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§ O . Introduction and the statements of results

L et S p (n ) be  th e  n-th symplectic g ro u p . T h e  homotopy groups o f  Sp(n),
n i (Sp(n)), have been studied by various authors. If i < 4n +2, then n i (Sp(n)) is well
known by the Bott periodicity theorem [2]. For 4n+2 + 8 ,  n i (Sp(n)) are
determined in [2 ] , [3 ] , [8 ] , [6 ] . For i= 4n +9, n i (Sp(n)) is determined by Oshima
[1 2 ] . In this paper we determine the 2-primary component of the group n i (Sp(n))
for 4n + 10 4 n + 1 5 . In the previous paper [10], we reduced the calculation of
ir t(S p(n)) to  that of n i +  i (Spl S p(n)) for some range of i ,  where Sp = S p(n ) and
Sp/Sp(n) is the orbit space. Since in the metastable range of i, 4n + 2 i.8n + 4,
n i (SpISp(n)) is isomorphic to the irl(Q + ,), the stable homotopy group of the stunted
quasi-quaternionic projective space Q"n + i , we carry out the calculation o f  n1(12 + 1 )
for the range 4n + 11 4 n + 1 6 .

Before the statement of the main result, we prepare some n o ta tio n . F o r n 1
and s 1, define a number M (n, s) by the following equation [16]:

(et + e (2s) !

- t —2)s= M (n, s)t 2 "(2n)!

Then it is easy to see that M(n, s) is an integer [ 1 6 ] .  Define a number dA(n, m) by

d A (n , m )= g .c .d . a(n — 1 )
(2s —1)!M(n, s)}

a(n — s)

where a(k) is 1 or 2 according as k is even or o d d .  Let d l(n , m ) be the index of 2
in the prim e decomposition o f  th e  integer dA (n , m ). In  th e  following theorem,
7r,( ) means the 2-component of homotopy groups, the symbol + means the direct
sum and (1, k) means the greatest common divisor of integers 1 and k. Our main
results are as follows;

Main theorem.
1 )  I f 2, then

IT
Z/2 +Z/2 +Z/20(n+ 3 , n) i f  n - -1(4),f
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4n+ 1 o(S
Z/2 +Z/2(' 3 " ) , otherwise.



4n+ 14(SPOM
Z/2+ Z/24 ( n + 4 '" ) , otherwise.I
Z/2+ Z/2+ Z/2d P( n + 4 ' n ) , i f  n  0(4),
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2) If 2, then

Z/2+ Z/2+ Z/2 if 1(4),
4n+ 1 l(SP(r1))="

 
1 Z/2+Z/2 otherwise.

3) I f 2, then

Z/2+ Z/2+ Z/2 if 0(2),
n4n + 12(SP(0)=" '--

Z/2+ Z/2 i f  n  1(2).

4) I f then

7r4n+13(SPOD

where k= 16/(16, (n + 4)/8).
5) I f then

Z /16 i f  n  1(2),

Z/2+ Z/8+ Z/64 if 6(8),

Z/2+ Z/32 i f  n  2(8),

Z/2+ Z/2 + Z/8 i f  n - -.0(8),

Z/2+ Z/2+ Z/4+ ZIk i f  n  4(8),

6 )  If 3, then

{ Z/2+ Z/2 + Z/2 i f  n  0(4),
774n+ 15(SP(0)

Z/2+Z/2 otherwise.

Note that for exceptional value of n in the above theorem, those homotopy
groups are already known by [14] and [7].

Since our methods for calculation of (0 are e-invariant methods, in
§1 we recall the basic facts about e-invariants. In §2 we apply the e-invariants to
the stunted (quasi-) projective spaces H Pn„t1 or .211 and investigate the properties
of the attaching maps of their top cells, which we need in § § 4 -5 . In §3 we recall
the relations among ni (SpISp(n)), 7r1(Q

+ 1
)  and ni (S p (n )). In §§4-5 we carry out

the calculation of the 2-component of 7r1(Q,T+ i ) for 4n + 11 i  4n  + 16.

