On the endomorphism ring of the canonical module

By

Yoichi AOYAMA and Shiro GOTO

(Communicated by Prof. Nagata, Nov. 9, 1983)

Introduction.

A ring will always mean a commutative ring with unit. Let R be a noetherian ring, M a finitely generated R-module and N a submodule of M. We denote by $\operatorname{Min}_R(M)$ the set of all minimal elements in $\operatorname{Supp}_R(M)$. In the case where M is of finite dimension, we put $\operatorname{Assh}_R(M) = \{\mathfrak{p} \in \operatorname{Ass}_R(M) | \dim R/\mathfrak{p} = \dim M\}$ and $U_M(N) = \cap Q$ where Q runs through all the primary components of N in M such that $\dim M/Q = \dim M/N$. Let T be an R-module and \mathfrak{q} an ideal of R. $E_R(T)$ denotes the injective envelope of T and $H^i_\mathfrak{q}(T)$ is the i-th local cohomology module of T with respect to \mathfrak{q} . A semi-local ring means a noetherian ring with a finite number of maximal ideals and a local ring is a semi-local ring with unique maximal ideal. We denote by $\hat{}$ the Jacobson radical adic completion over a semi-local ring. For a ring R, Q(R) denotes the total quotient ring of R and we define $\dim_R 0$ to be $-\infty$ and height R to be $+\infty$.

First we recall the definition of the canonical module.

Definition 0.1 ([6, Definition 5.6]). Let R be an n-dimensional local ring with maximal ideal \mathfrak{n} . An R-module C is called the canonical module of R if $C \otimes_R \hat{R} \cong \operatorname{Hom}_R(H^n_{\mathfrak{n}}(R), E_R(R/\mathfrak{n}))$.

When R is complete, the canonical module C of R exists and is the module which represents the functor $\operatorname{Hom}_R(H^n_{\mathfrak l}(\), E_R(R/\mathfrak n))$, that is, $\operatorname{Hom}_R(H^n_{\mathfrak l}(M), E_R(R/\mathfrak n)) \cong \operatorname{Hom}_R(M, C)$ (functorial) for any R-module M ([6, Satz 5.2]). For elementary properties of the canonical module, we refer the reader to [5, § 6], [6, 5 und 6 Vorträge] and [2, § 1]. If R is a homomorphic image of a Gorenstein ring, R has the canonical module C and it is well known that $C_{\mathfrak p}$ is the canonical module of $R_{\mathfrak p}$ for every $\mathfrak p$ in $\operatorname{Supp}_R(C)$ ([6, Korollar 5.25]). On the other hand, as was shown by Ogoma [7, § 6], there exists a local ring with canonical module and non-Gorenstein formal fibre, hence not a homomorphic image of a Gorenstein ring. But the following fact holds in general and our consideration largely depends on it.

Acknowledgement. Both authors were partially supported by Grant-in-Aid for Co-operative Research.

Theorem 0.2 ([2, Corollary 4.3]). Let R be a local ring with canonical module C and let \mathfrak{p} be in $Supp_R(C)$. Then $C_{\mathfrak{p}}$ is the canonical module of $R_{\mathfrak{p}}$.

Here we state the definitions of the condition (S_t) and a quasi-Gorenstein ring, which are important in our research.

Definition 0.3. Let R be a noetherian ring, M a finitely generated R-module and t an integer. We say that M is (S_t) if depth $M_{\mathfrak{p}} \geq \min\{t, \dim M_{\mathfrak{p}}\}$ for every \mathfrak{p} in $\operatorname{Supp}_R(M)$.

Definition 0.4 (Platte and Storch). A local ring is said to be *quasi-Gorenstein* if it has a free canonical module. A noetherian ring R is called a *quasi-Gorenstein* ring if $R_{\mathfrak{p}}$ is a quasi-Gorenstein local ring for every prime ideal \mathfrak{p} .

A local ring is quasi-Gorenstein if and only if so is the completion. A noetherian ring R is quasi-Gorenstein if and only if R_n is a quasi-Gorenstein local ring for every maximal ideal n by [2, Corollary 2.4]. A noetherian ring is a Gorenstein ring if and only if it is a quasi-Gorenstein Cohen-Macaulay ring.

Throughout the paper, A denotes a d-dimensional local ring with maximal ideal \mathfrak{m} and canonical module K. We put $H=\operatorname{End}_A(K)$ and let h be the natural map from A to H.

