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§ 1 .  Introduction

T he classical function theory has some theorems about the removability of singulari-
ties of holomorphic func tions, e .g ., R iem ann 's theorem , b ig  P ic a rd 's  th e o re m . The
purpose o f this paper is to extend such theorems for holomorphic mappings to Riemann
surfaces. A s fo r  b ig  Picard's theorem  for holomorphic m appings to Riemann surfaces,
O htsuka [5] showed the  following ;

Theorem 1. L e t  f  be a holomorphic m apping o f th e  punctured disk  D*={zE-C ;
0 <121 <1} to a Riemann surface R  o f genus g. Theu, the followings are valid;

(i) I f  R  is  the Riemann sphere e and l i r n f ( z )  does not exist, then f  takes allz_.0
points ex cept at m ost tw o points of e inf initely  m any  tim es. If  R  is  a torus T  and
lim f(z) does not exist, then f  takes all points of T inf initely  m any  tim es. In particular,z-0
i f  R  is contained in a2, a31 or T — {b} (a j>e, j=1, 2, 3 , and bET) > then  f  has
a lim it in R as z—>I3 and is ex tended to a holomorphic mapping of the unit disk  D  to  R,
where R  is a Riemann surface f illed up the Punctures o f R.

(ii) I f + o o , then lim  f(z) exists in R  or there exists a boundary neighbourhoodz-.0
V of R  such that V is conformally equivalent to D*, and f (z ) converges to  a  boundary
point of V corresponding to the origin of D* as 2-40.

F irst, w e shall g ive a n  elementary proof o f  Theorem 1 by using Fuchsian groups.
Such a  m ethod w as taken by M arden, R ichard and Rodin [4] and Royden [6], but our
proof is different from theirs.

Secondly, we shall extend th e  exceptional se t in  T heorem  1  a n d  consider t h e  re-
movability for holomorphic m appings to Riemann surfaces satisfying certain conditions
(Proposition and Theorem 2).

Finally, we shall constuct som e exam ples related to the  above results.
T he  author w ould like to express h is hearty  gratitude to  P ro fesso r N . S u i ta  f o r

h is  contribution to  th e  proof o f  Theorem 2.
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§ 2 .  A n elementary proof o f  Theorem 1

Lemma 1. Let R  be a Riemann surface whose universal coveriug surface is con-
formally equivalent to the upper half plane U . Then, for a  holomorphic mapping f  of
D * to R , the same result o f (ii) in  Theorem 1 holds.

P ro o f. Let r  be a Fuchsian group o n  U su ch  th a t U/T2--z -R . T h e  punctured disk
D * is also represented by Ul<A >, where A (z )=z +a (a > 0 ) . T h e re  e x is t  a holomorphic
mapping .7 o f  U to  U and T A E_F such that the diagram

U U
7%1

17r
D*= U/<A>

is  commutative and

(1) J OA '= r A n o J (nE Z ),

where 7r 0 a n d  ir  a re  th e  canonical projections of U onto D * an d  R , respectively.
If  r, is  no t th e  identity , then it is parabolic . Indeed, for the Poincaré distance

o n  U, w e have

p(.7(z), i(w)) p(z, w) (z , wE U),

since J  is holomorphic (Schwarz's lemma). Thus,

P(T1i(.7(z)), .7(z))=P(RA(z)), 1- (z)) P(A(2), z).

Hence, we verify that

inf I P(TA(z), z ) ;  z  U} =0

because of inflp(A(z), z); zE U } = O .  This im plies that r„ is parabolic. W e  m a y  a s -
sum e tha t T A (z )= z + 1 . S h im iz u 's  le m m a  (cf. K ra  [3 ] p . 60) says that there  ex ists a
constant c > 0  su ch  th a t Uc =iz E U ; Im z>e} is precisely invariant b y  <TA> in  F .  Con-
sider the  circles Cc= I lz l= t}  in  D*  ( 0 < t< 1) a n d  th e ir  lifts 'Ô' t o n  U  w ith  the  end
points z , and zt+a(=TA(zt)). From (1) we have  A zt-i-a )= A zt)+1 . Because of Schwarz's
lem m a again, we have

(the Poincaré length o f  .17(0 1))5(the Poincaré  length o f  0 ,)  -->  0 (t —>0)
and

p(A z t), A z t)+1)=P(A zt), A z t+a))---P(z t, z t + a )- - - ›  0 (t 0).

