Scrambled sets on compact metric spaces

By

Masayoshi HATA

(Received July 11, 1983)

1. Introduction.

In this paper, we investigate the dynamical properties of continuous maps of a compact metric space into itself. There has been much recent interest in irregular trajectories, for example, so-called strange attractors [1]. In Auslander and Yorke [2] some topological concepts of chaos are investigated. The purpose of this paper is to examine some of the consequences of the following definition due to Li and Yorke [3].

Let X be a compact metric space with metric d and C(X) be the space of all continuous functions from X into itself.

Definition 1. 1. For $f \in C(X)$, we say that S is a scrambled set of (X, d, f) if S satisfies the following two conditions.

(i) S is an uncountable subset of X.

(ii) For any $x, y \in S, x \neq y$, and for some $\delta > 0$,

$$\lim_{n\to\infty} \inf d(f^n(x), f^n(y)) = 0$$

and

$$\lim \sup d(f^n(x), f^n(y)) > \delta.$$

Without loss of generality, we can assume that S contains no asymptotically periodic points. Note that if S is a scrambled set of (X, d, f^m) for some positive integer m, then S is also a scrambled set of (X, d, f).

Definition 1. 2. We say that $f \in C(X)$ is λ -expanding on $X_0 \subset X$ if $d(f(x), f(y)) \ge \lambda d(x, y)$ for any $x, y \in X_0$ and for some $\lambda > 0$.

In one-dimensional case, there are various results concerning scrambled sets. Let I be a compact interval and d(x, y) = |x-y|. Combining the theorems of Li and Yorke [3] and Sharkovskii [4], we have the following:

Theorem 1. 3. If $f \in C(I)$ has a point of period $k \cdot 2^m$ for some odd integer $k \ge 3$ and for some positive integer m, then there exists a scrambled set of (I, d, f).

Concerning the stability property of functions which possess a scrambled set, Butler and Pianigiani [5] obtained the following result.

Theorem 1. 4. The set of functions in C(I) which possess a scrambled set contains an open dense subset of C(I).

Recently, concerning the measurements of scrambled sets, J. Smital [6] showed that

$$f(\mathbf{x}) = \begin{cases} 2\mathbf{x} , & \mathbf{x} \in \left[0, \frac{1}{2}\right] \\ 2 - 2\mathbf{x}, & \mathbf{x} \in \left[\frac{1}{2}, 1\right] \end{cases}$$

has no scrambled sets with a positive Lebesgue measure. Moreover he constructed a scrambled set with full outer Lebesgue measure under the continuum hypothesis.

In n-dimensional case, Marotto [7] obtained the following theorem. Let || || be the usual Euclidean norm and $B_r(x)$ be an open ball centered at x with radius r.

Theorem 1.5. Assume that $F \in C(Q)$ satisfies the following two conditions, where Q is a compact set in \mathbb{R}^n .

(i) F(z) = z and F is λ -expanding on $B_r(z)$ for some $\lambda > 1$.

(ii) $F^m(w) = z$ and F^m is μ -expanding on $B_s(w) \subset B_r(z)$ for some positive integer $m \ge 2$ and for some $\mu \ge 0$.

Then there exists a scrambled set of $(Q, || ||, F^m)$.

It is clear that the set of functions Ψ in C(Q) which possess a scrambled set is dense in C(Q). However, it will be an open problem whether Ψ contains an open set or not.

2. Preliminaries.

In this section, we give some notations and definitions. Let M be a metric space with metric d. Throughout the section 2-4, we suppose that a system (M, d, f) satisfies the following:

Hypothesis 2. 1. $f: M \to M$ is a continuous mapping and there exist disjoint compact subsets A_0 , $A_1 \subset M$ such that

$$f(A_0) \cap f(A_1) \supset A_0 \cup A_1.$$

Let $\Sigma = \{0, 1\}^N$ be the collection of infinite one sided sequences of 0's and 1's with a metric

$$d_{\Sigma}(\omega, \omega') = \sum_{n=0}^{\infty} \frac{1}{2^n} |\omega_n - \omega'_n|$$

where $\omega = (\omega_0 \omega_1 \omega_2 \dots)$ and $\omega' = (\omega'_0 \omega'_1 \omega'_2 \dots)$. Then Σ is a compact metric

690

space and the shift transformation $\sigma: \Sigma \to \Sigma$, where $\sigma(\omega_0 \omega_1 \omega_2 \dots) = (\omega_1 \omega_2 \omega_3 \dots)$, is a continuous onto two to one mapping.

