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Hypoellipticity for infinitely degenerate elliptic
and parabolic operators of second order

By

Toshihiko HosHIRO

§ 1. Introduction and results.

We are mainly concerned with hypoellipticity of differential operators (in R®)
of the form

(1.1) L = Di+f(t)Di+g(1)Dj .

Throughout this paper, we assume that f(¢)and g(r) are functions of class C*
satisfying

(1.2) f(0)=g0) =0, f(1)>0 and g(t)>0  for 1=0.

It is well known that L is hypoelliptic if it is finitely degenerate elliptic operator.
So we shall consider the case where one of f(7) or g(¢) (or both of f(z) and g(¢))
vanishes to infinite order at r=0.

Before the statement of results, let us explain our motivation. On one hand,
concerning the operator

L, = Di+f(t)D:+D?

(here we assume #/”(1)=0 in addition to (1.2)), S. Kusuoka and D. Strook [4] have
recently shown that it is hypoelliptic if and only if

(1.3) lim| rlog f(1)| = 0.

(See also Y. Morimoto [7]~[10] and T. Hoshiro [2], [3].) On the other hand, by the
argument of V.S. Fedii [1], one can see that the operator

L, = Di+f(t)D:+f(1)D;

is hypoelliptic without the assumption (1.3). Concretely, L, with f(t)=
exp(—1/]t|°) (6>0) is hypoelliptic if and only if ¢<|, while L, with f(r)=
exp(—1/]#|°) (6>0) is hypoelliptic. So one can notice that there is significant
difference concerning conditions for hypoellipticity between L, and L,. In the

Received June, 2, 1987



616 Toshihiko Hoshiro

present paper, to understand the reason for the difference, we consider the operators
of the form (1.1) generalizing L, and L,.

Our main results are the followings. (In this paper, we treat partial differential
operators in R? and, since our interest is devoted to hypoellipticity, ellipticity or
parabolicity of them except at t=0 allows us to restrict our consideration to neigh-
borhood of t=0.)

Theorem 1. Let L be a differential operator of the form (1.1) satisfying (1.2).
Assume moreover that

(1.4 f(t) and g(t) are monotone increasing for 0<t<<6,
and
(1.5) there exists a constant r(0<yr<1) such that

Vgn)ltlog f(t)|=Ze>0  for 0<t<3.
Then L is not hypoelliptic.

Theorem 2. Let L be a differential operator of the form (1.1) satisfying (1.2).
Assume moreover that

(1.6) f(@t) and g(t) are monotone increasing for 0<t <o
and monotone decreasing for —0<t<0, and

lim /g ()| log f(1)| = 0
{ lim v/77) |t 10g g(6)| = 0.

Lmn

Then L is hypoelliptic.

Note. The assumptions (1.4) and (1.6) do not play crutial roles concerning
hypoellipticity (they could be replaced by more general conditions). However,
they make our proofs easy.

Let us now explain the difference between L, and L,. Roughly speaking,
Theorem 1 asserts that large difference of “‘vanishing speed” between f(¢) and g(¢)
makes L not hypoelliptic, i.e., under the condition (1.5), f(¢) vanishes much
more rapidly than g(z) ((1.5) can be written as f(t)<exp(—e¢/\/g(r1)t) because
log f(¢)<O0 for small ). On the other hand, if f(¢)= g(¢), L satisfies automatically
(1.7) (because |log f(¢)| =C,| f(z)| ~® for any a>0), so L is hypoelliptic. (Notice
that the condition (1.7) is not compatible with (1.5).)

To understand our results (or assumptions (1.5) and (1.7)) precisely, let us now
consider the following examples.

Example 1. Let o be a positive constant and k be a positive integer. Theorem
1 and 2 show that the operator
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L = Di+exp(—1/|t]|°)Di+1*D?

is hypoelliptic if and only if e<<k4-1. Also notice that, in the case where 6>1, it
does not satisfy Morimoto’s criterion: For any ¢ >0 and for any compact set K C R?,
there exists a constant C, x such that

(1.8) llog KDY ulP S e(Lu, u)+C, gllull*, "ueCF(K).

This can be seen by taking w,(t, x, y)=u(pt, €’x, y) (0—>o0). (See, for instance
section 4 of [2].)