Therefore, Im Az t )-->+ 0 9  a s  t—>0 and  ./(0t)CUe fo r  sufficiently  sm all t(>0). S e t  V=
n(U,), then V is conform ally equivalent to D * and

f (c f(n . o(e' t))=7r(_ 0)c7r(up=v ,

fo r sufficiently sm all t(>0). H ence, f  is regarded a s  a  bounded holomorphic function
o n  a  neighbourhood o f  z = 0  i n  D*, and  can be extended holomorphically to  z = 0  by
R iem ann's theorem.
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If I n  i s  the identity , then 7r- lo f  is regarded as a holomorphic function of D* to  U.
T h u s , z = 0  is  a removable singularity of f .

Proof o f Theorem 1. If g 2 ,  t h e n  the universal covering surface of R  i s  the
upper half plane. Hence, the statem ent of (ii) follow s from  Lem m a 1. N ext, w e con-
sider the case R = T .  Suppose tha t lim f(z) does no t ex ist and th e re  e x is ts  a point bz-o
of T  such  that such  that f  (z )=b for only finitely many z  in D *. Consider the restriction
f  D;.' for a sufficiently small r>0, where /3 1 = .-  { 0 < lz l< r } .  Then, w e m ay assume that
f  1E4' i s  a  holomorphic m apping  o f  D ;' t o  T —  { b} . Since the universal covering of
T — {b} i s  U, lim  f (z ) exists in T  f r o m  L e m m a  1 . This contrad ic ts the assumption.z_.0
T h u s, w e  h av e  sh o w n  the statem ent of ( i ) for R = T .  Sim ilarly, w e can show i t  for
R =Ô .

§  3 .  The Carathéodory metric and C-nondegenerate Riemann surfaces

In th is section, we prepare some definitions for § 4.

Definition 1. Let M  b e  a  com plex manifold and 11,(M ; D ) the fam ily  o f all
holomorphic functions f  f ro m  M  to  the unit disk  D w ith  f ( p )= 0  (p E M ). F o r  each
tangent vector y a t  p ,  w e set

c o=supil<af(p), v>i ; f 1-1(M ; D)}  ,

where <a, y> is  the natural pairing between a cotangent vector a and a tangent vector
V. W e  c a l l  Cm  the Carathéodory  metric for M.

Usual normal-family argument g u a ra n te e s  th a t c,f(p, is  con tinuous in  (p ,
Furtherm ore , it is easily  seen  that Cm h a s  the distance decreasing property, that is, if
f ;  M - 0 1 ' is  a holomorphic mapping, then

C m, (f (P), f* (v )) cm(P, u).

The Carathéodory m etric for D is equal to  the Poincaré metric, i. e.,

CD(z, v)=  v — z1 2 ) •

For each smooth curve w;  [a, b1-4M  on M , w e  d e fin e  the Carathéodory length
C m i,(w ) of w  by

aC  L (w )=L C  v (w (t), w  ( a t ))d t

Definition 2 .  Let R  be a Riemann surface w ith  cR(P, - )* 0  for each  pE R . T hen
R  is called C-nondegenerate if the re  ex ists  s> 0  such  tha t for every non-trivial smooth
closed curve w on R , the inequality

(2) C mL(w)>E

holds.
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Clearly, a compact bordered Riemann surface (w ith no puncture) is a C-nondegenerate
Riemann surface. Examples of C-nondegenerate Riemann surfaces of infinite genus will
be given in §5  (E xam ples 2  and 3).

Next, we consider a compact subset E  of C.

Definition 3. A compact subset E of C  is called A B-removable i f  every bounded
holomorphic function f  defined on W—E is extended to a holomorphic function on W,
w here W  is a neighbourhood of E.

§ 4. Removability of holomorphic mappings to C-nondegenerate Rieman surf aces

Theorem 2. Let R  be a C-nondegenerate Riemann surface a n d  a Riemaun surface
w hich is a (possibly  brauched) cov ering surface o v e r I? w ith  the projection ;
Suppose th at fo r  each p in  R there ex ists a neighbourhood V o f p such that ev ery  Coln-

Ponent o f  Fe- '( V ) is  also  a  C-nondegenerate Riemann surface. T hen, f o r  ev ery  A B -
removable compact subset E o f D , every holomorphic m apping f  o f D—E to  f?' is extended
to  a holonwrphic m apping o f D  to  IZ.

