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§0. Introduction and the statements of results

Let Sp(n) be the n-th symplectic group. The homotopy groups of Sp(n),
n{(Sp(n)), have been studied by various authors. If i<4n+2, then n(Sp(n)) is well
known by the Bott periodicity theorem [2]. For 4n+2<i<4n+8, n(Sp(n)) are
determined in [2], [3], [8], [6]. For i=4n+9, n(Sp(n)) is determined by Oshima
[12]. In this paper we determine the 2-primary component of the group m(Sp(n))
for 4n+10<i<4n+15. In the previous paper [10], we reduced the calculation of
n{(Sp(n)) to that of =;, ,(Sp/Sp(n)) for some range of i, where Sp=Iim Sp(n) and
Sp/Sp(n) is the orbit space. Since in the metastable range of i, 4n+2<i<8n+4,
7(Sp/Sp(n)) is isomorphic to the n5(QY, ;), the stable homotopy group of the stunted
quasi-quaternionic projective space Q,;, we carry out the calculation of n§(Qy:,
for the range 4n+11<i<4n+16.

Before the statement of the main result, we prepare some notation. For n=>1
and s> 1, define a number M(n, s) by the following equation [16]:

t i 4 S — 2 !
(e'+e ' —=2)= 'El ((2;))!

Then it is easy to see that M(n, s) is an integer [16]. Define a number d4(n, m) by

M(n, s)t*".

where a(k) is 1 or 2 according as k is even or odd. Let d4(n, m) be the index of 2
in the prime decomposition of the integer d4(n, m). In the following theorem,
n.( ) means the 2-component of homotopy groups, the symbol+means the direct
sum and (I, k) means the greatest common divisor of integers [ and k. Our main
results are as follows;

Main theorem.
1) Ifn=2, then

Z2+Z2+Z[24 (3 if n=1(4),
Tan+10(SP(n)) = .
Z[2+Z[24¥3.m otherwise.
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2) Ifn=2, then
ZR+Z12+Z2 if n=1(4),
Tan+ 11(Sp(n)) =
Z[2+Z]2 otherwise.
3) Ifn=2, then
Z24+Z2+Z]2 if n=0Q),

Z2+Z2 if n=1(2).

Tan+12(Sp(n)) =

4) Ifn=3, then

Z/16 if n=1(2),
Z2+Z/8+Z[64 if n=6(8),
Tans13(SP(M) = Z[2+Z[32 if n=28),
Z2+Z2+Z/8 if n=0(8),
Z2+ZR2+Z/A+Z]k if n=4(@8),

where k=16/(16, (n+4)/8).
5) Ifn=3, then

Z24Z[2+Z[24 (4 if p=0(4),
Tan+14(Sp(n)) = Y

Z[2+ Z[2¢4: (nt4m - otherwise.
6) Ifn=3, then

ZR+Z12+Z2 if n=04),
Tan+15(Sp(n)) = [
Z[2+Z|2 otherwise.

Note that for exceptional value of n in the above theorem, those homotopy
groups are already known by [14] and [7].

Since our methods for calculation of n§,,(Q% ) are e-invariant methods, in
§1 we recall the basic facts about e-invariants. In §2 we apply the e-invariants to
the stunted (quasi-) projective spaces HPnt% or Qnt% and investigate the properties
of the attaching maps of their top cells, which we need in §§4-5. In §3 we recall
the relations among n(Sp/Sp(n)), ni(Q%,) and n(Sp(n)). In §§4-5 we carry out
the calculation of the 2-component of n§(Q%,) for 4n+11<i<4n+16.

§1. The e-invariant

In this section we recall the basic properties of e-invariant (Cf. [1], [15], [16]).