Example 2. Let o, and ¢, be positive numbers. Theorem 2 shows that the
operator

L = Di+exp(—1/|t|")Di+exp(—1/]t]|°)D;
is hypoelliptic.
Let us add here the following generalization of Theorem 2:
Theorem 3. Let L be a differential operator of the form
(1.9) L = Di+D(f(t, x, y)D,)+D,g(t, x, y)D,),
where f(t, x, y) and g(1, x, y) are functions of class C* satisfying the following condition:
(1.10) There exists a positive constant C such that
{ CHWO=/@ x, Y)=Cf()
Clg(t)=s(t, x, y)=Cg(t)

and

1 > | DD f(t, x, y)| S Cf(2)
15 k+11S2

< g}‘sz | DtDlg(t, x, y)| <Cg(r)
|

Sfor —8<<t<8, (x, y)E8. If f(t) and g(t) satisfy moreover (1.2), (1.6) and (1.7), then
L is hypoelliptic in (—0, 0) X Q.

Remark 1.1. Theorem 3 is of course applicable to operators with f(¢, x, y)=
f(H)a(t, x, y) and g(t, x, y)=g(t) b(t, x, ), where a(t, x, y) and b(¢, x, y) are functions
of class C* satisfying a(¢, x, y)>0 and b(t, x, y)>0 for —0<t<9, (x, y)EQ.

By a slight modification, our arguments can also be applied to the operators of
parabolic type:

Theorem 4. Let P be a differential operator of the form
1.11) P = Di{+f(¢)Di+ig(t)D,,

where f(t) and g(t) are functions of class C* satisfying (1.2) and (1.6). Assume
moreover that
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lim g(¢)7*|log f()| = O
>0
\ l‘igg Vf(t)|tlogg(t)|=0.

(1.12)

Then P is hypoelliptic.

Example 3. Theorem 4 and the argument in proof of Theorem 1 show that
the operator

P = Di+exp(—1/|t|°)Di+it*D,,

where ¢ is a positive number and k is a positive integer, is hypoelliptic if and only
if 0<2k+2.

The outline of this article is as follows: In section 2, we prove Theorem I.
We explain and show some basic facts necessary for the proof of Theorem 2 in
section 3. In section 4, we complete the proof of Theorem 2. Proofs of Theorem
3 and 4 will be given in section 5. Finally in section 6, we prove the lemma in
section 4.

The author would like to express his gratitude to Professors S. Mizohata, W.
Matsumoto and N. Shimakura for helpful encouragements. He also thanks Pro-
fessor T. Okaji for having called him attention to the article [12] (concerning the
Gevrey hypoellipticity).

§2. Proof of Theorem 1.

We shall begin with proving the following lemma. The idea of proof here is
essentially due to Y. Morimoto [7]. We modify his argument slightly so as to
apply it to the following eigen value problem (with real parameter £):

@ { — v’ (t)Hf()E¥(1) = A2g(t)v(t) for —o0<r<9,

W@) = v(—8) = 0.

Here we regard 2(>0) as an eigen value. Let us denote by 4,(£) the smallest eigen
value and by »(¢; &) the corresponding eigen function normalized in such a way that

8
S IW(r; &)|2dr=1.
-8

Lemma 2.1. Suppose that f(t) and g(t) satisfy conditions (1.2), (1.4) and (1.5).
Then:

2.2) There exists a constant C, such that
0< ()= log | €], for |&| large.
(2.3) For any 8’ (0<0'<<9) independent of € ,

s/

j [v(t; &)|3dr — 1 as |&|—>oo.
-8
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Remark 2.1. (2.3) asserts that the mass in L:norm of the eigen function will
concentrate to the origin as |§|—oo.

Proof. It is known that v(¢; £) is characterized as a function which attains
the infimum of Rayleigh’s ratio, i.e.,

ALER=  inf {sIv’]zdt-I—Sflevlzdr}/Sglvlzdt.
vE

Let us now denote by J; the interval (rA(£), A(€)), where A=A(¢) is a positive
number 0<< A< such that f(4)?=1 (| €| is supposed sufficiently large) and 7 is the
same number 0<<y<(1 as in the assumption (1.5). Now, notice that the assumption
(1.4) implies

1L
{f() B for teJ;.
g(M)=2g(rA®)
Then, with aid of Poincaré’s inequality, we obtain
2.4) AERs  inf {S |v’|"’dt+Sszlvlzdt}/Sglvl’dt
veCO”éJg)
vE

< L . inr {S
g(rA@) vecyue
v0

|v’|2dr-|—j|v|2dt}/S|v|2dt -

=g(rz: (e))[{(l —:)A(E)}2+l] '

On the other hand, it follows from the assumption (1.5) that

1
<const. (I 2A(E)
g(TA(E))_const (log [£1)°4(€)*,

when | €] is sufficiently large. So, combining (2.4) and (2.5), one can conclude (2.2).
To show (2.3), let us observe that

2.5)

2.6) of F()€? Smm Iv(; €)[2dr

LI
=[" roene o
=" v orat| el o
= 2,67 S:g(t) | v(1; &) |2dr <const. A(E)? .

