Metastable homotopy groups of Sp (n)

Dedicated to Professor Hiroshi Toda on his 60th Birthday

By

Kaoru Morisugi

§0. Introduction and the statements of results

Let Sp(n) be the *n*-th symplectic group. The homotopy groups of Sp(n), $\pi_i(Sp(n))$, have been studied by various authors. If i < 4n + 2, then $\pi_i(Sp(n))$ is well known by the Bott periodicity theorem [2]. For $4n + 2 \le i \le 4n + 8$, $\pi_i(Sp(n))$ are determined in [2], [3], [8], [6]. For i = 4n + 9, $\pi_i(Sp(n))$ is determined by Ōshima [12]. In this paper we determine the 2-primary component of the group $\pi_i(Sp(n))$ for $4n + 10 \le i \le 4n + 15$. In the previous paper [10], we reduced the calculation of $\pi_i(Sp(n))$ to that of $\pi_{i+1}(Sp/Sp(n))$ for some range of *i*, where $Sp = \lim_{i \to \infty} Sp(n)$ and Sp/Sp(n) is the orbit space. Since in the metastable range of *i*, $4n + 2 \le i \le 8n + 4$, $\pi_i(Sp/Sp(n))$ is isomorphic to the $\pi_i^{s}(Q_{n+1}^{\infty})$, the stable homotopy group of the stunted quasi-quaternionic projective space Q_{n+1}^{∞} , we carry out the calculation of $\pi_i^{s}(Q_{n+1}^{\infty})$ for the range $4n + 11 \le i \le 4n + 16$.

Before the statement of the main result, we prepare some notation. For $n \ge 1$ and $s \ge 1$, define a number M(n, s) by the following equation [16]:

$$(e^{t} + e^{-t} - 2)^{s} = \sum_{n \ge 1} \frac{(2s)!}{(2n)!} M(n, s)t^{2n}.$$

Then it is easy to see that M(n, s) is an integer [16]. Define a number $d^{A}(n, m)$ by

$$d^{A}(n, m) = \underset{s \ge m+1}{\text{g.c.d.}} \left\{ \frac{a(n-1)}{a(n-s)} (2s-1)! M(n, s) \right\},$$

where a(k) is 1 or 2 according as k is even or odd. Let $d_2(n, m)$ be the index of 2 in the prime decomposition of the integer $d^A(n, m)$. In the following theorem, $\pi_*()$ means the 2-component of homotopy groups, the symbol+means the direct sum and (l, k) means the greatest common divisor of integers l and k. Our main results are as follows;

Main theorem.

1) If $n \ge 2$, then

$$\pi_{4n+10}(Sp(n)) \cong \begin{cases} Z/2 + Z/2 + Z/2d_2^{A(n+3,n)} & \text{if } n \equiv 1(4), \\ Z/2 + Z/2d_2^{A(n+3,n)}, & \text{otherwise.} \end{cases}$$

Communicated by Prof. Toda January 13, 1986

2) If $n \ge 2$, then

$$\pi_{4n+11}(Sp(n)) \cong \begin{cases} Z/2 + Z/2 + Z/2 & \text{if } n \equiv 1(4), \\ Z/2 + Z/2 & \text{otherwise}. \end{cases}$$

3) If $n \ge 2$, then

$$\pi_{4n+12}(Sp(n)) \cong \begin{cases} Z/2 + Z/2 + Z/2 & \text{if } n \equiv 0(2) \\ \\ Z/2 + Z/2 & \text{if } n \equiv 1(2) \,. \end{cases}$$

4) If $n \ge 3$, then

$$\pi_{4n+13}(Sp(n)) \cong \begin{cases} Z/16 & if \quad n \equiv 1(2), \\ Z/2 + Z/8 + Z/64 & if \quad n \equiv 6(8), \\ Z/2 + Z/32 & if \quad n \equiv 2(8), \\ Z/2 + Z/2 + Z/8 & if \quad n \equiv 0(8), \\ Z/2 + Z/2 + Z/4 + Z/k & if \quad n \equiv 4(8). \end{cases}$$

where k = 16/(16, (n+4)/8).

5) If $n \ge 3$, then

$$\pi_{4n+14}(Sp(n)) \cong \begin{cases} Z/2 + Z/2 + Z/2d_2^{A(n+4,n)}, & \text{if } n \equiv 0(4), \\ Z/2 + Z/2d_2^{A(n+4,n)}, & \text{otherwise.} \end{cases}$$

6) If
$$n \ge 3$$
, then

$$\pi_{4n+15}(Sp(n)) \cong \begin{cases} Z/2 + Z/2 + Z/2 & \text{if } n \equiv 0(4), \\ Z/2 + Z/2 & \text{otherwise.} \end{cases}$$

Note that for exceptional value of n in the above theorem, those homotopy groups are already known by [14] and [7].

Since our methods for calculation of $\pi_{4n+i}^{s}(Q_{n+1}^{\infty})$ are *e*-invariant methods, in §1 we recall the basic facts about *e*-invariants. In §2 we apply the *e*-invariants to the stunted (quasi-) projective spaces HP_{n+1}^{n+k} or Q_{n+1}^{n+k} and investigate the properties of the attaching maps of their top cells, which we need in §§4-5. In §3 we recall the relations among $\pi_i(Sp/Sp(n))$, $\pi_i^{s}(Q_{n+1}^{\infty})$ and $\pi_i(Sp(n))$. In §§4-5 we carry out the calculation of the 2-component of $\pi_i^{s}(Q_{n+1}^{\infty})$ for $4n+11 \le i \le 4n+16$.

§1. The e-invariant

In this section we recall the basic properties of *e*-invariant (Cf. [1], [15], [16]). Let $K^*()$ be the reduced complex K theory and $KO^*()$ be the reduced real K theory. We denote its representative spectrum by K or KO. Let HQ be the representative spectrum of the cohomology theory with rational coefficients, $H^*(; Q)$. For $i \in Z$ (integers), there is a stable map

Homotopy groups of Sp(n)

$$CH_i: K \longrightarrow \Sigma^{2i} HQ$$
,

such that for a large j the 2j-th component of CH_i ,

$$(CH_i)_{2i}: BU \longrightarrow K(Q, 2i+2j),$$

is the usual universal (i+j)-th chern character. We denote the composite

 $KO \xrightarrow{c} K \xrightarrow{CH_{2i}} \Sigma^{4i} HQ,$

by PH_i and call it the *i*-th Pontrjagin character, where $c: KO \rightarrow K$ is the complexification map.

