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Introduction.

A ring will always mean a commutative ring with unit. Let R be a noe-
therian ring, M a finitely generated R-module and N a submodule of M. We
denote by Ming(M) the set of all minimal elements in Suppg(M). In the case
where M is of finite dimension, we put Asshp(M)={psAssz(M)|dim R/p=
dim M} and Uy(N)=NQ where Q runs through all the primary components of
N in M such that dim M/Q=dim M/N. Let T be an R-module and a an ideal
of R. Egx(T) denotes the injective envelope of T and HYT) is the Z-th local
cohomology module of T with respect to a. A semi-local ring means a noetherian
ring with a finite number of maximal ideals and a local ring is a semi-local ring
with unique maximal ideal. We denote by * the Jacobson radical adic comple-
tion over a semi-local ring. For a ring R, Q(R) denotes the total quotient ring
of R and we define dimz0 to be —oo and height R to be oo,

First we recall the definition of the canonical module.

Definition 0.1 ([6, Definition 5.6]). Let R be an n-dimensional local ring
with maximal ideal n. An R-module C is called the canonical module of R if
CQrR=Homg(HR), Ex(R/n)).

When R is complete, the canonical module C of R exists and is the module
which represents the functor Hompgp(HZ( ), Er(R/un)), that is, Homg(H¥ M),
Er(R/n)=Homg (M, C)(functorial) for any R-module M ([6, Satz 5.2]). For
elementary properties of the canonical module, we refer the reader to [5, §6],
[6, 5 und 6 Vortridge] and [2, §1]. If R is a homomorphic image of a Gorens-
tein ring, R has the canonical module C and it is well known that C, is the
canonical module of R, for every p in Suppr(C)([6, Korollar 5.25]). On the
other hand, as was shown by Ogoma [7, §6], there exists a local ring with
canonical module and non-Gorenstein formal fibre, hence not a homomorphic
image of a Gorenstein ring. But the following fact holds in general and our
consideration largely depends on it.
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Theorem 0.2 ([2, Corollary 4.3]). Let R be a local ring with canonical module
C and let p be in Suppr(C). Then C, is the canonical module of R,.

Here we state the definitions of the condition (S,) and a quasi-Gorenstein
ring, which are important in our research.

‘Definition 0.3. Let R be a noetherian ring, M a finitely generated R-module
and ¢ an integer. We say that M is (S;) if depth M,=min {¢, dim M,} for every
p in Suppgr(M).

Definition 0.4 (Platte and Storch). A local ring is said to be quasi-Gorenstein
if it has a free canonical module. A noetherian ring R is called a quasi-Gorenstein
ring if R, is a quasi-Gorenstein local ring for every prime ideal p.

A local ring is quasi-Gorenstein if arnd only if so is the completion. A
noetherian ring R is quasi-Gorenstein if and only if R, is a quasi-Gorenstein
local ring for every maximal ideal n by [2, Corollary 2.4]. A noetherian ring
is a Gorenstein ring if and only if it is a quasi-Gorenstein Cohen-Macaulay ring.

Throughout the paper, A denotes a d-dimensional local ring with maximal
ideal m and canonical module K. We put H=End,(K) and let &4 be the natural
map from A to H.

In the previous paper [2], the following properties of H were shown:

(0.5.1) H is a finite (S,) over-ring of A/U40) contained in Q(A/U 4(0)).
([2, Theorem 3.27)
(0.5.2) dimyCoker (h)<d—2. ([2, Proof of Theorem 4.2])