Furthermore, notice that 2,(§)/|§|—0 as |&|—>oo (recall (2.2)). Then, multiply-
ing the both sides of (2.6) by 1/£%, we see that
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s 1W(t; &)1di—>0  as |&]—oo,
§<ItI<8

which is equivalent to (2.3). g.ed.

Proof of Theorem 1. We prove it by contradiction. If L is hypoelliptic, the
following inequality follows from the argument of Banach’s closed graph theorem.

For any positive integer k and for any open sets o, o' of R®such that v'€w,
there exist a positive integer | and a constant C such that

@7 1Dz ulli2ey = C{MZ;.,IID“LuHizcm)+Ilullizw} YueC~().
Let us now put

0=10LxX0, o =Iyx0,

with
0, = {(x, y); 0<x<9d, 0<y<d}
and 0, = {(x, y); 9'[2<x<9’, 8'2<y<d'}.

Furthermore, let us substitute the sequence of functions
(28) U, = un(ts X, y) = exp(inx—l—ll(n)y)v(t; n) s n=1,2,--,

(they are solutions of Lu=0 in w) to the both sides of (2.7). Then the right hand
side of (2.7) is not greater than

8
.9) Cx M8 % meas 0, X S [(t; m)|2di < C- 82
-8

On the other hand, the left hand side of (2.7) is not smaller than

’

12
(2.10) nz"xmeastxS 8,|v(t;n)|2dtgn2"-a W(1—¢),

4

when n is sufficiently large (recall (2.3)). Therefore, taking a positive integer k so
that k>C,8, we can see that the inequality (2.7) never holds under the assumption
(1.5). This completes the proof of Theorem 1.

§ 3. Criterion for hypoellipticity.

In the present section, we are going to explain our plan of the proof of Theorem
2. The proof is divided into two steps, namely, by showing the following pro-
positions.

Let us consider the following ordinary differential operator (with real parameters
(=, )



Hypoellipticity for operators of second order 621
2
Li= =L tfe+gyr.

Proposition 3.1. Suppose that f(t) and g(t) satisfy the conditions (1.2), (1.6)
and (1.7). Then the following inequalities hold for L;:
Given any €>0, there exists a positive number n, such that

@3.1) [ extog 1€121v0 11 | Loy Siyar
32) [ rertog 121710y 70 e | Loy S a0

Sfor all v&e Cy(—0, 0) and for all { € R? satisfying &+n*=nk.
Remark 3.1. In the right hand sides of (3.1) and (3.2), observe that

| Lovor w0yt = (1vorrae+{ roevo1zae { s v 1ar.

Proposition 3.2. If L; enjoys (3.1) and (3.2), then L is hypoelliptic.

Remark 3.2. The inequalities (3.1) and (3.2) give also necessary conditions for
hypoellipticity. It is because, if (3.1) does not hold, then (2.2) and (2.3) hold and
this implies non-hypoellipticity of L. (Recall characterization of ,(§) by Rayleigh’s
ratio.)

The proof of Proposition 3.2 will be given in the next section, using microlocal
energy method. In the remaining part of this section, we shall prove Proposition
3.1. The method used there is so-called “sew together” argument, which has first
appeared in Visik-Grusin’s paper (see Fedif [1]).

Proof of Proposition 3.1. Inequality (3.1) is not trivial only when ¢ approaches
asymptotically to &-axis. So we prove it supposing that { is contained in conic
neighborhood of &-axis. Proof of (3.2) follows from the argument here and inter-
changing roles of (f(¢), &) and (g(t), 7).

I) For w(r) with support in {tr (38, 8); f(t)|£|*=1/2}: 1t is very easy to see
that, if | €] is sufficiently large,

Sg(t)(log Ifl)zlv(t)lzdtgconst.Slfl [v(e)|2dt
<const. 2 S £ €12 (1) |2de
<e g Lev() (D) .

II) For w(t) with support in {t&(—39, 8); f(¢)|€|2<2}: Let a=a(¢) denote a
positive number such that f(a)|€|*2=2 and write v(¢) as

v(t) = —S:v'(s)ds .
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Then, it is easy to see that

(3.3) [Le0oras] ewa—na v
=[ s0@—nar | Lo vo)s
<2g@a [Lo(s) ws)ds.