Let $n \ge 1$. Let X be a spectrum such that

(1.1)
$$H^{4n}(X; Q) = H^{4n-1}(X; Q) = 0.$$

For $\alpha \in \pi_{4n-1}(X)$, there exists a homomorphism

$$e(\alpha): KO^{4*}(X) \longrightarrow Q/Z$$
,

defined by

$$e(\alpha)(\beta) = \langle \Sigma^{4s} P H_{n-s}, \beta, \alpha \rangle / a(n-s),$$

where $\beta \in KO^{4s}(X)$, $\langle \Sigma^{4s}PH_{n-s}, \beta, \alpha \rangle \subseteq \pi_{4n}(\Sigma^{4n}HQ) = Q$ is the stable Toda bracket [14] associated with the sequence

$$S^{4n-1} \xrightarrow{\alpha} X \xrightarrow{\beta} \Sigma^{4s} KO \xrightarrow{\Sigma^{4s} PH_{n-s}} \Sigma^{4n} HQ,$$

and a(i)=1 or 2 according as *i* is even or odd. It is easy to see that under the assumption (1.1) the *e*-invariant $e(\alpha)$ is well defined. Now the following proposition is well known (See [1], [15] and [16]).

Proposition 1.1. Let X be a spectrum such that $H^{4n}(X; Q) = H^{4n-1}(X; Q) = 0$. Let $\alpha \in \pi_{4n-1}(X)$. Then

1) $e(\alpha): KO^{4s}(X) \rightarrow Q/Z$ is a homomorphism.

2) $e(\alpha + \alpha') = e(\alpha) + e(\alpha')$, where $\alpha' \in \pi_{4n-1}(X)$.

3) When $X = S^{4s}$, $e(\alpha)(g)$ is equal to the Adams e'_R invariant [1] up to sign, where $g \in KO^{4s}(S^{4s})$ is the standard generator.

4) $e(\alpha)(\gamma\beta) = PH_k(\gamma)(e(\alpha)(\beta))$, where $\gamma \in \pi_{4k}(KO)$ and $\beta \in KO^{4s}(X)$.

5) (Naturality) Let Y be a spectrum which satisfies that $H^{4n}(Y; Q) = H^{4n-1}(Y; Q)$ = 0. Let f: X o Y be a map. Then for any $\beta \in KO^{4s}(Y)$, $e(f_*\alpha)(\beta) = e(\alpha)(f^*\beta)$.

6) Let $\gamma: S^{4(n+m)-2} \rightarrow S^{4m-1}$ and $\alpha: S^{4m-1} \rightarrow X$ such that $q\alpha = q\gamma = 0$ for some integer a. Then

$$e(\langle \alpha, q, \gamma \rangle)(\beta) = (q \cdot e(\alpha)(\beta))e(\Sigma\gamma)(g_{m-s}),$$

where g_{m-s} is a generator of $KO^{4s}(S^{4m})$.

§2. Stunted quaternionic (quasi-) projective spaces

Let HP^n be the quaternionic *n* dimensional projective space. We denote

the stunted projective space HP^n/HP^{m-1} by HP_m^n $(n \ge m)$. Let Q^n be the 4n-1 dimensional quaternionic quasi-projective space [5]. We denote the stunted quasi-projective space Q^n/Q^{m-1} by Q_m^n . We denote the attaching map of the top cell in HP_{n+1}^{n+k} (resp. Q_{n+1}^{n+k}) by $_H\varphi_{n+1}^{n+k}$ (resp. $_Q\varphi_{n+1}^{n+k}$). Recall that $KO^*(HP_{n+1}^{n+k})$ is the free $KO^*(S^0)$ module generated by x^{n+i} for $1 \le i \le k$ and $KO^*(Q_{n+k}^{n+k})$ is the free $KO^*(S^0)$ module generated by x_{n+i} for $1 \le i \le k$. Originally $x^i \in KO^{4i}(HP_+^\infty)$ is the *i*-fold iterated product of the first KO theoretic Pontrjagin class $x \in KO^4(HP_+^\infty)$, where X_+ means a space with a disjoint base point. These generators can be chosen so that $x^{i-1} \in KO^{4(i-1)}(HP_+^{i-1})$ corresponds to $x_i \in KO^{4i-1}(Q^i)$ under the Thom isomorphism (Cf. [4]). The following theorem is essential in our later calculation and has been proved in [4] or [16].

Theorem 2.1. 1) PH_{n-s} : $KO^{4s}(HP_+^{\infty}) \rightarrow H^{4n}(HP_+^{\infty}; Q)$ is given by

$$PH_{n-s}(x^s) = \frac{(2s)!}{(2n)!} M(n, s) \cdot (x^H)^n,$$

where $x^H \in H^4(HP^{\infty}_+; \mathbb{Z})$ is the standard generator. Similarly $PH_{n-s}: KO^{4s-1}(Q^{\infty}) \to H^{4n-1}(Q^{\infty}; Q)$ is given by

$$PH_{n-s}(x_s) = \frac{(2s-1)!}{(2n-1)!} M(n, s)(x^H)_n$$

where $(x^H)_n \in H^{4n-1}(Q^{\infty}; Z)$ corresponds to $(x^H)^{n-1} \in H^{4(n-1)}(HP^{\infty}_+; Z)$ under the Thom isomorphism.

2) Let $n \ge m+1$ and $m \ge 1$. For any s such that $m \le s \le n-1$,

$$e(_{H}\varphi_{m}^{n})(x^{s}) = \frac{(2s)!M(n, s)}{(2n)!a(n-s)}, \quad \text{for} \quad x^{s} \in KO^{4s}(HP_{m}^{n}),$$

$$e({}_{Q}\varphi_{m}^{n})(x_{s}) = \frac{(2s-1)!M(n,s)}{(2n-1)!a(n-s)}, \quad \text{for} \quad x_{s} \in KO^{4s-1}(Q_{m}^{n}).$$

Examples 2.2.