Let K*( ) be the reduced complex K theory and KO*( ) be the reduced real K

theory. We denote its representative spectrum by K or KO. Let HQ be the repre-

- sentative spectrum of the cohomology theory with rational coefficients, H*( ; Q).
For i € Z (integers), there is a stable map
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CH;: K— X?HQ,
such that for a large j the 2j-th component of CH,,
(CH),;: BU — K(Q, 2i+2j),
is the usual universal (i +j)-th chern character. We denote the composite
KO —<» K £t , 34iHQ,

by PH; and call it the i-th Pontrjagin character, where ¢: KO—K is the complexi-
fication map.
Let n=1. Let X be a spectrum such that

1.1 H*X; Q)=H*"(X; Q)=0.
For a € n,,_ (X), there exists a homomorphism

e(@): KO**(X) — Q/Z,
defined by

e(a) (ﬂ): <Z4SPHn—s’ ﬂ’ a)/a(n —S) s

where fe KO*(X), (Z*PH,_,, B, o) Sn,,(Z4"HQ)=Q is the stable Toda bracket
[14] associated with the sequence

S4n—1 _a X 8, 34sKO Z4SPH, s Z“"HQ,

and a(i)=1 or 2 according as i is even or odd. It is easy to see that under the
assumption (1.1) the e-invariant e(a) is well defined. Now the following proposition
is well known (See [1], [15] and [16]).

Proposition 1.1. Let X be a spectrum such that H*(X; Q)=H*""}(X; Q)=0.
Let aemy,_(X). Then
1) e(a): KO*(X)—>Q|Z is a homomorphism.
2) e(a+a’)=e(a)+e(a), where a' € mgy,_ ((X).
3) When X =S%, e(a)(g) is equal to the Adams ey invariant [1] up to sign, where
g € KO*(S%) is the standard generator.
4) e(a)(yB)=PH(y)e(@)(B)), where y € n,,(KO) and fe KO*(X).
5) (Naturality) Let Y be a spectrum which satisfies that H*"(Y; Q)=H*"~(Y; Q)
=0. Let f: X—>Y be a map. Then for any fe KO*(Y), e(f)(B)=e()(f*p).
6) Lety: S*ntm-2,84m-1 gnd a: S4m~ 1> X such that qa=qy=0 for some integer
q. Then ‘

(<, g, v>) (B)=(q - e(0)(B))e(ZY) (Grm-s) »

where g,,_, is a generator of KO*5(S4™).

§2. Stunted quaternionic (quasi-) projective spaces

Let HP" be the quaternionic n dimensional projective space. We denote
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the stunted projective space HP"/HP™~! by HP! (n=m). Let Q" be the 4n—1
dimensional quaternionic quasi-projective space [S]. We denote the stunted quasi-
projective space Q"/Q™! by Qr. We denote the attaching map of the top cell in
HPntk (resp. Qnik) by itk (resp. oonik). Recall that KO*(HP;i%) is the free
K0*(S°) module generated by x"*! for 1<i<k and KO*(Q"1¥%) is the free KO*(S°)
module generated by x,,; for 1<i<k. Originally x' e KO*(HPY) is the i-fold
iterated product of the first KO theoretic Pontrjagin class x e KO*(HPY), where X ,
means a space with a disjoint base point. These generators can be chosen so that
xi=le KO*(~D(HPL 1) corresponds to x;€ KO*~!(Q") under the Thom iso-
morphism (Cf. [4]). The following theorem is essential in our later calculation and
has been proved in [4] or [16].

Theorem 2.1. 1) PH,_;: KO*(HP?)-»H*(HP?; Q) is given by

(2s)!
(2n)!

PHn—s(xS)= M(n’ S) '(X")" >
where x" € H{HPZY; Z) is the standard generator. Similarly PH,_ : KO*~1(Q%)
—H*"=Y(Q%; Q) is given by

(2s—1)!

PH,_(x,)= Cn=1)!

M(n, s)(x™),,

where (x*),€ H*"~Y(Q*; Z) corresponds to (xH)"~1e H*"~\)(HPP; Z) under the
Thom isomorphism.
2) Letn=zm+1 and m21. For any s such that m<s<n-—1,

(28)!'M(n, s)

e(H(pr':l) (xs) = WT_T) > fOl‘ x‘ € K04S(HP":') N
elg@m) (x)= ﬁgfl__ll))’!f&"’_i )) . for x,e KO*~(Qn).