In the previous paper [2], the following properties of H were shown:

(0.5.1) H is a finite (S_2) over-ring of $A/U_A(0)$ contained in $Q(A/U_A(0))$. ([2, Theorem 3.2])

(0.5.2) dim_A Coker $(h) \leq d-2$. ([2, Proof of Theorem 4.2])

The main purpose of this paper is to show that H is characterized by the above properties (Theorem 1.6). In section 1, first we show that the map h is an isomorphism if and only if A is (S_2) using Theorem 0.2, and then we prove Theorem 1.6, by which we can consider H as the unique (S_2) -fication of A in a certain sense. As a corollary, we have a remark on the existence of the canonical module (Corollary 1.8). In connection with this, it was recently found out that A is a homomorphic image of a Gorenstein ring if A is an equidimensional local ring of dimension 2 or $H_n^i(A)$ is of finite length for $i \neq d$. Now we assume $U_A(0)=0$ and put $\mathfrak{c}=A:H$. Let T be the c-transform of A, i.e., T= $\{x \in Q(A) \mid x c^t \subseteq A \text{ for some } t\}$. Then we show that $T \cong H$ as A-algebras. section 2 we show that H is a Cohen-Macaulay ring if and only if K is a Cohen-Macaulay module and, as a corollary, that A is Cohen-Macaulay if and only if A is (S_2) and K is Cohen-Macaulay (a result of Schenzel). In section 3 we consider the ideal $\mathfrak{g}_A = \operatorname{Im}(K \bigotimes_A \operatorname{Hom}_A(K, A) \to A)$. The ideal \mathfrak{g}_A is closely related to Gorensteinness in the case where A is Cohen-Macaulay ([6, 6 Vortrag]) and in general related to quasi-Gorensteinness, that is, A is quasi-Gorenstein if and only if $g_A = A$ (Proposition 3.3). The proofs of results in section 3 essentially depend on Theorem 0.2. We also show that the quasi-Gorensteinness of H implies $\mathfrak{g}_A=\mathfrak{c}$ if $U_A(0)=0$ and the converse does not hold. In the appendix we give a generalization of [6, Satz 6.14] and [2, Proposition 4.1]. Let B be a faithfully flat local A-algebra. Then we prove that $K \otimes_A B$ is the canonical module of B if and only if $B/\mathfrak{m}B$ is Gorenstein under the condition that $B/\mathfrak{m}B$ is Cohen-Macaulay. This result is related to the existence problem of the canonical module for certain local rings.

1. A characterization of H.

We begin with the following

Lemma 1.1 ([7, Lemma 4.1]). Assume that depth $A_{\mathfrak{p}} \ge \min \{2, \dim A_{\mathfrak{p}}\}$ for every \mathfrak{p} in $\operatorname{Supp}_{A}(K)$. Then $\operatorname{Ass}(A) = \operatorname{Assh}(A)$, that is, $U_{A}(0) = 0$.

Proof. Here we give a proof using Theorem 0.2. We proceed by induction on d. If $d \leq 2$, then A is Cohen-Macaulay and the assertion is obvious. Let d>2 and let $(0)=\mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_t$ be a primary decomposition of the zero ideal in A such that $\dim A/\mathfrak{q}_i=d$ if and only if $i\leq s$ ($1\leq s\leq t$). We put $\mathfrak{a}=\mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_s$ and $\mathfrak{b}=\mathfrak{q}_{s+1} \cap \cdots \cap \mathfrak{q}_t$. Note that $\mathfrak{a}=U_A(0)=\mathrm{ann}_A(K)$ (cf. [2, (1.8)]). Let \mathfrak{p} be a non-maximal prime ideal in $\mathrm{Supp}_A(K)$. Then $U_{A_{\mathfrak{p}}}(0)=0$ by the induction hypothesis because $K_{\mathfrak{p}}$ is the canonical module of $A_{\mathfrak{p}}$. Since $U_{A_{\mathfrak{p}}}(0)=(U_A(0))_{\mathfrak{p}}$ by [2, (1.9)], we have $\mathfrak{p} \not\supseteq \mathfrak{b}$. Suppose that s < t. Then $\mathfrak{a}+\mathfrak{b}$ is an \mathfrak{m} -primary ideal. Since depth $A \geq 2$ and depth $A/\mathfrak{a} \oplus A/\mathfrak{b} \supseteq 1$, we have depth $A/\mathfrak{a}+\mathfrak{b}>0$ from the exact sequence $0 \to A \to A/\mathfrak{a} \oplus A/\mathfrak{b} \to A/\mathfrak{a}+\mathfrak{b}\to 0$. This is a contradiction. Hence we have s=t, that is, $\mathfrak{a}=0$.