Remark. The conclusion of the theorem  is not valid if f?' i s  a compact Riemann
surface. In fact, there exist , E, and f  such  tha t E is AB-removable but f ;
can not be extended to a holomorphic mapping of D  to (§ 5 Example 1).

P ro o f .  F irst, w e  show the statem ent w hen r? R , e.,
The universal covering surfaces of R and D — E are conformally equivalent to  the

u p p e r  h a lf  plane U. H ence, R  and D—E are represented by torsion free Fuchsian
groups F and F o as uir and ty r o , respectively . As in the proof of Theorem 1, there
e x is ts  a  holomorphic m apping  1  of U t o  U such  that the following diagram is com-
mutative;

U
741

D — G =w r o - - .  u/r,R
where 7r 0 and  I r  are the canonical projections of U onto D—E and R, respectively.
Furtherm ore, there exists a group homomorphism 61 o f 1'0 t o  f  with

"for=e(r).1 fo r a ll rEro•
W e  show t h a t  0(r)= id ., n am ely , for= j for a ll r in F o . T o  do this, it suffices to
show th a t for any  simple closed curve r, f(r) is  h o m o to p ic  to  a trivial c u rv e  in  R.
W e m ay assume th a t r consists of a finite number of horizontal segments and vertical
ones. D enote  by  ir the inside of r.

F irst, w e  d raw  vertical and horizontal lin e s  in  7r su ch  th a t th ey  d iv id e  7 r  in to
sm all rectangles 7r,i  (i, j=1, 2, • •• , h ) and the rad ii are less than a sufficiently small
number 6>0.

Next, we consider small circles (a = 1, 2, 3, 4) with the radii 3 x (diam n o ) centered
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a t  the vertices of 7 ri j, w here diam n o  i s  the diameter of no .
Since E  is  an A B-removable subset of D , i t  is  of class N a  and of class /VT  in the

sence of Ahlfors-Beurling [11 T h u s, w h en  w e  take  a rb itra ry  points pr., and pe;  on
q,n7r1 ; and on Oi nn i j  (1 a ,  I9S4), respectively, mi  and pe;  can  be  jo ined  by  a curve
in r 1 —E whose length differs arbitrarily little from  I M.7— P ;  .  The sim ila r is  va lid
for pZi and  Hk i)#(1, k)) ([11 Theorem  10). So, w e can easily construct an open
covering f e . „ }  of 7r such that

(a) each Omit is a Jordan region,
(b) the boundary demn i s  in 7r—E and the leng th  is  less than  6,
( c )  C , , n 0 k / # 0  ((m, n)*(k , 1)) and U

n

The AB-removability of E  im plies that the Carathéodory m etric  C D _ E  is  e q u a l to
the one on D  and the Poincaré metric on D .  Hence, if w e tak e  6 sufficiently small,
then w e have from  (b)

(3 ) c D _ E L ( a o , n ) < 6 for each O n t

where 6 is  the number given at Definition 2 for a C-nondegenerate Riemann surface R,
because the ratio between the Poincaré m etric and the Euclidean metric is bounded on
a compact su b se t o f  D. From  the distance decreasing property of the Carathéodory
m etric, w e have

CRL(f(6o..))<6.

H ence, each f o o n t i o  i s  a trivial curve in R .  Since is free ly  homotopic to  the
sum Eae,n n , so is f(T) to f ( a m ,,). T hus, f ( ' )  i s  a trivial curve and w e have shown
the statem ent when P=R.

As for the general case, consider a holomorphic m a p p in g  o
f  of D—E to R .  Since

o f  h a s  a holomorphic extension 0  on D  as above, w e can  take  a  neighbourhood V'
of 0(z) and U, of z for each point z in E such  tha t 0(L/,) is contained in V ' and every
component V of ;-f - - '(V ') in R satisfies the condition of the theorem for 7T- ; P -3 R .  Then,

f(U ,n (D — E)) is contained in some component of Tr- A V ) .  Hence, fl(U ,n (D — E)) is
a holomorphic mapping to a C-nondegenerate Riemann surface b y  the assumption of the
theorem , and it  h a s  a holomorphic extension from  the above argument. So, f ;  D—E
-4 P  is extended to a holomorphic mapping of D  to  P.

§ 5. Examples

In th is section, we shall construct some examples about the preceding sections.

Exam ple 1 .  W e give a compact Riemann surface R , an AB-removable compact
subset E  of D  and a holomorphic mapping f  of D—E to R which has not a holomorphic
extension of D  to  R.

