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§ O. Introduction.

The results by V. Va Ivrii and V. M. Petkov [4] have a proposition come to mind.
They conjecture that effectively hyperbolic operators must be strongly hyperbolic.
The converse of this conjecture is one of their results. In other words a Cauchy problem
for a partial differential operator P  will be C+°°-well posed independent of the lower
order terms if the fundamental (Hamilton) matrix of the principal part P .  has two

non-zero real eigenvalues at the singular points of P . = 0 .  (Also refer to L. H6rmander
[1].) Some authors have studied related problems after P. A. Oleinik [8]. Her result
proves the conjecture in the case that m =2 and that some restrictive relations are assumed
between an initial surface and the principal part, for example, it is required that the
projection of the singular points of characteristics onto the base space should be included
in an initial surface. O n  th e  other hand V. Va Ivrii [3] show that the conjecture is true
if th e  characteristics have been union of two simple characteristics. ("Effectively
hyperbolic" means that they intersect non-involutively.) In  two dimmensional cases
the result of O. A. Oleinik implies the complete proof to the conjecture and T. Nishitani
[7] has also treated more general types with analytic coefficients. However, it is still
open in general.

We shall here prove the conjecture to a standard type of second order equations.
It is an equation added a perturbed term of a second order operator with a non-negative
principal symbol to one treated by V . V a  Ivrii. Precisely, we consider it to an operator
P  with a principal symbol P2 of the form (0.1).

(0.1) P2= (e0 — Aixe. — Ao)d- b2,

where A .;=A ,(x o , x, 6 (j=0 , 1 ) are real pseudodifferential operators in  x  o f  homo-
geneous order 1 with a parameter xo and b2=b2(xo, x, e) is a non-negative one of homo-
geneous order 2. It means that P2 is hyperbolic with respect to the Co-direction.

Rem ark. We consider Cauchy problems on domains of .1?" 1 -1 an d  denote the
variables by (xo, x) , where x o is one variable of R and x =(x i, •-•, x .) are other n-variables
of R " . (Co, 6 are their dual variables. Xo=(xo, Co). x=cx,
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Let us put main assumptions (0.2-3) and an additional assumption (0.4).

(0.2) 0 —A1} > 0

on the double characteristic points of P2, that is , if  e0—A0=_e0—A1=0 and 62 = 0  at
(X o ,  X ) , where { p , g } stands for the Poisson bracket

E;.,((alati)p(alax,)q— (alaxi)p(alefi)q).

(0.3) {eo—A., 62}=cb2,

where c is a pseudodifferential operator in x  of homogeneous order 0.
(0.4) 6 2  is uniformly positive out side a bounded set of x.

Remark. All pseudodifferential operators are sufficiently smooth in their variables
uniformly in x  variables and on bounded sets of xo variable in consideration of their
order.

Remark. The assumptions (0.1-3) mean that P2 is effectively hyperbolic.

Let P be a second order operator with the principal symbol P 2, a differential opera-
tor in xo a n d  a  classical pseudodifferential operator in  other variables x .  Our main
result is a s  follows.

Theorem 1. I f  an  op era tor P sa tisfies the assum ption s (0.1-4), th en  th er e  ex is ts
a constant 1 su ch  tha t fo r an y fun ction  f  of  H s van ish ing a t x o<0, a  fun ction  u of  Hs - '
va n ish in g  a t  x o<0 sa tisfies

(0.5) Pu— f

al x o<1 and

(0.6) CslIfIls.
A nd a lso  su ch  a  fun ction  u van ish es a t x o<1 if f  van ish es a t x o <1.

Remark. The constant I depends on the first order term of P .  The regularity
of data and solutions, that is, the bounds to s of H s and 1/ 8 - '  depend on the regularity
of coefficients of P .  Especially if they are infinitely differentiable, the theorem holds
for any real s, that is, there exist smooth solutions to smooth data.

We take V. Va Ivrii's method to prove the theorem. The operator P intertwines to
a fractional power of another operator and is reduced to an operator to which the energy
method is applicable.

A Simple Example. Let us consider it on R .  T h e  variables and dual variables
are denoted by (t,x,y) and (T, 6, 7)), respectively. Let us give a principal symbol such that

P 2 = 7 2  — (t77- Fe) 2  — 2 - 1 X2 712 .

It is clearly hyperbolic with respect to the direction (T, 0, 0). It is shown that the cano-
nical type is

P2=2-10 — S2W 2— V
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by the canonical transform such that u=2.7--ks-q, s= t+ ein, C = T +  X 7 ) ,  Z=t12 — e/ (2 ),
w = n and w= y+ xe/n. The standard type treated in this paper is, however, that

and

Then it holds that

and

A 0 = 2 - 1/2(t+e/7-2-1/2x)1

b2 =2-1 (h i+e+2-1/  2.x,i ) 2.

- - - -  AO, TH- A0} ,---- 20/a6A0 = - 21/2 1n I

k — A0, b21=0.

Here we consider it on a neighborhood of {b2=0} , namely, at 77 o .  So they should be
modified on a conic neighborhood of {n=0} .

Remarks on Notations. 1 )  Throughout this paper, symbols of pseudodifferen-
tial operators are the Weyl symbols because it holds the correspondence between the
facts that an operator is symmetric on the natural duality on R" and that the symbol is
real. An operator q(x, D ) with the symbol q(x, e)  is defined by

(0.7) q(x, D)ck=(27r) - " fe 'o - 0 ) q((x+y)12, e)ck(y)dxde.

(For example, refer to C. Iwasaki and N. Iwasaki [5].)
2) When we call q a pseudodifferential operator in x with no note, q is classical one

and may depend on s o-variable as a parameter. In other words q is a classical pseudo-
differential operator valued function in so-variable.

3) Sometimes we don't distinguish "operator" and "symbol" in ternis. For
example, an operator A is equal to q(x, f). It means that A  is equal to a pseudodiffer-
ential operator with the symbol q ( x ,  .

§  1 .  Transformation by an operator power of operator.

We consider another type of problem, which is equivalent to one stated at the
introduction and convenient to proofs. It is global also in so-variable and has a para-
meter A and a weight function 0 . It includes the equation to exp(—Ax o)u replacing
solutions u after changing the scale as a bounded interval in xo-variable comes to the
whole space R.

Let us define a function 0 as (1.1), where 2) is a real parameter.

