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On the law of entropy increasing of a
one-dimensional infinite system

By

Toshio NIwA

Introduction.

It has been, and is, one of the most fundamental problems of statistical
mechanics how one can “explain” the irreversible behaviour of macroscopic
system from the reversible mechanical model [1]. The law of entropy increasing
is such a typical problem. As is well known, one of the serious conflicts comes
from the fact that entropy is invariant under the velocity reversal mapping and
microscopic dynamics is time reversible. This conflict cannot resolve even if
we assume that macroscopic states are represented by the ensembles, as is
usually done, when we require that entropy should increase monotonically instead
asymptotically.

We gave one of the possibilities of mathematically rigorous explanation to
this problem in the paper [3].

In this paper we consider a one-dimensional hard-points system with several
colors whose particles have integral positions and velocities v of unit magnitude
[v|=1[2]. We show that under some conditions entropy increases for the
initial states which have no spatial correlation, that is, the states which are
represented by direct product probability measures on the phase space. It
should be mentioned that it is impossible to assert that entropy increases for
all initial states. We mention also that the densities of the particles with the
same color of our system obey the heat equation and our entropy coincides
with the usual Boltzmann entropy, when we take a hydrodynamic limit. Our
system can be interpreted as a quotient system of a two-dimensional “hydro-
dynamical” system [2, 5]. So our results can be interpreted as the results of
special form for a two-dimensional hydrodynamical system. For example, above
mentioned result says that the hydrodynamical limit of our densities (which
are essentially one-dimensional in the sens that they are homogeneous in one
direction) represents the field of the velocities of the flow and obey the Navior-
Stokes equation.

In section 1, we describe the model in detail. In section 2, we define
entropies of various types and related concepts. In section 3 we give our main
results. In the last section, we give the proofs of the main results.
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1. Description of dynamical system.

1.1. Let Z be the set of all integers: Z={---, —1,0, 1,2, ---}, and S be a
“color” space of different 2 (£=2) colors:

S:{Qy Cyy Cpy =+, Clz}‘
Let

X={w;w: Z—-5XS}.
We write

wn)=(w(n, —), wn, +)eSxS (ne’Z).
Then X can be identified with the product space

X= EZX"’ where X,=S,XS%, S;=S:=S

we X represents a configuration of particles with colors ¢, ¢,, -+, ¢, on the
one-dimensional lattice Z. More exactly, w(n, —) represent that there exists a
particle with color w(n, —)S on the site n=Z which has velocity —1, if
on, =)+@. If wn, —)=¢@, then this means that there exists no particle
with velocity —1 on the site n. Similarly w(n, +) represents the color of the
particle with velocity +1 on the site n, if o(n, +)#@. And if on, +)=@
then there exists no particle with velocity +1 on the site n.
We call the X phase space of the system.

1.2. The time evolution mapping T on X of our system is defined as
follows:

T: X—X
is made up of the “free motion” T, of X and the “collision” C:
T=CT,.
Free motion T, is merely a translation of X:
(Tow)(n, —)=aw(n+l, —),
(Tow)(n, H)=o(n—1, +).

Collision C is defined as follows:

((n, +), w(n, =) if wn, —)+@ & on, H)+D
(Con, ). (Ca)n, +>>:{

(w(n, —), w(n, +)) otherwise.

We remark that time evolution defined by T is not exactly time-reversible but
is “essentially” time-reversible. Namely, let R be the velocity reversal mapping
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of X:
(Ro)(n, =), (Rw)(n, +))=(w(n, +), o(n, —)).

Then T does not satisfy the following relation which represents the time-
reversibility :

RTR=T"".
But we can get following

Proposition 1. R'TR’'=T"!, where R'=RT,.

This proposition can be proven from the following two lemmas which follow
easily from the definitions.

Lemma 1. RT,R=Tj;!
Lemma 2. CR=RC

Proposition 1 means that 7/'=T,T=T,CT, is a time-reversible mapping.
In the following we can discuss and get similar results for the T’ in place of
T, but we do not discuss for the T’ for the simplicity.