- 1) $e({}_{H}\varphi_{n+1}^{n+2})(x^{n+1}) = (n+1)/24,$
- 2) $e(_{H}\varphi_{n+1}^{n+3})(x^{n+1}) = (5n+4)(n+1)/(2 \cdot 6!),$
- 3) $e_{(H}\varphi_{n+1}^{n+4})(x^{n+1}) = (35n^2 + 49n + 18)(n+1)/(2 \cdot 9!),$
- 4) $e(\rho \varphi_{n+1}^{n+2})(x_{n+1}) = (n+2)/24$,
- 5) $e(\rho \varphi_{n+1}^{n+3})(x_{n+1}) = (5n+4)(n+3)/(2 \cdot 6!),$
- 6) $e(_{0}\varphi_{n+1}^{n+4})(x_{n+1}) = (35n^{2} + 49n + 18)(n+4)/(2 \cdot 9!),$

Proof. By definition of the number M(n, s) the following is a permanent equation with respect to a variable z;

$$\left(\sum_{i\leq 1}\frac{2z}{(2i)!}\right)^{s} = \sum_{n\geq 1}\frac{(2s)!}{(2n)!} M(n, s)z^{n}$$

Comparing the both sides in the above equation, the assertions are easily verified by direct calculation and Theorem 2.1.

Proposition 2.3. For $1 \leq i \leq 3$ let X_{n+i}^{n+3} be HP_{n+i}^{n+3} or ΣQ_{n+i}^{n+3} . Then the e-invariant

$$e: \pi^s_{4n+15}(X^{n+3}_{n+i}) \longrightarrow \operatorname{Hom}(KO^{4*}(X^{n+3}_{n+i}), Q/Z)$$

is monomorphic.

Proof. Consider the cofiber sequence:

$$X_{n+2}^{n+2} \longrightarrow X_{n+2}^{n+3} \longrightarrow X_{n+3}^{n+3}.$$

Then we have the following commutative diagram:

$$\pi_{4n+15}^{s}(X_{n+2}^{n+2}) \longrightarrow \pi_{4n+15}^{s}(X_{n+2}^{n+3}) \longrightarrow \pi_{4n+15}^{s}(X_{n+3}^{n+3})$$

$$\downarrow^{e_{1}} \qquad \qquad \downarrow^{e_{2}} \qquad \qquad \downarrow^{e_{3}}$$

$$0 \rightarrow \operatorname{Hom}(KO^{4*}(X_{n+2}^{n+2}), Q/Z) \rightarrow \operatorname{Hom}(KO^{4*}(X_{n+3}^{n+3}), Q/Z) \rightarrow \operatorname{Hom}(KO^{4*}(X_{n+3}^{n+3}), Q/Z),$$

where e_i is the *e*-invariant and horizontal sequences are exact. Since e_1 and e_3 are equal (up to sign) to the usual e'_R -invariants, both e_1 and e_3 are monomorphic. Therefore so is e_2 . Similarly, considering the cofiber sequence:

$$X_{n+1}^{n+1} \longrightarrow X_{n+1}^{n+3} \longrightarrow X_{n+2}^{n+3},$$

we have the desired results.

Let j_3 (resp. j_7) be a generator of $\pi_3^s(S^0) \cong \mathbb{Z}/24$ (resp. $\pi_7^s(S^0) \cong \mathbb{Z}/240$) such that $e'_R(j_3) = 1/24$ (resp. $e'_R(j_7) = 1/240$). Then both HP_{n+1}^{n+2} and $\Sigma^5 Q_n^{n+1}$ are homotopy equivalent to the mapping cone of $(n+1)j_3$, that is, $S^{4n+4} \cup_{(n+1)j_3} e^{4n+8}$. Thus we identify them.

Proposition 2.4.

$$_{H}\varphi_{n+1}^{n+3} = \Sigma_{O}^{5}\varphi_{n+2}^{n+2} + i_{0*}j_{7},$$

where i_0 is the inclusion map of the bottom sphere.

Proof. From Proposition 2.3 it is enough to show that

$$e(\Sigma_0^5 \varphi_n^{n+2} + i_{0*} j_7) = e(_H \varphi_{n+1}^{n+3}),$$

under the identification $HP_{n+1}^{n+2} \approx \Sigma^5 Q_n^{n+1}$. Note that under this identification the element $x^i \in KO^{4i}(HP_{n+1}^{n+2})$ corresponds to the element $x_{i-1} \in KO^{4i}(\Sigma^5 Q_n^{n+1})$ for i=n+1 or n+2. Then the above equation easily follows by Proposition 1.1 and Example 2.2.

Proposition 2.5. For $1 \le j \le 4$, there exist stable maps,

$$f_j: HP_{n+1}^{n+j} \longrightarrow \Sigma Q_{n+1}^{n+j},$$

such that for $j \leq 3$ the following diagram commutes:

where the horizontal lines are cofiber sequences. In particular, for $1 \le i \le j$,

(2.7)
$$f_{i}^{*}(x_{n+i}) = ((n+1)\cdots(n+j)/(n+i))x^{n+i},$$

where f_j^* : $KO^{4(n+i)}(\Sigma Q_{n+1}^{n+j}) \rightarrow KO^{4(n+i)}(HP_{n+1}^{n+j})$ is the homomorphism induced by f_j .

Proof. By induction on j. For j=1, we take the identity map of S^{4n+4} as f_1 because $HP_{n+1}^{n+1} = \Sigma Q_{n+1}^{n+1} = S^{4n+4}$. Clearly for j=1 (2.7) holds and the diagram (I)₁ commutes. Suppose that for some k there exists a map f_k such that the diagram (I)_k commutes and (2.7) holds. Then clearly there exists a map f_{k+1} : $HP_{n+1}^{n+k+1} \to \Sigma Q_{n+1}^{n+k+1}$ such that the diagram (II)_k commutes. Then from Theorem 2.1, investigating the Pontrjagin character, it follows that for j=k+1, (2.7) holds. Now using (2.7) for j=k+1, by easy computation we have

$$e((n+k+1)f_{k}\circ_{H}\varphi_{n+1}^{n+k+1}) = e((n+1)\cdots(n+k)\Sigma_{O}\varphi_{n+1}^{n+k+1}).$$

Therefore, when $k+1 \leq 4$, by Proposition 2.3, we see that the diagram $(I)_{k+1}$ commutes. This completes the proof of Proposition 2.5.

§3. Metastable homotopy groups of Sp(n)

The following Proposition are proved in [10, Proposition 2.4].