§ 1. The e-invariant

In this section we recall the basic properties of e-invariant (Cf. [1], [15], [16]).
Let K * ( )  be the reduced complex K  theory and K O *( ) be the reduced real K
theory. We denote its representative spectrum by K  or K O . Let HQ be the repre-
sentative spectrum of the cohomology theory with rational coefficients, H*( ; Q).
For i E Z (integers), there is a stable map
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CH : K

such that for a large j  the 2j-th component of CH i ,

(CH 1) 2 i : BU --0  K (Q , 2i + 2j),

is the usual universal ( i+ j)-th  chern character. We denote the composite

KO cK  n2, > E4iHQ ,

by PH i and  call it the i-th Pontrjagin character, where c: K O -4 (  is the complexi-
fication map.

L e t  n  1 .  L e t  X  be a spectrum such that

(1.1) H4n(X  Q)_ 114n-1(X  ; Q) =  0 .

F o r  E  n4.- t(X), there exists a homomorphism

e(Œ): K 0 4 * (X )--4  Q IZ  ,

defined by

e(a)(#)=<E4sPH„_s, 13, a>/a(n—s),

where /3 e K0 4 s(X), g z4H(E4 n H.2)=Q is  the stable Toda bracket
[14] associated with the sequence

S4n-1 X V s K 0  1 4 .PH ”— s  EanHQ ,

and a(i)=  1 or 2 according as i is even or odd. It is easy to see that under the
assumption (1.1) the e-invariant e(a) is well defined. Now the following proposition
is well known (See [1], [15] and [ 16]).

Proposition 1.1. Let X  be a spectrum  such that H 4 "(X ; Q )= H 4 " - 1 (X ; Q )=0.
Let aen 4 n _ 1 ( X ) .  Then
1) e(a): KO 4 s(X)—>QIZ is a homomorphism.
2) e(a+a')=e(a)+e(oC), where a' ert 4 „_ 1 (X).
3) When X = S4 s, e(a)(g) is equal to the A dams e'R  inv ariant [1] up to sign, where
g e K0 4 s(S4 s) is the standard generator.
4) e(Œ)(Y131= PI 1 k(Ae(a)(11 )) , where y E 7r4 k (KO) and fi e K 0 4 s(X).
5) (N a tu ra lity ) L et Y be a spectrum which satisfies that H4 "(Y; Q )= 114n-1(y ; Q )

= 0 .  Let f: X—* Y be a  m a p .  Then f o r any  f i e  KO 4 s(Y), e(f,a)($)=e(a)(f*13).
6) Let y: S4 ( m) - 2 -4S4 m- 1  and a: S4 m- 1 —*X such that qa= qy=0 f or some integer
q. Then

e(<a, q, y>)( 13)=(q • e(a)(fi))e(Ey)(g m _ s ),

where g _ ,  is a generator of  K 0 4 s(S4 m).

§ 2. Stunted quaternionic (quasi-) projective spaces

L et H P" be the quaternionic n  dimensional projective space. We denote
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the  stunted projective space HP"IliPm - '  by HP,"„ (n n7). Let Q n b e  th e  4 n -1
dimensional quaternionic quasi-projective space [5]. We denote the stunted quasi-
projective space Qn iQm-1 by Q .  denote the attaching map of the top cell in
HP;',V1 (resp. Q )  by H yon,,Vi (resp. 04:41). Recall that K0*(HP,T,t1) i s  the free
K 0*(S °) module generated by x"+i for 1 and K0*(Q,111) is the free K 0*(S °)
module generated by x„, i for Originally x i  e 1(0 4 i(HRT) is  the i-fold
iterated product of the first KO theoretic Pontrjagin class X E K04 (1/Pn, where
means a  space with a disjoint base point. These generators can be chosen so that
x i -1  e  K o 4 ( i - i ) ( H  p f

- ' )  corresponds t o  Xi E KO4 i - 1 (Q I ) u n d e r  th e  T h o m  iso-
morphism (C f. [4]). The following theorem is essential in our later calculation and
has been proved in [4] or [16].

Theorem 2.1. 1) P H _ :  K O 4 s(HRT)— H 4 "(HPT ; Q) is given by

(2s)! PH„_,(xs)—  
( 2 n ) !