On the other hand, the assumption (1.7) together with the fact that a(§)—0 as
| €] —co yield that, if |&] is sufficiently large,

G (log |€ | Fe(a?<log |£ |- (log /(@)
=¢(log |€])?(log 2| & | ~¥?)2
<const. €.

Therefore combining (3.3) and (3.4), we obtain (3.1) for v(¢) with support
0

sufficiently near to r=0. (The integral S g(t)|v(t)|3dt can be estimated in the
b

same way, where b=>b() denotes a negative number such that f(b)|&|¥?=2.)
III) Now we prove (3.1) for general wW(t)eCg5(—0, ). We are going to ‘‘sew
together” the results in I) and II) which are valid in overlapping regions.

Let us first take a function ¢=¢()C7 with 0=Z¢(#)=<1, ¢()=1in [1|=1/2
and ¢(¢1)=01in [¢]| =2, and put

{ 0u() =s(fOIEN?), n=I1-x

V=2V, V= X,V.

Then it follows from the results in I) and II) that
(39 [ eyaog €121 12ar <
<2(00g [£174 [ g In @ 17ar +] g v 1700}
<2¢ { [ Lon@)n@det | Len(o)-wioyary
<4e S L, v(t)«v(t)dt+remainder .
The “remainder” is estimated by
a2 (1l v 1v1det {1z pany
sea{2 {113 [ Leivparn

and furthermore, since f(¢)|&|*?=1/2 in the support of 1,
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| 7|2 <const. |&|-f(t)|&|"?<const. f()|€|*.

Therefore we can see
(3.6) remainder <e const. S Lev(t)-v(t)dt.

Now, Proposition 3.1 follows from (3.5) and (3.6).

§4. Microlocal energy method.

We start this section by preparing the Sobolev spaces and microlocal energy
which are necessary for the proof of Proposition 3.2. First we define the following
Sobolev spaces.

Definition. We denote by H*'(R?) (— oo <k, [<< o0) the space of all distributions
ue S'(RY) satisfying

mla(r, £, 1) |21+ )1 +E8+-7)! de dé dn< oo |

where @ is Fourier transform of u.

Furthermore we say that v §'((—¢, 8) X ) is locally of class H*' at (ty, Xo, ¥o)
if there exists a function ¢ €Cy((—0, §)x £) with ¢=1 in a neighborhood of
(ty» Xo» Vo) such that gucs H*'(R®).

This definition enables us to do some reductions. At first, if ue @'((—0,0) X 2)
and (t,, xp Yo)E(—0, 8)x £, there exists a pair of real numbers (k, /) such that
ues H*" at (15, x5, ¥,). The second is that, if ue H*' and Lus C* at (t,, X,, ¥,), then
we have u€ H**%!=2 at (t,, x,, o). This is shown (in case of 7,=0) in the following
way: Let ¢,eC7((—90, §)x 2) be a function with ¢,=1 in a neighborhood of
(0, xp, ¥,) such that ¢,us H*!(R?®), and choose ¢(z, x, y)=x(¢)¥(x, y) (x and - are
equal to 1 in a neighborhood of =0 and (x,, y,)=(x,, ¥, respectively) so that the
support of ¢ is contained in a closed set where ¢,=1 (we write ¢&¢,). Then the
right hand side of equation

Di(xyu) = [D}, x1(yu)+xyrLu— xy(fDi+gDi)u

is of class H*'~%(R®. In fact, the second and third terms belong to C§5 and H*'~2
respectively. The first one is of class C§ because of ellipticity of L except at t=0.
Hence we see that yyue H¥>'~% and furthermore by repeating this argument,
that u is locally of class N H*™!=" at (t,, xp, o). 1f £, 0, ellipticity of L yields
u€ N H* (=H") at (t, Xo, Yo)-

ol

Thus in the proof of Proposition 3.2, the partial Fourier transform of u at

(tO’ Xo» y0)3 i-e°9

2N &, 7) = o) S (T (=, €, 7)dr
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is smooth with respect to ¢ for almost every (¢, 7). So we can apply (3.1) and (3.2)
to it. (Lu is supposed to be smooth when we prove Proposition 3.2)

Now, we define the notion of microlocal smoothness of u& Q' ((--8, ) x 2),
since our proof of Proposition 3.2 will be microlocal (it is more precise to say ‘“‘semi-
microlocal”).

Definition. Let (¢, Xy, y,)E(—0, 6)x 2 and (§°, 2°) R?’\0. For ucsP'((—9,
0) X &), we say that u is microlocally of class H%* (=N H') at (ty, x,, ¥o: €% 7°) if
!

there exist a function ¢ € C7((—0, 0) X £) with ¢=1 in a neighborhood of (¢,, X, ¥,)
and a conic neighborhood I'y (C R?) of (¢° 7°) such that

/\
[{§ 160e & nira+etrydredr<e
—RITLR
tmer,

for any positive number s.