Let \mathscr{C}_i be the set of all non-empty closed subsets of A_i for i=0, 1and put $\mathscr{C} = \mathscr{C}_0 \cup \mathscr{C}_1$. If we introduce Hausdorff metric d_H on \mathscr{C} :

$$d_{H}(c, c') = \max \{ \inf_{\varepsilon > 0} \{ N_{\varepsilon}(c) \supset c' \}, \inf_{\varepsilon > 0} \{ N_{\varepsilon}(c') \supset c \} \}$$

for $c, c' \in \mathscr{C}$, where $N_{\varepsilon}(c)$ is an ε -neighbourhood of c, then \mathscr{C} is a compact metric space by virtue of the theorem of Michael [8].

For any sequence of sets $\{D_n\}$, we define the limit superior set of $\{D_n\}$ as follows:

$$\limsup_{n\to\infty} D_n = \bigcap_{n=1}^{\infty} \overline{\bigcup_{i=n}^{\infty} D_i}.$$

Note that if $\{D_n\}$ is a sequence in a compact metric space, then the limit superior set of $\{D_n\}$ is a non-empty compact subset.

For any $\omega \in \Sigma$, we define

$$K(\omega) = \bigcap_{n=0}^{\infty} f^{-n}(A_{\omega_n})$$

where $\omega = (\omega_0 \omega_1 \omega_2 \dots)$. Since it is clear that $K(\omega)$ is a non-empty closed subset of $A_0 \cup A_1$ by Hypothesis 2.1, K is a mapping from Σ to \mathscr{C} .

For convenience, we define the address of $x \in A_0 \cup A_1$ such that

$$Add(x) = \begin{cases} A_0 & \text{if } x \in A_0 \\ A_1 & \text{if } x \in A_1. \end{cases}$$

Therefore we have $Add(f^n(x)) = A_{\omega_n}$ for any $n \ge 0$ and $x \in K(\omega)$.

Finally we define a mapping $F: \mathscr{C} \to 2^M$ as follows:

$$F(c) = \{f(x) ; x \in c\} \subset M$$

for $c \in \mathscr{C}$. Since f is continuous, F(c) is always a compact subset.

3. Some Properties of K.

In this section, we discuss some fundamental properties of $K: \Sigma \to \mathscr{C}$. If we define $M^* = \bigcup_{\omega \in \Sigma} K(\omega) \subset M$ and $\mathscr{C}^* = K(\Sigma)$, then we have the following.

Lemma 3.1. (i) $\omega \neq \omega'$ implies $K(\omega) \cap K(\omega') = \phi$ and therefore $K: \Sigma \rightarrow \mathscr{C}^*$ is an onto one to one mapping.

- (ii) M^* is a compact subset of M.
- (iii) $K(\sigma(\omega)) = F(K(\omega))$ for any $\omega \in \Sigma$.
- (iv) $F: \mathscr{C}^* \to \mathscr{C}^*$ is continuous.

Proof. Plainly (i) follows from the definition of K. For any $x \in M - M^*$, we have $f^n(x) \notin A_0 \cup A_1$ for some $n \ge 0$. Since f^n is continuous at x and $A_0 \cup A_1$ is closed, there exists a neighbourhood U of x such that $f^n(U) \cap$

 $(A_0 \cup A_1) = \phi$. Then we have $U \cap M^* = \phi$ and therefore M^* is a closed subset of M. Thus M^* is a compact set since $M^* \subset A_0 \cup A_1$. For any $x \in K(\sigma(\omega))$, we have $Add(f^n(x)) = A_{\omega_{n+1}}$ for any $n \ge 0$. Since $x \in A_0 \cup A_1$ $\subset f(A_{\omega_0})$, there exists $y \in A_{\omega_0}$ such that x = f(y). Then $Add(f^n(y)) =$ $Add(f^{n-1}(x)) = A_{\omega_n}$ for any $n \ge 1$ and we have $y \in K(\omega)$. Hence $K(\sigma(\omega)) \subset$ $F(K(\omega))$. Conversely, for any $x \in F(K(\omega))$, there exists $y \in K(\omega)$ such that x = f(y). Then $Add(f^n(x)) = Add(f^{n+1}(y)) = A_{\omega_{n+1}}$ and we have $x \in$ $K(\sigma(\omega))$. Thus we have $K(\sigma(\omega)) = F(K(\omega))$. Also this shows that $F(\mathscr{C}^*) \subset \mathscr{C}^*$. Finally, (iv) follows since f is uniformly continuous on a compact set M^* . \Box

The following plays an important and fundamental role in our discussions.