M (n, s)•(xH)",

where xn e H4 (HP!',3 ; Z) is the standard generator. S im ilarly  P H _ :  K O 4 s- -1 ( Q )
_,H4n-1(Q00 ; Q) is given by

PH n _s(xs)—  2
2

n
s _ 1[

1
)
)

!
! M (n, s)(x H)„,

where ( x ') 4 . - - 1 ( Q . 0 ;  Z )  corresponds to  (xH)n-' He 4("-1)(HRT ; z )  under the
Thom isomorphism.
2 )  Let n m +1  and For any  s such that —1,

e(H(prnn)(xs)_ (2s)!M(n, 
(2n)!a(n— s)

e (0 ): ) (x j=  (2s —  1)! M (n, s) 
(2n — 1)!a(n — s)

for X s  E KO4 s(HP,),

f o r  x s E KO 4 s- 1 (Q:).

Examples 2.2.
1) e(H9„T-i)(x n +  i ) = (n + 1)/24,
2) e(H(gt-i)(xn +1 ) = (5n +4)(n + 1)/(2 •60,
3) e( n + 4 (35n 2 + 49n + 18)(n + 1)/(2 9!),
4) e( Q C11:11: D (X  n + 1) =  (n + 2)/24,
5 ) e(.29:iti)(xn + i) = (5n +4)(n + 3)/(2 6!),

e(Q(P;r-VD(xn-F 1) =  (35n2 + 49n + 18)(n + 4)/(2 9 0,

P ro o f . By definition o f  th e  number M (n, s) th e  following is a permanent
equation with respect to a variable z;

(2s)!( E   —  E s)zn.
(2t)! n>1 (2n)!'

Comparing the both sides in the above equation, the assertions are easily verified
by direct calculation and Theorem 2.1.
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Proposition 2.3. F o r 1: le t X + 1  be HP7t,i or ThenT hen th e  e-
invariant

e: 7 [ 1 . „ + 1 5 ( X i n ' t a . ) H o r n  (K 0 4 * (X7x++3,), QIZ)

is monomorphic.

P ro o f . Consider the cofiber sequence:

Then we have the following commutative diagram:

7r4n+15(X ;;Ii)  n+15\ n+3

Ic i
e 2 1e3

0–Hom(K0 4 *( X„.t.i), Q I Z)–■ Hom(K0 4 *( X Q I Z)–>Hom(K0 4 *( X 7,t3), Q Z),

where ei is the e-invariant and horizontal sequences are exact. Since e l  and e3 are
equal (up to sign) to  the usual e'R -invariants, both  e ,  and e3 a re  monomorphic.
Therefore so is e2 . Similarly, considering the cofiber sequence:

Atin". I x i i — > x nnt

we have the desired results.

Let j 3 (resp. j , )  be a generator of 7r. (S°).''' Z/24 (resp. Z/240) such that
e'R (j 3 )=1/24 (resp. e'R (j 7 ) =1 /2 4 0 ) . Then both H P q f  and E5 02;:+1 a r e  homotopy
equivalent to the mapping cone of (n + 1)1 3 ,  tha t is , S4 n+4

 U ( 5 + 1 ) i 3  e 4 n + 8 .  Thus
we identify them.

Proposition 2.4.

119;:ti=1729 2+io.i7,

where i o  is  the inclusion map of  the bottom sphere.

Pro o f . From Proposition 2.3 it is enough to show that

e1E.&<Pg+ 2  + iO47)= e(1149 g-- ,

under the identification HP E5 Q"„-" .  Note that under th is identification the
element xi e KO4 i(H M - i )  corresponds t o  th e  element x i _  e KO 41 (E5 Q11,,+ 1 )  for
i =n +1  or n + 2 .  Then the above equation easily follows by Proposition 1.1 and
Example 2.2.

