s ¢-function, and

((]T)‘P(j)IZ_S(< Uo, uJ))
I

is an integer.

Then S(u,, u?d)=—1 if and only if s is a power of a prime, say j={(", and
T N\__
( l> 1. Hence ,
(R S u, u’)))=(T)-
_(9Y
=(})"
Case » even. From Lemma 2.6.7 and the argument of the odd case, S(N)=-—1 if

and only if NN<uod=<u,> and dimg,,, ,Xy=2 mod4 where u,=u,® »/@ . By the
argument of the odd case, dimg,, ,X¥=0 mod4 if NDdue>. Therefore in order to
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observe (HNS(N))z—l, it is sufficient to see that there are an odd number of sub-
u€

groups NDO<u,) such that dimkf.(“l)Xx:Z mod 4. This follows immediately from :

Q(::p:( D Xy

uPCN
and
dlmkl,(ul).Q<,,‘>=4t—2 .
Hence our proposition.

3. Calculation of the s-factors

3.1. At first, we review the e-factors of supercuspidal representations of GL,(F).
Godement-Jacquet [G-]] have defined the L- and e-factors for admissible representations
of GL,(F). If = is an irreducible supercuspidal representation of GL,(F), then L(m)=1
and the e-factor is a scalar factor defined by :

S f@)m(g)Idet g| p**072d g=¢(x, ¢)§ f(@r(g)ldet g| p*~P%d g,
GLp (F) GL ()

where f is a locally constant, compactly supported function on M,(F), ¢ is an additive
character of F, d*g is a Haar measure of GL,(F) defined by d*g=du(g)/|det g|}
where p is a self dual Haar measure on M,(F) with respect to the Fourier transform :

F=\  fEgCedun.

M

The next lemma is well-known.

Lemma 3.1.1. Let © be an irreducible supercuspidal representation of G=GL,(F).
If = is compactly-induced from compact modulo center subgroup H, say m=ind%x, then:

e(m, $)=|) wg)Idet | e Drg(er )0g.

3.2. We start with the even level case. Let u be a generic element of level

1—2m and ﬁ:il)dgtﬁ‘,(,pin(ﬂ-gb,,). (As for the notation, see 2.1).
S

The next lemma is proved by the same way of Lemma 2.2.1 in [K-M].

Lemma 3.2.1. Let p be a self-dual Haar measure on M,(F) with respect to ¢etr.
Then ‘u(A,"L)—_-qrzs-(l—zm/z).

From Lemma 3.1.1, we have:

e(r, ¢)=Ss‘-x (0-du)(g hidet gf pmHPP(tr g)d g
:SEX'Ksm/Ksm(SKsm(O~¢-u)((hk)“)|det Bk | ORG(r hk) R )d"

m(ﬁ'(/"u)(/l”])ldet hl P(n+l)(SK m(0'¢:1)(k_l)¢(tr I k)dxk)dx .

SE“J(;""/K;
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And in the above expression :

PRE 2RI
=SA P (A REr A1+ k))dpe(k)

=gter )| gerth—R)dpCe)
=¢(tr h)[l(Asm)fl—m(h""u)y for (Asm)l——_Axl-m‘

Since u belongs to A,'"*™, h—u belongs to A,'~™ if and only if 7 belongs to u-K,™.

Thus:
e(r, Sb):l‘(/lsm)(/)(tf u)(0'¢,,)“(u)|det Ul v
=p(A™)(tr w)0- ()| u| gm0,

From Lemma 3.1.1 and Proposition 1.2.3, /1(145’")=q'2‘“'z"”’2 and | u| gt t=(g "),
So we get the next proposition.

Proposition 3.2.2. Let =ind%" " (0-¢.) and pr=¢otrgp. Then

EX Kg™

e(n, P=¢e(w)07 W) ul .

3.3. We shall treat the odd level case. Let u be a generic element of level 2—2m

.+ GLa(P
and ﬂ——lndE,x‘Ks'm,,o

of the even level case, we have:

&(rm, ¢)=Sk_ m.ofu 0((uk)™) | det uk| p¥ORN(Lr uk)d* k
8

=u u‘"“mSK oo () gtr uk)d k.
8

The above integral is calculated as follows:

g,\. . ofu. 0(Quk)™He(tr uk)d*k

) = (S"'s”"‘ﬁ"'"((uhk)_l)ﬁb(tr uhk)d*k)

neKg™ 0Kk g™ !

B o0 (L )L () oo, o (u(L A+ 3) )

yeds""'o/A,""'"(S“S
e - xz = -
—yeAsm'z:'Msm',(SAsywx,l‘»[’(tr u<}’k+ —z—)dp(x))d)(tr u(l4+ 3Nk, ol +3N7H.
By taking the trace of the last term, we have:

deg(ku, 0)e(m, )= |u| g *V72¢(tr u) >3 (SA,”»‘¢(tr u(yx-l——x;-))dp(x)

yEA ™ 0/ 401

Xgitr uyte, ,((ul+9)).

(ku.). (As for the notation, see 2.3 and 2.6). By the same argument
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Since I—1 induces a kg-automorphism on A,™°/ A;™!, there exists an element z
in A™°As™"' such that wuy=[u, z] where [u, z]=uz—zu for any y in A,/™°/A™".
Set S=u(l+y). Then an easy calculation shows:

(14+2SA+2Z) '=u(l4+u [z, uy)A+u"'[S, z]z) mod K™ ".