(1.1) k=exp[—(11,x01 2 + 1 ) 1 1 2 ] .

The operator P  is written as following forms.

(1.2) P—alao+02b2H-diao+aido+0261+bo.

(1.3) ai=i(e0-011;)+A, (j=0, 1),
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where Ai =A  i(xo, x, e)  is a real pseudodifferential operator of order 1 in x , A o is ident-
ically equal to zero and A is constant.

(1.4) b2>0,

where b2 is a pseudodifferential operator of order 2 in x  and b2>E<D> 2 >0  if lx1>M> 0
for a sufficiently large M .  1.1 is a pseudodifferential operator of order 1 in x , and d  and
bo are ones of order 0.

Remark. <D> =(Iep+1)" 2.
The assumptions (0.2-3) are replaced by (1.5-6).

(1.5) E<D>>0,

if (A o —A1) 2 +62<8<D> 2 a t (X o , X ) for a positive constant 8.

(1.6) {a°, b2) =Ocob2,

where c o is a pseudodifferential operator of order 0 in x.

Remarks. 1) Any symbol of P  is sufficiently smooth. g  (=A ,,b ,,  c , or d)
and tk- 1 (a/3xo) (0/3X)fig a re  uniformly bounded on R 2 "f 1 in  consideration o f their
orders.

2) If (1.5) satisfies for sufficiently large I el, it holds for any e after some modifica-
tions of A ; at the bounded set of C.

3) There is nothing against assuming for A 0 to be identically equal to zero because
the Yu. V. Egorov's result [2] assures it.

We shall prove the following theorem instead of Theorem 1.

Theorem 2. T here ex ist con stan ts l  an d  v such that f o r  any  datum  f  o f  H s  a
solution u  o f  H 8 - 1  un iquely  ex ists an d  satisf ies that P u = f  on  the  w ho le  space  if  A
is sufficiently  la rg e , w hich m ay  depends on s. Here P is def ined by  (1.1-6) an d  H s  a re
Ike Sobolev' s spaces on R '+ 1 . M oreover it satisf ies the estimate

(1.7) ul s- Cs(A )I !Is,

w here Cs (À) grow s in a polinom ial order at m ost as A tends to inf inity .

(1.8) is one of the usual definitions to the fractional powers of operators if it is well
defined.

(1.8) A "-  =P(a) -  T o
e° r - 1  exp( — At) d A" .

We use this definition to put a bounded operator into a. T h e  F-function, however,
has no essential effect to reduce the operator P .  Therefore we use an operator excluded
the F-function from (1.8).

Remark. We know no exact definition of operator powers when an operator put
into a of (1.8) and A  are not commutative to each other. It suffices to define an operator
like one because we need only a part of the properties.
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Let us consider two one-parameter groups on H 3 .

U(t)=exp(—aot)

W (/)=exp(ht),

where ao is defined by (1.3) and h is a bounded operator on H s such that h  has norms of
H s with respect to which the operator norms of h on H s  are uniformly bounded for all s.
Then it is clear that they are well defined and have the estimates (1.11-12) on H s because
an 12.o is formally skew-symmetric and h is uniformly bounded.

(1.11) 11(1(0 exp[(As —A)t] for t  0.

(1.12) 11W(1)113,2 Csexp(0.701/

R e m a rk . 1 ) If we choose the suitable norms of H s, we can put C3 =1  in (1.12).
2) 117413,2 is a norm of H s  defined as

(1.13)

by means of E = a:a 0+ <D> 2
.

We define an operator F by (1.14).

(1.14) F = -  f -1 ° °U  ( t)  W ( lo g t)d t .

It is well defined as an operator from H s to Hs - k if

(1.15) h>N 0 and A>As.

We want to find an operator P -  such that FP F - = P -  with another F -  and the energy
method is applicable to the equation with respect to P .  (We shall call such P -  a basic
typ e .) So we try the commutation of F and P .  Then we have a lemma.

Lemma 1 .1 .  L et u s  denote the operator (1.2) by P---=aiao +b . T hen w e have,

(1.16) tk ' a k
o U (I) W(log t)dt[dtao+b]

=[a i a o +b —adao(ai)h]f+; * th- la k
o U (t) W(log t)dt

+[adh(aiao+b)-kkadao(adh(aiao+b))ao - 1 ]

Xf
+ .

0 ( lo g t ) t "  a k
o U (t) W (log l)dt

+ c o

0 Z  WI "  ak
o U (1) W (10gt)dt,

w here Z (I) in  th e  last term  is described a s (1.17).

(1.17) Z (t)=

Z1 =  —adao(b)t,

Z 2= —ad ao(ai)(adat U (I))(h) a-
o

k  U(— t),

Z3 --=(ada;;)(b)a-
o

k  ,
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Z4—(log t) Rada k
a U(t))(adh(aiao+b))a -

o
-h  U (-1 )

—had ao(adh (a iao+b))

Z5=- —t(ada) (adao(aiao+b)) ,

Z 6 = V . 2 Cki(adao)i(a1)a,7 + 1 ,

Z7= t4, U(t) f l: g t W(a)(adh) 2(aiao+b) W(— u)

X (log t da a',34  U(— t)

and

Zo=akof U(u)(adao) 2(aiao+b) U ( —a)(l—a)daa.

 on Notations. We denote the commutator of operators A  and B  by
ad .A(B)=AB — BA  .

Remark. This lemma will be proved mainly by the formula (1.18) of a one-para-
meter group V(t)=exp( — A t) .  (Taylor expansion in t.)

(1.18) V(— i) BV(1)=Eki=0(j!)-111(adA)1(B)

+ (k !) - i f t
0 V(—s)(ad A) 1(B) V(s)(t —s)kds.

From the right hand side of (1.16) we operate G (1.19) and the inverse of H  (1.20),
which is guaranteed by Lemma 1.3 if k is sufficiently large.

+
(1.19) G---f

- 
W (— logt)U (t)4 t" d t.

+1
(1.20) H=-2-2k+1(2k —1) !J ' 0 /(1  —a)]) (1 —cr2)k- 1  da.

Then the main parts are discribed as (1.21).

Lemma 1.2. Let F, G  and  H  be defined by (1.14), (1.19) a n d  (1.20), respectively.
Then w e h a v e

(1.21) F[aiao+b]GH-1-

=aiao+b—adao(ai)h

+adh (a iao+ b)aof+
0

* * (logt)U(t)dt

+kadao(adh(aiao+b))1 +
0

- (logt)U(t)dt

-1-atao+diao

± R  (R em ainder term s).