Let R , be a compact bordered Riemann surface w hose  double i s  o f genus
Then, R o is  r e p re s e n te d  as  U/T0 b y  a  finitely generated Fuchsian group T o of the
second kind on LT. It is easily  seen  that the lim it set A  (c R U Ic o l) of T o i s  a closed
set of linear measure zero. Indeed, let a be the harmonic measure of A  in U .  Since
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A  is P o-invariant, a is automorphic for F o . Thus, f i  is projected to a  bounded harmonic
function u  on R , .  Obviously, u  vanishes on aRa, so u O m û . T h i s  implies that A  is
of linear measure zero and AB-removable.

Since F o i s  of the second kind, the region o f discontinuity i s  c o n n e c t e d
a n d  Sl/T o i s  a compact Riemann surface R  of genus g 2 .  Take an open disk B  in
C  such that B n A *  0  and aB C Q . T hen , f=r1B n,Q  i s  a  holomorphic mapping of
B — (B nA ) to  R , where 7r is  the natural projection of Q onto R .  B n A  is a compact
subset o f B  and A B-removable, but f  can not be extended to a  holomorphic mapping
of B  because A  is  the limit set of F o . Thus, w e have constructed a  desired example.

Example 2 . (A  C-nondegenerated Riemann surface of infinite genus) L et UnIT,--1
be a  se t o f closed line segments on the unit disk D satisfying the conditions ;

( * )  (the Poincaré distance between I„ and I m.)>E  (n*m ) and (the Poincaré
length of /„)>s (n=1, 2, for some s>0.

We denote by 131 , D , tw o copies of D w ith the slits  {/7,1;7„ and connect them to each
other by identifying two edges of I .  (n=1, 2, ••.) crosswisely. A two-sheeted Riemann
surface R  o v e r  D  w ith  the  branched points over the endpoints of I„ (n=1, 2, ••.) is
obtained. Obviously, R  is  o f infinite genus. So, it su ffices to  show  th a t  R  is  a  C-
nondegenerate Riemann surface.

Let w be a non-trivial smooth closed curve on R .  Then, from the distance decre-
asing property of the Carathéodory metric, we have

(4) CRL(w) CDLO(w))

where p is  the natural projection of R onto D .  Since w is non-trivial on R , it is easily
seen that p(w) joins two distinct segments of M r ,  or contains a  subarc of p(w) rounds
some I .  In any case, the Poincaré length of p(w) is  more than e by the assumption.
Since the Carathéodory metric for D  is  the Poincaré metric fo r D, w e have

CDL(P(w))> r.

T hus, from  (4 ) CR L(w)>s, which implies that R  is  a  C-nondegenerate Riemann
surface.

Next, we note the following ;

Proposition. Let R  be a compact bordered Riemann surface and a  Riemann sur-
face which is a (possibly branched) covering snrface over R with the projection Fr; P—*R.
Suppose that fo r each pŒR there exists a neighbourhood V  o f  p  such that every  com -
ponent o f  Fr'- '(V ) is a compact bordered Riemanu surface. Then for an AB-reinovable
compact subset E of D , every holomorphic mapping f  of D — E to i s  e x t e n d e d  t o  a
holomorphic mapping of D  to f?'.

Pro o f . B y  th e  same argum ent as in the proof o f Theorem 2, it suffices to show
that the statement of Proposition is  v a lid  w h e n  R = P .  W e m ay  assum e tha t the
boundary aR o f R  consists o f  a  finite number o f  analytic Jordan curves. It is known
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(cf. H e ins [2 ]) tha t the re  ex ists  a holomorphic function h o f  RUaR s u c h  th a t  h I <1
in  R a n d  h i=1  on R .  S i n c e  hof is  a bounded holomorphic function o f  D—E, it has
a holom orphic  extension T.  o n  D. N o tin g  th a t  R  is regarded a s  a- finite branched
covering over D  v ia  h, w e verify  tha t fo r  each z in  E , there  exists a  neighbourhood
o f  V ' of 7(z) such that each com ponent o f  h - '( r )  in  R  is sim ply connected. W e can
take a  neighbourhood U. o f z in  D  so  sm all tha t h .f(U ,n (D — E )) is contained in V '.
Then, f(U ,n (D— E)) is  in  V for some component V of 1 - 1 (V ' ) .  Since V  is conformally
equivalent to the  un it d isk , f I U,,n(D—E) is regarded a s  a  bounded holomorphic func-
tion and has a holomorphic extension F, o n  U ,.  Since zE E  is  a rb itra ry , there  ex ists
a holomorphic mapping F o f  D such  tha t F=F , o n  U,, a n d  w e  have shown the  state-
m ent w hen P=R.