The main purpose of this paper is to show that H is characterized by the
above properties (Theorem 1.6). In section 1, first we show that the map 4 is
an isomorphism if and only if A is (S,) using Theorem 0.2, and then we prove
Theorem 1.6, by which we can consider H as the unique (S,)-fication of A in a
certain sense. As a corollary, we have a remark on the existence of the can-
onical module (Corollary 1.8). In connection with this, it was recently found
out that A is a homomorphic image of a Gorenstein ring if A is an equidimen-
sional local ring of dimension 2 or Hji(A) is of finite length for i#d. Now we
assume U40)=0 and put ¢c=A: H. Let T be the c-transform of A, i.e., T=
{x=Q(A)| xc¢!C A for some t}. Then we show that T=H as A-algebras. In
section 2 we show that H is a Cohen-Macaulay ring if and only if K is a Cohen-
Macaulay module and, as a corollary, that A is Cohen-Macaulay if and only if
A is (S,) and K is Cohen-Macaulay (a result of Schenzel). In section 3 we con-
sider the ideal g,=Im (K&, Hom,(K, A)— A). The ideal g, is closely related
to Gorensteinness in the case where A is Cohen-Macaulay ([6, 6 Vortrag]) and
in general related to quasi-Gorensteinness, that is, A is quasi-Gorenstein if and
only if g4=A (Proposition 3.3). The proofs of results in section 3 essentially
depend on Theorem 0.2. We also show that the quasi-Gorensteinness of H implies
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ga=¢ if U4(0)=0 and the converse does not hold. In the appendix we give a
generalization of [6, Satz 6.14] and [2, Proposition 4.1]. Let B be a faithfully
flat local A-algebra. Then we prove that K@, B is the canonical module of B
if and only if B/mB is Gorenstein under the condition that B/mB is Cohen-
Macaulay. This result is related to the existence problem of the canonical module
for certain local rings.

1. A characterization of H.
We begin with the following

Lemma 1.1 ([7, Lemma 4.1]). Assume that depth A,=min {2, dim 4,} for
every p in Suppa(K). Then Ass(A)=Assh(A), that is, U,(0)=0.

Proof. Here we give a proof using Theorem 0.2. We proceed by induction
on d. If d<2, then A is Cohen-Macaulay and the assertion is obvious. Let
d>2 and let (0)=q,N - Mg, be a primary decomposition of the zero ideal in A
such that dim A/q;=d if and only if /<s(1<s=<t). We put a=q;" - Nq; and
b=qs+1N - Nq;. Note that a=U,(0)=ann,(K) (cf. [2, (1.8)]). Let p be a non-
maximal prime ideal in Supp,(K). Then U 4,(0)=0 by the induction hypothesis
because K, is the canonical module of A,. Since U 4 0)=(U 40)), by [2, (1.9)],
we have p2b. Suppose that s<t. Then a+b is an m-primary ideal. Since
depth A=2 and depth A/aéP A/6=1, we have depth A/a+5>0 from the exact
sequence 0—A— A/a@P A/b— A/a+5—0. This is a contradiction. Hence we
have s=t, that is, a=0. q.e.d.

Proposition 1.2 (cf. [1, Proposition 2] and [7, Proposition 4.2]). The follow-
ing are equivalent:

(@) The map h is an isomorphism.

() A is (S,).

(b’) For every q in Suppi (R), depth Aqg min {2, dim Aq}.

() A is (Sy).

(c") For every p in Supp,(K), depth A,=min {2, dim A,}.

Proof. (a)=>(b) and (a)=>(c) follow from [2, (1.10)]. (b)=>(b’) and (c)=>(c’)
are obvious, and ()= (¢’) is well known. Hence it is sufficient to prove (¢’)=> (a).
We proceed by induction on d. If d=2, then A is Cohen-Macaulay and the
assertion is known (cf. [6, 6 Vortrag]). Let d>2. By the induction hypothesis
and Theorem 0.2, Coker (h,)=0 for every non-maximal prime ideal p. By Lemma
1.1, we have Ker(h)=ann,(K)=U,(0)=0. Since depth A=2, depth H=2 and
Coker (h) is of finite length, we have Coker(4)=0. Hence h is an isomorphism.

q.e.d.

Corollary 1.3. Assume Min (A)=Assh(A). Then the (S;)-locus {p=Spec(A)| A,
s (Sy)} s open in Spec(A).

Remark 1.4. The following are equivalent:
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(a) A is (Sy).
(b) HHK)=E(A/m).
(¢) There is a finitely generated A-module M such that HE(M)=E ,(A/m).

Proof. We may assume that A is complete by virtue of Proposition 1.2.

(a)=>(b): Since A=H=Hom, (K, K)=Hom,(HK), E4(A/m)) (cf. [6, Satz
5.2]), we have H¥(K)=E ,(A/m).