The operators F, G and H have to be invertible on suitable Sobolev's spaces in order
that the right hand side of (1.21) will be a reduction of the operator P  to a basic type.
In fact we have a following lemma.
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Lemma 1 .3 . H (1.20), w h ich  is  a b ound ed  op era to r  on H 5 ,  i s  in v e r t ib le  o n  Hs
f o r  an y s  i f k  is  su ffic ien t ly  la rge. T h is  fa ct im p lies  th e  in v e r t ib i li ty  o f  F (1.14) an d
G (1.19) b eca u se  th ey  h a v e  r e la t io n s  (1.22-23) b etw een  th em .

(1.22) F G =H + H i

and

(1.23)

w here the norm s of H - 1 1-1; and H ;11- 1 (j=-1,2) on  H s becom e sm all as A tends to in fin ity.

We next choose the bounded operator h to adjust the first order term of the operator
P, which put it hard to apply the energy method. In the same time it also needs to re-
gulate the logarithmic terms which appear at the second and third terms of (1.21) on
account of the commutation by the operator powers of operators. W e have Lemma 1.4
to the first order term and Lemma 1.5 to the logarithmic terms.

Lemma 1.4. T h er e  ex is t  a  rea l pseudodif ferential op era to r  h o '  o f  o r d e r  0 in  x
and  a  r ea l constan t O  su ch  tha t, if ho is  d e fin ed  b y  (1.24), ho sa tis fie s  (1.25), w h er e  d i
i s  a pseudodifferential op era to r o f  o rd e r  1 in  x  sa t is fy in g  (1.26), co , c i a n d  d o  a r e  o f
o r d e r  0 a n d  c i i s  o f  o r d e r  — 1, resp ectiv ely .

(1.24)

(1.25) tk2bi — ad ao(a i)ho

=coao-Faicid-Pc2b2+0 2 4 ±d o .

(1.26) di=dr >_e<D>>0 o n  HO,

tha t is , d i, is  sym m etr ic and  exact positive on  Ho.

Rem ark. 1) We can have e  be sufficiently large. 2) ho ' may be chosen such
that ho' is bounded by 2/V0 on the whole space if tii2bliadrzo(ai) is bounded by a constant
N o on the characteristic set 2' of P .  W e m ay a lso  put that 0--=eN -, 1 i f  adao(ai) <
—N10 2 <D> on E  with a positive constant IV,.

Lemma 1.5. T h ere  ex is ts  a pseudodifferential opera tor h1 o f  o rd er  0 in  x , w h ich
i s  a  lin ea r com b in a tion  o f 110—A1, be and  abe, su ch  th a t

(1.27) {Po, ho —0h2(eo—tkAo+oha(e0-0A0)+02h4,

w here h i(j=2 , 3 and 4) are pseudodifferential operators o f o rd er [j/4] in x sa tis fy in g  w ith
p o s it iv e  constan ts Co, CI and  ee tha t

(1.28) ( :7=2, 3)

and

(1.29) 1 h412 _2(1+5e2) - Ih2h3b2

w hen

D=[(A o_ A  + b2]<e>-2.
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Remark. Only arguments with respect to Lemma 1.5 require the restriction to
2., of 0.

We define an operator h  by (1.30-31).

(1.30) ho-=ho'+vhi.

(1.31) h=ho- E - l<D>2 +i0 ,

where ho' and 0 are ho' and 0 at Lemma 1.4, hl is h i at Lemma 1.5 and E  is an operator
defined by E=a,* ao+<D> 2 .

Corollary. 1) ho -  -Fi0 a lso sa tisfies tha t

(1.32) 02b3.—adao(ai)[ho- H-i0]

=coao-d-aici+0 2c2+0 2 4-I-do,

w h ere  d l is a pseudodijferential op era tor of  o rd e r  1 in  x  sa t is fy in g  (1.26), co,
are o f o rd er 0 and c2 is one of  orderlbeing a lin ear com bination  of b2 and b,.

2) There exist pseudodiferential operators hi - ( j =2, 3 and 4) o f ord er [j14] such that

(1.33) Ipi, ho - ) h2- (e0-0A,)+0h3- ceo —0A0)+02h 4- ,

h h 0- 1 ( j = 2  and 3)

and

1h4-1252(1+4e2)-1h2- h3"b2,

w ith  som e positive constants so, E l  an d  6 2  i f  i i  is  su ffic ien tly  large.

W e have the following properties on the real part of h .  This yields the assumption
to h at (1.10).

Lemma 1.6. 1) E - 1 , w h ich  ex is ts  fo r  su ffic ien tly  large A 's in d ep en d en t o f s ,  is
a bounded  op era tor from  H s to  113 +2 w h ich  sa tis fie s  the estim ates

(1.34)

w h ere C o  is  in d ep en d en t o f s , and

(1.35) 11E-1/2 aouils+ IIE- 1 /2<D>uils -011E- 1 /2 0s

2 )  h (1.31) is  a bounded  opera tor on H s and sa tisfies tha t

(1.36) (Re(hu, u)s,21_Collull.L2- 1- Cs11/411;-1,2

w ith  resp ect to  an in n er p rodu ct

(u, v )s,2=(E 5  u , v),

w here C o is in d ep end en t of  s and  O. h R =h — i0 =h o -  E - l<D> 2 a lso  sa tisfies tha t

(1.37)

Remark. It is important for Co to be independent of s.

and do
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According to the above lemmas we get the conclusion of this section.

Theorem 3 .  I f  the bounded opera tor h is d efin ed  b y (1.31) and if th e pa ram eter v
is su fficien tly large, then  the righ t hand  sid e o f (1.21) com es to a basic type w h ich  is sta ted
at the top of nex t section  a fter som e arrangement of each  term.

Remark. Each proposition stated without proof in this section will be verified at
Section 3 , 4  and 5.

§ 2. A basic type and the energy method.

Let us define the basic type stated in Theorem 3 at the previous section and apply
the energy method to show the existence and uniqueness of solutions for it.

1) We call an operator Pb a basic type if P b  is written as (2.1), where each term is
defined by 2)-12).