Examples 2.2.

D e(goriD(xm)=(n+1)/24,

2) e(yopid(x")=(Sn+4)(n+1)/(2-6!),

3) e(yoitH(x"1)=(35n2+49n+ 18)(n+1)/(2-9!),
4)  elopnitlxy+1)=(n+2)/24,

5) elgenid)(xp+ ) =(5Sn+4)(n+3)/(2-6!),

6) e(opniP(xns1)=(35n2+49n+18)(n+4)/(2-9!),

Proof. By definition of the number M(n, s) the following is a permanent
equation with respect to a variable z;

22V < (29)! )
(.-%, (2[)!) = 2, 2ny1 M. 92"

nz1

Comparing the both sides in the above equation, the assertions are easily verified
by direct calculation and Theorem 2.1.
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Proposition 2.3. For 1<i<3 let Xi%3 be HP"}3 or 2Qut3. Then the e-
invariant

e: M+ 15(X%5) — Hom (KO**(X43), Q/Z)
is monomorphic.
Proof. Consider the cofiber sequence:
X — X0 — X0

Then we have the following commutative diagram:

Tine1s(X 713 Tne1s(Xni3) Tne15(X013)

0—Hom(KO*(X13), 0/ Z)~» Hom(KO*(X}13), Q] Z) » Hom(KO*(X}13). Q/ 2),

where e; is the e-invariant and horizontal sequences are exact. Since e; and e; are
equal (up to sign) to the usual eg-invariants, both e; and e; are monomorphic.

Therefore so is e,. Similarly, considering the cofiber sequence:
+
Xm— X — X013

we have the desired results.

Let j; (resp. j,) be a generator of n§(S%) =~ Z/24 (resp. n5(S°)=Z/240) such that
er(j3)=1/24 (resp. ex(j;)=1/240). Then both HP?}? and X5Q"*! are homotopy
equivalent to the mapping cone of (n+1)j,, that is, S4"**\U,,y;, e*"*8. Thus
we identify them.

Proposition 2.4.
H‘P:I?*EQ‘PZ”"' ionf7s
where iy is the inclusion map of the bottom sphere.
Proof. From Proposition 2.3 it is enough to show that
e(Z3on* 2 +ioejz)=e(u@rid),

under the identification HP213~X5Q7*!. Note that under this identification the
element x‘e KO*(HP"t?) corresponds to the element x;_; e KO*(Z3Q"*1) for
i=n+1 or n+2. Then the above equation easily follows by Proposition 1.1 and
Example 2.2.

Proposition 2.5. For 1<j<4, there exist stable maps,
[y HPpt — 20t

such that for j <3 the following diagram commutes:
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. @nti+1 . .
S4n+41+3 HY p47 HP:I.{ s HP;:{+I

(2.6) l(n+1)~-~(n+j) J(n+j+1)f1 l““

(OX] (1)
Sén+aj+z _Feeptt! IOt TOnti+t
where the horizontal lines are cofiber sequences. In particular, for 1<i<j,
2.7 SiGed=((n+1)--(n+))/(n+ i))x"*7,

where f*: KO*("t)(ZQntl)— KO*("+D(HPnt]) is the homomorphism induced by
S

Proof. By induction on j. For j=1, we take the identity map of S*"*4 as f,
because HP}1=2Qnt1=S4"*4_ Clearly for j=1 (2.7) holds and the diagram (I),
commutes. Suppose that for some k there exists a map f, such that the diagram (I),
commutes and (2.7) holds. Then clearly there exists a map f,, ,: HPitkt*l>zQnik+1
such that the diagram (II), commutes. Then from Theorem 2.1, investigating the
Pontrjagin character, it follows that for j=k+1, (2.7) holds. Now using (2.7) for
j=k+1, by easy computation we have

(n+k+ D fiegoitt ) =e((n+1)-(n+ k) Zath*).