Remark 4.1. By standard argument in microlocal analysis, one can easily show
that u H{;> at (¢, X,, ¥,) if and only if u is microlocally of class H%> at (t,, Xq, Yo;
&, 7°) for all (&°, 2°).

Remark 4.2. In the proof of Proposition 3.2, it suffices to show that u is of
class H%> at (t,, x,, ¥,) Wwhen Lu is of class C* at (f, Xy, ,). The reason is the same
as in the first part of the present section, i.e., u€H{:! and LueCs;,. imply that
ueH L2, ue Hi;!, -+, thus we can see uc N HE! (=H{.) when ue H);? and
LueCy,. "

We end the preparation of the proof of Proposition 3.2 by recalling microlocal
energy method which the author used in [3] after some refinements. The use of the
method here is slightly different from that in [3], because the smoothness of u stated
above does not have microlocal character but has precisely ‘“‘semi-microlocal’ one.

Choose first a sequence Yy € CF(R?), N=1, 2, ---, with ¥y =1in {(x, y); x*+)*
=<r/4} and ¥,=0in {(x, y); x¥*+)y*=ri}, satisfying:

| D**¥ofry | < Cg (CN)P!
for | p| =N, |v| =K, (here Cg, and C are independent of N). Our microlocalizers
{a,(&, 7), B.(x, y)} are defined in such a way that
an(f’ 77) = ?N,,(’S'_ft)’ %_ﬂo) ) ﬁ,,(X, J’) = 1/’N,,(x_x= yo_yo)

where N,=[log n]4+1. Our microlocal energy is

SHO) = 3 lcs@P(Dy, D)Bacy(x: VI vES(RY),

1p+alSN

with

— Af-lpt —1p+
chy = M1+ el (log p)=10+el |
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(Here a’=0%1082a,, B,,,=D1D32B,-|| || stands for the normin L (R?).)

Note. S¥(v) could be called a (semi-) microlocal energy at (xo, yo; n€°% n7°).
Since the hypotheses (3.1) and (3.2) are very weak compared with subelliptic
estimates, we are obliged to carry out carefully quantitative analysis, namely, micro-
localizers {a,, 8,} must be chosen as in the study of the analytic or the Gevrey
wave front sets.

We have now the following lemma whose proof will be given in section 6.

Lemma 4.1. Let uc U H* locally at (ty, X, ¥,). Then u is microlocally of class
]

H at (ty, Xp, Yo: €% 7°) if and only if there exists a function x(t)E C7(R) with x=1
in a neighborhood of t, such that microlocal energy of xu is rapidly decreasing as
n—oo (if r,>>0 is sufficiently small), i.e., for any positive number s, there exist con-
stants M and C, such that

SM )< Con~%
when n is large (we abbreviate as S¥(xu)=0(n"%).

Let us now begin the proof of Proposition 3.2. By using microlocal energy
method, we show that u is microlocally of class H** at (¢,, X,, ¥o; £% #°) for every
(&% 7%, when Lu is locally of class C* in a neighborhood of (¢, x,, ¥,) (receall
Remark 4.1 and 4.2).

Proof of Proposition 3.2. The ellipticity of L except at =0 allows us to restrict
our consideration to the case of #,=0. Moreover, by the same reason, the right hand
side of equation

WwL(xu) = YD}, xlu+xyLu

is of class C§g if Lu is of class C* in a neighborhood of (0, x,, y,). (Here x(1)=Cyg
and ¥(x, y)E Cy have supports in small neighborhoods of =0 and (x, y)=(x,, ;)
respectively.) So it suffices to show that microlocal energy of v=yxu is rapidly
decreasing when yLv is of class C§¢.

Assume that | p+¢q| <N, and r,>0 is chosen sufficiently small so that g,&v-.
Let us operate aﬁ,”)ﬂ,,m to the equation y+Lv=Hh, namely,

aP By Ly = P B, .
Furthermore, the asymptotic expansion gives (note that [L, a{?’]=0)

@.1) Lypt 3 (DML, 0y =y,

where v,,=aB, v, hy,=aPp,  hand L™ is a differential operator with symbol
L™(; &, 7)=083,,L(t; t, &, 7). Thus we have

4.2) (LVpgs vﬁ¢)§o<§sz VITHL vy g4y, Vpg) | €7 Apgl P41l -
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Now in the following, we are going to estimate the first terms on right hand
side of (4.2) (see (4.6) below), doing one by one, under the assumption: (&%, %)
{(&,7); |7| =2|&|} (this implies that ¢™'-n< |&| Zc-n for (£, 7)Esupple,]). In
case of (&%, 7)E{(€, 7); [£] =2[n|} (then ¢™'+n= 7| <c-n for (£, 7)Esuppla,)),
one can do in the parallel way, applying (3.2) and exchanging the roles of (f(¢), &)
and (g(7), 7).