1.3. We represent by I, the set of states of the dynamical system (X, T),

namely M is the set of probability measures on X. We call I state space of
(X, T).
Let

@:{pem;yzn@(#zxm)}

where g is a probability measure on S; (e==+), namely, i is the space of
direct product probability measures on X=TI[(S;XxS;:). The elements of St

nezZ
can be considered as “locally equilibrium states” on X. So we call R locally
equilibrium state space.

2. Definition of entropies.
2.1. In the following we use following notations:
Definition 1. For peM, ceS, e=+, n, meZ,

Pin, m)=Pin, m; p)=plo; (T"w)(n, e)=c},
de(n, my=d.(n, m; p)= ;@Pﬁ(n, m; p)=1—P¢(n, m; p)
(Briefly Pi(n, 0)=Pin)=Pi(n; p)

d.(n, 0)=d.(n)=d.(n; p).)

Definition 2. p= is said to be of constant density, iff d.(n; g) are
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independent of n=Z for both e=+ respectively, in this case we write
d.(n; p)=d.=d.(p).

The set of the xR of constant density is denoted by Meonse-
Now we define two types of entropies and a related concept
Definition 3. Let

h(g):=lim &2 & /-t(A)logy(A)

2’\/+1

wher %, is the partition of X on [—N, N], i.e. Ay is a partition into the sets
A of following form:

A=l{w; oln, ¢)=c(n, ¢; A) for e=+ and —N=ZVn=<N},

here c(n, ¢; A)eS.
We call A(y) (if exists) K-S type entropy of geM.
Definition 4. Let for ceS

He(e) r=lim oo 2 Pi(n; p)log Pi(n ; p)

2N+1
and H(p) ::cestC(m

We call H(p) and H(p) (c€S) Boltzmann type entropy of ¢ and Boltzmann
type entropy of p w.r.t. ¢S (if exists) respectively.

Proposition 2. For pe9t, we have
h(g)=H(g).

Definition 5. Let
I(g) :=—h(p)+H(g)

We call I(¢) information of inner structure of &M or complexity of hidden
structure of p.

I(¢r) measures a degree of the strength of correlation between w(n, ¢) and
w(n’, ¢’) with respect to the p.
By this definition, proposition 2 can be restated as,’

Proposition 2". [(#)=0 for peM
Proof of proposition 2. For
A={w; o(n, e)=c(n, e; A), e==, |n| <N}, peit
N= c(n,e; A)(4y «
2(A) T _ P (ns ).

g==%,|
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Therefore

Su(A) log p(A):%‘,{ IL PEm59(m) 3 log P%”’"S'“"(m)}»
Im sN

InisN

_2 logP§:<""E"A’(nz)~Pgl(""s’“" 1I Pc(n,s;A)(n)

A ;L=s (n,)#(m, ")
c c(n,e; A7)
e'=+ (cgg(log Pc (m) P On))(A'e?(N: cg;l.e'; A)=c (n.s)*(m.e')P (n)>)
ImlsN
= 2 ZPemlogPu(m).
|1$Ll|=st1v s
Hence
h(y)—llm 2N+1 %‘,g ‘.Zl P¢(n)log Pi(n)
=2 H()=H(p). Q.E.D.
ceS

3. Main results.

3.1. Now we can state our first main result.

Theorem 1. (“Entropy increasing law”) Assume that g€ Meonse and d+d_=1.
Then we have

H(T™'w)y=zH(T™p) for Ymz=1, YVe+Q@ €S
hence
HT™'uy=H(T™u) for ¥Ymz=l1

Remark. Under the assumptions of theorem 1, we have
Pé(n, m)/P(n, m)=d./d_ for Ym=1.
So it is natural to assume that
$(n)/Pi(n)=d./d-,
in this case inequality of the theorem holds for ¥Ym=0.
As for the strictness of the inequality, we have following:

Definition 6.