Proposition 2.5. For 1 there exist stable maps,

such  that f or j 3 the following diagram commutes:
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S4n+4j+3 >  H P > H

(2.6) i(n+i)—(n+D .01(n+i+i) ifi+1(1);

s4n+4J+3  E Q
(
" -̂ 1

+ 1E Q ; ; -■--1 EQ7,-1-„.f+1

where the horizontal lines are cofiber sequences. In particular, for

(2.7) f  ( x ((n + 1). .(n + j)I(n + 0).xn+ 1 ,

w here f l`: K 0 4 (n+i)(EQ7,0— >K 0 4 (n+i ) (HP'4.11) is the hornom orphism  induced by

P ro o f . By induction on j. For j=  1, we take the identity map of S 4 s+4  as f 1

because H Pnn t_j = EQ „n1.1= 4S n+4. Clearly for j = 1 (2.7) holds and the diagram W I

commutes. Suppose that for some k there exists a map f k such that the diagram (I)k

commutes and (2.7) holds. Then clearly there exists a map f „ H P n „ -W 1 --+D2n,41+1

such that the diagram (M k commutes. Then from Theorem 2.1, investigating the
Pontrjagin character, it follows that for j= k +1 , (2.7) holds. Now using (2.7) for
j = k + 1, by easy computation we have

e((n+ k +l)f k . H cp;,11+1)=e((n+1)— (n+k )E Q C:V1+1).

Therefore, when k + 1 by Proposition 2.3, we see that the diagram (I)k + ,  com-
m utes. This completes the proof of Proposition 2.5.

§ 3 .  Metastable homotopy groups of Sp(n)

The following Proposition are proved in [10, Proposition 2.4].

Proposition 3 . 1 .  L e t  i>4 n +1 .  I f  i 0,  1 , 3 o r 7 mod 8, then Tri(Sp(n)) is
isomorphic to Tri ± i (S pIS p(n)). If  i 4 or 5 mod 8, then rri(Sp(n)) is isomorphic to

i (SpISp(n))+ Z/2.

Except the case m =5, the following theorem is proved in [10, Theorem II].

Theorem 3 .2 .  Let and T h e n ,  i n  t h e  2-component,

7 r 4 (n + m ) - 2 ( S p ( n ) )  is isom orphic to the direct sum of Tor (7 r 4 ( n + m ) - 1 ( S p I S p ( n ) ) )  and
a cyclic group ZI2q(n+m , n).

Since QVI! is a  subcomplex of the Stiefel manifold Sp(n+ m)ISp(n), and since
the pair (Sp(n+ m)ISp(n), QV IO is (8n +9)-connected [5], by the suspension theorem
it is obvious that 7 r 4 n + i+ 1 ( S p / S p ( n ) )  is isomorphic to ro, n + i + i ( Q + i )  fo r i +3.
So from Proposition 3.1 and Theorem 3.2, in the metastable range for our purpose
it is enough to compute the group ivi ,, +4- This can be done in the following
sections.

Proof of Theorem 3.2. For the proof it is enough (see [10]) to show that for
m=5, the stable quaternionic James number Xs{n + m, m} ([11] or [10]) is equal
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to the order of e-invariant of Q cps„1:7 which is easily obtained by Theorem 2.1 and we
denote it by X A {n+ m, m}  [10].
Consider the following Atiyah-Hirzebruch spectral sequence:

Ep2
, q=  H p ( Q ; Z)07q(S°) ,

which converges to 74(02), where all spectra are localized at (2). We denote the
generator of H 4 _ 1(Q ; Z )  by yp . Then we have

Lemma 3.3.
d8 (y„,

1
Orpc)=y„_

1
O B IC  if  n 1  O r  2 mod 4  a n d  =0, o therw ise .

d8(y .+30 17) =Yn+ t
O rp c , if  n 0  o r  3 mod 4  a n d  =0, o therw ise .

Here ne ni(S°), IC e ns,,(S°), e e nA (V) a n d  e nA(S°) are  som e generators of  the
2-primary component of rc (S°) (see [14]).