Therefore, when k+ 1<4, by Proposition 2.3, we see that the diagram (I),;,; com-
mutes. This completes the proof of Proposition 2.5.

§3. Metastable homotopy groups of Sp(n)

The following Proposition are proved in [10, Proposition 2.4].

Proposition 3.1. Let i>4n+1. If i=0, 1, 3 or 7 mod 8, then mn(Sp(n)) is
isomorphic to n; (Sp/Sp(n)). If i=4 or S mod 8, then n(Sp(n)) is isomorphic to
74+ 1(Sp/Sp(n))+Z/2.

Except the case m=35, the following theorem is proved in [10, Theorem II].

Theorem 3.2. Let n=1 and 1Z<m<ZS5. Then, in the 2-component,
Ta(n+m-2(Sp(n)) is isomorphic to the direct sum of Tor (ny+my-1(Sp/Sp(n))) and
a cyclic group Z[243 (n+m.n),

Since Q7™ is a subcomplex of the Stiefel manifold Sp(n+ m)/Sp(n), and since
the pair (Sp(n+ m)/Sp(n), Qm47) is (8n+9)-connected [5], by the suspension theorem
it is obvious that w4, ,;,(Sp/Sp(n)) is isomorphic to 7§, ;4 ,(Q%%,) for i<4n+3.
So from Proposition 3.1 and Theorem 3.2, in the metastable range for our purpose
it is enough to compute the group 7§, ;4 (Q% ;). This can be done in the following
sections.

Proof of Theorem 3.2. For the proof it is enough (see [10]) to show that for
m=35, the stable quaternionic James number X*{n+m, m} ([11] or [10]) is equal
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to the order of e-invariant of ,¢721% which is easily obtained by Theorem 2.1 and we
denote it by X4{n+m, m} [10].
Consider the following Atiyah-Hirzebruch spectral sequence:

E7,=H,Q%; 2)®n35°),

which converges to n3(Q*), where all spectra are localized at (2). We denote the
generator of H,,_,(Q%; Z) by y,. Then we have

Lemma 3.3.

A8y, 1 ®nK)=y,_,®ex if n=1 or 2mod4 and =0, otherwise.

A3 (Y, 4+3®V)=7,4,®nk, if n=0 or 3mod4 and =0, otherwise.
Here nemi(S°), k €nj4(S%), een§(S°) and veny(S® are some generators of the
2-primary component of n5(S°) (see [14]).

Proof. Consider the following spectral sequence;
E; (X)=H/ (X Z)@n(S°)= n3(X),

for X=Q%, HP® or MSp (the symplectic Thom spectrum). As is well known there
is a stable map j: HP®—X*MSp such that j.f,.,=>b,, where f,,,€ Hy,, (HP®; Z)
~Z{B,, B5,..-} and b,e H,,(MSp; Z)=Z[b,, b,,...] are standard generators. Let
a e (S and v be a generator of n§(S°)=~Z/8. Now under the assumption that
(n+1)va=0, Proposition 2.4 implies that d®(y,,, ®«)=y,_,®J5 for some d € §,,(S°)
if and only if d8(B,,,®a)=p,R®(5+ac), where 6 € is a generator of n5(S°)~Z/16.
On the other hand, if d8(B,,,)®a)=pf,&(6+ac) then it holds that in E} .(MSp)
dé(b,, 1 ®1)=b,_,®(0+0a0c), moreover, d®(S4~-1(b,,,)®a)=0+ac, where S4»-
is a certain Landweber Novikov operation in MSp-theory (See, for example [9]).
Now it is not difficult [9] to see that

d%(S4n-1(b, , )@nK)=d® <<nb2+ (g) b%) ®m<> —(n(n+1)2ex.
This proves the first assertion of Lemma 3.3.  Similarly the second assertion follows.

Since Xs{n+5,4}=X{n+5,4}=X4{n+5,4}, there is an element §,
€ 75 ,+18(S*"*3) such that i,6,=X4{n+5, 4},0413 (see the diagram below).