Proposition 1.2 (cf. [1, Proposition 2] and [7, Proposition 4.2]). The following are equivalent:

- (a) The map h is an isomorphism.
- (b) \hat{A} is (S_2) .
- (b') For every q in $\operatorname{Supp}_{\widehat{A}}(\widehat{K})$, depth $\widehat{A}_{\mathfrak{g}} \geq \min \{2, \dim \widehat{A}_{\mathfrak{g}}\}$.
- (c) A is (S_2) .
- (c') For every \mathfrak{p} in $\operatorname{Supp}_{A}(K)$, depth $A_{\mathfrak{p}} \ge \min \{2, \dim A_{\mathfrak{p}}\}$.

Proof. (a) \Rightarrow (b) and (a) \Rightarrow (c) follow from [2, (1.10)]. (b) \Rightarrow (b') and (c) \Rightarrow (c') are obvious, and $(b') \Rightarrow$ (c') is well known. Hence it is sufficient to prove (c') \Rightarrow (a). We proceed by induction on d. If $d \leq 2$, then A is Cohen-Macaulay and the assertion is known (cf. [6, 6 Vortrag]). Let d > 2. By the induction hypothesis and Theorem 0.2, $\operatorname{Coker}(h_{\mathfrak{p}}) = 0$ for every non-maximal prime ideal \mathfrak{p} . By Lemma 1.1, we have $\operatorname{Ker}(h) = \operatorname{ann}_A(K) = U_A(0) = 0$. Since depth $A \geq 2$, depth $H \geq 2$ and $\operatorname{Coker}(h)$ is of finite length, we have $\operatorname{Coker}(h) = 0$. Hence h is an isomorphism.

q. e. d.

Corollary 1.3. Assume Min(A) = Assh(A). Then the (S_2) -locus $\{\mathfrak{p} \in Spec(A) | A_{\mathfrak{p}} \text{ is } (S_2)\}$ is open in Spec(A).

Remark 1.4. The following are equivalent:

- (a) A is (S_2) .
- (b) $H_{\mathfrak{m}}^{d}(K) \cong E_{A}(A/\mathfrak{m})$.
- (c) There is a finitely generated A-module M such that $H_m^d(M) \cong E_A(A/m)$.

Proof. We may assume that A is complete by virtue of Proposition 1.2. (a) \Rightarrow (b): Since $A \cong H = \operatorname{Hom}_A(K, K) \cong \operatorname{Hom}_A(H^d_{\mathfrak{m}}(K), E_A(A/\mathfrak{m}))$ (cf. [6, Satz 5.2]), we have $H^d_{\mathfrak{m}}(K) \cong E_A(A/\mathfrak{m})$.

- (b) \Rightarrow (c): Trivial.
- (c) \Rightarrow (a): Since $\operatorname{Hom}_A(M, K) \cong \operatorname{Hom}_A(H^d_{\mathfrak{m}}(M), E_A(A/\mathfrak{m})) \cong \operatorname{Hom}_A(E_A(A/\mathfrak{m}), E_A(A/\mathfrak{m})) \cong A$ and K is (S_2) , we have the assertion. q.e.d.

Remark 1.5. Let M be a finitely generated (S_2) A-module such that $H_m^d(M) \cong E_A(A/\mathfrak{m})$ and $\operatorname{Min}_A(M) = \operatorname{Assh}_A(M)$. Then $M \cong K$. In this case A is (S_2) . (This gives another proof of the case (I) of [2, Theorem 4.2]).

Proof. By [2, Proposition 4.4], we have $M \cong \operatorname{Hom}_A(\operatorname{Hom}_A(M, K), K)$. Hence we have $M \cong K$ because $\operatorname{Hom}_A(M, K) \cong A$. (Note that $\operatorname{Hom}_A(N, K) \cong A$ if and only if $H^d_{\operatorname{hl}}(N) \cong E_A(A/\mathfrak{m})$ for a finitely generated A-module N).

Now we state and prove our main result.

Theorem 1.6. Let R be an A-algebra with structure homomorphism f. Then the following are equivalent:

- (a) $R \cong H$ as A-algebras.
- (b) R satisfies the following conditions
 - (i) R is (S_2) and finitely generated as an A-module,
 - (ii) For every maximal ideal n of R, dim $R_n = d$, and
 - (iii) $\dim_A \operatorname{Coker}(f) \leq d-2$ and $\dim_A \operatorname{Ker}(f) \leq d-1$.