®)=>(c): Trivial

(¢)>(): Since Hom, (M, K)=Hom,(HiM), E (A/m))=Hom,(E (A/m),
E (A/m)=A and K is (S,), we have the assertion. q.e.d.

Remark 1.5. Let M be a finitely generated (S,) A-module such that HZ(M)
~FE, (A/m) and Min,(M)=Assh,(M). Then M=K. In this case A is (S,).
(This gives another proof of the case (I) of [2, Theorem 4.2]).

Proof. By [2, Proposition 4.4], we have M=Hom (Hom, (M, K), K). Hence
we have M=K because Hom, (M, K)=A. (Note that Hom, (N, K)=A if and
only if H¢N)=E,(A/m) for a finitely generated A-module N). q.e.d.

Now we state and prove our main result.

Theorem 1.6. Let R be an A-algebra with structure homomorphism f. Then
the following are equivalent :
(a) R=H as A-algebras.
(b) R satisfies the following conditions
(i) R is (S,) and finitely generated as an A-module,
(ii) For every maximal ideal nw of R, dim R,=d, and
(iii) dim4 Coker (f)=d—2 and dim4Ker (f)<d—1.

Proof. By virtue of [2, Theorem 3.2], it is sufficient to prove (b)=> (a).
First we see Ker (f)=U4(0). By [6, Satz 5.12] and the condition (ii), Hom4(R, K),
is the canonical module of R, for every maximal ideal n of R. Since R, is (S,),
we have Ass(R,)=Assh(R,) by Lemma 1.1. Let q be in Ass(R) and n a maximal
ideal containing q. Then we have dim R,/qR,=d and dim R/q=d. Hence we
have qNAeAssh(A). Let s be an element of A\ \J p. Then f(s) is not

pEAssh(4)
a zero divisor in R. Hence we have U4(0)SKer (f) because sU 40)=0 for some

s in A\ AUh p. By the condition (iii), we have Ker(f),=0 for every p in
pEAssh(4)

Assh(A). Hence we have U,4(0)=Ker(f). We may assume U, (0)=0 because K
is the canonical module of A/U,(0) and H=Enduy,w(K) (cf. [2, (1.8)]). We
put L=Hom,(R, K). Note that L, is the canonical module of R, for every
maximal ideal n of R. Since dim, R/A<d—2, Hom(R/A, K)=0 and Exti(R/A, K)
=0 by [2, (1.10)]. Hence we have an isomorphism L=Hom (R, K)=Hom/(A4, K)
=K from the exact sequence 0— A—R—R/A—0. From this isomorphism, we
obtain an A-algebra isomorphism from H to End,(L). Because H is commutative,
so is End, (L) and therefore End,(L)=Endz(L). Since R is (S,), R=Endg(L)
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by Proposition 1.2. Hence we have R=H as A-algebras. Finally we note that,
if RCQ(A/U40)), the condition (ii) holds (cf. [2, Proof of Theorem 3.2(2)]).
q.e.d.

As a corollary to the above proof, we have the following corollary which is
an essential part of the proof of [2, Theorem 4.2].

Corollary 1.7. Let B be a local ring and assume that there is a ring R
satisfying the following conditions:

(i) R is a finite over-ring of B,

(ii) For every maximal ideal n of R, dim R,=dim B,

(iii) R has the canonical module T, i.e., T, is the canonical module of R,
for every maximal ideal n of R, and

(iv) dimp R/B=dim B—2.
Then T, as a B-module, is the canonical module of B. Furthermore if R is (S,),
then Up(0)=0 and R=Ends(T) as B-algebras.

From the above results, we have the following corollaries concerning the
existence of the canonical module.

Corollary 1.8. Let B be a local ring of dimension n. Then the following
are equivalent :
(a) B has the canonical module.
(b) There is a finite B-algebra R with structure homomorphism g such that
(i) R is (Sy), dimpKer(g)<n—1 and dimp Coker(g)<n—2,
(ii) For every maximal ideal w of R, dim R,=n, and
(ili) R is a homomorphic image of an n-dimensional quasi-Gorenstein ring.
(c) There is a finite over-ring R of B/Ug(0) satisfying
(i) dimgCoker (B—R)<n—2,
(ii) For every maximal ideal w of R, dim R,=n, and
(iii) R is a homomorphic image of an n-dimensional quasi-Gorenstein ring.