(2.1) Po-.=(ai-Hisci log a 0+ di)(ao+Oco log ao+ do)

+ 0 2 b2+a -
0

-1 0 2 bi-Fa l (logao)0 2b3e0-Fd2

dotisbod-aVd40 262+ (log ao) tk 2coeoeib4

=A iA o+B .

2) A  weight function ek is also defined by

(2.2) 0=exp[—(1voco 1 2 + 1 ) 1 / 2 ].

3) eo is an operator of order 0  defined by

(2.3) e0=--E-10> 2 = [a :a 0 <D > 2] - i<D> 2 .

e i  is a system of product sums of operators defined as E - 1  times q2, aoqi or 4 q 0 ,  where
q , are suitable pseudodifferential operators of order j in x   and E =4,a0-1-0> 2 . More-
over the norms of elements of e i on Ho are uniformly bounded in the parameter v.

4) a; ( j= 0 , 1 )  are operators such that

(2.4) ai=i(eo— tkA J)+A ,

where A is a positive constant, Iii is a real pseudodifferential operator of order 1 in x and
A o is identically equal to zero.

5) b2 is a pseudodifferential operator of order 2 in x  such that

(2.5) b2 E<D > on Ho

for a positive constant e , that is,

(bzu , s(<D> u , u)

for any u  belonging to S.

6) co and ci are operators such that, for j = 0  and 1,
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ej = c i o eo d-ciiadai(e3), (adao(e0)=0)

where cik are pseudodifferential operators of order 0 in x , and that

(2.6) Re(c,u, u)_sx., (eou, u)

for a positive s, for sufficiently large v and for any u belonging to S.

7) b3 is a pseudodifferential operator of order 1 in x such that bs-kb: is a pseudo-
differential operator of order 0  in x ,  that is, the principal part i s  pure imaginary.
Therefore it satisfies

(2.7) I Re(b3u, C(u, u).

8) Cl and b4 are a pseudodifferential operator of order 0  in x  and a system of
order 1, respectively, such that b4 is a linear combination of ab, and b2 with coefficients
of pseudodifferential operators of order 0 and order —1, and that, for a positive e2 ,

(2.8) l(Peoe1b4u, eib4u)

_<2(1±23. 2) - 1 [Re(0 3 cob2u, u)+C(v)(u, u)]

and

1(Ikeoc3u, c 3 u)1_(14-32)Re(lisciu, u).

9) b1 is an operator of order 1.

Remark on Notations. We call /  an operator of order m if

tk'<D>ftETLE - r<D> - 0 - '0 - ',

for sufficiently many a, p and y, are uniformly bounded on HO as À tends to infinity.

10) bo=(bo,) is a system of operators of order 1 such that

(2.9) 1(0b0,1i, Obo ,u)1 C(1//2b2u, u).

11) The commutator of ao and b2 satisfies

(2.10) ad a o(b2) =0c2b2-1-0b2,

where b1 is  a pseudodifferential operator of order 1 in x  and c2 is a pseudodifferential
operator of order 0 in x.

Remark on Notations. Let us say that d  an operator o f order 0  satisfies the
relation (2.11) if there exist d' and d" other operators of order 0, and h' and b" operators
of order 1 such that

(2.11) 452b2d---d'tk2b2+021.' and 4 262=1/12b2d"+0 2b".

12) d; (j=0,••• , 4) are operators of order 0 or their systems satisfying the relation
(2.11).

Rem ark. 1) The product of such operators is also an operator of order 0 and
satisfies the relation (2.11) in which d  is replaced with them.
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2 )  AaV- and U (t) are operators of order 0 and satisfy the relation (2.11).

Remark on Notations. log A is defined by

(2.12) log A =y o — S  (log t)exp(—At)dt A,

yo =14:  (log t)exp(—t)dt.

The operator Pb is clearly one of order 2, so that it is an operator from H S  to
H s -2 .  We consider an equation (2.13) for Pb on Hs.

(2.13)P o u = f .

At first we deal with it on Ho. W e take the inner product of Pau and Aou to
estimate it from the below according to the energy method. Then we shall get Theorem
4.

Theorem 4 .  I f  th e  p a ra m e te r  v  i s  s u f f i c i e n t ly  larg e , th en  (2.14-15), th er e fo r e
(2.16-17), h o ld  fo r  a n y  e lem en t u of  S .

(2.14) Re(A 0 u, u)

(2.15) R e((liAo+B )u , Aou )(A — C)HAoull 2 +€11AoullL02 +  EllullâcLog

H- (A— C— Ci log A I) Hug.

(2.16)I A  o U112 (A— C) 2 11u112 -KA—C)elluIlL s •

(2.17) 0+B)u112>_ (A —C) [(A—C)A u11 2 +ellA o ull

- F(A— C— CI 100  D 11u112+ elluricLod•

Remark on N otations. Ilullez,g, IUb, 11/411,Log and Ilullb,Log mean (2.18-21), res-
pectively. These notations are guaranteed by Lemma 2.1.

(2.18) IluIlL9=Re(tPeo(Logao)u, u)+8(u,u),

(2.19) Ilull2b=(02b2 2G, 20 =-- (b2t/SU,

(2.20) Ilut.09=_Re(Oc1(Log a 0) u , u) + 8 (u , u)

and

(2.21) Ilull L o g =Re(0 3 [b2coLog ao-1-8(eoLogao+62)]u, u),

where Loga0=Re(loga o) and 8 is a sufficiently large fixed constant.

Lemma 2.1. IUIILg ,  Hub, 110,Log an d  Ilullb,z, g b y  (2.18- 21) d e fin e  n o rm s  o n  S,
r e sp e c t iv e ly , w h ich  are stron ger  th an  the n o rm  hull o f  HO.

Lemma 2 .2 . F o r su ff i c ien t ly  m a n y  in te g e r  l, E iP b E - / i s  a l s o  a basic  ty pe  i f
Pb is  a basic typ e.

Since Lemma 2.2 is easily verified, the estimate for Pb on H s is induced from
Theorem 4 with the help of Lemma 1.6 for E.
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Corollary. T here ex ist p o sitiv e con stan ts  i n d e p e n d e n t  o f  s a n d  C s su ch  th a t
fo r  a n y  e lem en t u o f  S,

(2.22) 11(-41-40-PB)ug,2 — Cs) 4 1luilL

wherellvils,2 is  a  n orm  o f  H s d efin ed  b y  m ean s o f E  as

1174 29 2 vil 2

Remark. If we rewrite (2.22) to one for a fixed norm lulls of H s, we have

(2.23) IKAIA0+B)iu 1;>ms(A2+1)-Isto_cwilug,,

with another positive constant M s.

