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§1. Introduction

The classical function theory has some theorems about the removability of singulari-
ties of holomorphic functions, e.g., Riemann’s theorem, big Picard’s theorem. The
purpose of this paper is to extend such theorems for holomorphic mappings to Riemann
surfaces. As for big Picard’s theorem for holomorphic mappings to Riemann surfaces,
Ohtsuka [5] showed the following ;

Theorem 1. Let f be a holomorphic mapping of the punctured disk D¥={zeC;
0<|z| <1} to a Riemann surface R of genus g. Theu, the followings are valid ;
(i) If R is the Riemann sphere C and lir{)lf(z) does not exist, then [ takes all

points except at most two points of € infinitely many times. If R is a torus T and
lirglf(z) does not exist, then f takes all points of T infinitely many times. In particular,

if R is contained in C—{a,, a5, as} or T—{b} (a;>C, j=1,2,3, and beT), then f has
a limit in R as z—0 and is extended to a holomorphic mapping of the unit disk D to R,
where R is a Riemann surface filled up the punctures of R.

(i) If 2£g<+ 0, then lzl.r.? f(2) exists in R or there exists a boundary neighbourhood

V of R such that V is conformally equivalent to D*, and f(z) converges to a boundary
point of V corresponding to the origin of D* as z—0.

First, we shall give an elementary proof of Theorem 1 by using Fuchsian groups.
Such a method was taken by Marden, Richard and Rodin [4] and Royden [6], but our
proof is different from theirs.

Secondly, we shall extend the exceptional set in Theorem 1 and consider the re-
movability for holomorphic mappings to Riemann surfaces satisfying certain conditions
(Proposition and Theorem 2).

Finally, we shall constuct some examples related to the above results.

The author would like to express his hearty gratitude to Professor N. Suita for
his contribution to the proof of Theorem 2.
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§2. An elementary proof of Theorem 1

Lemma 1. Let R be a Riemann surface whose universal coveriug surface is con-
formally equivalent to the upper half plane U. Then, for a holomorphic mapping f of
D* to R, the same result of (ii) in Theorem 1 holds.

Proof. Let I' be a Fuchsian group on U such that U/I'=R. The punctured disk
D* is also represented by U/<A), where A(z)=z+a (a>0). There exist a holomorphic
mapping f of U to U and 7,=I" such that the diagram

D*=U/{A> —f’ U/I'=R
is commutative and

@ feA =1 F  (n€Z),

where 7, and m are the canonical projections of U onto D* and R, respectively.
If 74 is not the identity, then it is parabolic. Indeed, for the Poincaré distance p
on U, we have

p(J(2), fw)sp(z, w) (2, wel),
since f is holomorphic (Schwarz’s lemma). Thus,
p(r A f(2), F(@)=p(flA@), F@N=p(A), 2).
Hence, we verify that
inf{o(r4(2), 2); 2&€U}=0

because of inf{p(A(z), 2); z€U}=0. This implies that 7, is parabolic. We may as-
sume that 74(z)=z-+1. Shimizu’s lemma (cf. Kra [3] p. 60) says that there exists a
constant ¢>0 such that U,={z€U; Imz>c} is precisely invariant by <r,> in /. Con-
sider the circles C,={|z|=t} in Dy (0<t<1) and their lifts (,N‘L on U with the end
points z, and z,+a(=74(z,). From (1) we have f(z,+a)= f(z,)+1. Because of Schwarz’s
lemma again, we have

(the Poincaré length of 7(C,)<(the Poincaré length of C;) —>0  (t—0)
and
o(f(z), Fz)+D)=p(f(2), fz,+a)<pz:, z,+a) —> 0  (t—0).

Therefore, Im f(z,)»>+c as t—0 and F(CHc U, for sufficiently small #(>0). Set V=
a(U,), then V is conformally equivalent to D* and

F(CO=F(x(CN=n(F(CNCa(U)=V,

for sufficiently small ¢(>0). Hence, f is regarded as a bounded holomorphic function
on a neighbourhood of z=0 in D* and can be extended holomorphically to z=0 by
Riemann’s theorem.
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If r, is the identity, then n~'-f is regarded as a holomorphic function of D* to U.
Thus, z=0 is a removable singularity of f.