Proof. By virtue of [2, Theorem 3.2], it is sufficient to prove (b) \Rightarrow (a). First we see $\operatorname{Ker}(f) = U_A(0)$. By [6, Satz 5.12] and the condition (ii), $\operatorname{Hom}_A(R,K)_n$ is the canonical module of R_n for every maximal ideal $\mathfrak n$ of R. Since R_n is (S_2) , we have $\operatorname{Ass}(R_n) = \operatorname{Assh}(R_n)$ by Lemma 1.1. Let $\mathfrak q$ be in $\operatorname{Ass}(R)$ and $\mathfrak n$ a maximal ideal containing $\mathfrak q$. Then we have $\dim R_n/\mathfrak q R_n = d$ and $\dim R/\mathfrak q = d$. Hence we have $\mathfrak q \cap A \in \operatorname{Assh}(A)$. Let s be an element of $A \setminus_{\mathfrak p \in \operatorname{Assh}(A)} \mathfrak p$. Then f(s) is not a zero divisor in R. Hence we have $U_A(0) \subseteq \operatorname{Ker}(f)$ because $sU_A(0) = 0$ for some s in $A \setminus_{\mathfrak p \in \operatorname{Assh}(A)} \mathfrak p$. By the condition (iii), we have $\operatorname{Ker}(f)_{\mathfrak p} = 0$ for every $\mathfrak p$ in $\operatorname{Assh}(A)$. Hence we have $U_A(0) = \operatorname{Ker}(f)$. We may assume $U_A(0) = 0$ because K is the canonical module of $A/U_A(0)$ and $H = \operatorname{End}_{A/U_A(0)}(K)$ (cf. [2, (1.8)]). We put $L = \operatorname{Hom}_A(R, K)$. Note that L_n is the canonical module of R_n for every maximal ideal $\mathfrak n$ of R. Since $\dim_A R/A \leq d-2$, $\operatorname{Hom}_A(R/A, K) = 0$ and $\operatorname{Ext}_A^1(R/A, K) = 0$ by [2, (1.10)]. Hence we have an isomorphism $L = \operatorname{Hom}_A(R, K) \cong \operatorname{Hom}_A(A, K)$ $\cong K$ from the exact sequence $0 \to A \to R \to R/A \to 0$. From this isomorphism, we obtain an A-algebra isomorphism from H to $\operatorname{End}_A(L)$. Because H is commutative,

so is $\operatorname{End}_A(L)$ and therefore $\operatorname{End}_A(L) = \operatorname{End}_R(L)$. Since R is (S_2) , $R \cong \operatorname{End}_R(L)$

by Proposition 1.2. Hence we have $R \cong H$ as A-algebras. Finally we note that, if $R \subseteq Q(A/U_A(0))$, the condition (ii) holds (cf. [2, Proof of Theorem 3.2(2)]).

q.e.d.

As a corollary to the above proof, we have the following corollary which is an essential part of the proof of $\lceil 2 \rceil$. Theorem 4.2 \rceil .

Corollary 1.7. Let B be a local ring and assume that there is a ring R satisfying the following conditions:

- (i) R is a finite over-ring of B,
- (ii) For every maximal ideal \mathfrak{n} of R, $\dim R_{\mathfrak{n}} = \dim B$,
- (iii) R has the canonical module T, i.e., $T_{\mathfrak{n}}$ is the canonical module of $R_{\mathfrak{n}}$ for every maximal ideal \mathfrak{n} of R, and
 - (iv) $\dim_B R/B \leq \dim B 2$.

Then T, as a B-module, is the canonical module of B. Furthermore if R is (S_2) , then $U_B(0)=0$ and $R\cong \operatorname{End}_B(T)$ as B-algebras.

From the above results, we have the following corollaries concerning the existence of the canonical module.

Corollary 1.8. Let B be a local ring of dimension n. Then the following are equivalent:

- (a) B has the canonical module.
- (b) There is a finite B-algebra R with structure homomorphism g such that
 - (i) R is (S_2) , $\dim_B \operatorname{Ker}(g) \leq n-1$ and $\dim_B \operatorname{Coker}(g) \leq n-2$,
 - (ii) For every maximal ideal n of R, dim $R_n = n$, and
 - (iii) R is a homomorphic image of an n-dimensional quasi-Gorenstein ring.
- (c) There is a finite over-ring R of $B/U_B(0)$ satisfying
 - (i) $\dim_B \operatorname{Coker}(B \to R) \leq n-2$,
 - (ii) For every maximal ideal \mathfrak{n} of R, dim $R_{\mathfrak{n}} = n$, and
 - (iii) R is a homomorphic image of an n-dimensional quasi-Gorenstein ring.