S4n+18 XA{n+5,4) S4n+18

id.. lw:ﬁ oont}
-1 )n+4 @ 4n+3 io +4 +4
z niz — S —— Q:+1 — O7%5,

It is not difficult to see that Xs{n+5, 5}=X4{n+5, 5} if and only if the order of
0, in 7§, ,5(S*"*3)/Im @, is equal to the order of the e-invariant of §,. In terms of
the spectral sequence, the above diagram implies that

d'%(X{n+5,4}®y,+5)=V,+:1®06, in Elo-term.

Since §, € n55(S°)=Z/16{p} + Z/2{nk}, Lemma 3.3 implies that if n=0 or 3 mod 4
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then nk € Im @, and that if n=1 or 2 mod 4 then §, can not be equal to nx. Thus
the order of 4, in n§,.,5(S*"*3)/Im {, is equal to the order of the e-invariant of 4,
and consequently the differential d'¢: ES,,4,—E}S,3,,5s can be completely
determined by e-invariants. This proves that X4{n+S5, 5} = Xs{n+5, 5}.

§4. Computation

From now on all spaces or spectra should be considered to be localized at (2)
since our interest are in the 2-component. We freely use the structure or notations
in [14] about the 2-component of the stable homotopy groups of spheres.

1) Tor (n§,4+11(Q7%1))-
Consider the following diagram:

S4n+6

l(n-&-l)v

S4n+3

Jio

4nt+10 _Q@ail . An+2 i n+3 _p 4n+11
2L, it 00l S .

|

S4n+7

Applying 7§, +11( ), we have
Tor (m5,+ 11(@3)) = 5,4 11(Qr 3D (gt ieon) -
It is easy to see that ig,: 75,4 11(S*"*3)> 75, +11(Q%12) is an isomorphism.

Lemma 4.1.
igV if n=34),
ioo if n=2(4),
if n=14).
i0.€ if n=0(4).

Pniien=

Proof. By Proposition 2.4 it is enough to show that

wostten=(n+2e+("32)5.

But the above equation has already obtained in [13], and also follows from the
second assertion of Lemma 3.3.

Therefore we have
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Z2+Z2 if n=1(4),
Tor (5, +11(Q7r 1)) =

Z[2 otherwise.

2) Tor (n§,+15(Qwk 1)) for n23.
Now consider the following diagram:

Since 75,(8%)=0, (M+2)vy: w5, 41584 7)o w5, +15(S*4) is trivial and ipy:
Tn+15(S4"*7) > Tor (n5, 1 5(Q214%)) is epic, applying 7§, +5( ) to the above diagram
we have

Tor (5, 4+ 15(Q 1)) =Tor (n5, 4 15(Q742)) -

This completes the proof of 1) and 5) in Main Theorem in §0.

3) m5n4+12(Q0%,) for n22.
We shall prove

Theorem 4.2.

If n22, then n3,,,,(0%%3) is isomorphic to Z[2+Z[2 if n#1 mod 4 and is
isomorphic to Z|2+Z|2+Z|2, otherwise.

Consider the homotopy exact sequence associated with the cofiber sequence;

San+3 io Q:-t% P_, S4n+7,
Then we have

Lemma 4.3. 75,.,,(0"19)=~Z[2+2[2 if n is odd, and Z[2+Z[2+Z]2 if n is
even.

Now consider the cofiber sequence

an+10 _0@hi}  An+2 n+3
S 2y n+1 ’Qn+1'

Using Lemma 4.1 it is easy to see that if n#1 mod 4, then n§, . ,(QIT)=Z/2+Z[2
and that if n=1mod 4, there is a short exact sequence;

0— Z[2+4Z]2 —> m3,412(Q51) — 22— 0,

where the last Z/2 is generated by neng, 4 ,,(S*"*'1)=~Z/2. In order to see that the
above group extension is trivial, as is well-known, it is enough to show that the Toda
bracket {0713, n, 2> 30.