1) Forv=(k, 0) with k=1 or 2 (L™=f(+)D2¥): 1t follows from the fact that
c'en<|&| Zc-n for (¢, 7)Esupp[e,], we see

4.3) (L, 4y 7,0
= lggsf(t)fz-kvp',\qw(f; &, vt €, 7)dtdEdy|

<CnH{ Sggfeﬂ v [2dedé dn +5“f‘¢'2| b/ esl%dedE dn}
Se(Lvyy, vp)t+e(log ) 2Ly, ivs Vpg4) »

when # is sufficiently large.
2) For v=(0, I). (L™=g(¢t)D,. Also notice that |v|=1.): From the hypothesis
(3.1) together with the fact that c™'-n< |€| Sc-n for (€, 7)Esupple,], it follows

(4'4) I(L(V) vp,q-l-‘v ) qu) l

= SSS 8OWhens(t5 & Mavf(t; €, m)dedéda|

geSSS g7? | v |2drde dp et m g1 en|2drdE d7
Se(Lvyg, Vpp)+e(log n) ™2 (Lvy gavs Vp044) 5

when n is sufficiently large. (Recall that vj(z; &, #) is smooth with respect to ¢ for
almost all (¢, 7).)

3) Forv=(0,2). (L™=g(t). Also notice that |v|=2.):
(4.5 [(LPVp, g4vs Vpo) |
= 1[[§ gOminnsts; & Vi € mdrdean)
=(ogny ([ glva12drdean+aog m= ([ [ g 1visn 1 arde an
Se(Lvyg, vpe)+e(log m) " (Lvg givs Vpq4) -
Thus we obtain the inequality:

(4.6) (L"pqa qu)éfos§§2 (log ’1)_2”'(va,¢+\:- Vp,q+v)+e_l”hpqllz'f'e“qu”z s

for any positive number ¢ (when n is sufficiently large).
Remaining part of the proof is quite analogous to the ones of theorem 1 and 2
in [3]. Let us now observe that
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Cho(log n)™™ = M™cj gy .
Hence (4.6) implies
4.7 (LWM’ Wﬁﬁ)§e°§§sz(pr,q+w W,,q+v)+5_l”c;qhpq”z+5”WM||z >
where w,,=cj,v,,. Next, let us sum up the both sides of (4.7) with respect to (p, q)
satisfying | p+¢g| <N,—2. Then the first terms on the right hand side of (4.7)
will be absorbed into the left hand side (by taking ¢ sufficiently small). Namely
we have
(4‘8) E (prq* wpq)§0(n'z’)—|-e E ”qunz s

1p+asSN

1p+asN

since microlocal energy of /i=+Lv is rapidly decreasing as n—>co. (To establish
(4.8), notice that we may assume '
Lw,,, w,,) = 0n"%),
N"-ISIthISN”( b s0) ™)

by taking M sufficiently large. Cf. Lemma 1 of [3].)
By Poincaré’s inequality,

(prq7 qu)zl|thpq||2§(232)_1”qu”2 .
So from (4.8), we see that, for any positive number s, there exists a constant M

such that
SHxu) = 3 |wyll* = 0(n™*).
lt+qls.zvn

Now the proof is complete. q.e.d.

§ 5. Proofs of Theorem 3 and 4.

The proofs of Theorem 3 and 4 will be quite analogous to that of Theorem 2.
So we sketch them and point out the differences.

Proof of Theorem 3. Here we shall consider the operator L whose coefficients
depend also on x and y. (After modification with f(7, x, y) and g(#, x, y) outside
of (=8, 8)x 2, we suppose that L is defined in (—0, 8)x R?, preserving the con-
dition (1.10).) Now, the assumption (1.10) implies

(5.1) (L, p=const. {|ID,ull+(f(1)D,u, D,ui)+(g(t)D,u, Dyu}.

where ( , ) and || || denote the scalar product and the norm in L*R®) respec-
tively. So the difficulty of proof is that there are many lower order terms in the
asymptotic expansion. Let us pay attention to this point. Observe now that, in
proof of Theorem 3, the inequality (4.2) will become

(5'2) (vap qu)g 2 y!—l/‘!—l I (Lér“; vﬂ+l",q+w qu)l

0<I\’+N-I§.N'0

&7 Il gl P17 pg, g VI el
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where L3} is a differential operator with symbol L{(t, x, y; &, 7)= D%, 0%,L(1, x,
y; 7, & 7) and N, is a positive integer which we choose below.