Proof. (a) \Rightarrow (b): Let L be the canonical module of B and $R = \operatorname{End}_B(L)$. Then R satisfies (i) and (ii) (cf. [2, Theorem 3.2]). By [2, Theorem 3.2 and Theorem 2.11], $R \ltimes L$, the idealization, is an n-dimensional quasi-Gorenstein ring, hence R also satisfies (iii).

- (b) \Rightarrow (c): Obvious (cf. Proof of Theorem 1.6).
- (c) \Rightarrow (a): R satisfies the conditions in Corollary 1.7 with respect to $B/U_B(0)$ (cf. [6, Satz 5.12]). Therefore B has the canonical module by virtue of [2, (1.12)]. q.e.d.

Corollary 1.9. Let B be a local ring of dimension 2. Then the following are equivalent:

- (a) B has the canonical module.
- (b) There is a finite B-algebra R with structure homomorphism g such that (i) R is a Cohen-Macaulay ring which is a homomorphic image of a

Gorenstein ring,

- (ii) For every maximal ideal n of R, dim $R_n=2$, and
- (iii) $\dim_B \operatorname{Ker}(g) \leq 1$ and $\operatorname{Coker}(g)$ is of finite length.

As was seen in [2, Example 3.3], *H* is not necessarily a local ring. With this we remark the following proposition. The proof is not difficult, so we leave it to the reader.

Proposition 1.10. Let $\mathfrak{n}_1, \dots, \mathfrak{n}_r$ be the maximal ideals of H. Then \hat{K} has a decomposition $\hat{K} = \bigoplus_{i=1}^r K_i$ by indecomposable \hat{A} -modules K_1, \dots, K_r such that $\hat{H}_{\mathfrak{n}_i} \cong \operatorname{Hom}_{\hat{A}}(K_i, K_i)$ for $i=1, \dots, r$ and $\operatorname{Hom}_{\hat{A}}(K_i, K_j) = 0$ for $i \neq j$. In this case $K_i \cong \hat{K}_{\mathfrak{n}_i}$ for $i=1, \dots, r$. In particular, H is a local ring if and only if \hat{K} is an indecomposable \hat{A} -module.

Next we consider a relation between H and ideal transforms.

Let R be a ring and I an ideal containing a non zero divisor. From the exact sequence $0 \rightarrow I^t \rightarrow R \rightarrow R/I^t \rightarrow 0$, we have the exact sequence $0 \rightarrow R \rightarrow \operatorname{Hom}_R(I^t,R) \rightarrow \operatorname{Ext}_R^t(R/I^t,R) \rightarrow 0$. Taking the direct limits, we have the exact sequence $0 \rightarrow R \rightarrow \operatorname{ind} \lim_t \operatorname{Hom}_R(I^t,R) \rightarrow H_I^t(R) \rightarrow 0$. For an ideal I of I, we put I is naturally isomorphic to I is an I subalgebra of I is naturally isomorphic to I is naturally isomorphic.

Lemma 1.11. There is an exact sequence of R-modules $0 \to R \to R(I) \to H_I^1(R) \to 0$ and R(I) is an R-subalgebra of Q(R).

We put $c = \{a \in A \mid aH \subseteq h(A)\}$. The ideal c is uniquely determined. In the remainder of this section, we assume that $d \ge 2$ and $U_A(0) = 0$. Since $K_{\mathfrak{p}}$ is the canonical module of $A_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} , $A_{\mathfrak{p}}$ is (S_2) if and only if $\mathfrak{p} \not\supseteq c$ by Proposition 1.2.

Proposition 1.12. There is a unique intermediate ring R between A and Q(A) such that $R \cong H$ as A-algebras. In this case $R = A(\mathfrak{c}) = A : Q(A)\mathfrak{c}$.

Proof. The existence of such a ring is due to [2, Theorem 3.2]. Let R be a ring such that $A \subseteq R \subseteq Q(A)$ and $R \cong H$ as A-algebras. We must show $R = A(\mathfrak{c}) = A \colon_{Q(A)} \mathfrak{c}$. If $\mathfrak{c} = A$, the assertion is obvious. Let $\mathfrak{c} \neq A$. Since height $\mathfrak{c} \geq 2$ (we assume $U_A(0) = 0$), there is a subsystem x, y of parameters contained in \mathfrak{c} . Because x, y is a K-regular sequence ([2, (1.10)]), x, y is also an K-regular sequence. Hence we have $H^0_{\mathfrak{c}}(R) = 0$ and $H^1_{\mathfrak{c}}(R) = 0$. From the exact sequence $0 \to R \to Q(A) \to Q(A)/R \to 0$, we have $H^0_{\mathfrak{c}}(Q(A)/R) = 0$. Hence from the exact sequence $0 \to R/A \to Q(A)/A \to Q(A)/R \to 0$, we have $R/A \supseteq H^0_{\mathfrak{c}}(R/A) = H^0_{\mathfrak{c}}(Q(A)/A) = A(\mathfrak{c})/A$ and therefore $R \supseteq A(\mathfrak{c})$. On the other hand, we have $\mathfrak{c}R = \mathfrak{c} \subseteq A$ because $\mathfrak{c} = A \colon_A R$. Hence we have $R \subseteq A \colon_{\mathfrak{c}} \subseteq A(\mathfrak{c})$.