Lemma 4.4. If n=1mod 4 then the Toda bracket {0713, n, 2) contains 0.

Proof. In Proposition 2.5 we proved that there is a map f,: HPI}2—-XQnrt?
such that (n+1)(n+2)Zp@ri3=(n+3)fro0500i3. But if n=1mod?2, then by the
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similar method it can be shown that

((n+1D(n+2)/2)Zoeri3=((n+3)[Df20n0533 -

This implies that if n=1mod 4, then Zy0113 =2If,o4¢n}3 for some | in Z,, (integers
localized at (2)). Thus in order to prove Lemma 4.4 it is enough to show that
{fronprt302, n, 2) contains 0. But the bracket

foeu@niie2 n, 25 3 froupriion® .
On the other hand, from Lemma 4.1 and Proposition 2.5,
fren@ition® =froio,v3=(n+2)io,v3=0,
in Qui2=S4n3 1, 5 en¥s,
This completes the proof of Theorem 4.2 and 2) of Main theorem.

4) miur16(Quy) for n23.
Consider the cofiber sequence:

S4n+3 io

0 4 @ 4n+4
— Qn+1 I Qn+2 — SenTe,

Since 7§, 4 16(S*"T3) =75, 4 16(S*"14)=0, we have

Tn+16(Qmr 1) =50+ 16(Qnk2) -

Therefore from Theorem 4.3 we have proved 6) of Main Theorem.

5) min+13(Q04y) for n22.
Consider the following cofiber sequence:

4.5 n+3 Fo@nt?
( ) S4n+10 QPn+1 ::i% Q:i? S4n+ll QPn+i )

Applying 75, ,3( ) to the above sequence, from Lemma 4.1 we have

0, ifnisodd,
(4.6) (Zopnidan®=
ioh?0  if nis even.

On the other hand,
Lemma 4.7. coker (o@;13)« is isomorphic to Z|2 which is generated by iyynp.
Proof. Consider the cofiber sequence:
S4n+3 _io | Qrtz 2, Sent7 _(n+2)v, Gdn+d

Apply 75,4 15( ) to the above sequence. Since poypni}=(n+3)v, it is easy to see
that if n is even then Lemma 4.7 holds, and that if n is odd then 7§, 3(Q"%?) is
isomorphic to Z/2 generated by io,qu. When n is odd, the image of (o@513)s is
trivial. Because, if the image of (y@13), is non-trivial, it follows that gpiiiov=
io.nu. But this contradicts with the fact that nu can be detected by d-invariant in
KO-theory [1]. Thus Lemma 4.7 has been proved. '
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From (4.6) and Lemma 4.7, if n is even then we see that =5, ,3(Q7%3}) is isomorphic
to Z/2 generated igpu. If nis odd, then n§, . ,3(Qr%3) is a certain group extension
of Z/2 and Z/2. However this group extension is trivial. Because, if not, then
{oPrii, % 2) =iomu. But this also contradicts with the fact that nu can be
detected by d-invariant in KO-theory [1]. This completes the proof of 3) of Main
theorem.

§5. mh.+14(0051).

Consider the following cofiber sequence:

Qnte
S4n+14 Q¥ n+t Z_—t? Qgi‘} S4n+15-

From the above sequence we have

Tne1a (One1) E8,412(004) = 15,414(0013) [Im (g0 0tts) .

First we calculate the group 7§, ,4(Q?%%). In the next Proposition, Z/a{a} means
the cyclic group of order a, generated by « and the symbol + between groups means
the direct sum. And e-invariant e( ) should be considered as

e: 5, (X) — Hom (KO**(X), Q/Z,)),

where a spectrum X is localized at (2).