Proposition 3.1. Let i > 4n+1. If $i \equiv 0, 1, 3$ or 7 mod 8, then $\pi_i(Sp(n))$ is isomorphic to $\pi_{i+1}(Sp/Sp(n))$. If $i \equiv 4$ or 5 mod 8, then $\pi_i(Sp(n))$ is isomorphic to $\pi_{i+1}(Sp/Sp(n)) + Z/2$.

Except the case m = 5, the following theorem is proved in [10, Theorem II].

Theorem 3.2. Let $n \ge 1$ and $1 \le m \le 5$. Then, in the 2-component, $\pi_{4(n+m)-2}(Sp(n))$ is isomorphic to the direct sum of Tor $(\pi_{4(n+m)-1}(Sp/Sp(n)))$ and a cyclic group $Z/2^{d_2^4(n+m,n)}$.

Since Q_{n+1}^{n+m} is a subcomplex of the Stiefel manifold Sp(n+m)/Sp(n), and since the pair $(Sp(n+m)/Sp(n), Q_{n+1}^{n+m})$ is (8n+9)-connected [5], by the suspension theorem it is obvious that $\pi_{4n+i+1}(Sp/Sp(n))$ is isomorphic to $\pi_{4n+i+1}^s(Q_{n+1}^\infty)$ for $i \leq 4n+3$. So from Proposition 3.1 and Theorem 3.2, in the metastable range for our purpose it is enough to compute the group $\pi_{4n+i+1}^s(Q_{n+1}^\infty)$. This can be done in the following sections.

Proof of Theorem 3.2. For the proof it is enough (see [10]) to show that for m=5, the stable quaternionic James number $X^{s}\{n+m, m\}$ ([11] or [10]) is equal

to the order of e-invariant of ${}_{Q}\varphi_{n+1}^{n+m}$ which is easily obtained by Theorem 2.1 and we denote it by $X^{A}\{n+m, m\}$ [10].

Consider the following Atiyah-Hirzebruch spectral sequence:

$$E_{p,q}^2 = H_p(Q^{\infty}; Z) \otimes \pi_q^s(S^0)$$

which converges to $\pi_*^{s}(Q^{\infty})$, where all spectra are localized at (2). We denote the generator of $H_{4p-1}(Q^{\infty}; Z)$ by γ_p . Then we have

Lemma 3.3.

 $d^{8}(\gamma_{n+1} \otimes \eta \kappa) = \gamma_{n-1} \otimes \varepsilon \kappa \quad if \quad n \equiv 1 \quad or \quad 2 \mod 4 \quad and \quad = 0, \quad otherwise.$

 $d^{8}(\gamma_{n+3}\otimes \overline{\nu}) = \gamma_{n+1}\otimes \eta\kappa$, if $n \equiv 0$ or $3 \mod 4$ and = 0, otherwise. Here $\eta \in \pi_{1}^{s}(S^{0})$, $\kappa \in \pi_{14}^{s}(S^{0})$, $\varepsilon \in \pi_{8}^{s}(S^{0})$ and $\overline{\nu} \in \pi_{8}^{s}(S^{0})$ are some generators of the 2-primary component of $\pi_{*}^{s}(S^{0})$ (see [14]).

Proof. Consider the following spectral sequence;

$$E_{p,q}^2(X) = H_p(X; Z) \otimes \pi_q^s(S^0) \Longrightarrow \pi_*^s(X),$$

for $X = Q^{\infty}$, HP^{∞} or MSp (the symplectic Thom spectrum). As is well known there is a stable map $j: HP^{\infty} \to \Sigma^4 MSp$ such that $j_*\beta_{n+1} = b_n$, where $\beta_{n+1} \in H_{4n+4}(HP^{\infty}; Z)$ $\cong Z\{\beta_1, \beta_2,...\}$ and $b_n \in H_{4n}(MSp; Z) \cong Z[b_1, b_2,...]$ are standard generators. Let $\alpha \in \pi_k^s(S^0)$ and ν be a generator of $\pi_3^s(S^0) \cong Z/8$. Now under the assumption that $(n+1)\nu\alpha = 0$, Proposition 2.4 implies that $d^8(\gamma_{n+1} \otimes \alpha) = \gamma_{n-1} \otimes \delta$ for some $\delta \in \pi_{k+7}^s(S^0)$ if and only if $d^8(\beta_{n+2} \otimes \alpha) = \beta_n \otimes (\delta + \alpha \sigma)$, where $\sigma \in$ is a generator of $\pi_3^s(S^0) \cong Z/16$. On the other hand, if $d^8(\beta_{n+2}) \otimes \alpha = \beta_n \otimes (\delta + \alpha \sigma)$ then it holds that in $E_{*,*}^*(MSp)$ $d^8(b_{n+1} \otimes \alpha) = b_{n-1} \otimes (\delta + \alpha \sigma)$, moreover, $d^8(S^{4_{n-1}}(b_{n+1}) \otimes \alpha) = \delta + \alpha \sigma$, where $S^{4_{n-1}}$ is a certain Landweber Novikov operation in MSp-theory (See, for example [9]). Now it is not difficult [9] to see that

$$d^{8}(S^{A_{n-1}}(b_{n+1})\otimes\eta\kappa) = d^{8}\left(\left(nb_{2} + \binom{n}{2}b_{1}^{2}\right)\otimes\eta\kappa\right) = (n(n+1)/2)\varepsilon\kappa$$

This proves the first assertion of Lemma 3.3. Similarly the second assertion follows.

Since $X^{s}\{n+5, 4\} = X\{n+5, 4\} = X^{4}\{n+5, 4\}$, there is an element $\delta_{n} \in \pi^{s}_{4n+18}(S^{4n+3})$ such that $i_{*}\delta_{n} = X^{4}\{n+5, 4\}_{Q}\varphi^{n+5}_{n+1}$ (see the diagram below).

$$\Sigma^{4n+18} \xrightarrow{X^{A}\{n+5,4\}} S^{4n+18} \xrightarrow{\varphi \varphi_{n+1}^{n+5}} \varphi^{\varphi_{n+2}^{n+5}} \Sigma^{-1}Q^{n+4} \xrightarrow{\overline{\varphi}} S^{4n+3} \xrightarrow{i_0} Q^{n+4}_{n+1} \xrightarrow{Q} Q^{n+4}_{n+2},$$

It is not difficult to see that $X^{s}\{n+5, 5\} = X^{A}\{n+5, 5\}$ if and only if the order of δ_{n} in $\pi^{s}_{4n+18}(S^{4n+3})/\text{Im }\bar{\varphi}_{*}$ is equal to the order of the *e*-invariant of δ_{n} . In terms of the spectral sequence, the above diagram implies that

$$d^{16}(X{n+5, 4}\otimes\gamma_{n+5})=\gamma_{n+1}\otimes\delta_n$$
 in E^{16} -term.