D (m)=Dm; p): —Ilm (Pc(n+1 m; p)—Pin—1, m; p))*=0

2N+1 s

Theorem 2. Assume that yeémconst and di+d_=1, and 0<d,<Pi(n)<d,<1
for YneZ, e=+ (c+ @) then we have for Ym=1

a-Dm; W) SH(T™ ' u)—H(T™u)<A-Do(m; p) for some A>a>0

Proposition 3. D (m; p)=0 means D(m+k; p)=0 Yk=0 (m=1) under the



626 Toshio Niwa

same assumptions of theorem 1.

Remark. Same remark as to theorem 1 holds for theorem 2 and proposition

3.2. The mapping R and T, do not change the value of entropy H.(u),
namely we have

Proposition 4. H/(p)=H.(Rp), H(p)=H.Top) for YpcMm
Proof. Note that
Pin; Ry)=Rplo; o(n, e)=c}
=p(RMo; o(n, e)=c})=pl{o; Ro(n, ¢)=c}

=plo; o(n, —e)=c}=P.(n;p).
Hence

H(R;z)-—llm 2N+1 | E:HPC'S(n s wlog Peo(n; u)=H(p).

In the same way we have
Pi(n; Top)=Pi(n—e; p).
Hence
H{(Top)=Hp) .

Proposition 5. R’=R.T, is involutive and leaves R invaiant, i.e. (R')*=id.
and R'M=Mm

Proposition 5, whose proof is easy, and proposition 4 mean that theorem 1
holds not only for the future-direction but also for the past- d1rect10n namely
we have

Theorem 1’. Under the same assumption as in theorem 1,
H(T-"Puw=zH(T "p)  for Ymzl, c#Q
H(T- ™D umy=H(T ™u) for ¥Ym=1

Here we make important remarks:

Remark 1. Proposition 4 means also that we can not expect to get the
same result for all g€M.
Because if
H(Tw=Hp)

holds for all peIM, then, as can be easily seen from propositions 4 and 1

H(T p)=H(p)
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holds for all g=M, but this is impossible from theorem 2.

Remark 2. Theorem 1’ shows that entropy H, can decrease actually for
some M ; H(T )< H ).

3.3. For the K-S type entropy h(u), we have
Theorem 3. h(T™u)=h(y) for YmeZ, Yue

Proof.

m —13 _1 m m
h(T #)—}\}EQO—ZN_H AE%N(T 1)(A)log (T™u)(A)
. —1
_hz{rn 2N+1 AeT-%(‘le)#(A) log ¢+(A4)
Now, as can be easily seen by the definition of T, for VweX, T™w(n, ¢) is
determined by the {w(n+%, +), o(n+k, =)} s1simi. This means
Ays1mi =T ™ UA)>UAn-im1 -

Here U>B (A, B are partitions of X) means that for VAU there exists a

B3 such that ACB.
It is well known that if A>3, then

— 3 #(A)log (D)= — 3 ¢u(B) log p(B)..

Therefore
_A'ea§+.m.”(’4 )log n(A )zAET_%N)mA) log (A)
> - ” n
= A'£”§—|m| u(A”)log p(A”).
Hence
h(p)Z2 (T™ )2 h(g). Q.E.D

A part of the theorem 1 is restated in the words of I(#) by theorem 3:
Theorem 1”. Under the same assumptions of theorem 1 we have
KT wy=I(T™p) for Vm=1
Remark. Our “entropy increasing law” says that for the states u(€)
outer structure (or “observable” structure) of the state becomes simpler as time
passes in the future. In the place of it, “complexity of hidden structure” of

the state becomes more complex. This explains partially why entropy can
increase as the time passes in one direction, even though the dynamics of the

system is reversible.

3.4. Definition 6. We define the projection = from M to Sk = : M—M by
Pin; aw)=Pin;p) YeceS, e==*, neZ
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Theorem 4. For peit, we have
a(T™x(T™ p))=n(T™™ u) for ¥Ym, m’'=0
Definition 7. We define a family of mappings {Tx}mso On the space 9t by
Tap=n(T™y) for peM
By this definition, theorem 4 can be restated as follows;

Theorem 4. {Tn}mzo forms a semi-group of the mappings on the space M,
that 1s,

Tosm =Tme T for Ym, m’=0

4. Proofs of the main results.

4.1. At first we define a notion of the fundamental path of the system
(X, T) which plays an essential role in the proofs [2].