Proof. (a)=>(b): Let L be the canonical module of B and R=Endgz(L).
Then R satisfies (i) and (ii) (cf. [2, Theorem 3.2]). By [2, Theorem 3.2 and
Theorem 2.11], Rx L, the idealization, is an n-dimensional quasi-Gorenstein ring,
hence R also satisfies (iii).

(b)=>(c): Obvious (cf. Proof of Theorem 1.6).

(c)=>(a): R satisfies the conditions in Corollary 1.7 with respect to B/Uz(0)
{cf. [6, Satz 5.12]). Therefore B has the canonical module by virtue of [2, (1.12)].

g.e.d.

Corollary 1.9. Let B be a local ring of dimension 2. Then the following
are equivalent :
(@) B has the canonical module.
(b) There is a finite B-algebra R with structure homomorphism g such that
(i) R is a Cohen-Macaulay ring which is a homomorphic image of a
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Gorenstein ring,
(ii) For every maximal ideal n of R, dim R,=2, and
(iii) dimpKer(g)=<1 and Coker(g) is of finite length.

As was seen in [2, Example 3.3], H is not necessarily a local ring. With
this we remark the following proposition. The proof is not difficult, so we leave
it to the reader.

Proposition 1.10. Let ny, -+, 1, be the maximal ideals of H. Then R has a
decomposition K= iélsl K; by indecomposable A-modules K,, ---, K, such that ﬁ“ig

Homz (K;, K;) for i=1, -+, v and Homz (K;, K;)=0 for i#j. In this case K;=
s A

K., for i=1, -, r. In particular, H is a local ring if and only if K is an in-
decomposable A-module.

Next we consider a relation between H and ideal transforms.

Let R be a ring and [ an ideal containing a non zero divisor. From the
exact sequence 0—I'—>R—R/I'—0, we have the exact sequence 0—R—
Homg(I¢, R)—Extht(R/I%, R)—0. Taking the direct limits, we have the exact
sequence 0—>R—>indtlim Homg(It, R)— H}(R)—0. For an ideal J of R, we put

R(J)={x€Q(R)|xJ'SR for some t}, the J-transform of R, which is an R-
subalgebra of Q(R). R: @’ is naturally isomorphic to Homg(I‘, R). Hence,
from the above argument, we have the following

Lemma 1.11. There is an exact sequence of R-modules 0— R— R(I)—H}(R)
—0 and R(I) is an R-subalgebra of Q(R).

We put ¢c={a€AlaHCh(A)}. The ideal ¢ is uniquely determined.

In the remainder of this section, we assume that d=2 and U 4(0)=0.

Since K, is the canonical module of A, for every prime ideal p, A, is (S,)
if and only if p2c by Proposition 1.2.

Proposition 1.12. There is a unique intermediate ring R between A and Q(A)
such that R=H as A-algebras. In this case R=A()=A:qwu¢.

Proof. The existence of such a ring is due to [2, Theorem 3.2]. Let R
be a ring such that ACRZQ(A) and R=H as A-algebras. We must show R=
A(Q)=A:qwet. If c=A, the assertion is obvious. Let c¢#A. Since heightc=2
(we assume U, (0)=0), there is a subsystem x, y of parameters contained in c.
Because x, y is a K-regular sequence ([2, (1.10)]), x, y is also an R-regular
sequence. Hence we have HY(R)=0 and H¥R)=0. From the exact sequence
0—»R—>Q(A)—Q(A)/R—0, we have HYQ(A)/R)=0. Hence from the exact
sequence 0—R/A—Q(A)/A— Q(A)/R—0, we have R/A2HYR/A)=HYQ(A)/A)
=A(c)/A and therefore R2A(). On the other hand, we have ¢cR=cS A because
¢c=A:,R. Hence we have RS A: ¢S A(0). q.e.d.
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Corollary 1.13. The following are equivalent :

(a) A(m)=H as A-algebras.

(b) For every non-maximal prime ideal p, depth A,=min {2, dim A,}.
(c) c2m® for some t.