Since $\delta_n \in \pi_{15}^s(S^0) \cong \mathbb{Z}/16\{\rho\} + \mathbb{Z}/2\{\eta\kappa\}$, Lemma 3.3 implies that if $n \equiv 0$ or 3 mod 4

then $\eta \kappa \in \operatorname{Im} \overline{\varphi}_*$ and that if $n \equiv 1$ or 2 mod 4 then δ_n can not be equal to $\eta \kappa$. Thus the order of δ_n in $\pi_{4n+18}^{s}(S^{4n+3})/\operatorname{Im} \overline{\varphi}_*$ is equal to the order of the *e*-invariant of δ_n and consequently the differential $d^{16}: E_{4n+19,0}^{16} \to E_{4n+3,15}^{16}$ can be completely determined by *e*-invariants. This proves that $X^4\{n+5, 5\} = X^s\{n+5, 5\}$.

§4. Computation

From now on all spaces or spectra should be considered to be localized at (2) since our interest are in the 2-component. We freely use the structure or notations in [14] about the 2-component of the stable homotopy groups of spheres.

1) Tor $(\pi_{4n+11}^s(Q_{n+1}^\infty))$.

Consider the following diagram:

Applying π_{4n+11}^s (), we have

$$\operatorname{Tor}\left(\pi_{4n+11}^{s}(Q_{n+1}^{n+3})\right) \cong \pi_{4n+11}^{s}(Q_{n+1}^{n+2})/(\varrho \varphi_{n+1}^{n+3} \circ \eta).$$

It is easy to see that i_{0*} : $\pi_{4n+11}^s(S^{4n+3}) \rightarrow \pi_{4n+11}^s(Q_{n+1}^{n+2})$ is an isomorphism.

Lemma 4.1.

$${}_{\mathcal{Q}}\varphi_{n+1}^{n+3}\circ\eta = \begin{cases} i_{0*}\bar{v} & \text{if } n \equiv 3(4), \\ i_{0*}\eta\sigma & \text{if } n \equiv 2(4), \\ 0 & \text{if } n \equiv 1(4), \\ i_{0*}\varepsilon & \text{if } n \equiv 0(4). \end{cases}$$

Proof. By Proposition 2.4 it is enough to show that

$${}_{H}\varphi_{n+2}^{n+4}\circ\eta=(n+2)\varepsilon+\binom{n+2}{2}\bar{\nu}.$$

But the above equation has already obtained in [13], and also follows from the second assertion of Lemma 3.3.

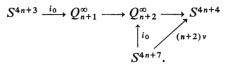
Therefore we have

Homotopy groups of Sp(n)

Tor
$$(\pi_{4n+11}^s(Q_{n+1}^\infty)) \cong \begin{cases} Z/2 + Z/2 & \text{if } n \equiv 1(4), \\ Z/2 & \text{otherwise.} \end{cases}$$

2) Tor $(\pi_{4n+15}^s(Q_{n+1}^\infty))$ for $n \ge 3$.

Now consider the following diagram:



Since $\pi_{12}^{s}(S^{0}) = 0$, $(n+2)v_{*}: \pi_{4n+15}^{s}(S^{4n+7}) \to \pi_{4n+15}^{s}(S^{4n+4})$ is trivial and $i_{0*}: \pi_{4n+15}^{s}(S^{4n+7}) \to \text{Tor}(\pi_{4n+15}^{s}(Q_{n+2}^{n+4}))$ is epic, applying $\pi_{4n+15}^{s}($) to the above diagram we have

Tor
$$(\pi_{4n+15}^s(Q_{n+1}^\infty)) \cong$$
 Tor $(\pi_{4n+15}^s(Q_{n+2}^\infty))$.

This completes the proof of 1) and 5) in Main Theorem in §0.

3) $\pi_{4n+12}^{s}(Q_{n+1}^{\infty})$ for $n \ge 2$. We shall prove

Theorem 4.2.

If $n \ge 2$, then $\pi_{4n+12}^s(Q_{n+1}^{n+3})$ is isomorphic to Z/2 + Z/2 if $n \ne 1 \mod 4$ and is isomorphic to Z/2 + Z/2 + Z/2 + Z/2, otherwise.

Consider the homotopy exact sequence associated with the cofiber sequence;

$$S^{4n+3} \xrightarrow{i_0} Q^{n+2}_{n+1} \xrightarrow{p} S^{4n+7}$$

Then we have

Lemma 4.3. $\pi_{4n+12}^{s}(Q_{n+1}^{n+2}) \cong Z/2 + Z/2$ if n is odd, and Z/2 + Z/2 + Z/2 if n is even.

Now consider the cofiber sequence

$$S^{4n+10} \xrightarrow{Q^{\varphi_{n+1}^{n+3}}} Q_{n+1}^{n+2} \longrightarrow Q_{n+1}^{n+3}$$

Using Lemma 4.1 it is easy to see that if $n \neq 1 \mod 4$, then $\pi_{4n+12}^s(Q_{n+1}^{n+3}) \cong Z/2 + Z/2$ and that if $n \equiv 1 \mod 4$, there is a short exact sequence;

$$0 \longrightarrow Z/2 + Z/2 \longrightarrow \pi^{s}_{4n+12}(Q^{n+3}_{n+1}) \longrightarrow Z/2 \longrightarrow 0,$$

where the last Z/2 is generated by $\eta \in \pi_{4n+12}^{s}(S^{4n+11}) \cong Z/2$. In order to see that the above group extension is trivial, as is well-known, it is enough to show that the Toda bracket $\langle_{0}\varphi_{n+1}^{n+3}, \eta, 2\rangle \ni 0$.

Lemma 4.4. If $n \equiv 1 \mod 4$ then the Toda bracket $\langle \rho \varphi_{n+1}^{n+3}, \eta, 2 \rangle$ contains 0.