Corollary 1.13. The following are equivalent:

- (a) $A(\mathfrak{m}) \cong H$ as A-algebras.
- (b) For every non-maximal prime ideal \mathfrak{p} , depth $A_{\mathfrak{p}} \ge \min \{2, \dim A_{\mathfrak{p}}\}$.
- (c) $c \supseteq m^t$ for some t.

Proof. (a) \Rightarrow (b): By Lemma 1.11, there is an exact sequence $0 \rightarrow A \rightarrow H \rightarrow H_{m}^{1}(A) \rightarrow 0$. Since $H_{m}^{1}(A)_{\mathfrak{p}}=0$ for every non-maximal prime ideal \mathfrak{p} and H is (S_{2}) , we have the assertion.

- (b) \Rightarrow (c): Because $\mathfrak{p} \supseteq \mathfrak{c}$ for every non-maximal prime ideal \mathfrak{p} .
- (c) \Rightarrow (a): If $c \neq A$, $A(\mathfrak{m}) = A(c) \cong H$. If c = A, $A = A(c) \cong H$. On the other hand $A(\mathfrak{m}) = A$ because depth $A \geq 2$.

Corollary 1.14. (1) If d=2, then $A(\mathfrak{m})\cong H$ as A-algebras.

(2) If $H_{\mathfrak{m}}^{i}(A)$ is of finite length for $i \neq d$, then $A(\mathfrak{m}) \cong H$ as A-algebras.

Remark 1.15. Assume that $H_{\mathfrak{m}}^{i}(A) = 0$ for $i \neq 1$, d and $H_{\mathfrak{m}}^{1}(A)$ is of finite length. Then $A(\mathfrak{m}) \cong H$ is just the Cohen-Macaulay fication of A due to the second author [3]. (cf. Example 2.4(3))

2. The Cohen-Macaulayness of H.

For a finitely generated A-module M of dimension d, we put $K_M = \operatorname{Hom}_A(M, K)$. Note that $K_M \otimes_A \widehat{A} \cong \operatorname{Hom}_A(H_{\mathfrak{m}}^d(M), E_A(A/\mathfrak{m}))$ and that in the case where A is complete K_M is the module representing the functor $\operatorname{Hom}_A(H_{\mathfrak{m}}^d(-\otimes_A M), E_A(A/\mathfrak{m}))$ (cf. [6, Satz 5.2]). By the same argument as in [1, Proof of Lemma 1], we have the following

Lemma 2.1. Let M be a finitely generated A-module of dimension d and depth t.

- (1) If M is a Cohen-Macaulay module, then K_M is also a Cohen-Macaulay module.
- (2) Assume that M is not a Cohen-Macaulay module and put $s=\max\{i | i < d \text{ and } H^i_m(M) \neq 0\}$.
 - (i) If depth_{\hat{A}} Hom_{\hat{A}} ($H_{\mathfrak{m}}^{s}(M)$, $E_{\hat{A}}(A/\mathfrak{m})$)=0, then

$$\operatorname{depth} K_{\mathsf{M}} = \left\{ \begin{array}{ll} d - s + 1 & if \quad s > 0, \\ d & if \quad s = 0. \end{array} \right.$$

(ii) If s=t and $\operatorname{depth}_{\widehat{A}}\operatorname{Hom}_{A}(H_{\mathfrak{m}}^{t}(M), E_{A}(A/\mathfrak{m}))=u$, then

$$\operatorname{depth} K_{\mathbf{M}} = \begin{cases} d - t + u + 1 & if \quad u < t, \\ d & if \quad u = t. \end{cases}$$

Proposition 2.2. H is a Cohen-Macaulay ring if and only if K is a Cohen-Macaulay module.

Proof. Since $H=\operatorname{Hom}_A(K, K)$ and $K\cong\operatorname{Hom}_A(H, K)$, the assertion immedia-

q.e.d.