Pro o f . Consider the following spectral sequence;

E , q (X) = H p (X ; Z)Orcs„(S°) >

for X  =Q", H P  or M Sp (the symplectic Thom spectrum). As is well known there
is a stable map j: HP'— >E 4 M Sp such that jf3„ +  1 = b„, where fi n +, e H 4 „ 4 (H P'; Z )

16 2,— 1 and b„ E H4n (MSp; Z )  Z [b , b2 , . . . ]  are standard generators. Let
e n (S ° )  and y be a  generator of Ic (S ° )-  Z I8 . Now under the assumption that

(n+l)v a= 0, Proposition 2.4 implies that da(y„ + 1 00)= yn _ 06 for some 6 e n1+ 7 (S°)
if and only if d8 (/3„, 2 0a)= /3n 0(6  +au), where a e  is a generator of 7r.3(S°)- Z/16.
On the other hand, if d8 (3„ 4.2 ) 0a)-= &C(ô +au) then it holds that in  E,t,,,(M Sp)
d8(b„4 . 1 0a)= b„ _ 1 0(6 + au), moreover, d8 (SAn - 1(bn +  1 ) 0 0 ) = 6  + au , where S A --

is a certain Landweber Novikov operation in MSp-theory (See, for example [9]).
Now it is not difficult [9 ] to see that

d8(S A "- O n +  00110= d8 ((nb 2 +  ( 3 ) b?) (=Mx) =(n(n + 1)/2)e K.

This proves the first assertion of Lemma 3.3. Similarly the second assertion follows.

S in ce  Xs{n +5, 41= X {n + 5, 4}= XA {n +5, 4}, t h e r e  i s  a n  e lem ent 6„
E ir4n+18(S4n+3) such that i,(5„= X A{n +5, 4},2 cgt. 8, (see the diagram below).

s4.+18  X A {n+5 ,4 } >. s4n+18

16,1 Q(P:::11

I - 1 Q n 4 -1  r! )  S 4 n + 3 Qnn:f14.

It is not difficult to see that Xs{n +5, 5 }  --= XA{n + 5, 5} if and only if the order of
(5n in 1r4.+18(S4 "4-3 )/lin (-)9-* is equal to the order of the e-invariant of (5n . In terms of
the spectral sequence, the above diagram implies that

d 1 6 (X{n + 5, 4}0y, + 5 )=y„ +  1 ®ô  i n  E 1 6 -term.

Since 6„ G irsi 5 (S°)- Z/16{p} +Z/2{pc}, Lemma 3.3 implies that if n 0 or 3 mod 4
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then riK E lm  0 , and that if n  1  or 2 mod 4 then 6n can not be equal to K . Thus
the order of 6„ in lrân+18(S4 n + 3 )/Im  * is equal to the order of the e-invariant of Sn

an d  consequently th e  differential d' 6 : E l +  1 9 ,0  
--+E4 + 3 , „  can be com pletely

determined by e-invariants. This proves that XA{n + 5, 5} = Xs{n + 5, 5 }.

§ 4. Computation

From now on all spaces or spectra should be considered to be localized at (2)
since our interest are in the 2-component. We freely use the structure or notations
in [14] about the 2-component of the stable homotopy groups of spheres.

1)
 ' T '

(lrân+ t(42 °:+1))-
Consider the following diagram:

S4 n +6

1
(n+2)v

S4 n+ 3

i°
S4 n + 10  C2 ( P V  Q;:t? S4n+11

S4n +7

Applying (  ) , we have

Tor Or'ân+ ii1Vgi)) iqn + 110a - t
2

)1(V P 7 11 4 1) •

It is easy to see that io .: ir4„ i (S4 .+ 3 ) .7EL, ,027,:tf) is an isomorphism.

Lemma 4.1.

if n 3(4),

=
to i c r if n --a 2(4),

0 if n 1(4) .

if n 0(4).

P ro o f .  By Proposition 2.4 it is enough to show that

fiCrittoq= ( n  2 ) 6 +  + _
2  ) 1' •

But the above equation has already obtained in  [13 ], and also follows from the
second assertion of Lemma 3.3.

Therefore we have
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{ Z/2+ Z/2 i f  n a 1(4),
Tor (nfin + i(Q,T+1))=-

Z/2 otherwise.

375

2) Tor (it + 1 5 (Qcn°,_ i )) for n  3.
Now consider the following diagram:

S4n+3 O  / l Œ 42+2 S4n+4

(n + 2 »

S4n+ 7 .