Proof. In Proposition 2.5 we proved that there is a map $f_2: HP_{n+1}^{n+2} \rightarrow \Sigma Q_{n+1}^{n+2}$ such that $(n+1)(n+2)\Sigma_0 \varphi_{n+1}^{n+3} = (n+3)f_{2^{\circ}H}\varphi_{n+1}^{n+3}$. But if $n \equiv 1 \mod 2$, then by the

similar method it can be shown that

$$((n+1)(n+2)/2)\Sigma_0\varphi_{n+1}^{n+3} = ((n+3)/2)f_{2\circ_H}\varphi_{n+1}^{n+3}$$

This implies that if $n \equiv 1 \mod 4$, then $\Sigma_Q \varphi_{n+1}^{n+3} = 2lf_{2^\circ H} \varphi_{n+1}^{n+3}$ for some l in $Z_{(2)}$ (integers localized at (2)). Thus in order to prove Lemma 4.4 it is enough to show that $\langle f_{2^\circ H} \varphi_{n+1}^{n+3^\circ 2}, \eta, 2 \rangle$ contains 0. But the bracket

$$\langle f_{2^{\circ}H}\varphi_{n+1}^{n+3}\circ 2, \eta, 2 \rangle \ni f_{2^{\circ}H}\varphi_{n+1}^{n+3}\circ \eta^{2}.$$

On the other hand, from Lemma 4.1 and Proposition 2.5,

 $f_{2^{\circ}H}\varphi_{n+1}^{n+3}\circ\eta^{2}=f_{2}\circ i_{0*}v^{3}=(n+2)i_{0*}v^{3}=0,$

in $Q_{n+1}^{n+2} = S^{4n+3} \cup_{(n+2)\nu} e^{4n+8}$.

This completes the proof of Theorem 4.2 and 2) of Main theorem.

4) $\pi_{4n+16}^{s}(Q_{n+1}^{\infty})$ for $n \ge 3$. Consider the cofiber sequence:

$$S^{4n+3} \xrightarrow{i_0} Q_{n+1}^{\infty} \xrightarrow{p} Q_{n+2}^{\infty} \longrightarrow S^{4n+4}.$$

Since $\pi_{4n+16}^{s}(S^{4n+3}) = \pi_{4n+16}^{s}(S^{4n+4}) = 0$, we have

$$\pi_{4n+16}^{s}(Q_{n+1}^{\infty}) \cong \pi_{4n+16}^{s}(Q_{n+2}^{\infty}).$$

Therefore from Theorem 4.3 we have proved 6) of Main Theorem.

5) $\pi_{4n+13}^{s}(Q_{n+1}^{\infty})$ for $n \ge 2$. Consider the following cofiber sequence:

(4.5)
$$S^{4n+10} \xrightarrow{\varrho \varphi_{n+1}^{n+3}} Q_{n+1}^{n+2} \longrightarrow Q_{n+1}^{n+3} \longrightarrow S^{4n+11} \xrightarrow{\Sigma_{\varrho} \varphi_{n+1}^{n+3}} A^{n+2}$$

Applying $\pi_{4n+13}^{s}()$ to the above sequence, from Lemma 4.1 we have

(4.6)
$$(\Sigma_{\varrho}\varphi_{n+1}^{n+3})_*\eta^2 = \begin{cases} 0, & \text{if } n \text{ is odd}, \\ i_{0,\eta}^2\sigma & \text{if } n \text{ is even}. \end{cases}$$

On the other hand,

Lemma 4.7. coker $(_{0}\varphi_{n+1}^{n+3})_{*}$ is isomorphic to Z/2 which is generated by $i_{0*}\eta\mu$.

Proof. Consider the cofiber sequence:

$$S^{4n+3} \xrightarrow{i_0} Q^{n+2}_{n+1} \xrightarrow{p} S^{4n+7} \xrightarrow{(n+2)_{\nu}} S^{4n+4}.$$

Apply $\pi_{4n+13}^{s}()$ to the above sequence. Since $p \circ_Q \varphi_{n+1}^{n+3} = (n+3)v$, it is easy to see that if *n* is even then Lemma 4.7 holds, and that if *n* is odd then $\pi_{4n+13}^{s}(Q_{n+1}^{n+2})$ is isomorphic to Z/2 generated by $i_{0,\eta}\mu$. When *n* is odd, the image of $(_Q \varphi_{n+1}^{n+3})_*$ is trivial. Because, if the image of $(_Q \varphi_{n+1}^{n+3})_*$ is non-trivial, it follows that $_Q \varphi_{n+1}^{n+3} \circ v = i_{0,\eta}\mu$. But this contradicts with the fact that $\eta\mu$ can be detected by *d*-invariant in KO-theory [1]. Thus Lemma 4.7 has been proved.

From (4.6) and Lemma 4.7, if *n* is even then we see that $\pi_{4n+13}^s(Q_{n+1}^{n+3})$ is isomorphic to Z/2 generated $i_{0,\eta}\mu$. If *n* is odd, then $\pi_{4n+13}^s(Q_{n+1}^{n+3})$ is a certain group extension of Z/2 and Z/2. However this group extension is trivial. Because, if not, then $\langle_{Q}\varphi_{n+1}^{n+3}, \eta^2, 2\rangle = i_{0,\eta}\mu$. But this also contradicts with the fact that $\eta\mu$ can be detected by *d*-invariant in KO-theory [1]. This completes the proof of 3) of Main theorem.

§5. $\pi_{4n+14}^{s}(Q_{n+1}^{n+4}).$

Consider the following cofiber sequence:

$$S^{4n+14} \xrightarrow{Q^{\varphi_{n+1}^{n+4}}} Q_{n+1}^{n+3} \longrightarrow Q_{n+1}^{n+4} \longrightarrow S^{4n+15}.$$

From the above sequence we have

$$\pi_{4n+14}^{s}(Q_{n+1}^{\infty}) \cong \pi_{4n+14}^{s}(Q_{n+1}^{n+4}) \cong \pi_{4n+14}^{s}(Q_{n+1}^{n+3}) / \operatorname{Im}({}_{Q}\varphi_{n+1}^{n+4}).$$

First we calculate the group $\pi_{4n+14}^s(Q_{n+1}^{n+2})$. In the next Proposition, $Z/a\{\alpha\}$ means the cyclic group of order a, generated by α and the symbol + between groups means the direct sum. And *e*-invariant e() should be considered as

$$e: \pi_{4*-1}^s(X) \longrightarrow \operatorname{Hom}(KO^{4*}(X), Q/Z_{(2)}),$$

where a spectrum X is localized at (2).