T h e  p roof o f  t h e  above proposition is  sim pler than  tha t o f  T h e o re m  2 . So, we
need construct a Riem ann surface P  w hich  is C -nondegenera te  b u t  does not satisfy
the condition of Proposition fo r an y  compact bordered Riemann surface.

E x a m p le  3 . W e  g iv e  a C-nondegenerate Riemann surface which does not satisfy
the condition of Proposition.

T o  d o  it , w e  note  the following ;

L e m m a  2 . We can take an annulus A= {zEC ; 0 < r< lz 1 < 1 }  and segments I n  in  A
with the endpoints a n, and bn  (n=1, 2 , •-) satisfying the followings;

(i) UnI rZ-1 satisfies the condition (*) in Example 2 with respect to the Poincaré metric
for the uuit disk D.

(ii) a bounded holomorphic function on A  vanishing at U;Li(anUbn) is zero on A.

P ro o f. W e take A  and  { I. }7-L.., by the following w a y . L e t be  a Fuchsian group
a c t in g  o n  th e  u p p e r  h a lf  p la n e  U  s u c h  th a t  U /T i s  a com pact Riem ann surface.
Furtherm ore, we assume th a t  U/F is sym m etric w ith respect to  a  certa in  sim ple  geo-
desic  a  o n  uir, and th a t  th e  imaginary ax is  o n  U is m apped to  a b y  the  canonical
projection 7 of U on to  U / r .  L et g(z)=kz(k>1) be in P  c o rre sp o n d in g  to  a .  Then,
th e re  e x is ts  a  fundam ental region co f o r  T ' such  tha t w  is con ta ined  in  U(k)=Un
{1<1.71.< k } and sym m etric w ith re sp ec t t o  t h e  im aginary  axis. W e  ta k e  a  closed
segm ent s  i n  w  w i th  th e  endpoints z i , z2 a n d  s e t  S= f r E F  ;  T(s)c U(k)n {Re z>0}1.
Since U(k) is  a  fundamental region for a  cyclic group <g> and A = U gg>  is  a n  annulus,
U {r(s); rEs} is corresponding to a set of segm ents  { I} in  A  accumulating to one
of the  boundary component o f  A .  W e set fr<1.71<1} such that {I.}`,7-1 accumu-
la tes to  the  un it circle.

W e m ust show  that { satisfies the  above conditions. L e t  h  b e  a  bounded
holomorphic function o n  A  van ish ing  a t U L I (a U b . ) .  Then, h o ir ' is  a  bounded holo-
m orphic function o n  U , w h e r e  7 '  i s  th e  canonical projection of U onto A = Ugg>.
Furtherm ore, it vanishes at U`L i ignor(z i )Ugn.r(z 2 ): r E S  1 .  O n  th e  o th e r  h an d , uir
i s  a  c o m p a c t R ie m a n n  su rfa c e . H ence , r  i s  a Fuchsian group of divergence type,
namely, fo r each  7  in (/,
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E (1— I F.r(z)1 )= +co
ï Er

w here F  is  a Möbius transformation of U onto D .  Since each r(s ) in  U(k) corresponds
to  a  cose t o f T'\<g>, w e have for a  certa in  F

E (1 —  I Fogn(r(zj))1)--=- 2- 1 E (1 —  I F q (z i)l)
TiLsz rer

= + o 0 (j= 1 , 2).

Hence, the  zeros {Fogn(r(z,)), j=1,  2 :  T E S}  of a bounded holomorphic function /1.7' -F - 1

o n  D  d o e s  n o t sa tis fy  th e  B la sc h k e  condition (cf. Tsuji [71), and  we conclude that
h o n 'o F ' -,- 0  and h 0 .  W e have shown that {I„ }`,7 = , satisfies the condition (ii).

L et p D (z)1 dz and p j(z )d z l  b e  the Poincaré m etrics o n  D  and  A , respectively . If
z e A  is  in  { (1+r)/2<  z I  < 1 } , a n  inequality

(5) p1(z) 11,1pD(z)

holds fo r some constan t M > 0 because a  d isk  {w  E A  : w—z <1— Iz11 is contained in
A .  It is easily  seen  that { / 7,1;7= , satisfies the  condition (*) in  E xam ple  2  w ith  respect
to  p A . Therefore, from  (5) w e verify  that 1/n1W—I sa tisfie s  it w ith  respect to  p D.