The operator Pb was one reduced from P  (1.2) by F, G and H  (1.14, 19 and 20)
such that

(2.24) FPGH-1=Pb.

By Lemma 1.3, F, G and H  were invertible and had the relation

(2.25) F G = H + H i.

Moreover we can prove the estimates (2.26-28) for sufficiently large A which may
depend on s.

(2.26)

(2.27)

(2.28) 1 1 H - 1

Commbining (2.22) and these, we get (2.29) and also (2.30) since the formal dual
operator P* of P is  the same type as one of P, namely, P *  satisfies (1.1-6) if the variable
X 0 is changed to —Xo.

Theorem 5 .  Let P  be an  op era tor d efin ed  by (1.1-6). T h en  th ere  ex is t p o s it iv e
constan ts 1., , k, Cs and M s su ch  tha t for any u o f S and  for A  Cs, th e estim ates (2.29-30)
hold.

(2.29) 11-Puils+20,2 111s(A—Cs)2ilulls,a.

(2.30) iiP*uils+20,2 Ms(A—Cs)2111ills,2.

Theorem 5 implies Theorem 2 because the following well known lemma is appli-
cable to it.

Lemma 2 .3 .  L et T  b e a n  o p era to r  fr om  H s to  Hs - "' su ch  th a t fo r  a n y  u o f  S,
fo r  a  f ix ed  1 a n d  fo r  su ffic ien t ly  m an y  s„

(2.31) Ilulls C.911Tulls+r

and

(2.32) 1114.95 Cs11 T *ulls+1.
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T h en  th er e  ex is ts  a  un iqu e solution u o f (2.33) b e lon g in g  to to  a n y  f  o f  H° f o r
su ffic ien tly  m an y  a.

(2.33) Tu=f.

P roo f of  T heorem  4 .  At first we prove (2.14). Let us consider the inner product
on Ho of A u  and u (j=0 , 1), and take the real part.

(2.34) Re(A; u, u) = R e (a  u , u)+ Re(0c; log ao u, u)+Re(d u , u).

Since a i d -  =2A and by the assumptions, (2.34) is bounded below as

(2.35) Re(Aiu,u)(A— C)Ilull 2 + Re(Ociloga o u,u).

On the other hand we have Lemma 2.4 for Ociloga o . This implies (2.36) with another
constant C and a positive constant E.

(2.36) Re(A; u , u ) (A — C)114 2 +  s(0e0 log a 0 u, u).

If we put j= 0 , then we get (2.14).

Lemma 2 .4 .  1) L et u s d en o te  th e r ea l p a r t of  log ao b y  Log a o =  ( •1  )  [log ao +

(lo g a o )* ]. T hen  w e have

(2.37) L o g a o _ lo g A  o n  H O  if A>0.

2) Im lo g a o = a rg a o  th e  im a g in a r y  p art  o f  logao i s  u n i fo rm ly  b o u n d ed  o n  HO
as A tends t o  i n f i n i t y .  M ore ex act i t  i s  an  op era to r  o f o rd er  0.

3) I f  A is  su ffic ien t ly  large, th er e  ex is t p o s it iv e  e and  8 su ch  th a t

(2.38) Re(0c; log ao u, u )  eRe(tkeo Log ao u, u) —8(u, u) ,

w h er e  ci is  the te rm  ci in  Ai.

A t (2.35) we put j = 1  and replace u with A o u .  Then we obtain

(2.39) R e(A iA ou, A ou)(A — C)11, 4oull 2 +11AoueLo g •

We next estimate the inner product of B u  and A o u.

Noting that a:=—ao+2A and (0 2b2)* = 0 2b2 ,  we calculate (2 .4 0 ) . According to

the assumption (2.10) we have

(2.40) 402b2+02b2a0=-.—ada0(02b2)+24262

—0 2eb2+0 2 , ' + 2 4 2b2,

where c ' is a  pseudodifferential operator o f order 1  in x. Since 2Re(0 2b2u, aou)=-
Re([46 2 b2+0 2b2ao]u, u), (2.40) implies (2.41) according to Lemma 2.5.

(2.41) Re(02b2u, aou)

_>_A(02b2 u, u)—C(0 2 b2u, u)—C(0 2 0>u, u)

u )= (A— C")Iluil
because of the assumption (2.5) for b2.
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Lemma 2 .5 . If  q  and  q  are opera tors of  o rd e r  0 su ch  th a t

(2.42) qb2—b2q- or qtk 2 b 2 -0 2b2q-  i s  an op era tor of  o rd e r  1,

th en  it h o ld s th a t

(2.43) IRe(02 02u, 11)1 c (b2b2u, u).

E specia lly  (2.42) ho ld s if q is a pseudodifferential op era tor o f ord er 0 in x  or i f  q is equa l
to  eo.

We obtain (2.44) for the inner product of a-
0

1 0 2 b iu  and a o u  since a:a -
0

1 = —1
+2Aez-, 1 .

(2.44) Re(a;102biu, a o u).----Re(a:a-
0

1 0 2 b iu , u)

=— Re(0 2biu, u)d- 2Re(Aa -
0

10 2biu, u).

Since bi and Aa-
0
- 1  are operators of order 1 and of order 0, respectively, 0 2bi and AaVt/i 2bi

are operators of order 1 so that it holds that

(2.45) IRe(a-0102biu, ao u)1

SC(P<D>u, u)__C'(1,/s 2 bou, u)= C 'llun ,

where we used the assumption (2.5).

In the same way we are able to estimate Re(a,7 1 d40 2bou ,A ou). In  fact w e have

(2.46) d5 A a 1 d 4

—d4+2XaV-d4+ (log a o )  :4 7 , 1 + dt a -
0

1 .

cl4, d0, a , a 0* c*oka-
0

1 and (log ao)*4 - 1  are operators of order 0 and satisfy the condition

(2 .42) according to the relation (2 .11) and Remarks after (2 .11), so that do is an
operator of order 0 satisfying the condition (2.42). Therefore Lemma 2 .5  assures the
inequality

(2.47) R e(a-„1402bou, A0 u)1 C ( 0 2 6 2u , u) =C1114

The terms related to do, do and do are easily bounded because they are operators
of order 0 and satisfy the relation (2.11).