Considering the homotopy exact sequence associated with the cofiber sequence:

$$S^{4n+6} \xrightarrow{(n+2)_{\nu}} S^{4n+3} \xrightarrow{i_0} Q^{n+2}_{n+1} \longrightarrow S^{4n+7},$$

it is easy to see that there exists a coextension $\tilde{\sigma} \in \pi_{4n+14}^s(Q_{n+1}^{n+2})$ of $\sigma \in \pi_{4n+14}^s(S^{4n+7})$ $\cong \pi_2^s(S^0)$. Then we have

Proposition 5.1.

$$\pi_{4n+14}^{s}(\mathcal{Q}_{n+1}^{n+2}) \cong \begin{cases} Z/8\{i_{0*}\xi\} + Z/16\{\tilde{\sigma}\}, & \text{if } n \equiv 6(8), \\ Z/4\{i_{0*}\xi - 4\tilde{\sigma}\} + Z/32\{\tilde{\sigma}\}, & \text{if } n \equiv 2(8), \\ Z/2\{i_{0*}\xi - 8\tilde{\sigma}\} + Z/64\{\tilde{\sigma}\}, & \text{if } n \equiv 0(4), \\ Z/128\{\tilde{\sigma}\}, & \text{if } n \text{ is odd}. \end{cases}$$

Moreover generators can be taken so that they satisfy

$$e(\tilde{\sigma})(x_{n+2}) = 1/16,$$

$$e(i_{0*}\xi)(x_{n+2}) = 0,$$

$$e(i_{0*}\xi)(x_{n+1}) = 1/8,$$

$$e(\tilde{\sigma})(x_{n+1}) = (n+2)l/128, \text{ where } l \text{ is a certain unit in } Z_{(2)}.$$

and

Proof. It is easy to see that there exists a short exact sequence of homotopy groups;

Since $\langle (n+2)v, \sigma, 16 \rangle = (n+2)\xi$, there is only one relation that

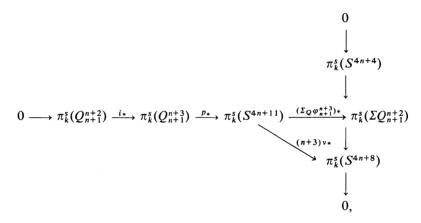
$$(n+2)i_{0*}\xi = 16\tilde{\sigma}$$
,

for any choice of $\tilde{\sigma}$. This proves the first assertion of Proposition 5.1. The rest of the assertion follows easily from the properties of *e*-invariant (See §1).

Next we investigate the structure of the group $\pi_{4n+14}^{s}(Q_{n+1}^{n+3})$. Considering the cofiber sequence:

$$S^{4n+10} \xrightarrow{Q^{\varphi_{n+1}^{n+3}}} Q_{n+1}^{n+2} \xrightarrow{i} Q_{n+1}^{n+3} \xrightarrow{p} S^{4n+11},$$

we have the following commutative diagram:



where straight sequences are exact and k = 4n + 14.

Lemma 5.2. Im $p_* \subset \pi_{4n+14}^s(S^{4n+11}) \cong \mathbb{Z}/8\{v\}$ is generated by 2v if n is even and is generated by v if n is odd.

Proof. If is odd, then $_{Q}\varphi_{n+1}^{n+3}\circ(n+4)v=0$. This can be seen from the existence of the spectrum Q_{n+1}^{n+4} . Thus $_{Q}\varphi_{n+1}^{n+3}\circ v=0$. If *n* is even, then clearly $_{Q}\varphi_{n+1}^{n+3}\circ v\neq 0$. On the other hand, since $\langle 2v, v, 2v \rangle = 0$, we see $_{O}\varphi_{n+1}^{n+3}\circ(2v)=0$.

Since there exists a short exact sequence:

$$0 \longrightarrow \pi^{s}_{4n+14}(Q_{n+1}^{n+2}) \xrightarrow{i_{*}} \pi^{s}_{4n+14}(Q_{n+1}^{n+3}) \xrightarrow{p_{*}} \operatorname{Im} p_{*} \longrightarrow 0,$$

and since $p_*({}_{Q}\varphi_{n+1}^{n+4}) = (n+4)\nu$, if $n \neq 0 \mod 4$, then $p_*({}_{Q}\varphi_{n+1}^{n+4})$ is a generator of Im $p_* \cong Z/4(a(n))$. Thus if $n \neq 0 \mod 4$ then there exists a unique element $\alpha_n \in \pi_{4n+14}^{s}(Q_{n+1}^{n+2})$ such that

$$4(a(n))_{O}\varphi_{n+1}^{n+4} = i_{*}\alpha_{n}$$
.

Then clearly we have

Homotopy groups of Sp(n) $\pi_{4n+14}^{s}(Q_{n+1}^{n+4}) \cong \pi_{4n+14}^{s}(Q_{n+1}^{n+3})/\mathrm{Im}(\varphi_{n+1}^{n+4})_{*}$ $\cong \pi_{4n+14}^{s}(Q_{n+1}^{n+2})/(\alpha_{n}).$

Therefore, if $n \neq 0 \mod 4$, in order to determine $\pi_{4n+14}^{s}(Q_{n+1}^{n+4})$, it is sufficient to describe α_n in terms of generators of $\pi_{4n+14}^{s}(Q_{n+1}^{n+2})$ (See Lemma 5.1). This can be done using the *e*-invariant.

Case n: odd.

In this case from Lemma 5.1 we can put $\alpha_n = l\tilde{\sigma}$ for some integer *l*, that is, $l(i_*\tilde{\sigma}) = 8_Q \varphi_{n+1}^{n+4}$. Evaluating the *e*-invariant by $x_{n+1} \in KO^{4n+3}(Q_{n+1}^{n+3})$ at the both sides of the last equation, we have

$$l/128 = 8(n+4)(35n^2+49n+18)/2 \cdot 9!, \mod Z_{(2)}$$

Solving the above equation we obtain that $l \equiv 8 \mod 128$ up to some multiple of units in $Z_{(2)}$. Therefore we see that if *n* is odd then $\pi_{4n+14}^s(Q_{n+1}^{n+4}) \cong Z/16$.

Case $n \equiv 6 \mod 8$.