Proof of Theorem 1. If g=2, then the universal covering surface of R is the
upper half plane. Hence, the statement of (ii) follows from Lemma 1. Next, we con-
sider the case R=T. Suppose that Iirr; f(z) does not exist and there exists a point b

of T such that such that f(z)=b for only finitely many z in D*. Consider the restriction
f| D¥ for a sufficiently small »>0, where D}={0<|z|<r}. Then, we may assume that
f|ID¥ is a holomorphic mapping of D} to T—{b}. Since the universal covering of
T—{b} is U, lziggf(z) exists in T from Lemma 1. This contradicts the assumption.

Thus, we have shown the statement of (i) for R=T. Similarly, we can show it for
R=C.

§3. The Carathéodory metric and C-nondegenerate Riemann surfaces
In this section, we prepare some definitions for §4.
Definition 1. Let A/ be a complex manifold and H,(M; D) the family of all

holomorphic functions f from M to the unit disk D with f(p)=0 (pM). For each
tangent vector v at p, we set

Cx(p, v)=sup{|<f(p), v>|; fEH,(M; D)},
where <{a, v> is the natural pairing between a cotangent vector a and a tangent vector

v. We call Cy the Carathéodory metric for M.

Usual normal-family argument guarantees that Cy(p, v) is continuous in (p, v).
Furthermore, it is easily seen that C, has the distance decreasing property, that is, if
f; M—-M’ is a holomorphic mapping, then

Co(f(P), fAONSCu(p, v).
The Carathéodory metric for D is equal to the Poincaré metric, i.e.,
Co(z, v)=Iv|/1—]2]").
For each smooth curve w; [a, b]J->M on M, we define the Carathéodory length

CxuL(w) of w by

b
a

Catwr= Culw®, wi(2))at.

Definition 2. Let R be a Riemann surface with Cg(p, -)#0 for each peR. Then
R is called C-nondegenerate if there exists ¢>0 such that for every non-trivial smooth
closed curve w on R, the inequality

2) CuyL(w)>e
holds.
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Clearly, a compact bordered Riemann surface (with no puncture) is a C-nondegenerate
Riemann surface. Examples of C-nondegenerate Riemann surfaces of infinite genus will
be given in §5 (Examples 2 and 3).

Next, we consider a compact subset E of C.

Definition 3. A compact subset E of C is called AB-removable if every bounded
holomorphic function f defined on W—E is extended to a holomorphic function on W,
where W is a neighbourhood of E.

§4. Removability of holomorphic mappings to C-nondegenerate Rieman surfaces

Theorem 2. Let R be a C-nondegenerate Riemann surface and B a Riemaun surface
which is a (possibly brauched) covering surface over R with the projection 7, R—R.
Suppose that for each p in R there exists a neighbourhood V of p such that every com-
ponent of 7°'(V) is also a C-nondegenerate Riemann surface. Then, for every AB-
removable compact subset E of D, every holomorphic mapping f of D—E to R is extended
to a holomorphic mapping of D to R.

Remark. The conclusion of the theorem is not valid if B is a compact Riemann
surface. In fact, there exist R, E, and f such that E is AB-removable but f ; D—E—R
can not be extended to a holomorphic mapping of D to R (§5 Example 1).

Proof. First, we show the statement when R=R, i.e., #=id..

The universal covering surfaces of R and D— E are conformally equivalent to the
upper half plane U. Hence, R and D—FE are represented by torsion free Fuchsian
groups /" and "y as U/I" and U/I',, respectively. As in the proof of Theorem 1, there
exists a holomorphic mapping f of U to U such that the following diagram is com-
mutative ;

i

U———U

nol 17:

D—-G=U/T", —f—> U/'=R

where 7, and = are the canonical projections of U onto D—FE and R, respectively.
Furthermore, there exists a group homomorphism 6 of I’ to /" with

For=0@)-f for all yel',.

We show that 6(y)=id., namely, fey=F for all v in I",. To do this, it suffices to
show that for any simple closed curve 7, f(7) is homotopic to a trivial curve in R.
We may assume that 7 consists of a finite number of horizontal segments and vertical
ones. Denote by = the inside of 7.

First, we draw vertical and horizontal lines in =z such that they divide = into
small rectangles x;; (¢, =1, 2, ---, k) and the radii are less than a sufficiently small
number §>0.