Proof. (a)=>(b): By Lemma 1.11, there is an exact sequence 0—»A—H—
H!(A)—0. Since H\(A),=0 for every non-maximal prime ideal p and H is (S,),
we have the assertion.

(b)=>(c): Because pRc for every non-maximal prime ideal p.

(©)>@): If ¢+=A, A(m)=A()=H. If c(=A, A=A()=H. On the other hand
A(m)=A because depth A=2. q.e.d.

Corollary 1.14. (1) If d=2, then A(m)=H as A-algebras.
(2) If HYA) is of finite length for i#d, then A(m)=H as A-algebras.

Remark 1.15. Assume that Hi(A)=0 for 7#1, d and HJ}(A) is of finite
length. Then A(m)=H is just the Cohen-Macaulayfication of A due to the second
author [3]. (cf. Example 2.4(3))

2. The Cohen-Macaulayness of H.

For a finitely generated A-module M of dimension d, we put Ky =Hom,(M, K).
Note that Ky A=Hom,(HiM), E,(A/m)) and that in the case where A4 is
complete K, is the module representing the functor Hom(HE(— Q4 M), E4(A/m))
(cf. [6, Satz 5.2]). By the same argument as in [1, Proof of Lemma 1], we
have the following

Lemma 2.1. Let M be a finitely generated A-module of dimension d and
depth t.
(1) If M is a Cohen-Macaulay module, then Ky is also a Cohen-Macaulay
module.
(2) Assume that M is not a Cohen-Macaulay module and put s=max{i|i<d
and HI(M)#0}.
(i) If depthy Hom,(H(M), E(A/m))=0, then
{d—s-l—l if s>0,
if s=0.
(ii) If s=t and depthz Hom,(H{M), E4(A/m))=u, then
{ d—t+u+l  if u<t,
if u=t.

depth I(M =

depth KM =

Proposition 2.2. H is a Cohen-Macaulay ring if and only if K is a Cohen-
Macaulay module.

Proof. Since H=Hom, (K, K) and K=Hom,(H, K), the assertion immedia-
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tely follows from Lemma 2.1(1). q.e.d.

Corollary 2.3 (Schenzel). A is a Cohen-Macaulay ring if and only if A is
(S,;) and K is a Cohen-Macaulay module.

Example 2.4. (1) If d=<2, then H is always Cohen-Macaulay.

(2) Let t, n be integers such that 0=<t<n. Then there is a local ring B
with Cohen-Macaulay canonical module L such that depth B=¢ and dim B=n
([1, Theorem 1]) and Endg(L) is a Cohen-Macaulay ring.

(3) If Hi(A)=0 for 1<i<d, then H is a Cohen-Macaulay ring. (cf. Lemma
2.1 and [1, Proof of Lemma 1])

(4) If Ais an approximately Cohen-Macaulay ring, then H is a Cohen-
Macaulay ring. (See [4]).

3.% The quasi-Gorensteinness and the ideal g,.

We begin with the following two facts which are slight generalizations of
results in [6]. The proofs are parallel to those given in [6] by virtue of Theorem
0.2, so we omit them.

(3.1) (cf. [6, Korollar 6.7]). Assume Ass(A)=Assh(A). Then the following
are equivalent :

(@) For every minimal prime ideal p, A, is a Gorenstein ring.

(b) K is a fractional ideal of A.

() K is a fractional ideal of A containing a non zero divisor.

(3.2) (cf. [6, Korollar 7.29]). Assume that d=1 and Min (A)=Assh(A). Then
the following are equivalent :

(@) K is a reflexive A-module.

(b) A is (S)) and A, is a Gorenstein ring for every prime ideal p of height
one.

Let g4 be the image of the natural map from K®, Hom, (K, A) to A. The
ideal g, is uniquely determined (cf. [6, p. 83]). By Theorem 0.2, we have g,4,
=04, for every p in Supp,(K).

Proposition 3.3. A is a quasi-Gorenstein ving if and only if g,=A. (cf. [6,
Korollar 6.20)).

Proof. 1t is sufficient to show the “if” part. Since g,=A, there is a surjec-
tion from K to A. Hence A is a direct summand of K. Since K is (S,) (cf.
[2, (1.10)]), so is A and H=A by Proposition 1.2. Hence K is indecomposable
by Proposition 1.10 and therefore K= A. g.e.d.