Definition 8. We call a sequence of integers
o={---, n_y, ng, Ny, Ny, o} ={nn}mez
a fundamental path (or briefly a path) of we X, iff

a) (T™w)(nm, =), (T™0)(m, +)#(D, @) for YmeZ

b) nm+1—'nm=il

C) Nper—Np=1 if T™w(ng,, —)=0@
Ami1—Nm=—1 if T™w(ng,, +)=0@

d) (Mpar—Na)Mp—np-)=—1 if Trw(ng, —)+@ and T"w(ng, +)+@
(Mmsr— M) (M — 1) =1 if Tro(ng, —)=@ or T"0(tn, +)=0

A path ¢ of w is uniquely determined, if we give such a n, that satisfies
the property a) and n,41—n, (=%1) or np—nn-, (==+1) when T"w(n,, —)+
@ and T™w(nn, +)#@. When T"w(n,, —)=@ or T"w(n,, +)=@ holds,
then #p41—"ny OF Nyy—ng, IS automatically determined by c¢) and d), so 7,
determines the path ¢ in this case. A path represents a trajectory of a particle
of w.

Definition 9. We say that a path ¢={nn}nez passes through (n, m) to
the—(respectively +)-direction, if n,=n and n,.,—n,=—1 (respectively=1).
Note that such a path ¢ is unique if exists, and is denoted by

a(n, m; e)=a(n, m;e; w) (s==).

Definition 10. We fix pyeM. For n, m, keZ, 0<k<mand e==+, ¢’=+=,
we denote by ¢ my(k, €’) the probability measured by g that the path which
passes through (n, m) to the e-direction passes through (n—m-+2k, 0) to the e’-
direction, under the condition that there exists a path which passes through
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(n, m) to the e-direction, i.e.
Qin.m)k, e)=p{w; a(n, m; e; w)=0 and ¢ passes through (n—m+2k, 0)
to the e’-direction}/p{w; Ia(n, m;¢; w)}
Lemma 3. Assume that pen.
Gt m)(k, &)=(1—d_(n+m))gti-1, m-1(R, )+ d(n+1)qG+1, m-1(k—1, &)
G m(k, e)=di(n—m)gtn_1, m-v(k, e)+(1—di(n—m)gs1, m-1y(k—1, &)
for 0<k<m

gm0, )= I1 A—d_(n—m+28)), gl m(0, —)=0
gt m(m, +)=0, gk mOn, —)=d_-(n+m) ::ii[ll (1—di(n—m—+2k))
Gonmo0, )=di(n—m)- TI A—d-(n=m+28), gtu,m(0, —)=0
G, D=0, g m(m, D= 11 (1—du(n—m-+2k)

Proof of Lemma 3. For 0<k<m,
A={w;3do(n, m; +; w)=0c and ¢ passes through (n—m-42k, 0) to the
e-direction}
=(AN{w; 73e(n+m, 0; —; @)HDUAN{w; Ta(n+m, 0; —; w)})
=({w;de(n—1, m—1; 4+ ; w)=0 and ¢ passes through (n—m-+2k, 0)
to the e-direction}N\{w; 73ao(n+m, 0; —; @)} J{w; Ja(n—m, 0;
+:o)N{w; Io(n+1, m—1; —; w)=c and ¢ passes through
(n—m-+2k, 0) to the e-direction})
Therefore, as p&M

plw; daln, m; +; 0)qt, ni(k, &)=p(A)=
=p{o;Jo(n—1, m—1; +; O gh-1.n-0(k, &) plo; 73e(n+m, 0; —; w)}
+plw; Fo(n—m, 0; +; @)} garsm-nlk—1, &) pl{o; Jo(n+l, m—1; —; w)}

As
{w; da(n, m; +; w)}={w; Ja(n—m, 0; 4+ ; w)}, etc.
we have
di(n—m)ghs, my(k, e)=di(n—m)(1—d_(n+m))gt_1. m-15(k, €)
+di.(n—m)d_(n4+m)qgcne1, m-v(k—1, ¢)
that is

Gt my(k, e)=(1—d_(n+m))gtn-1, m-1(k, &)+ d_-(n+M)qCr+1, m-v(B—1, &)
Similarly we have

G my(R, &)=d(n—m)qtn_1, m-v(k, &)+1—de(n—1m))gtn+1, m-(k—1, &)
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For k=0 or m, the formulas are easily obtained. Q.E.D.