Since rcsi 2 (S°)= 0, (n +2)v.: 7r4 „ i,(S4n+7)_,T4n +15(S4n+4) is trivial a n d  i0 ,:
7r4n  + 15 (S4n+ 7)— )•To r (7 r4 „ „(Q )) is epic, applying 7r4„ + 1 5 ( )  to the above diagram
we have

Tor (wan + 15(Q+1)) .7—f. Tor (EL+15(Q+2)) •

This completes the proof of 1) and 5) in Main Theorem in §0.

3) ir,s,„+ 1 2 (0 F 1
) for 2.

We shall prove

Theorem 4.2.
I f then 7r4n + 1 2 (Q;' )  is isom orphic to Z/2 + Z/2 if  n # 1  mod 4 and is

isomorphic to Z/2+Z/2+Z/2, otherwise.
Consider the homotopy exact sequence associated with the cofiber sequence;

5 4 n + 3 _r_p, 54n+7

Then we have

Lemma 4 .3 .  rcl.„ i 2 (Qrnq i )  Z/2 + Z/2 if n is odd, and Z12+ZI2+Z/2 i f  n  is
even.

Now consider the cofiber sequence

S4n+ 10
Q nn t i Qnnt-1 •

Using Lemma 4.1 it is easy to see that if n 1 mod 4, then 7r4„ 1 2 (Q ) Z/2+ Z/2
and that if n at mod 4, there is a short exact sequence;

0 Z/2 + Z/2 —> wIn+1202gID —) Z/ 2 0  ,

where the last Z/2 is generated by e  Iran + 12(S4 . 4 " )  a-- Z/2. In order to see that the
above group extension is trivial, as is well-known, it is enough to show that the Toda
bracket <vpnn -,t?, n, 2> 3 O.

Lemma 4 .4 .  I f  n= 1 mod 4 then the Toda bracket <Q 9 ti, n , 2> contains 0.

P ro o f . In Proposition 2.5 we proved that there is a  map f 2 :
such that (n +1)(n +2)EQ 9',:t_i =(n +3)f2 oR y4t.l. But if n al mod 2, then by the
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(4.6) (EQ9141)*2=

i0.11 2 0- if  n is even.
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similar method it can be shown that

((n+1)(n+2)/2)49 -,ti =((n+3)/2)f 2 .,AGVE
- i

This implies that if n --I mod 4, then EQ 9;;V=2/f2 0, V, for some 1 in Z (2 ) (integers
localized at (2)). Thus in  order to prove Lemma 4.4 it is enough to show that
<f2 .„(g,V02, n, 2> contains O. But the bracket

<f2°H9g-ti°2, 11, 2 > 3 f2 ° 1/(4 -43 ° /12 •

On the other hand, from Lemma 4.1 and Proposition 2.5,

f2'n(gIi° 2 =f2'i0v 3 = (n + 2 )io.v3 = 0 ,

in = S4n+3
`-'(n+2)v 

e4n+8.

This completes the proof of Theorem 4.2 and 2) of Main theorem.

4) 70 (Q,' + 16 n
°D+ 1) f or 3.

Consider the cofiber sequence:

S4n+3 > Qcon+1Q +2  S4n+ 4.

Since ra n +  16(S4 n + 3 ) = irs,,+16(S4n+4\) 0, we have

7r4n+ 16(Qn+ 1) 
-7—=+  16(Qn°42) •

Therefore from Theorem 4.3 we have proved 6) of Main Theorem.

5) 71.„4.1 3 (Q + 1
) for n 2.

Consider the following cofiber sequence:

(4.5) s4n+10  •2 t > Q t g i Qt;,V S4n+11

Applying ra n +  i 3 ( ) to the above sequence, from Lemma 4.1 we have

On the other hand,

Lemma 4 .7 .  coker (e V )*  is  isomorphic to Z/2 w hich is generated by  io*ng.