Corollary 3.4. For a prime ideal p in Supp,s(K), A, is a quasi-Gorenstein
ring if and only if pRq, Consequently, if Min(A)=Assh(A), {p=Spec(A4)|A,
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is quasi-Gorenstein} is open in Spec (A).

Corollary 3.5. A is a Gorenstein ring if and only if K is a Cohen-Macaulay
module and g4=A.

Corollary 3.6. Assume Ass(A)=Assh(A). Then K is a fractional ideal of
A if and only if height g,=1.

Corollary 3.7. Assume that d=1 and Min (A) = Assh(A). Then K is a
reflexive A-module if and only if A is (S)) and height g,=2.

In the remainder of this section, we assume U 4(0)=0.

Since K is an H-module by the usual way, g, is also an ideal of H. The
ideal ¢ is just the conductor A: 4 H, the largest common ideal. Hence we have
the following inclusion

(3.8) gaSc.

Of course the equality g,=¢ does not hold in general, for example, g #¢ if A
is a non-Gorenstein Cohen-Macaulay ring.

Proposition 3.9. If H is a quasi-Gorenstein ring, then gs=c.

Proof. Since Hom (K, A)=Hom(H, A)=c, we have g,=Im(KX,Hom,(K, A)
- A)=Im(HR  c— A)=c. g.e.d.

The converse to Proposition 3.9 does not hold.

Example 3.10. Let k2 be a field and let x, y be indeterminates. We put
B=PR[x° x° x%y, x°y, xy?% »*], n=the maximal ideal of B, R=~k[x? x%y, xy?, y®]
and L=(x%®y, xy*)R. Then it is known that R is a non-Gorenstein Cohen-
Macaulay ring of dimension 2 and L is the canonical module of R. It is obvious
that R is finitely generated as a B-module and B:zR=n, especially dimz R/B
=0. Hence L=(x%y, x°y, xy®B is the canonical module of B and R=Endz(L)
by Corollary 1.7. It is easy to see gz=n because y/x and x*/y are in Homp(L, B).

Remark 3.11. It is easy to see that H is a reflexive A-module (e.g., by
induction on d using Theorem 0.2). Hence we have that, if height g,=2 and
Hom, (K, A)=c¢, then H is a quasi-Gorenstein ring.

Appendix.

In this appendix we give a generalization of [6, Satz 6.14] and [2, Proposi-
tion 4.1].
In the following let B denote a faithfully flat local A-algebra.

Theorem 4.1. The following are equivalent :
(@) B/mB is a Gorenstein ring.
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(b) KQ®u B is the canonical of B and B/mB is a Cohen-Macaulay ring.

Proof. Suppose that B/mB is a Cohen-Macaulay ring and let y,, -, y, be
a system of elements in the maximal ideal of B which forms a maximal B/mB-
regular sequence (r=dim B/mB). Let R=A[X), -, X:Jwm x,. x,» With indeter-
minates X, ---, X, over A and let f be the natural A-algebra homomorphism
from R to B such that f(X;)=y; for /=1, ---, . Then it is known that the
map f is a flat local homomorphism by the local criterion of flatness. By [6,
Korollar 5.12], L=K@®, R is the canonical module of R. Let n be the maximal
ideal of R. Since LQQr B=K®,B and B/uB=B/(m, vy,, ---, ¥,)B is an artinian
ring, the assertion follows from [2, Proposition 4.1]. q.e.d.

Corollary 4.2. The following are equivalent :
(a) A is a quasi-Gorenstein ring and B/mB is a Gorenstein ring.
(b) B is a quasi-Gorenstein ving and B/mB is a Cohen-Macaulay ring.

Corollary 4.3. Assume that B/mB is a Gorenstein ring.

(1) If A is (S,), then B is also (S,).

(2) If M is a finitely generated (S,) A-module of dimension d such that
Min, (M)=Assh, (M), then MQ4B is (S;) and dim B/q=dim B for every q in
Ming(M& 4 B).

Proof. The assertion (1) follows from Proposition 1.2 and Theorem 4.1,
and (2) from [2, Proposition 4.4] and Theorem 4.1. q.e.d.
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