Lemma 3. 2. For any sequence $\{\omega^{(n)}\} \subset \Sigma$, we have

$$\limsup_{n\to\infty} K(\omega^{(n)}) \subset \bigcup_{\omega\in\Sigma_0} K(\omega)$$

where $\Sigma_0 = \lim \sup \{\omega^{(n)}\}$.

Proof. Let $\limsup_{n\to\infty} K(\omega^{(n)}) = K^*$. Since $K(\omega^{(n)}) \subset M^*$ and M^* is a closed set, we have $K^* \subset M^*$. Therefore, for any $x \in K^*$, there exists some $\omega \in \Sigma$ such that $x \in K(\omega)$. By the definition of the limit superior set, there exists a subsequence $\{n_j\}$ such that $d(y_j, x) \to 0$ as $j \to \infty$ where $y_j \in K(\omega^{(n_j)})$. Since $d(A_0, A_1) > 0$, for fixed k, we have $Add(f^k(x)) = Add(f^k(y_j)) = A_{\omega_k}$ for sufficiently large j. This shows that $d_{\Sigma}(\omega^{(n_j)}, \omega) \to 0$ as $j \to \infty$. Hence $\omega \in \lim \sup \{\omega^{(n)}\}$ and this completes the proof. \Box

Corollary 3. 3. If $d_{\Sigma}(\omega^{(n)}, \omega) \to 0$ as $n \to \infty$, then we have

 $\lim \sup K(\omega^{(n)}) \subset K(\omega).$

We say that f_1 is topologically conjugate to f_2 if $f_1 = h \circ f_2 \circ h^{-1}$ for some homeomorphism h.

Theorem 3. 4. The following three statements are equivalent to one another. (i) $K: \Sigma \rightarrow \mathscr{C}^*$ is a continuous mapping.

- (ii) \mathscr{C}^* is a closed subset of \mathscr{C} .
- (iii) $F: \mathscr{C}^* \to \mathscr{C}^*$ is topologically conjugate to the shift $\sigma: \Sigma \to \Sigma$.

Proof. First we will prove (i) is equivalent to (ii). Clearly (ii) follows if (i) holds. Assume that \mathscr{C}^* is closed. For any sequence $\{\omega^{(n)}\} \subset \Sigma$ such that $d_{\Sigma}(\omega^{(n)}, \omega) \to 0$ as $n \to \infty$, a sequence $\{K(\omega^{(n)})\} \subset \mathscr{C}^*$ contains a subsequence which converges to some $K(\omega^*)$ since \mathscr{C}^* is compact. Then it is clear that $K(\omega^*) \subset \lim_{n \to \infty} \sup K(\omega^{(n)})$ and using Corollary 3. 3 we have $K(\omega^*) \subset K(\omega)$. Hence $\omega^* = \omega$ and this implies that $d_H(K(\omega^{(n)}), \omega) \subset K(\omega)$.

 $K(\omega) \rightarrow 0$ as $n \rightarrow \infty$, that is, K is continuous at ω . Thus (i) follows. Since K is a continuous one to one mapping onto a compact space \mathscr{C}^* , K must be a homeomorphism. This implies (iii). Finally, it is clear that (ii) follows if (iii) holds.

A mapping K may have a discontinuity point. Actually we have the following. The proof is straightforward.

Lemma 3.5. If $K(\omega)$ has an interior point, then ω is a discontinuity point of K.

4. Existence of Scrambled Sets.

In this section, we give some theorems concerning the existence of a scrambled set.

Theorem 4. 1. Assume that K is continuous at some point $\omega \in \Sigma$. Then there exists a scrambled set of (\mathscr{C}^*, d_H, F) .