P ro o f . Consider the cofiber sequence:

S4n+3 Q g v .S 4 n + 7   (n+2)v > S4n+4

Apply nft „.1_1 3 ( ) to the above sequence. Since poQ (441 = (n + 3)v, it is easy to see
that if n is even then Lemma 4.7 holds, and that if n is odd then irl.„ + "(Q nnV ) is
isomorphic to Z/2 generated by io .qp. When n is odd, the image of (0 9 i) , ,  is
trivial. Because, if the image of (0 9nnV) *  is  non-trivial, it follows that 0 9 4 .v -
i0 .nit. But this contradicts with the fact that tilt can be detected by d-invariant in
KO-theory [1 ].  Thus Lemma 4.7 has been proved.
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From (4.6) and Lemma 4.7, if n is even then we see that 7r4„, 1 3 (Q )  is isomorphic
to Z/2 generated io u t .  If n is odd, then 1 r 4 . + 1 3 ( 2 g t i )  is  a certain group extension
of Z/2 and Z/2. However this group extension is trivial. Because, if not, then
<Q C--ri, n2

5  
2 > = io u t. But this also contradicts with the fact that n y  can be

detected by d-invariant in KO-theory [1]. T h is  completes the proof of 3) of Main
theorem.

§ 5 .  2r4.+14(Q:+i).

Consider the following cofiber sequence:

S4n+14QP n  +3 Qnnljt S4n +15

From the above sequence we have

7t4n-i-14 (Q °n°+1) ="2 nân+ 1 4(Q ';r-t-41) "=": 7rftn + 14(Q VI: I) IIM(VP 7410 •

First we calculate the g r o u p  n + 1 4 ( 2  1 ) .  In the next Proposition, Z/a{ a}  means
the cyclic group of order a, generated by a and the symbol+ between groups means
the direct sum. And e-invariant e( ) should be considered as

e: 74._ 1(X) Hom (K 0 4 *(X ), Q/Z ( 2 ) ),

where a spectrum X  is localized at (2).
Considering the homotopy exact sequence associated with the cofiber sequence:

S4n+6 S4n+3 S4n +7 ,

it is easy to see that there exists a coextension E 7 r4 n + 14(Q )  of C E 7r4n+14(S 4 n + 7 )
rcl(S°). Then we have

Proposition 5.1.

Z/8{i0 ,,} +Z/16{d}, if n 6(8),

Z/4{i0 . 45-} + Z/32{5-}, if n 2(8),
n 14(42 g - l i )= "

Z/2{io . —8(5}+Z/64{6},

Z/128{6},i f n  is odd.

if n=0(4),

Moreover generators can be taken so that they satisfy

e(a)(xn+ 2 )=1/16

e(io .)(xn+ 2)= 0,

e(io )(xn+1)=1/8,

and e(6)(xn,1)=(n+2)11128, where 1 is a certain unit in Z(2).

Pro o f . I t  is easy to see that there exists a short exact sequence of homotopy
groups;
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TCL+14 (S 4 n + 3 )  —i-9L4'  7 4n +14((?11) — 11=4 77 4n+14(5 4 " + 7 )  - - - 4  O.

  

Z/8{}

Since «n  +2 )v , a, 16> =(n +2) , there is only one relation that

(n+2)i 0 . =16ff ,

for any choice of d .  This proves the first assertion of Proposition 5.1. The rest of
the assertion follows easily from the properties of e-invariant (See §1).

Next we investigate the structure of the group 7 L+1402t Considering the
cofiber sequence:

s4n+10
- -

Qn-11 S4n+11

we have the following commutative diagram:

0 7q(Qtin-lti) nt(san+11

0

i t sk (S4n+4)

( 5 " ) . > 7rZ(EQ'n'T-
2

)

( n + 3 ) v .  1
n z (S4n-F8)

0,

where straight sequences are exact and k=4n+14.

Lemma 5.2. IM  
p *  7 C 4 n  1 4 (S 4 n  + 1 1

) Z / 8 {  y l  is generated by  2v if  n  is even
and is generated by v if  n is odd.

P ro o f . If is odd, then enn Tio(n+4)v=0. This can be seen from the existence
of the spectrum Q'n't4i. Thus (29 N o v = 0 .  If n is even, then clearly oon„Voy0 O.
On the other hand, since <2v, y, 20=0, we see vp;,111.(2y)=0.