Corollary 2.3 (Schenzel). A is a Cohen-Macaulay ring if and only if A is (S_2) and K is a Cohen-Macaulay module.

Example 2.4. (1) If $d \le 2$, then H is always Cohen-Macaulay.

- (2) Let t, n be integers such that $0 \le t < n$. Then there is a local ring B with Cohen-Macaulay canonical module L such that depth B=t and dim B=n ([1, Theorem 1]) and End_B(L) is a Cohen-Macaulay ring.
- (3) If $H_m^i(A)=0$ for 1 < i < d, then H is a Cohen-Macaulay ring. (cf. Lemma 2.1 and [1, Proof of Lemma 1])
- (4) If A is an approximately Cohen-Macaulay ring, then H is a Cohen-Macaulay ring. (See [4]).

3. The quasi-Gorensteinness and the ideal g.

We begin with the following two facts which are slight generalizations of results in [6]. The proofs are parallel to those given in [6] by virtue of Theorem 0.2, so we omit them.

- (3.1) (cf. [6, Korollar 6.7]). Assume Ass(A) = Assh(A). Then the following are equivalent:
 - (a) For every minimal prime ideal \mathfrak{p} , $A_{\mathfrak{p}}$ is a Gorenstein ring.
 - (b) K is a fractional ideal of A.
 - (c) K is a fractional ideal of A containing a non zero divisor.
- (3.2) (cf. [6, Korollar 7.29]). Assume that $d \ge 1$ and Min(A) = Assh(A). Then the following are equivalent:
 - (a) K is a reflexive A-module.
- (b) A is (S_1) and $A_{\mathfrak{p}}$ is a Gorenstein ring for every prime ideal \mathfrak{p} of height one.

Let \mathfrak{g}_A be the image of the natural map from $K \otimes_A \operatorname{Hom}_A(K, A)$ to A. The ideal \mathfrak{g}_A is uniquely determined (cf. [6, p. 83]). By Theorem 0.2, we have $\mathfrak{g}_A A_{\mathfrak{p}} = \mathfrak{g}_{A_{\mathfrak{p}}}$ for every \mathfrak{p} in $\operatorname{Supp}_A(K)$.

Proposition 3.3. A is a quasi-Gorenstein ring if and only if $\mathfrak{g}_A = A$. (cf. [6, Korollar 6.20]).

Proof. It is sufficient to show the "if" part. Since $\mathfrak{g}_A=A$, there is a surjection from K to A. Hence A is a direct summand of K. Since K is (S_2) (cf. [2, (1.10)]), so is A and $H\cong A$ by Proposition 1.2. Hence K is indecomposable by Proposition 1.10 and therefore $K\cong A$.

Corollary 3.4. For a prime ideal \mathfrak{p} in $Supp_{A}(K)$, $A_{\mathfrak{p}}$ is a quasi-Gorenstein ring if and only if $\mathfrak{p} \not\supseteq \mathfrak{g}_{A}$. Consequently, if Min(A) = Assh(A), $\{\mathfrak{p} \in Spec(A) | A_{\mathfrak{p}} \}$

is quasi-Gorenstein} is open in Spec(A).

Corollary 3.5. A is a Gorenstein ring if and only if K is a Cohen-Macaulay module and $\mathfrak{g}_A = A$.

Corollary 3.6. Assume Ass(A)=Assh(A). Then K is a fractional ideal of A if and only if height $g_A \ge 1$.

Corollary 3.7. Assume that $d \ge 1$ and Min(A) = Assh(A). Then K is a reflexive A-module if and only if A is (S_1) and height $g_A \ge 2$.

In the remainder of this section, we assume $U_A(0)=0$.

Since K is an H-module by the usual way, \mathfrak{g}_A is also an ideal of H. The ideal \mathfrak{c} is just the conductor $A:_A H$, the largest common ideal. Hence we have the following inclusion

$$\mathfrak{g}_{A}\subseteq\mathfrak{c}.$$

Of course the equality $g_A = c$ does not hold in general, for example, $g_A \neq c$ if A is a non-Gorenstein Cohen-Macaulay ring.

Proposition 3.9. If H is a quasi-Gorenstein ring, then $\mathfrak{g}_A = \mathfrak{c}$.

Proof. Since $\operatorname{Hom}_{A}(K, A) \cong \operatorname{Hom}_{A}(H, A) \cong \mathfrak{c}$, we have $\mathfrak{g}_{A} = \operatorname{Im}(K \bigotimes_{A} \operatorname{Hom}_{A}(K, A) \to A) = \operatorname{Im}(H \bigotimes_{A} \mathfrak{c} \to A) = \mathfrak{c}$.