(2.48) 1Re(02bou, do u)! Cilia

according to Lemma 2.5.

(2.49) (a-0-102biu, do u)  C (0 2 <D> u, CHO

(2.50) Kdou,

(2.51) l(dotkbou, A0u)i

S O O  oull

because (Obou, tkbou)SC(41 2bou, u).
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The remainded terms include logao. Lemma 2.5 implies (2.52) since coImlogao
satisfies (2.42) by the definition of co and by 2) Lemma 2.4.

(2.52) Re(02b2u, Oco(log a 0)u)

_Re(t1s3 b2co(Logao)u,u)—Cluli 2
b

Re(1/13 [b2co Log ao+S(e0 Log ao+b2)] u, u)—C117‘112b—C11aouil

because Ileo(Logao)u11_ClIaoull. Lemma 2.1 means that the first term of the right hand
side is a positive definite form . Therefore we have

(2.53) Re(02b2u, ko(logao)u)

W e  a lso  part Re(aT, i (loga o)b 2b3eou, aou) to Re(a -
0

1 (Logao)0 2b3e0u, ao u )  and
Re(a -

o
l i(arga0)0 263eou, aou). Since a:a -, l i(argao) and eo are operators of order 0 and

b3 is a pseudodifferential operator of order 1 in x, we obtain (2.54) for the latter.

(2.54) 1Re(a-o1i(arg ao)0 2b3eou, u)ISC (0 2 0 > u ,

On the other hand, b3+b: is a pseudodifferential operator of order 0 in x and aV Log ao
is an operator of order 0 with the bound Cs(A—Cs) - 1 -(IlogAI-1-1) on H s by the as-
sumptions. These facts assure the estimate (2.55) to the former because 0- 2 (adpb3eo)
(Logao) and 0- 2 (adO2b3)(e0) are operators of order 1 and of order 0, respectively.

(2.55) 1Re(aV(Log ao)0 2 b3e0u, aou)I

112.e(Log ao)02b3eou, u) I+ Re(2À a-
0- 1 (Logao)0 2b3eou, u)I

C11(Log ao)u1111u11+ C(1 logA1+ 1 )1(020>u, u)i

<.C11aouii ilull+C(1 1001+1)Iluila.

By the inequalities (2.54-55), Re(aV(1ogao)0 2b3eou, aou) is bounded as

(2.56) 1Re(c4, '(log ao)0 2 b3eou, aou)1:<- C[liaouti log À1+ I) liufl]•

Noting again that aVlogao and (logao)*aVlogao are operators o f order 0, we
obtain that

(2.57) Ka102biu, Oco(log ao)u)i

+1(aV(log ao)0 2 b3eou, tkco(log ao)u)1

..C(t/s 2 <D>u, G lu t

because b1 and b3e0 are operators of order 1 by the assumption and because do"tircologao
and (log ao)* 4 - 1 0co(log ao)  are shown to be also operators of order O.

We use Lemma 2.6 to estimate Re(B4u, Aou), where

B4= (log ez0)02caeoelb4.

Lemma 2.6 will be proved as well as Lemma 2.1 and 2.5 will be done.
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Lemma 2.6. T h e r e  ex is t s  a positiv e  e  su ch  th a t h o ld s  f o r  su ffic ien t ly  large v
tha t

(2.58) 1Re(134u,

.. ( 1 — )[11u11:,L„+117)11,9]+C()[Ilug+Ilaoull 2 +11v112]•

Therefore it holds that

(2.59) Re(AlAou, .Aou)+Re(0 2b2u, tko(logao)u)+Re(B4u, A o u)

. (A—C)11.A0 u112 + 6[11A ou112,1,9 +11u1ILL,g l

Summing up (2.41, 45, 47-51, 56. 57 and 59), we conclude the following lemma.

Lemma 2.7. T h e r e  ex is t  positiv e  constan ts 1 ,, C  and  e  su ch  th a t f o r  a n y  u
b e lon g in g  to  S  an d  f o r su ffic ien t ly  large A it  h o ld s  th a t

(2.60) Re({Al2/0+.8pe, A o u)

(A—C)11Aouli 2 + EdA outo g  + 6 1171 111,os

H-(A—C(IlogA1+1))11ug—Cilaou11 2 .

Moreover 11.404 and kaoull are equivalent to each other, that is, if A is sufficiently
large,

(2.61) lictoull C11Aou115

In fact we obtain (2.62) by the natural way and (2.63) by the positivity of Re(Oco(logao)u,
u) 8(u , u) , namely, (2.38) Lemma 2.4.

(2.62) 11A0u1111aoull-FC11(logao)ull+Clluil

(2.63) 11Aoull2

__Ilage112 +11(Ad-Ocologao)u112 -0 1 0 2

.11aru112 -FA2 11u112 +110co(log ao)u112 +2sAllullc, g —Cllull 2

-11a0U112 — CIIU112

where al-=- (ao— c4)/2 so that 11aoull2 = - Ilarull 2 + À2 11u112 .
We apply the equivalence (2.61) to Lemma 2.7 to obtain the complete proof of

(2.15) Theorem 4. (2.16-17) are easily deduced from (2.14-15). q.e.d.

§ 3. Various properties related to the operator ao.

It is a well known result that the closure on H s of the operator —ao defined on
S is a  generator o f  a  one-parameter group U ( t )  o n  H s fo r  any real number A.
Especially if s=0 and A=0, then the operator al=a012=.0 is a skew-selfadjoint operator
on Ho with respect to the natural inner product because a l is skew-symmetric on S by
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the definition (1.3). Moreover it permits also the pertubation of any bounded operator
on H s .  We denote the one parameter group with the generator —(ao+c) b y U(1, c),
where c is a bounded operator on H s for sufficiently many s. I f  Cs is  a bound o f c
on H 8 . then U(t, c) is estimated as

(3.1) exp([Cs—A)t]

for t > 0 .  The relation with another U(t, c') is given by

(3.2) U(t, c)— U(t, c') 
= f t

 U(t—s, c)(c' —c)U(s, c')ds

=r U (t —s, c')(e' —c) U(s , c)ds0

Let us consider tlf<D>P Era 0E - r<D> -1 3 0- ' , which is written as for all integers a, p
and y,

(3.3) Ilf<D>l'Era0E-r<D>-°0-'=a0+4,

where 4  is an operator of order O. (Refer to Rem ark after 9) Section 2 for notations.)
In fact we know the following lemma. which is able to apply inductively to (3.3).