Since there exists a short exact sequence:

nân+14(V ;I:11-1 )  j — + n 4 n +1 4 ( Q t- ) P* 0,

and since p* (v p Z )= (n + 4 )v ,  i f  n #0 mod 4, then p* ( Q cgt.f) i s  a  generator of
Im p,,.. /4(a(n)). Thus if  n #0 mod 4 then there exists a unique element c e
nâns +14(Q ) such that

4(a(n))vp"„-itt=i,oc„.

Then clearly we have
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7rIn+14(Q;',VD . 7r4n+14(Q:15-ti)/linn+3\/ (  n + 4 \

'=' I r ftn+14(Q 't;t- i)/(a n) .

Therefore, if  n  0 mod 4, in  order to determine i t â n + 1 4 ( Q 7 4 ) ,
 it is  suffic ien t to

describe a n  in  terms of generators of + 1 4 ( Q )  (See Lemma 5.1). This can be
done using the e-invariant.

Case n: odd.
In this case from Lemma 5.1 we can put a n = lã for some integer 1, that is, 1(i* 5)

----8Q 9 i r t .  Evaluating the e-invariant by x„,, e K0 4 "+3 (Q V ) a t  the  both sides of
the last equation, we have

1/128= 8(n + 4) (35n2 + 49n + 18)/2.9!, m od Z(2) .

Solving the above equation we obtain that / -_---- 8 mod 128 up to  som e multiple of
units in Z (2 ).  Therefore we see that if n is odd then ra„ 1 4 (Q 14- 1) -:12 Z/16.

Case n 6mod8.
From Lemma 5.1, in  this case we can put an = kio * + 15- f o r  some integers k

and 1. Then we have the following equation :

e(ki0 * :;+15)(x„ + 2 )= e(4 ,29g-11) ( x ri + 2)5

+ 16 ) (X?, + 1) =  e(4 Q975-tt)()Cri +1) •

where x ,,4 2  E  K O 4 n + 7 (Q g t? )  and x ,, + 1  e KO4 n+3( Q V ) .  Using Example 2.2, we
see that k  4 mod 8 a n d  y  + 4 mod 16. Therefore in  th is  case 71.„+1402;;AF

- t)"
ZI8+ Z/ 4.

Case n  2 mod 8.
By similar method, we have

an (j ø n 4&)+16 ,

w h e re  k  +1 mod 4 and  1-= 0 mod 8. Thus, i f  n  2 mod 8, then  nân + 14(Qgtt)
Z/32.

N ow  w e shall treat the case n mod 4. Consider th e  element f 3 oH (pontle
nân+14(Qnnti), where f3 : 1113 4 Tn'-ti i s  t h e  m a p  in Proposition 2.5. Since
p * (f3 oH 9"„VD = (n +1)(n +2)(n +3)v, if  n 0 mod 4 then the element f 3 0 9„4it is  a
coextension o f  a  generator o f  Im p*  -_.-' ZI41{2v}. Since (n+4 )f3 oH 4ogitt = (n +1)
(n + 2)(n + 3)Q 9:;_f and since n 0 mod 4, it is easy to see that if  n  0 mod 8, then
04•41 = 243 .11C11 up to  som e multiple of units in  Z(2) and th a t  i f  n 4 mod 8,
then (29„_11. = 4(n + 4 / 8 ) f 3 ° H 9 n " - I t  u p  to  so m e  m ultip le  of units. L e t 4f3°H(Pnntt=
i* ocn . Then investigating the e-invariant we see that if na. 0 mod 8, then a n =

+41ii for some unit 1 and th a t if n mod 8, then  a,, =415- fo r  some un it 1.
Therefore we have
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{ Z/2 + Z/4 + Z/64 i f  n 4mod8,
7r4„ + 1402;11-V)

Z/8 + Z/64 i f  n  0 mod 8,

where Z/2, Z/4, Z/8 a n d  Z/64 a re  generated by 85-1, f 3 0,yonn 4.1—
f3°11(14-V. —  i0 5  a n d  i0 .6  respectively . T herefore, by calcu lating rrân +1402ti)/
(0 r f ) ,  we have

Z/2 + Z/8 if n 0mod8,
1r4n +1402i1V1)

{ Z/2 + Z/4 + Z/( l 6/(16, (n+ 4)/8)) i f  n  4 mod 8 .

Thus we have completed the proof of Main theorem.
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