Proof. Let $\omega = (\omega_0 \omega_1 \omega_2 \dots)$. We define for $\gamma \in [0, 1]$ and $n \ge 0$, $\omega_n^r = [\gamma m] - [\gamma (m-1)]$ if $n = m^2$ and $\omega_n^r = \omega_k$ if $n > [\sqrt{n}]^2$ where $k = n - [\sqrt{n}]^2 - 1$ and [x] denotes the greatest integer which does not exceed x. Then it easily follows that $\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \omega_{j^2}^r = \gamma$. Let $\omega^r = (\omega_0^r \omega_1^r \omega_2^r \dots)$. Then we have

$$\sigma^{n^2+1}(\omega^r) = (\omega_0 \omega_1 \omega_2 \dots \omega_{2n-1} \dots),$$

therefore, for any γ , $\{\sigma^{n^2+1}(\omega^r)\}_{n\geq 1}$ is a sequence in Σ which converges to ω . Thus, by the assumption of K, we have $d_H(K(\sigma^{n^2+1}(\omega^r)), K(\omega)) \to 0$ as $n \to \infty$.

Now we define $S = \{K(\omega^{\gamma}); \gamma \in [0, 1]\} \subset \mathscr{C}^*$. Plainly S is an uncountable subset of \mathscr{C}^* and for any $\alpha, \beta \in [0, 1], \alpha \neq \beta$,

$$d_{H}(F^{n^{2}+1}(K(\omega^{\alpha})), F^{n^{2}+1}(K(\omega^{\beta}))) \leq d_{H}(K(\sigma^{n^{2}+1}(\omega^{\alpha})), K(\omega)) + d_{H}(K(\sigma^{n^{2}+1}(\omega^{\beta})), K(\omega)) \to 0 \text{ as } n \to \infty.$$

Hence we have

lim inf
$$d_H(F^n(K(\omega^{\alpha})), F^n(K(\omega^{\beta}))) = 0.$$

On the other hand, there exists a subsequence $\{n_j\}$ such that $\omega_{n_i^2}^{\alpha} \neq \omega_{n_i^2}^{\beta}$, and therefore

$$K(\sigma^{n_j^2}(\omega^{\alpha})) \subset A_s$$
 and $K(\sigma^{n_j^2}(\omega^{\beta})) \subset A_r$ for $s \neq r$.

Hence we have

$$\limsup_{n\to\infty} d_H(F^n(K(\omega^{\alpha})), F^n(K(\omega^{\beta}))) \ge d(A_0, A_1).$$

This completes the proof.

Masayoshi Hata

Theorem 4. 2. Suppose that $K(\omega)$ consists of only one point. Then K is continuous at ω and there exists a scrambled set of (M^*, d, f) .

Proof. Let $\{\omega^{(n)}\}\$ be any sequence in Σ such that $d_{\Sigma}(\omega^{(n)}, \omega) \to 0$ as $n \to \infty$. By Corollary 3.3, we have $\limsup_{n\to\infty} K(\omega^{(n)}) = K(\omega)$ since $K(\omega)$ consists of only one point. Therefore $d_H(K(\omega^{(n)}), K(\omega)) \to 0$ as $n \to \infty$ and this shows the continuity of K at ω . By the above theorem, there exists a scrambled set $S = \{K(\omega^r); r \in [0, 1]\}$ of (\mathscr{C}^*, d_H, F) . Choosing suitably $x^r \in K(\omega^r)$, we define $\mathscr{S} = \{x^r; r \in [0, 1]\} \subset M^*$. Then cleary \mathscr{S} is a scrambled set of (M^*, d, f) . \Box

Corollary 4. 3. Assume that $K(\omega)$ consists of only one point for any $\omega \in \Sigma$. Then $f: M^* \to M^*$ is topologically conjugate to the shift $\sigma: \Sigma \to \Sigma$.

Proof. By the above theorem, $K: \Sigma \to \mathscr{C}^*$ is continuous. Thus $F: \mathscr{C}^* \to \mathscr{C}^*$ is topologically conjugate to $\sigma: \Sigma \to \Sigma$ by Theorem 3.4. Since $K(\omega)$ consists of only one point, we can identify M^* with \mathscr{C}^* . This completes the proof. \square

Theorem 4. 4. Assume that there exist $\nu > 1$ and $s \ge 0$ such that f is ν -expanding on $A_{i_0} \cap f^{-1}(A_{i_1}) \cap \ldots \cap f^{-s}(A_{i_s})$ for any $\{i_0, i_1, \ldots, i_s\} \in \{0, 1\}^{s+1}$. Then $f: M^* \to M^*$ is topologically conjugate to the shift $\sigma: \Sigma \to \Sigma$.