Considering the homotopy exact sequence associated with the cofiber sequence:
S4n+6 (n+2)v, Gan+3 _io ﬁif S4n+7’

it is easy to see that there exists a coextension & € m§,, , (4(Q"12) of oeni, 14(S*"7)
~73(S%. Then we have

Proposition 5.1.
Z[8{ioL}+Z[16{¢}, if n=6(8),
Z/4{i, & —46}+Z[32{6}, if n=2(8),
Tn+14(Q01D) =
Z[2{io,t —86}+Z/64{6}, if n=0(4),
Z/128{6}, if nisodd.
Moreover generators can be taken so that they satisfy
e(&)(xn+2)=1/16,
e(iOté) (xn+2)=0’
e(iOté)(xn-l-l): 1/8 )
and e(6)(x,+1)=(n+2)I/128, where | is a certain unit in Z,).

Proof. It is easy to see that there exists a short exact sequence of homotopy
groups;
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0 — 7§,414(S*43) o, Tenr14(Qn1}) 25 718,414(S*47) — 0.

l l

Z(8{c} Z|[16{a}

Since {(n+2)v, o, 16) =(n+2)¢, there is only one relation that
(n+2)i,,E=166,

for any choice of 4. This proves the first assertion of Proposition 5.1. The rest of
the assertion follows easily from the properties of e-invariant (See §1).

Next we investigate the structure of the group 7§, ,,(Q"%3). Considering the
cofiber sequence:

S4n+10 Q%nt1 oo} Q::i% Q:iﬁ S4n+ll,

we have the following commutative diagram:

0

l

7'[‘,‘((5‘4"4'4)
0 — mH(QI12) —ity mp(QU13) 2o my(Sentit) Feohide, ge (ront2

(n+3)vs l
‘ﬂ.’i(S4"+8)

0,
where straight sequences are exact and k=4n+ 14.

Lemma 5.2. Im p,cng,, 14(S*"t1)=Z/8{v} is generated by 2v if n is even
and is generated by v if n is odd.

Proof. 1fis odd, then 4¢7i3e(n+4)v=0. This can be seen from the existence
of the spectrum Q#14. Thus 4@ri3ev=0. If n is even, then clearly op;t3ov#0.
On the other hand, since {2v, v, 2v) =0, we see o@113(2v)=0.

Since there exists a short exact sequence:

0 — 75,4+14(0733) 5 75,414(001}) 25 Im py — 0,

and since pu(p@rit)=(n+4)v, if n#0mod 4, then p,(opii}) is a generator of
Im p,=~Z/4(a(n)). Thus if n#0mod4 then there exists a unique element a,€
T+ 14(Q113) such that

4(a(n))o@nii=ixd,.
Then clearly we have
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Tn+1a(QnED = g, 4 1403/ Im (971D

=7 14(Q0ED/ () -

Therefore, if n#0mod 4, in order to determine 7§, ,4(Qr%%), it is sufficient to
describe a, in terms of generators of 7§, ,4(Q"%3) (See Lemma 5.1). This can be
done using the e-invariant.

Case n: odd.

In this case from Lemma 5.1 we can put a, =[G for some integer [, that is, I(i,&)
=8,¢rt4. Evaluating the e-invariant by x,., € KO*"*3(Q71}) at the both sides of
the last equation, we have

1/128=8(n+4)(35n%+49n +18)/2-9!, mod Z,,.

Solving the above equation we obtain that /=8 mod 128 up to some multiple of
units in Z,,. Therefore we see that if n is odd then =3, . ;4(Q511)=Z/16.

Case n=6mod 8.
From Lemma 5.1, in this case we can put o,=kiy, £+ 16 for some integers k
and I. Then we have the following equation:

e(kio,E+16) (x4 2)=e(4g0n1H) (Xn42)
e(kig L +16)(Xp41)= e(“Q‘/’:I‘;) (Xp41)s

where x,,,€ KO*"*7(Qrt3) and x,,, e KO*"*3(Qrt3}). Using Example 2.2, we
see that k=4mod 8 and y=+4mod 16. Therefore in this case 7§, ,4(Q1IH=
Z/8+2Z/A.