Next, we consider small circles ¢ (a=1, 2, 3, 4) with the radii 6 X(diam =) centered
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at the vertices of z;;, where diam=;; is the diameter of x;;.

Since E is an AB-removable subset of D, it is of class Ny and of class Np in the
sence of Ahlfors-Beurling [1]. Thus, when we take arbitrary points p§ and p$; on
c¢fNmi;and on cdNry; (1<a, B<4), respectively, p& and pé; can be joined by a curve
in 7,;,—E whose length differs arbitrarily little from |p¢—p#;|. The similar is valid
for pg and p8, (G, ))#(U, k) ([1] Theorem 10). So, we can easily construct an open
covering {©O,,} of = such that

(a) each D,, is a Jordan region,

(b) the boundary 090,, is in #—FE and the length is less than g,

€) OnaNOu#@ ((n, n)+(k, 1)) and mUn Oun=r.

The AB-removability of E implies that the Carathéodory metric Cp.p is equal to
the one on D and the Poincaré metric on D. Hence, if we take o sufficiently small,
then we have from (b)

@ Cp-gL(0Dn.)<e  for each D,,

where ¢ is the number given at Definition 2 for a C-nondegenerate Riemann surface R,
because the ratio between the Poincaré metric and the Euclidean metric is bounded on
a compact subset of D. From the distance decreasing property of the Carathéodory
metric, we have

CRL(f(a‘Dm n))< €.

Hence, each f(0D..) is a trivial curve in R. Since y=0r is freely homotopic to the
sum 3300,,, S0 is f(7) to 2 f(00n,). Thus, f(r) is a trivial curve and we have shown
the statement when R=R.

As for the general case, consider a holomorphic mapping #-f of D—E to R. Since
Zof has a holomorphic extension @ on D as above, we can take a neighbourhood V'’
of @(z) and U, of z for each point z in E such that @(U,) is contained in V’ and every
component V of 7 }(V') in R satisfies the condition of the theorem for #; R—R. Then,
7o f(U,N(D—E)) is contained in some component of # (V). Hence, f|(UN(D—E)) is
a holomorphic mapping to a C-nondegenerate Riemann surface by the assumption of the
theorem, and it has a holomorphic extension from the above argument. So, f; D—FE
—R is extended to a holomorphic mapping of D to R.

§5. Examples

In this section, we shall construct some examples about the preceding sections.

Example 1. We give a compact Riemann surface K, an AB-removable compact
subset £ of D and a holomorphic mapping f of D—FE to R which has not a holomorphic
extension of D to R. '

Let R, be a compact bordered Riemann surface whose double is of genus g=2.
Then, R, is represented as U/I’, by a finitely generated Fuchsian group I', of the
second kind on U. It is easily seen that the limit set 4 (CR\U{o}) of I, is a closed
set of linear measure zero. Indeed, let i be the harmonic measure of A4 in U. Since
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Ais I'y-invariant, # is automorphic for I",. Thus, # is projected to a bounded harmonic
function u on R,. Obviously, u vanishes on dR,, so u=0=#. This implies that A4 is
of linear measure zero and AB-removable.

Since I, is of the second kind, the region of discontinuity 2=€—A is connected
and Q/I', is a compact Riemann surface R of genus g=2. Take an open disk B in
C such that BNA#@ and dBCR2. Then, f=n|BN2 is a holomorphic mapping of
B—(BNA) to R, where = is the natural projection of £ onto R. BN/ is a compact
subset of B and AB-removable, but f can not be extended to a holomorphic mapping
of B because A is the limit set of I',. Thus, we have constructed a desired example.

Example 2. (A C-nondegenerated Riemann surface of infinite genus) Let {/,}%_,
be a set of closed line segments on the unit disk D satisfying the conditions;

(x) (the Poincaré distance between [, and [,)>¢ (n#m) and (the Poincaré
length of I,)>¢ (n=1, 2, ---) for some ¢>0.

We denote by D,, D, two copies of D with the slits {I,}%,, and connect them to each
other by identifying two edges of [, (n=1, 2, ---) crosswisely. A two-sheeted Riemann
surface R over D with the branched points over the endpoints of I, (n=1, 2, ---) is
obtained. Obviously, R is of infinite genus. So, it suffices to show that R is a C-
nondegenerate Riemann surface.