W e denote by D , (resp . DO a  copy o f  D  (resp. D—U7,= 1 L;,) w ith  th e  slits 1/.1L1
CA (resp. 1/.17,-1 and IL.1°,7=1), w h e re  I n  a n d  A  a r e  taken a s  in  Lemma 2, L =
[d n + 1 , en ]  a n d  L.= (e., dn ) with 0<en<dn<en_,<d_1<r and lirn d 0= 0 . F ir s t ,

71 -.co 10 - . 0 0

we connect D , and  D2 a lo n g  U n I L I  a s  in  E xam ple 2  a n d  construct a  two sheeted
R iem ann surface R o o v e r  D .  N ext, w e se t  D (n )=D — [0 , c ]U [d  n , 1) and ta k e  k(n)
copies D (n) 1, ••• , D(n) , ( , )  o f  D(n), w here k(n) is  a  natural number with

c„
k(n) o p v (z )IdzI>s>0

C utting D(n) i  a lo n g  (en, d .)  ( j= 1 , ••• k (n ) ,  n = 1, 2, ••.), w e construct a  R iem ann sur-
f a c e  R  b y  id en tify in g  t h e  u p p e r  e d g e  of ( c a , d . )  i n  D(n) i  w ith  th e  lower edge of
(en , d„) in  D(n), + , (j=0, 1, ••• , k(n), n=1, 2, •-•), w h e re  D(n)0=-D(n)k(.)+1=Ro. R is
is  o u r  d e s ire d  surface, i. e ., R  is  a C-nondegenenerate Riemann surface but does not
satisfy the condition of P roposition. I t  is  e a s ily  s e e n  th a t  R  i s  a C-nondegenerate
su r fa c e . Indeed, l e t  w  be a non-trivial sim ple closed curve and  p  the  natural projec-
tion o f  R  to  D .  Then, p(w ) has a subarc which rounds some (0, c „ ] k(n)-times, rounds
some I N CA , rounds (0, d,) o r co n n ec ts  tw o  d istinct segm ents of 1 /,,17 ,-,• Thus, w e
have

in f  Co L(P(w )): w  is  a non-trivial simple closed curve in R } >0 .

From  the distance decreasing property of the Carathéodory m etric a s  before, we con-
clude that R  is  a C-nondegeuerate Riemann surface. N ext, suppose th a t  R  is  a  cover-
ing  surface over some compact bordered Riemann surface R o . L et 7  be the projection
o f  R  to  R o a n d  le t  h  be a  bounded holomorphic function o n  R o su c h  th a t Ih 1 < 1  in  R o

a n d  I hl =1 on a R n . T hen , F=hoir is  a  bounded holomorphic function o n  R , in parti-
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cular, F is  a bounded holomorphic function on r " (A ) ,  w here A  is  the annulus given
a t  f ir s t .  W e  d e n o te  b y  V A  the component o f  r ' (A )  which is contained in A U D ,
(E R ) jo in ted  a t { /„ }L i . C o n s id e r  a function (F(z)—F(z/)) 2 =H(C) on A , w here z and
z ' are tw o points on VA  w i t h  7(z)=7(z')=-CE A .  H  is w ell-defined and vanishes at
U`77=1(a,,Vb.). Therefore, 1i==.-0 by the construction of 1/.1°L i .  This im plies that FI VA
is  a lif t of holomorphic function on the annulus A via r .  On the o th e r  hand, D i h a s
no slit in flzl_<r} w here F is  holomorphic. Hence, F is  regarded  as a lif t of a holo-
morphic function  on the unit disk  D via 7 .  T hus, for every sequence {z.} -n=1 o n  D2

w ith  lim r(z)=0, lim F(z 2 )= a  exists and la I < 1 .  For a neighbourhood V of a in D,
w e verify  that there  ex ists a component V ' of F '(V )  su c h  th a t V ' is  n o t  a compact
bordered Riemann surface. Since Ii (a) consists of finite points of Ro, for any neigh-
bourhood 12 o f  h - 1 (a ) 7 - 1 (Ï2)  contains a Riemann surface w h ic h  is  n o t  a compact
bordered Riemann surface.
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