Case n=2 mod 8.
By similar method, we have

o, =k(ig,§—46)+15,

where k=+1mod4 and /[=0mod8. Thus, if n=2mod8, then 73, ,4,(Q%})=
Z/32.

Now we shall treat the case n=0mod4. Consider the element fyoqonite
75,4+14(00%3), where fy: HP*13—3Q"t3 is the map in Proposition 2.5. Since
Px(f3op@itH)=(n+1)(n+2)(n+3)v, if n=0mod 4 then the element fyoyprit is a
coextension of a generator of Im p,=~Z/4{2v}. Since (n+4)fsoherit=(n+1)-
(n+2)(n+3)pprtt and since n=0mod 4, it is easy to see that if n=0mod 8, then
0?rit=2of30400%t up to some multiple of units in Z,, and that if n=4mod 8,
then ,0rit=4(n+4/8)f30407t% up to some multiple of units. Let 4f;op0nit=
iya, Then investigating the e-invariant we see that if n=0mod 8, then a,=1i,,¢—
86 +4IG for some unit / and that if n=4mod8, then a,=4I6 for some unit .
Therefore we have
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Z]2+Z/A+Z[64 if n=4mod8,

a4 14Q01)) = [
Z/8+Z/64 if n=0mod8,

where Z/2, Z/4, Z/8 and Z]64 are generated by i,(io,&—86), ficxeii}—io.d,
frog@nt3i—i, & and i,,G respectively. Therefore, by calculating 7§, ,(Q4+3)/
(@1tt), we have

Z2+Z/8 if n=0mod38,

T+ 14(Q011) g[ .
Z[2+Z[4+Z[(16/(16, (n+4)/8)) if n=4mod8.

Thus we have completed the proof of Main theorem.

DEPARTMENT OF MATHEMATICS,
FACULTY OF EDUCATION,
WAKAYAMA UNIVERSITY

References

[1] J. F.Adams, On the group J(X), IV, Topology, 5 (1966), 21-71.

[2] R.Bott, The space of loops on a Lie group, Michigan Math. J., 5§ (1958), 35-61.

[3] B. Harris, Some calculations of homotopy groups of symmetric spaces, Trans. of Amer.
Math. Soc., 106 (1963), 174-184.

[4] M. Imaoka and K. Morisugi, On the stable Hurewicz image of some stunted projective
spaces, I1I, Mem. Fac. Sci., Kyushu Univ. Ser. A, 39 (1985), 197-208.

[5] I M.James, The topology of Stiefel manifolds, London Math. Soc. Lecture Note Series,
24, Cambridge U.P. 1976.

[6] M. Mimura, Quelques groupes d’homotopie metastables des espaces symetriques Sp(n) et
U(Q2n)/Sp(n), C.R. Acad. Sci. Paris, 263 (1966).

[7] M. Mimura and H. Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto
Univ., 3 (1964), 217-250.

[8] M. Mimura and H. Toda, Homotopy groups of symplectic groups, J. Math. Kyoto Univ.,
3 (1964), 251-273.

[9] K. Morisugi, Massey products in MSP, and its application, J. Math. of Kyoto Univ.,
23-2 (1983), 239-263.

[10] K. Morisugi, Homotopy groups of symplectic groups and the quaternionic James numbers,
Osaka J. Math. 23 (1986), 867-880.

[11] H. Oshima, On stable James numbers of stunted complex or quaternionic projective spaces,
Osaka J. Math., 16 (1979), 479-504.

[12] H. Oshima, Some James numbers of Stiefel manifolds, Math. Proc. Phil. Soc. 92 (1982),
139-161.

[13] H. Oshima, On the homotopy group m:.+s(U(n)) for n=6, Osaka J. Math., 17-2 (1980),
495-511.

[14] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. studies,
49 (1962), Princeton.

[15] H. Toda, A survey of homotopy theory, Sugaku 15 (1963/64), 141-155.

[16] G. Walker, Estimates for the complex and quaternionic James numbers, Quart. J. Math.
Oxford (2), 32 (1981), 467-489.