(See (3.5.39) in [M].) The last two terms lie in K*"~% and hence are scalars under
£u.0. Therefore:

Xy o(STH=z, ,(14+2)S(L+2)"))
=Xz, J(ug(trlz. uyDg(tr[S, z]z) _
=X, o(u P(trlz, uyD(tr(luz, z]+[uyz, z1))
=X, ,(u™h).

Moreover :

Qltr uy)=¢(trfu, z])=1
and

-2

¢(tr u(yx + ~\2—))=¢(tr% uxz>¢(tr wz—utzu)x)
—_—¢<tr% uxz)gb(tr u(zx—xz))

:gb(tr% ux’), for Wi=W,.
Therefore :
e(m, )=¢(tr u)u IF”ZCS ¢(tr—1— uxz)d,u(x)
’ - Asm,l 2

where C=(deg(f, o))" | u|s"/*| A,/ A" Xz, (7).

Let W,=(J—1)?"+Y/2)¥ and A,™* be the total inverse image in A, of W,. Then:

Sdsm'#}(tr%uxz)dy(x):y(fl,”‘-z) ) d)(tr—;-ux?)

zeW /W,

since ¢(tr uxy)=1 if x€A,™* and yeA,™'. Thus:

sz P=gtr ) ul 0% gb(tr—;— ux?))

zeWTIWy
where C'=(deg(f..¢)) " [ulg"?| g™ A" M p(A™ Wz (7).

By Proposition 2.6.8, Lemma 2.4.1 (3), Lemma 3.2.1 and Proposition 1.2.2, we can
see that C'=q"/2-0“(u)-(—1)’“‘(%>r. Hence:

e(n, P=¢e()0 (W) u| g% M

where M= X ¢(tr%ux’).

ZEW Wy
The rest of our work is to calculate M.

1 I I
Lemma 3.3.1. M= IEEkEsb(trkE/kF(—z-sz» where ¥=(—1)® D%y - mod Pyg.
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(We note that since 2m—2 is even, the right side dose not depend on the choice of
W)

Proof. Since W,/W, is a one-dimensional vector space over kg, M=
Ek gb(tr—:lz—u(xko)z) where k, is any element in W,\W, Let k, be an element in
zERE
A/ Ag such that ky=wp-(J—1)®'"D/2Tk, Then:

1
gb(tr—z—u(xko)*)
— (i S UGB (= 1P DT by xw B = DD )

=</J(tr%u(x‘cf}é‘"j‘“’[“’/2(—1)“’“”/2]“7‘(j—l)“’""Tkl-xm’,’g"‘“‘k,))

since tr(x-Iy)=tr(I"'x-y),
=¢(tr%u(m’%}"”zxz(—l)“’l”)/zt( J=DP DTy k)

since (J—1)®'"Tk,cKer (I—1)=kg.

Here we recall that A,°/A,' is identified with M,(kr)?/*4 by way of the map K.
Let R(k)=(,, 0,, -, 0,), then RUk)=(0,, - ,0,,1,,0,,---,0,) where 1, lies in the
(3—2mmod s)-th position. Since (2—2m, s)=1 and I*k,=k,, we have:

R((]—1)"’1"’Tk1)=(](1—__111?((13“+ I Dky)
=R((I*"'+ - +1+1)k,)
:(lr) lr; tt 1r)~
Therefore R(J—1)®'"PTk,-k)=(1,,0,, -, 0,). We note that if x&A and R(x)=
(7o, =+, Ts-1), then (fr x)mod1F=§_‘;)tr 7:. Hence to prove the lemma it suffices to see

that try,e (e)=tre, if R(e)=(e, -+, es-,). This follows from the fact that kp=

k(@ ™y’ mod Pg) and try . {@F* ™ u’ mod Pg)=tr B,(i=0, -+, s—1) if
R(@wr®?™u’)y=(Bo, ==, Bs-1).

Theorem 3.3.2. Let u be a generic element of level 1—N (N=2) and E=F(u), which
is an extension of F whose ramification degree is s and residual degree is r. Let

N+1 . . . ,

m=|———1, s=pi-t where (¢, p)=1, ¢, be as in 1.3 and 0 be a quasi-character of E*
2

which coincides with ¢, on 1+Pg™. When N is even, let ﬂu,,,:indz&f‘g;(ﬂ-(pu). When

N is odd, let &, ¢ as in 2.6 and z,,_gzind;';f‘;?,,'u(ku_o). (As for the definitions of K™
and K,™°, see 1.1.2 and 2.3.3). Let ¢pg=q¢otrgr. Then:

(1) e(mu.0, P)=¢e(u)0*(u)| u|x"'* when N is even,

@ e, ¢>=¢E(u>0-'<u>|u|E‘ﬂ(—l)'-1(%)}}5—;IezkEgb(trkE,kF(%er)) when N is
odd
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where y=(—1)P""%y 57,V mod Pg.

€]
[C-R}
[G1.

[G2]

1G-J]
[K-M]
(L]

M}
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