Let us first consider the remainder term r,, y,v. Writing the symbol by oscil-
latory integral together with the fact that ¢~ len<(14|€| 4+ |7)=Zc-n for (£, )
supp[e,], we see that

1P e moll_caro. -+, Lzy=Sconst. [rpq vy l$7"

§COHSt.W+H§L +1 |agﬂ“)“;k_“m)Ilg"(uv)l(’?lLér‘gl(’i_wl)
0

<const, p~IPIFEHI=Ny(CN Jip+al |

where | |{™ denotes the seminorm in S7,, i.e.,
lal = max sup|af(t, x, y; & )| /(1+ €]+ [2])" ™.
V+ S

Therefore, if u is locally of class H%~* (recall that ue U Hy*), taking N, so that
Ny—k—12=s, we have '

5.3 ct.r v|[?
53 2.3, lirnl

” 2 _ =25
éCOHSt-[“éN’l”CM"pq.Nn”_c(Ho.—k,Lz) = 0on™).

Next, for the first terms on the right hand side of (5.2), our purpose is to show
the following inequality:
(5'4) I(Lg")) vﬁ+l",q+\n qu)l

Se(Lvy,, qu)‘l'enzwl(l()g n)_2|V+'L|(va+'L'q+v, Vpth,gv) -

We show this as follows.
i) For (v, #) with |#|=0and 1< |v|<2: We can observe that the same argu-
ments as in 1), 2) and 3) of the preceding section together with (1.10) and (5.1)
yield (5.4) with these (v, u).

ii) For (v, #) such that |v+x|>2: Since L{J is a differential operator of order
2—]v|, we can show with aid of Poincaré’s inequality in the following way:

(LG Yy grv Vog) | Sellvpgl 4L vy, gl
=econst. (Lv,,, v,)+¢e7 const. i@~ 1P|y, oll?

Seconst. (Lvy,, v,)+ern?™ (log n) M (Lvyyp pivs Vpss,gae)

where const. s are constants depending only on L.
iii) For the other (v, ), i.e., in case of |u|=]v|=1, or in case of |v|=0 and
1< |u| <2: L) is one of

2f<M-)Dx+fm+j) s 28w Dy+g(l'-+j’)
where | 2| =1,f(u+j)=D5nyf and g<u+j')=nyDyg, or

-Ds(f‘(l-") Ds) ’ Dy(g(l") Dy)
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where 1< | x| <2. Here we shall consider only the first case. Taking account of
the conditions (1.10), (5.1) and (3.2), we easily see that

|(L8'~)) Vos,gtv Vo)l
S2{(fawy D Vpn,gavs Vo | 1 (Sewr py Vormgvs Vo) |
= 3(f"pq, qu)+2(fDx Vorn,g+vs Dy Vp+u,q+v)+‘(f"p+n,q+w Vp+u.q+v)
S e(Lvy,, qu)+5”2|“|(108 ’1)_2|v+“I(LVp+#,q+w Vptb,g+v) -

Thus we arrive at the following estimate: For any positive number e,

Lv,, v,)<e n?*l(log n)~2V+* (Ly v
(Lvpgs vp) = osw+2mszvo (log n) (LVpim,grvs Vorm,g+v)

&7 Il P4 11r pg, o VI H€llvel” 5

when 7 is sufficiently large. Now, recalling (5.3), we can easily see that the same
arguments as in the proof of Theorem 2 can be applied to this case.

Proof of Theorem 4. The same arguments as in the proof of Proposition 3.1
together with the assumption (1.12) yield

(53 [ sy aog 1D 1wy 17dr s €1 | Povie) e |
and
(56) [ 702008 1717190 1715 61| Poviy D e,

where P.=D3-+f(t)&%+ig(t)n. In order to prove Theorem 4 applying these in-
equalities, we have only to obtain

BT [(Pypgs v éeoslvzlsz(log 1) (P, gave V,qa0) | €7 1yl P-ellv,l

We shall show this, supposing (6° 7)€ {(€, 7); |7|<2|&|}. If (&% e {(E, 7);
|€]=2|7|}, one can show (5.7), applying (5.6), by the same arguments as in the
preceding section.