Let w be a non-trivial smooth closed curve on R. Then, from the distance decre-
asing property of the Carathéodory metric, we have

@ CrL(w)2CpL(p(w)),

where p is the natural projection of R onto D. Since w is non-trivial on R, it is easily
seen that p(w) joins two distinct segments of {/}%_, or contains a subafc of p(w) rounds
some [,. In any case, the Poincaré length of p(w)is more than e by the assumption.
Since the Carathéodory metric for D is the Poincaré metric for D, we have

CoL(p(w)>e.

Thus, from (4) CgL(w)>e¢, which implies that R is a C-nondegenerate Riemann
surface.

Next, we note the following ;

Proposition. Let R be a compact bordered Riemann surface and R a Riemann sur-
face which is a (possibly branched) covering snrface over R with the projection 7 ; R—R.
Suppose that for each pE R there exists a neighbourhood V of p such that every com-
ponent of #~WV) is a compact bordered Riemanu surface. Then for an AB-removable
compact subset E of D, every holomorphic mapping f of D—E to R is extended to a
holomorphic mapping of D to R.

Proof. By the same argument as in the proof of Theorem 2, it suffices to show
that the statement of Proposition is valid when R=RF. We may assume that the
boundary dR of R consists of a finite number of analytic Jordan curves. It is known
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(cf. Heins [2]) that there exists a holomorphic function . of R\UGR such that |h|<1
in R and |1]=1 on dR. Since h-f is a bounded holomorphic function of D—E, it has
a holomorphic extension ¥ on D. Noting that R is regarded as a-finite branched
covering over D via h, we verify that for each z in E, there exists a neighbourhood
of V' of ¥(z) such that each component of 4~*(V’) in R is simply connected. We can
take a neighbourhood U, of z in D so small that h-f(UN(D—E)) is contained in V',
Then, f(UN(D—E)) is in V for some component V of 1~ (V’). Since V is conformally
equivalent to the unit disk, f|U.N\(D—E) is regarded as a bounded holomorphic func-
tion and has a holomorphic extension F, on U,. Since z€FE is arbitrary, there exists
a holomorphic mapping F of D such that F=F, on U,, and we have shown the state-
ment when R=R.

The proof of the above proposition is simpler than that of Theorem 2. So, we
need construct a Riemann surface B which is C-nondegenerate but does not satisfy
the condition of Proposition for any compact bordered Riemann surface.

Example 3. We give a C-nondegenerate Riemann surface which does not satisfy
the condition of Proposition.
To do it, we note the following ;

Lemma 2. We can take an annulus A={zeC ; 0<r<|z|<1} and segments I, in A
with the endpoints a, and b, (n=1, 2, ---) satisfying the followings; :

() {I.}2., satisfies the condition (*)in Example 2 with respect to the Poincaré metric
for the uuit disk D.

(ii) a bounded holomorphic function on A vanishing at \JS_,(a,\Jb,) is zero on A.

Proof. We take A and {[,}5., by the following way. Let I" be a Fuchsian group
acting on the upper half plane U such that U/I" is a compact Riemann surface.
Furthermore, we assume that U/I" is symmetric with respect to a certain simple geo-
desic a on U/I’, and that the imaginary axis on U is mapped to « by the canonical
projection = of U onto U/I’. Let g(z)=kz(k>1) be in I" corresponding to a. Then,
there exists a fundamental region w for [’ such that w is contained in U(k)=UN
{1<|z|<k} and symmetric with respect to the imaginary axis. We take a closed
segment s in @ with the endpoints z,, z, and set S={rel"; r(s)cUk)N{Re z>0}}.
Since U(k) is a fundamental region for a cyclic group {g)> and A=U/{g) is an annulus,
U{r(s); reS} is corresponding to a set of segments {I,}%_, in A accumulating to one
of the boundary component of A. We set A={r<|z|<1} such that {I,}%., accumu-
lates to the unit circle.

We must show that {/,}%., satisfies the above conditions. Let i be a bounded
holomorphic function on A vanishing at \U$_,(a,\Ub,). Then, hex’ is a bounded holo-
morphic function on U, where =’ 'is the canonical projection of U onto A=U/{g).
Furthermore, it- vanishes at \Ug_,{g"+7(z,)\Ug"+7(2,): 7ES}. On the other hand, U/’
is a compact Riemann surface. Hence, I is a Fuchsian group of divergence type,
namely, for each z in U,



650 Hiroshige Shiga
2 (A—=1Fer(2))=+o,
el

where F is a Mobius transformation of L' onto D. Since each y(s) in U(k) corresponds
to a coset of /'\{(g), we have for a certain F

2 A= [Feg"(y(z)=2"" 2 (1= |Fer(z)])

;{L—Sé rel’
=+  (j=1,2).