4.2, Fundamental Lemma 4. Assume that peR, then we have following
recursive formula:

Pi(n, m)=(1—d_(n4+m))Ps(n—1, m—1)+d(n—m)P(n+1, m—1)
P(n, m)=d_-(n+m)Ps(n—1, m—1)+1—d(n—m))P-(n+1, m—1),

m=1, c+ Q@

Proof of Fundamental Lemma 4.
Pé(n, nz)=d+(n—m)os§ Gt (R, e)P{(n—m~+2k)/d.(n—m+2k)

So by lemma 3,
Pé(n, m)
=d+(n—m)o<§<m{(l—d_(n+m))q?'n-1.m-n(k, e)+d_(n+m)

“Qinsr,m-n(k—1, &)} X P{(n—m~+2k)/d.(n—m-+2k)
+dy(n—m)- 2 g, my(0, €)- Pi(n—m)/d.(n—m)
+di(n—m)- X gl my(m, e)Pi(n+m)/d.(n+m)

=d+(n—m)(l—d_(n+m))03‘_,< G-t m-n(k, &) P{n—m+2k)/d.(n—m+2Fk)
+01+(n—m)d—(n-vat)-OSkZ‘,< Gntr, m-n(R, €)- Pi{n—m+2k+2)/d.(n—m+2k+2)

—di(n—m)1—d-(n+m)Z gla-1,m-0(0, &) Pin—m)/d(n—m)
—d+(n—m)d-(n+m)zelq?n+l,m_n(m—l. &) Pi(n+m)/d.(n+m)
+di(n=m)Z g0, my(0, €)- Pin—m)/d.(n—m)
+d+(n—m)§q‘{n,m>(m, e)- Pi(n+m)/d.(n+m)
Again by lemma 3 we get
=(1—d_(n+m))d+(n—7n)osk§_lqz‘n_1,m_l)(k, &) Pin—m+2k)/d.(n—m-+2k)
+d+(n——m)d_(n+m)ogk§n_lq?n+l,m_l)(k, e)-Pin—m-+2k+2)/d.(n—m—+2k+2)

Similarly we get
Pi(n, m)
=d_(n+m) kZ Gon. (R, €) Pi(n—m—+2k)/d.(n—m-+2k)

0sksm
B
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:d_(n+m)d+(n—711)Usk§n_lq‘(‘n-1'm_l)(k, g)- Pi(n—m~+2k)/d.(n—m+2k)

+d_(n-}-m)(l—d+(n—m)osk§n_lq(n“,m_,)(k, ) Pin—m-+2k+2)/d.(n—m+2k+2)
Therefore
Pi(n, m)=(1—d_-(n+m))Ps(n—1, m—1)+d(n—m)P(n+1, m—1)
Pé(n, m)=d_(n+m)Ps(n—1, m—1)+(1—d(n—m))P.(n+1, m—1)
Q.E.D.

4.3. We prove now theorem 1. For that sake we need some more lemmas.

Lemma 5. For p&Meonst, if dit+d_=1, then

Pi(n, m)  d,
Pe(n,m) d-

for Ym=1l, neZ, c+@

Proof. From lemma 4, for m=1
d_Pi(n, m)—d. Pi(n, m)=d_{(1—d.)Pi(n—1, m—1)+d,P(n+1, m—1)}
—d{d-Pi(n—1, m—1)+(1—d.,)P(n+1, m—1)}
=(d-dy—d.d_)Pi(n—1, m—1)+(d-dy—d,d)Pi(n—1, m—1)=0

Lemma 6. Assume that pEMeons: and do+d_=1, then we have
Pé(n, m+1)=d,.Pi(n—1, m)+d_Pi(n+1, m)

for m=l, c+@, neZ, ==+

Proof. 1t follows easily from lemmas 4 and 5.
Lemma 7. 1) log(1+x)<x for —1<x

2) for —1<b<x<B<oo, there exist 0<a<A, such that
x—Ax*<log(1+x)<x—ax?