Lemma 3 .1 .  1) adE(q)---coao+ci f o r  any pseudodifferential operator q o f  o rd er
m in  x, w h er e  c; are pseudodiferential opera tors o f  o rd er  m + j (j= 0 , 1).

2) E - 1 4 , E - lao<D> and E - 1 <D> 2 a re opera tors o f  o rd er  O. There ex ist f .  and
opera tors o f o rd e r  —1 su ch  tha t

1,0<D>Er(E - 1 )E - r<D> - "Pzli- "

3) Pseudodifferential opera tors o f o rd er  m in  x are opera tors o f  o rd er  m .  I f i t  i s
q, th en  th ere ex ists r„pr an  op era tor o f o rd er m -1  su ch  tha t

0'<D>PErqE - 7 <D> - Ptir'—q+r„ pr  .

4 )  I f  r is  an opera tor o f o rd er  1, th en  tka<D>PErrE- r<D> - Pz,b- a is  a lso  a n  opera tor
o f o rd er  1.

Therefore the one-parameter group with the generator - - <D>PEra 0E - r<D> .-110- '
is given by U (t ,  4 ) .  Meanwhile it is also equal to tk'<D>flErU(t)E - r<D> - Ptir'. Accor-
ding to (3.2) we obtain that

(3.4) 0'<D>8Er U (t)E - T <D> - 8 0- '

(t, d.)

= U (1 )+ U (t )f t
o U( —s)4U(s,d.)ds

= U (1 )+ Fo U(s,d.)a'.U(—s)dsU(1).

Since U(t, 4 ) is uniformly bounded in t O for sufficiently large A on 113 , U (1) is  an
operator of order O. We have a more pricise lemma.
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Lemma 3.2.. 1) I f  c i s  an  op era tor o f  o r d e r  0, th en  th e r e  ex is t  co n s ta n t C.fir
su ch  tha t

(3.5) Itk'<D>PEr U(t, c)E- r<D>- fitir'll exp [C pr l t I —At] .

E sp ecia lly  U(t, c) is an op era tor o f o rd er 0 f o r  0 and  fo r su fficien tly  large A.
2) L et G(t) be a con tinuou s (in  the stron g sen se) fu n ction  in  t>0 , w h ich  is  va lu ed

on opera tors of  o rd er  0 , and  sa t is fy  the bound su ch  that f o r su ffic ien t m an y  in teg ers  a,
and y,

(3.6) It/r<D>PEIG(1)E-r<D>-P0-'I :< g.fir(1),

w here fo r con stan ts  C r  o f  (3.5) an d  fo r  su ffic ien tly  large A  Capr ,
+.

(3.7) AI. 7 = f  
0

0p r  ( t )  exp [(aft —A)t]&

is un ifo rm ly  b ound ed  in  A. T hen  w e have tha t

F i =r G (t)U (t,c )d t and F 2 -= U(t,c)G(t)dt

are op era tors o f ord er 0 fo r  su ff i c ien t ly  large A and th ey  sa tis fy  tha t

(3.8) 110'<D>P Er F J E - r < D > - P t i t - ' 1 1 S 1 1 1 . p r  ( j =  1, 2).

3) L et H  an d  c ; ( j=0 ,1 )  b e op era to rs of  o r d e r  0. I f  G1(1) sa t is f i e s  (3.10) f o r
a n on -n ega tiv e  in teg er  l th en

(3.9) GI-4-i(t)=$:U(— s, co) HU(s, ci)G1(s)ds

is a lso an  opera tor of  o rd e r  0 sa t is fy in g  (3.10) in  w h ich  1 is  r ep la ced  w ith  1+1.

(3.10) I 1 <D>PE r Gt(t)E - r <D>r-P 0 - 'l

t  exp(C.Pr t I).

T he sam e sta tem en t h o ld s fo r

co) Gi (s) HU(s,ci)ds

and  for

Gt+i= S t
o Gi(s)U(—s, co)HU(s, ci)ds.

Remark. I f  H  i s  an operator of order m  at 3 ), then G , + 1 ( t )  is an operator of
order m and satisfies a similar estimate.

P r o o f .  The equality (3.3), to the both side of which c.pr -=0'<D>PErcE - r<D>- Ptir'
is added, yields the equality (3.4) in which U(t) and d . are replaced with U(t, c) and

e0Ar+4, respectively. This proves the first statement. The second statement is easily
shown because the assumptions imply the boundedness of O'<D>P.ErFiE - r<D>-130 - '(j-=
1, 2). If we put Uo(t, c) = U(t, c)110, th e n

 G 1 + 1 ( t )  of (3.9) is equal to

u o (—s, CoH uo (s, ci) Gr(s)ds.
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Hence

0'<D>ft ErG 14-1(t)E- r<D>- Ptk-

= U o(— s, co')H.p r U o(s , COG hor (s)ds

with other el(j=0, 1) operators of order 0 and with Hror and Ge (s) operators of order
0 such that

H r  =tkr`<D>AErHE- r<D>- P0- '
and

Ghor (s) =0'<D>PErGr(s)E - r<D tP0 - '.

By (3.5) we get the estimate (3.10). q.e.d.

Lemma 3.2 implies for AaT, I  and a(7,1 1ogao to be operators o f  order 0. More
pricisely we have the following lemma.

Lemma 3.3. 1) A a (7,1 a n d  aT) .1 log ao are opera tors o f  o rd er  0 su ch  tha t f o r  suffi-
c ien t ly  la rg e  A, w h ich  m ay d ep en d  on a,13 and  y , th ey  sa tis fy  th a t

(3.11) iltil'<D>PEr[AanE-r<D>-filir'll

and

(3.12) 110'<D>PEr[cro 1 log ad E - r <D>- P 0- '11
5CA - 1 (1100H-1).

2) T h ere ex ist op era to rs 4 , o f  o rd e r  0 f o r  su ffic ien t ly  m a n y  in teg e r s  a , 13 and  y
su ch  tha t

(3.13) 0"<D>ftEr[1ogao]E-r<D>-130-* = log ao +

3) argao-=Imloga o a n d  (log ao)* a-
0

1. loga o a re op era to rs o f o rd er 0.