Proof. For any $x, y \in K(\omega)$ and for any $n \ge 0$, we have $f^n(x), f^n(y) \in A_{\omega_n} \cap f^{-1}(A_{\omega_{n+1}}) \cap \ldots \cap f^{-s}(A_{\omega_{n+s}})$, and therefore

$$d(x, y) \leq \frac{1}{\nu^n} d(f^n(x), f^n(y))$$

$$\leq \frac{1}{\nu^n} \operatorname{diam}(A_0 \cup A_1) \to 0 \text{ as } n \to \infty.$$

Hence $K(\omega)$ must consist of only one point.

5. Marotto's Conditions.

In this section, we will prove the following theorem as an application of our results to finite dimensional case. Let Q be a compact set in \mathbb{R}^n and d(x, y) = ||x-y||.

Theorem 5. 1. Suppose that $f \in C(Q)$ satisfies the conditions (i) and (ii) in Theorem 1.5. Then there exists a compact set $Q^* \subset Q$ and a positive integer p such that $f^p: Q^* \to Q^*$ is topologically conjugate to the shift $\sigma: \Sigma \to \Sigma$.

We remark that Shiraiwa and Kurata [9] obtained the same conclusion assuming that the differentiability of f and some transversality condition. Before proving the theorem, we need the following lemma.

Lemma 5. 2. Suppose that f is a continuous ν -expanding mapping on $B_{\alpha}(x_0)$ for some $\nu > 0$. Then there exists $\beta > 0$ such that $B_{\beta}(f(x_0)) \subset f(B_{\alpha}(x_0))$.

694

Proof. For some $\delta \in (0, \alpha)$ and for any $x \in \partial B_{\delta}(x_0)$, we have $||f(x) - f(x_0)|| \ge \nu \delta$ and therefore $B_{\beta}(f(x_0)) \cap f(\partial B_{\delta}(x_0)) = \phi$ for any $\beta \in (0, \nu \delta)$. Hence for any $x \in B_{\beta}(f(x_0))$, $\deg(f, B_{\delta}(x_0), x) = \deg(f, B_{\delta}(x_0), f(x_0))$.

Now consider the homotopy $h(x, t): \overline{B_{\delta}(0)} \times [0, 1] \rightarrow \mathbb{R}^n$ such that

$$h(x, t) = f\left(x_0 + \frac{x}{1+t}\right) - f\left(x_0 - \frac{t}{1+t}x\right).$$

Then we have $||h(x, t)|| \ge \nu \delta$ for any $(x, t) \in \partial B_{\delta}(0) \times [0, 1]$ and therefore

 $\deg(h(x, 0), B_{\delta}(0), 0) = \deg(h(x, 1), B_{\delta}(0), 0).$

Since $h(x, 1) = f\left(x_0 + \frac{x}{2}\right) - f\left(x_0 - \frac{x}{2}\right)$ is an odd mapping, deg $(h(x, 1), B_{\delta}(0), 0) \neq 0$ by Borsuk's theorem ([10], p. 99). Thus we have deg $(f, B_{\delta}(x_0), f(x_0)) = \deg(h(x, 0), B_{\delta}(0), 0) \neq 0$. This implies that $B_{\beta}(f(x)) \subset f(B_{\delta}(x_0)) \subset f(B_{\alpha}(x_0))$.

Proof of Theorem 5.1. Without loss of generality, we can assume that $s < \frac{\lambda^m - 1}{\lambda^m + 1} ||z - w||$ and $\nu < \lambda$. By the above lemma, there exists an open ball $B_a(z)$ such that $f^m \colon B_s(w) \cap f^{-m}(B_a(z)) \to B_a(z)$ is an onto mapping. If we put $f_0 = f|_{B_p(z)}$, then f_0^{-1} is a contraction mapping with the Lipschitz constant $\frac{1}{\lambda}$. We define a sequence of open sets $\{B_{-n}\}_{n\geq 1}$ as follows:

$$B_{-1}=B_s(w)\cap f^{-m}(B_a(z)), \ B_{-n}=f_0^{-m}(B_{-n+1}) \quad \text{for } n\geq 2.$$

Then note that $B_{-1} \cap B_{-n} = \phi$ if $n \ge 2$. Thus there exists a positive integer p such that $B_{-n} \subset B_a(z)$ for any $n \ge p$ and $\lambda^{p(m-1)} \mu > 1$.