Proof of theorem 1. As is easily seen
Pin; Tru)=Pin, m; u)
Therefore, for m=1

Hc(Tm+lﬂ) - Hc(Tm,u)

M 1 (4 . (4 .
—Ev”fi_—zzv 1 |n|S§,s=:P£(n’ m+1; u)log Pé(n, m+1; p)
—lim—l—— > P¢( ;) log P¢( )
Hm T e LTS n, m; p)log Pi(n, m; p

Hence from lemma 6 (we omit the suffix ¢ and ¢)
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H(Tm+c/1)—H (T™p)

=lim————+— 2N+1 E{d+P(n 1, m)+d_P(n+1, m))log(d.P(n—1, m)+d_P(n+1, m))

—(d++d_)P(n, m)log P(n, m)}
d.P(n—1, m)+d_P(n+1, m)

. -1 +
=lim NI ?": {d+P(n—1, m) log Pin—1 m)

d.P(n—1, m)+d_P(n+1, m) }

+d_P(n+1, m)log P(nt1, m)
_ d_(P(n+1, m)—P(n—1, m))
=lim ———— 2N+1 ;‘E{dJ,P(n—l, ) log(1+ P(n—1, m) )
d+ P _1, '_P y
R R

Hence from lemma 7, 1)

H{T™ g)— H(T™p)

d_(P(n+1, m)—P(n—1, m))

—1 -
>lim—n— 3
=1im ONT1 Z:{d+P(n 1, m) P(ni—1, m)

4d_P(nt1, m-G Pzl m—Pntl, ’"»} 0 Q.E.D.

P(n+1, m)
4.4. Proof of theorem 2. As can be easily seen from lemma 4 the assumption
0<d, = Pi(n)<d,<1
means that the same inequality holds for
0<diZ Pi(n, m)<d;<1 neZ, m=0.
Therefore, from lemma 7, 2) we get as in the proof of theorem 1,

mwmw—m@w>

d_(P(n+1, m)—P(n—1, m)) \2
2lim 2N+l ) {d+P(n 1, m)( Pone T )
+d_P(n+1, m)( d:(P ("—;Eﬁ;};ﬁyﬂy m)) )

Ed+d (P{n+1, m)—P¢(n—1, 771))(1_—”(" 1 m) Pc(nfi’jl m)

=alimosyT 2N—|—1

>a-did. hm 2 (Pin+1, m)—Pi(n—1, m)y*=a-d+d_D,(m; p)

2N+l
In the same way, we have

H(T™ ' u)—H(T™u)< A-dvd_D(m; p) Q.E.D.

Proposition 3 follows easily from the inequality which we can get easily
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from lemma 6:
(P¢(n+1, m+1)—Pi(n—1, m+1))*
<2d2(P4n, m)—P¢(n—2, m))*4+2d2(Pi(n+2, m)— Pi(n, m))*
4.5. Proof of theorem 4. Note that a measure g9 is uniquely determined
by {Pin; }rez, e==%, cES.
Pin; n(T™™ u))=Pin; T™*™ p)=Pin, m+m’; p)
On the other hand
Pi(n; a(T™aT™ p)=Pin; T™x(T™ mw))=Pin, m; x(T™ p)).
Note that also
d_(nd+m4+m’; w=d-(n+m; z(T™ pn))
di(n—(m—+m’), py=ds(n—m; x(T™p)).

Hence Pi(n, m+m’; p) and Pi(n, m; a(T™ u)) satisfy the same recursive formula
w.r.t. m (m’: fixed) as one in fundamental lemma 4. They have also the same
initial values:

Pin, m"; p))=Pi(n, 0; a(T™'p)).
Therefore
Pi(n, m4+m’; p)=Pin, m; z(T™ p)) for VYm=0.. Q.E.D.

DEPARTMENT OF MATHEMATICS
Tsubpa COLLEGE
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