The converse to Proposition 3.9 does not hold.

Example 3.10. Let k be a field and let x, y be indeterminates. We put $B=k[x^6, x^9, x^2y, x^5y, xy^2, y^3]$, n=the maximal ideal of B, $R=k[x^3, x^2y, xy^2, y^3]$ and $L=(x^2y, xy^2)R$. Then it is known that R is a non-Gorenstein Cohen-Macaulay ring of dimension 2 and L is the canonical module of R. It is obvious that R is finitely generated as a B-module and $B:_BR=n$, especially $\dim_B R/B=0$. Hence $L=(x^2y, x^5y, xy^2)B$ is the canonical module of B and $R\cong \operatorname{End}_B(L)$ by Corollary 1.7. It is easy to see $\mathfrak{g}_B=n$ because y/x and x^4/y are in $\operatorname{Hom}_B(L, B)$.

Remark 3.11. It is easy to see that H is a reflexive A-module (e.g., by induction on d using Theorem 0.2). Hence we have that, if height $\mathfrak{g}_A \geq 2$ and $\operatorname{Hom}_A(K, A) \cong \mathfrak{c}$, then H is a quasi-Gorenstein ring.

Appendix.

In this appendix we give a generalization of [6, Satz 6.14] and [2, Proposition 4.17.

In the following let B denote a faithfully flat local A-algebra.

Theorem 4.1. The following are equivalent:

(a) B/mB is a Gorenstein ring.

(b) $K \otimes_A B$ is the canonical of B and $B/\mathfrak{m}B$ is a Cohen-Macaulay ring.

Proof. Suppose that $B/\mathfrak{m}B$ is a Cohen-Macaulay ring and let y_1, \dots, y_r be a system of elements in the maximal ideal of B which forms a maximal $B/\mathfrak{m}B$ -regular sequence $(r=\dim B/\mathfrak{m}B)$. Let $R=A[X_1, \dots, X_r]_{(\mathfrak{m}, X_1 \dots, X_r)}$ with indeterminates X_1, \dots, X_r over A and let f be the natural A-algebra homomorphism from R to B such that $f(X_i)=y_i$ for $i=1,\dots,r$. Then it is known that the map f is a flat local homomorphism by the local criterion of flatness. By [6, Korollar 5.12], $L=K\bigotimes_A R$ is the canonical module of R. Let \mathfrak{m} be the maximal ideal of R. Since $L\bigotimes_R B=K\bigotimes_A B$ and $B/\mathfrak{m}B\cong B/(\mathfrak{m}, y_1, \dots, y_r)B$ is an artinian ring, the assertion follows from [2, Proposition 4.1].

Corollary 4.2. The following are equivalent:

- (a) A is a quasi-Gorenstein ring and B/mB is a Gorenstein ring.
- (b) B is a quasi-Gorenstein ring and B/mB is a Cohen-Macaulay ring.

Corollary 4.3. Assume that B/mB is a Gorenstein ring.

- (1) If A is (S_2) , then B is also (S_2) .
- (2) If M is a finitely generated (S_2) A-module of dimension d such that $\operatorname{Min}_A(M) = \operatorname{Assh}_A(M)$, then $M \otimes_A B$ is (S_2) and $\dim B/\mathfrak{q} = \dim B$ for every \mathfrak{q} in $\operatorname{Min}_B(M \otimes_A B)$.

Proof. The assertion (1) follows from Proposition 1.2 and Theorem 4.1, and (2) from [2, Proposition 4.4] and Theorem 4.1. q.e.d.

EHIME UNIVERSITY NIHON UNIVERSITY

References

- [1] Y. Aoyama, On the depth and the projective dimension of the canonical module, Japan. J. Math., 6 (1980), 61-66.
- [2] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ., 23 (1983), 85-94.
- [3] S. Goto, On the Cohen-Macaulayfication of certain Buchsbaum rings, Nagoya Math. J., 80 (1980), 107-116.
- [4] S. Goto, Approximately Cohen-Macaulay rings, J. Algebra, 76 (1982), 214-225.
- [5] A. Grothendieck, Local cohomology, Lect. Notes Math. 41, Springer Verlag, 1967,
- [6] J. Herzog, E. Kunz et al., Der kanonische Modul eines Cohen-Macaulay-Rings, Lect. Notes Math. 238, Springer Verlag, 1971.
- [7] T. Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ., 24 (1984), 27-48.