Now if we put

$$A_{0} = \bigcup_{n=p+1}^{\infty} B_{-n} \cup \{z\} \text{ and } A_{1} = B_{-1} \cap f_{0}^{-m} (\bigcup_{n=p}^{\infty} B_{-n} \cup \{z\}),$$

then it is clear that $\overline{A_0} \cap \overline{A_1} = \phi$. Moreover, we have $f^{pm}(A_0) \supset A_0 \cup A_1$ and $f^{pm}(A_1) \supset A_0 \cup A_1$. Hence

$$f^{\mathfrak{pm}}(\overline{A_i}) = \overline{f^{\mathfrak{pm}}(\overline{A_i})} \supset \overline{f^{\mathfrak{pm}}(A_i)} \supset \overline{A_0} \cup \overline{A_1}$$

for i=0, 1 and f^{pm} satisfies Hypothesis 2. 1. Also one can easily verify that f^{pm} is $\lambda^{p(m-1)}\mu$ -expanding on each compact set $\overline{A}_i \cap f^{-pm}(\overline{A}_j)$ for $\{i, j\} \in \{0, 1\}^2$. By Theorem 4.4, this completes the proof. \Box

6. De Rham Equation.

In this section, we will give another result concerning a scrambled set using a contraction principle in complete metric space instead of Cantor's intersection theorem in compact space. With this situation we will discuss the connection with De Rham's functional equations [11].

Let E be a complete metric space with metric d and T_0 , T_1 : $E \rightarrow E$ be

Masayoshi Hata

two continuous mappings. Then consider the following De Rham equation:

(*)
$$L(\omega) = T_{\omega_0} L(\sigma(\omega))$$

where L is a mapping from Σ into E. First we have the following.

Theorem 6. 1. Suppose that L is a continuous solution of (*) and that T_0 and T_1 are one to one mappings such that $T_0(E) \cap T_1(E) = \phi$. Then we have the followings:

(i) $E^* = L(\Sigma)$ is a compact subset and $E^* = T_0(E^*) \cup T_1(E^*)$.

(ii) If we put $f(x) = T_i^{-1}(x)$ for $x \in T_i(E^*)$, $i=0, 1, then f: E^* \rightarrow E^*$ is topologically conjugate to the shift $\sigma: \Sigma \rightarrow \Sigma$.

Proof. (i) is obvious. For any $\omega \neq \omega' \in \Sigma$, there exists $n \ge 0$ such that $\omega_n \neq \omega'_n$ and $\omega_j = \omega'_j$ for $0 \le j \le n$. Then we have $L(\omega) \neq L(\omega')$ since $T_{\omega_n}L(\sigma^{n+1}(\omega)) \neq T_{\omega_n}L(\sigma^{n+1}(\omega')).$ Therefore $L: \Sigma \to E^*$ is a homeomorphism. Since $f(L(\omega)) = T_{\omega_0}^{-1}L(\omega) = L(\sigma(\omega))$, this completes the proof.

In the above theorem, we remark that $f: E^* \rightarrow E^*$ is continuous and a system (E^*, d, f) satisfies Hypothesis 2.1.

Theorem 6. 2. Suppose that there exists $s \ge 1$ such that $T_{i_1}T_{i_2} \ldots T_{i_s}$ is a contraction mapping on E for any $\{i_1, i_2, \ldots, i_s\} \in \{0, 1\}^s$. Then there exists a continuous solution L of (*).

Proof. For some $x_0 \in E$, we define

$$a_n = T_{\omega_0} T_{\omega_1} \dots T_{\omega_{n-1}}(x_0)$$
 for any $\omega \in \Sigma$.