From Lemma 5.1, in this case we can put $\alpha_n = k i_{0*} \xi + l \tilde{\sigma}$ for some integers k and l. Then we have the following equation:

$$e(ki_{0*}\xi + l\tilde{\sigma})(x_{n+2}) = e(4_Q\varphi_{n+1}^{n+4})(x_{n+2}),$$

$$e(ki_{0*}\xi + l\tilde{\sigma})(x_{n+1}) = e(4_Q\varphi_{n+1}^{n+4})(x_{n+1}).$$

where $x_{n+2} \in KO^{4n+7}(Q_{n+1}^{n+3})$ and $x_{n+1} \in KO^{4n+3}(Q_{n+1}^{n+3})$. Using Example 2.2, we see that $k \equiv 4 \mod 8$ and $y \equiv \pm 4 \mod 16$. Therefore in this case $\pi_{4n+14}^s(Q_{n+1}^{n+4}) \cong Z/8 + Z/4$.

Case $n \equiv 2 \mod 8$.

By similar method, we have

$$\alpha_n = k(i_{0*}\xi - 4\tilde{\sigma}) + l\tilde{\sigma},$$

where $k \equiv \pm 1 \mod 4$ and $l \equiv 0 \mod 8$. Thus, if $n \equiv 2 \mod 8$, then $\pi_{4n+14}^s(Q_{n+1}^{n+4}) \cong \mathbb{Z}/32$.

Now we shall treat the case $n \equiv 0 \mod 4$. Consider the element $f_{3^{\circ}H}\varphi_{n+4}^{n+4} \in \pi_{4n+14}^{s}(Q_{n+1}^{n+3})$, where $f_3: HP_{n+1}^{n+3} \to \Sigma Q_{n+1}^{n+3}$ is the map in Proposition 2.5. Since $p_*(f_{3^{\circ}H}\varphi_{n+1}^{n+4}) = (n+1)(n+2)(n+3)v$, if $n \equiv 0 \mod 4$ then the element $f_{3^{\circ}H}\varphi_{n+1}^{n+4} = (n+1)\cdot (n+2)(n+3)_Q\varphi_{n+1}^{n+4}$ and since $n \equiv 0 \mod 4$, it is easy to see that if $n \equiv 0 \mod 8$, then $_Q\varphi_{n+1}^{n+4} = 2 \circ f_{3^{\circ}H}\varphi_{n+1}^{n+4}$ up to some multiple of units in $Z_{(2)}$ and that if $n \equiv 4 \mod 8$, then $_Q\varphi_{n+1}^{n+4} = 4(n+4/8)f_{3^{\circ}H}\varphi_{n+1}^{n+4}$ up to some multiple of units. Let $4f_{3^{\circ}H}\varphi_{n+1}^{n+4} = i_*\alpha_n$. Then investigating the e-invariant we see that if $n \equiv 0 \mod 8$, then $\alpha_n = i_0.\xi - 8\tilde{\sigma} + 4l\tilde{\sigma}$ for some unit l and that if $n \equiv 4 \mod 8$, then $\alpha_n = 4l\tilde{\sigma}$ for some unit l. Therefore we have

$$\pi^{s}_{4n+14}(Q^{n+3}_{n+1}) \cong \begin{cases} Z/2 + Z/4 + Z/64 & \text{if} \quad n \equiv 4 \mod 8, \\ Z/8 + Z/64 & \text{if} \quad n \equiv 0 \mod 8, \end{cases}$$

where Z/2, Z/4, Z/8 and Z/64 are generated by $i_*(i_{0*}\xi - 8\tilde{\sigma})$, $f_{3^\circ H}\varphi_{n+1}^{n+3} - i_{0*}\tilde{\sigma}$, $f_{3^\circ H}\varphi_{n+1}^{n+3} - i_{0*}\tilde{\sigma}$ and $i_{0*}\tilde{\sigma}$ respectively. Therefore, by calculating $\pi_{4n+14}^*(Q_{n+1}^{n+3})/(\rho_{0}\varphi_{n+1}^{n+4})$, we have

$$\pi_{4n+14}^{s}(Q_{n+1}^{n+4}) \cong \begin{cases} Z/2 + Z/8 & \text{if } n \equiv 0 \mod 8, \\ Z/2 + Z/4 + Z/(16/(16, (n+4)/8)) & \text{if } n \equiv 4 \mod 8. \end{cases}$$

Thus we have completed the proof of Main theorem.

Department of Mathematics, Faculty of Education, Wakayama University

References

- [1] J. F. Adams, On the group J(X), IV, Topology, 5 (1966), 21–71.
- [2] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
- B. Harris, Some calculations of homotopy groups of symmetric spaces, Trans. of Amer. Math. Soc., 106 (1963), 174–184.
- [4] M. Imaoka and K. Morisugi, On the stable Hurewicz image of some stunted projective spaces, III, Mem. Fac. Sci., Kyushu Univ. Ser. A, 39 (1985), 197–208.
- [5] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture Note Series, 24, Cambridge U.P. 1976.
- [6] M. Mimura, Quelques groupes d'homotopie metastables des espaces symetriques Sp(n) et U(2n)/Sp(n), C.R. Acad. Sci. Paris, 263 (1966).
- [7] M. Mimura and H. Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ., 3 (1964), 217-250.
- [8] M. Mimura and H. Toda, Homotopy groups of symplectic groups, J. Math. Kyoto Univ., 3 (1964), 251–273.
- [9] K. Morisugi, Massey products in MSP_{*} and its application, J. Math. of Kyoto Univ., 23-2 (1983), 239-263.
- [10] K. Morisugi, Homotopy groups of symplectic groups and the quaternionic James numbers, Osaka J. Math. 23 (1986), 867–880.
- [11] H. Öshima, On stable James numbers of stunted complex or quaternionic projective spaces, Osaka J. Math., 16 (1979), 479-504.
- [12] H. Öshima, Some James numbers of Stiefel manifolds, Math. Proc. Phil. Soc. 92 (1982), 139-161.
- [13] H. Öshima, On the homotopy group $\pi_{2n+9}(U(n))$ for n≥6, Osaka J. Math., 17-2 (1980), 495-511.
- [14] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. studies, 49 (1962), Princeton.
- [15] H. Toda, A survey of homotopy theory, Sugaku 15 (1963/64), 141-155.
- [16] G. Walker, Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford (2), 32 (1981), 467–489.