') For v=(k, 0) with k=1 or =2 (P™=f(t)D%*): We can do in the same way
as 1) in the proof of Proposition 3.2.

2') For v=(0, 1). (P™=ig(t). Also notice that |v|=1): The inequality (5.5)
together with the fact that ¢™'+n< |€| Zc-n for (£, 7)Esupp|e,] will yield

[PV g4 Vpo) |
- 'Sggg(’)”»f‘m(t: &, WA € m)drdedy|
< (log n) m g(1)|vf;|*dtdé dz+(log m)™* m g(1)|viyav|?drdEdy
Se|(Pvyg V3 | +e(l0g 1) 2 (P, phns Vp ga0)| -

Thus we can obtain (5.7). Now by the same arguments as in section 4, we
can prove Theorem 4.
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§6. Proof of Lemma 4.1.
Here we give the proof of Lemma 4.1.

Necessity: First we suppose ¢=x(t)y(x, y) plays the same role in definition
of microlocal smoothness of u, where y& C7 with y=1 in a neighborhood of 7=¢,
and ¥ C§ with ¥=1 in a neighborhood of (x, y)=(x,, y,). Furthermore, choose
r,>>0 sufficiently small so that g,&+ and supple,]JCT,. Now let us put v=yxu
and consider the equation

6.1 3@ (Dyy Dy)Bois(X, VIV = Ca@id By, (¥r0)
= WEVV.!"CZqﬂ,,(“,,an”’(W)JrCZq "sa.ne(PV) -
0

On the first terms on right hand side of (6.1), we have

1Bacarsy @ PAUIES(SUP | By | sUP| @[ X

% const. n-% m |9(r, €. 7) |21+ 77y drdedy .

0

Therefore, if ue H>> at (¢, Xq Vo: €% 2°),

(6.2) 3 3 IehaBacguny@ TP = O™,

Ip+alSN, VSN,

for any positive number s. (Recall that cj,=M ~1#*91y~1¢l(log n)~1#*4! and the choice

of {a,, 8,}.)

Concerning the last term on right hand side of (6.1), let us observe that

7 e, ell ez, 4, ) SCONSE. | 7yqmy 157

(0+v) | (—F) (0)
gconSt' |V|=z.N: 1 Ia'l Ilz Iﬂn(q.,.v)llz
o

Zconst. nt~P1=No=1(CN,)'#*el |
Therefore, if ue H%* at (t,, x,, y,) (for some positive number k),

(6.3) EN “c;q rpq,No("/’V)Hz

1p+4ls
<const. 3 || s nollZrirro. - 12
= 1p+IISE, 27 pa. Noll_L(H "%, L?)
<const. p?&=¥e=D

Moreover, the right hand side of (6.3) is estimated by const. n™* if we take N, so
that Ny+1—k=s.

Now, combining (6.1), (6.2) and (6.3), we can conclude that S¥(yu)=0®n"%)
for any positive number s.

Sufficiency: First we show that, for any v C5(R? with support sufficiently
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small such that y-&=48,, |la,(D,, D,)=y||=0(n"*) if S}(»)=0(n"%) (where v=xu).
To see this, let us consider the following inequality:

||an‘PV“ = ”an")b(ﬂnv)“
< 33 vlTtsup [y (1@l Buvli+HIrwg Bavll -

Nisw,

First observe that,
12 Bl =0~ (log ™) if  S¥() = O(™).

Moreover, by similar argument as in the first part of the proof, we have ||ry B,v||=

O(n*~Mo~Y) when ue H>* at (t,, x,, y,). Hence, taking N, so that Ny+1—k=s, we

see ||a, vv||=0(n"*) if S¥(v)=0(n"%) and u is locally of class H** at (t,, xo, ¥,).
Next, let us observe that

i‘. a,(€, 7)Pnt7 1" Zconst. (146747777,

for (&, 7) contained in some conic neighborhood I, of (£°, 7°) and é?4-7°=1. This
fact can be seen by noticing that n®=const. (1+£%4-7%) for (£, 7)Esupp[e,] and
that, for (¢, 7)€ I', satisfying §24+7*=1, the number of » such that «,(&, 7)=1 is
estimated from below by const. (14 &%47%)"2

Thus, combining the above arguments, we see that

SS SI‘/"’(T, &, ) |A(1+&247%) " drdEdy

ry
<3V |l@, (D, DYyv|[Pr= 1 < oo,
n=1

for every ue U H** satisfying S¥(xu)=0(n"%).
>0

Now, the proof is complete. q.e.d.
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