Hence, the zeros {F-g"(y(z;)), =1, 2: r&S} of a bounded holomorphic function hex’eF~!
on D does not satisfy the Blaschke condition (cf. Tsuji [7]), and we conclude that
her’eF'=0 and h=0. We have shown that {/,}%., satisfies the condition (ii).

Let pp(z)|dz| and p,(2z)|dz| be the Poincaré metrics on D and A, respectively. If
zeA is in {(147)/2<|z| <1}, an ineguality

)] pA2)SMpy(2)

holds for some constant M >0 because a disk {we.d: |w—z|<1—|z|} is contained in
A. It is easily seen that {I,}%_, satisfies the condition (*) in Example 2 with respect
to p4. Therefore, from (5) we verify that {/,}5_, satisfies it with respect to pp.

We denote by D, (resp. D,) a copy of D (resp. D—\Ug_,L%) with the slits {/,}%.,
CA (resp. {I,}$., and {L,}%.,), where I, and A are taken as in Lemma 2, L,=
[das1, €a] and L,=(c,, d,) with 0<c,<dp,<cn-1<dn_,<r and lim ¢,=lim d,=0. First,

we connect D, and D, along {/,}%., as in Example 2 and construct a two sheeted
Riemann surface R, over D. Next, we set D(n)=D—[0, c¢,]\U[d,, 1) and take k(n)
copies D(n),, -+, D(n)xny of D(n), where k(n) is a natural number with

n

lz(n)So on(2)1dz| >e>0.

Cutting D(n); along (c,, d.) (j=1, -, k(n), n=1, 2, ---), we construct a Riemann sur-
face R by identifying the upper edge of (c,, d,) in D(n); with the lower edge of
(cn, du) in D(n)jy, (7=0,1, -+, k(n), n=1, 2, --), where D(n)e=D(n)rny+,=Ro. R is
is our desired surface, i.e., R is a C-nondegenenerate Riemann surface but does not
satisfy the condition of Proposition. It is easily seen that R is a C-nondegenerate
surface. Indeed, let w be a non-trivial simple closed curve and p the natural projec-
tion of R to D. Then, p(w) has a subarc which rounds some (0, ¢,] k(n)-times, rounds
some [,C A, rounds (0, d,) or connects two distinct segments of {[,}%.,. Thus, we
have
inf{CpL(p(w)): w is a non-trivial simple closed curve in R}>0.

From the distance decreasing property of the Carathéodory metric as before, we con-
clude that R is a C-nondegeuerate Riemann surface. Next, suppose that R is a cover-
ing surface over some compact bordered Riemann surface R,. Let m be the projection
of R to R, and let i be a bounded holomorphic function on R, such that [1]| <1 in R,
and |2]=1 on dR,. Then, F=he-x is a bounded holomorphic function on R, in parti-
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cular, F is a bounded holomorphic function on n-'(A), where A is the annulus given
at first. We denote by V, the component of m-'(A) which is contained in D,\UD,
(CR) jointed at {I,}%_,. Consider a function (F(z)—F(z')?>=H() on A, where z and
z' are two points on V, with n(z)=n(z")={cA. H is well-defined and vanishes at
\Uz_(@.\Ub,). Therefore, /=0 by the construction of {/,}%_,. This implies that F|V 4
is a lift of holomorphic function on the annulus A via =. On the other hand, D, has
no slit in {|z| <} where F is holomorphic. Hence, F is regarded as a lift of a holo-
morphic function on the unit disk D via n. Thus, for every sequence {z,}%., on D,
with lim #(z,)=0, lim F(z,)=a exists and |a|<1l. For a neighbourhood V of a in D,
we verify that there exists a component V'’ of F~V) such that V’ is not a compact
bordered Riemann surface. Since h~!'(a) consists of finite points of R,, for any neigh-
bourhood V of h™Ya) n'“(l7) contains a Riemann surface which 1s not a compact
bordered Riemann surface.
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