Then we have, for some $\lambda < 1$,

$$d(a_{n+1}, a_n) = d(T_{\omega_0} \dots T_{\omega_n}(x_0), T_{\omega_0} \dots T_{\omega_{n-1}}(x_0)) \leq \lambda^{\lfloor \frac{n}{s} \rfloor} d^*,$$

г " э

where $d^* = \underset{\substack{i_1,\ldots,i_j\\1 \le j \le s}}{\operatorname{Max}} d(T_{i_1} \ldots T_{i_j}(x_0), T_{i_1} \ldots T_{i_{j-1}}(x_0)).$

Therefore, for any n > m.

$$d(a_{n}, a_{m}) \leq d(a_{n}, a_{n-1}) + \dots + d(a_{m+1}, a_{m})$$

$$\leq d^{*} \sum_{k=m}^{n-1} \lambda^{\left[\frac{k}{s}\right]}$$

$$< \frac{d^{*}}{1-u} \mu^{m-s},$$

where $\mu = \lambda^{\frac{1}{s}} < 1$. Hence $\{a_n\}$ is a Cauchy sequence in E. Now we define $L(\omega) = \lim a_n$. Note that this limit is independent of the choice of $x_0 \in E$, since

$$d(T_{\omega_0}\ldots T_{\omega_n}(x_0), T_{\omega_0}\ldots T_{\omega_n}(x_1)) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

696

Scrambled sets

Clearly L satisfies the equation (*). Let $E^* = \bigcup_{\omega \in \Sigma} L(\omega)$. Then we have $\operatorname{diam}(E^*) < \infty$ since $d(L(\omega), x_0) \le \frac{d^*}{\lambda(1-\mu)}$ for any $\omega \in \Sigma$. If $\omega_j = \omega'_j$ for $0 \le j \le sn$, then

$$d(L(\omega), L(\omega')) \leq \lambda^n d(L(\sigma^{sn}(\omega)), L(\sigma^{sn}(\omega')))$$
$$\leq \lambda^n \operatorname{diam}(E^*)$$

This shows the continuity of L.

It should be noted that f may possess a scrambled set even if f is a linear operator. For example, if we put E=C[0, 1] and

$$T_0(g) = \int_0^x p(t)g(t)dt$$
 and $T_1(g) = \int_0^x p(t)g(t)dt + 1$

for some positive function $p \in E$, then it is easily verified that $T_i: E \to E$ is a one to one mapping for i=0, 1 and $dist(T_0(E), T_1(E)) \ge 1$. Moreover, we have

$$||T_{i_1} \dots T_{i_n}(g) - T_{i_1} \dots T_{i_n}(h)|| = ||T_0^n(g - h)||$$

$$\leq \frac{||p||}{n!} ||g - h||$$

for any g, $h \in E$. Then, by Theorem 6.1. and Theorem 6.2, there exists a scrambled set of $(E^*, || ||, f)$ where

$$f = \frac{1}{p(x)} \frac{d}{dx}.$$

In this case, using $T_{\omega_n}(g) = T_0(g) + \omega_n$, we have

$$L(\omega) = \sum_{n=0}^{\infty} \omega_n T_0^n(1) = \sum_{n=0}^{\infty} \frac{\omega_n}{n!} \left(\int_0^x p(t) dt \right)^n.$$

Acknowledgement. The author wants to express his gratitude to Professor Yamaguti for making several valuable remarks on the text.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

References.

- D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys., 20 (1971), 167-192.
- [2] J. Auslander and J. A. Yorke, Interval maps, factors of maps, and chaos, Tohoku Math. J., 32 (1980), 177-188.
- [3] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.
- [4] A. N. Sharkovskii, Coexistence of cycles of a continuous transformation of a line into itself, Ukrain. Mat. Z., 16(1) (1964), 61-71 (In Russian).
- [5] G. J. Butler and G. Pianigiani, Periodic points and chaotic functions in the unit interval,

Masayoshi Hata

Bull. Austral. Math. Soc., 18 (1978), 255-265.

- [6] J. Smital, A chaotic function with some extremal properities, Proc. Amer. Math. Soc., 87 (1983), 54-56.
- [7] F. R. Marotto, Snap-back repellers imply chaos in Rⁿ, J. Math. Anal. Appl., 63 (1978), 199-223.
- [8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
- [9] K. Shiraiwa and M. Kurata, A generalization of a theorem of Marotto, Nagoya Math., J., 82 (1981), 83-97.
- [10] J. T. Schwartz, Nonlinear Functional Analysis, New York University Lectures (1965).
- [11] G. De Rham, Sur quelques courbes definies par des equations fonctionnelles, Rend. Sem. Mat. Torino, 16 (1957), 101-113.