P r o o f .  It is trivial because ao has the symbol (ieo+A). q.e.d.

W e next d iscuss about properties related to the relations (2.10-11) and the
condition (2.42).

W e call an operator H  on H s a quasicommutor of an operator K  of order 1 or
quasicommutative with K  if there exist 

Q
 j=1, 2) operators of order 0 and R i( j=

1, 2) operators of order l - 1  such that

(3.14) adH(K)=Q1AH-RL

Lemma 3.4. 1) L et H  an  op era to r o f  o r d e r  0 b e  a  quasicommutor o f  K  an
opera tor o f  o rd er  1. I f  K  sa tisfies tha t

(3.15) O'<D>PETK E-r<D>-Ptir'=K +kor,

w h ere k,,pr is  an opera tor o f  o rd er  l - 1 ,  th en  tle<DY ErHE - r<D>- Pt,b---'  i s  a ls o  a  quasi-
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commutor of  K .
2) L e t  H  an d  H ' operators o f  order 0 be guasicommutors o f  K .  T hen H— H'

and H H ' are also quasicommutors of  K .
3) l e t  H  be  a  quasicom m utor o f  K  su c h  th at th e re  e x is t  the  inv erses H - 1 ,

(H— Q 1) - 1  a n d  (H+Q2) - 1  w h ic h  are  operators o f  order 0. T hen  the inverse H - 1  i s
also a quasicommutor of  K .

Lemma 3.5 . L et q  be a pseudodifferential operator of  order m  in  x.
1) I f  r  is  a pseudodifferential operator o f  order 1, then  adr(q) an d  adao (q) are

pseudodifferential operators of  order 1 +m -1  in  x  and  of  order m , respectively.
2) L et F be one of  E - 1  a o

2 , E - 1 ao<D> and E - 1 <D>2 . T hen adF(q)is an operator
of  order m -1 .

3) L et us put

(3.16) d.=-111'<D>fl Era0E- r<D>- 1 3 0 - '— ao,

w hich is an  operator of  order 0 by  (3.3). Then ad d (q ) is zero.

4) I f  w e put

(3.17) r .pr =tif <D>P ErgE - r <DX -13V  — q,

w hich is an  operator of  order m - 1 ,  then adao(r r ) is an  operator of  order m -1 .

For another pseudodifferential operator g' of  order 1 in  x , adr.p r (g ) is  an  operator
of  order 1 +m -2 .

P ro o f .  1) It is trivial.

2) Let G  be one of a, ao<D > and <D> 2 . B y  2 ) Lemma 3.1, there exist c;
and c / ( j=0 , 1) pseudodifferential operators of order m d-j in x  such that

(3.18) adE-1(q)=E-ladE(q)E-1=E-1(aoco±ci)E-1

and

(3.19) adG(q)=a0co'±ci.

Therefore we have that

(3.20) (ad[E-1G])(q)= adE - 1 (g)G+ E - ladG(q)

=-([E - lao<D>][<D>-
 l e d + 1- E-1<p>2][<D>-2c i ])[E-1G]

[E- ia o <D>] v_D>--1,01  [E- <D>2]

Since E - lao <D>, E - 1 <D>- 2  and E - 1 G are operators of order 0 by 3) Lemma 3.1 and
since [<D>- 1 c0], [<D> - 2 c1], [<D> - lco'] and [<D> - 2 c1'] are pseudodifferential operators
of order m - 1  in x , (3.20) is an operator of order m -1 .

3) It is trivial because d is a function in x o .

4) Let us consider the commutator of iko<D>PEraoE—r<D>—P0--- and r,037 . It is
equal to
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(3.21) [0"<D>PEradao(q)E-r<D>-Ptir"— ada o(q)].

Since adao(q) is a pseudodifferential operator of order m, (3.21) is an operator of order
m -1  according to (3.17), q of which is replaced with adao(q). On the other hand the
commutator is also equal to

(3.22) adao(r.pr)4-[d„ro,pr—rorded.

The second term of (3.22) is an operator of order m -1  because it consists of the products
of operators of order m -1  and of order O. Since (3.21) is equal to (3.22), adao(r .pr )
is an operator of order m -1 .

Let us prove the last part of the statement 4). If y= 0 , then it is trivial because
r.„;3, is  a pseudodifferential operator o f order m - 1 .  1) of Lemma 3.1 means that
EqE - 1 = q + F ,  and E - 1 q E = q + F 2 where F .;  ( j= 1 ,  2 ) are compositions of pseudo-
differential operators of order m -1  and one of the operators at 2) of the present lemma.
Therefore adq' (F ,) ( j= 1 , 2 ) are operators o f order /±m —2 according to 2) so that
adq'W<D>PErFfE - r<D> - °0- ')  are operators of order /-km —2 because q' satisfies (3.17),
q  o f w hich is replaced w ith q'. T h ese  fac ts  im p ly  th a t adq'(ro( r * 1)) is equal to
adq' (r ,o3r )  modulo operators of order /-1-m —2. I f  it is assum ed that adq' (r.pr )  are
operators of order l -1 - m - 2  if ly we are able to conclude the same proposition for
ly I - yo-k 1. Thus we finish the proof by induction for y. q.e.d.

Corollary. L et q . be a pseudodifferential op era tor of  o rd er  m in  x an d  {h3}o r
be fin ite num ber of  H-type o f op era to rs , w h ere h, is for conven ien ce' sak e ca lled  a H-type
o f op era to r if h, is  a su m  o f E - 1 a0

2 , E - 1 ao* ao, E - 1 ao<D> a n d  E - 1 <D> 2  m u lt ip l i e d  to
the r igh t hand  sid e b y  a pseudodifferential opera tor of  o rd er  0 in  x.

1) ( adh.;)(hoq.)

is  th en  discribed as th e  fin ite  su m  o f p rod u ct op era to rs , w h ich  con s is t o f fin ite  n u m b er
o f H-type of  opera tors and a pseudodifferential op era to r  o f o rd er  m -1  in  x at the r ig h t
end (or at the l e f t  end), that is,

E f i  e(11 f i n i t e  117) qm-1

w h ere fo r 2,

( H adh.;) (K )= adhr((11 adhi) (X)) .

T his sta tem en t in cludes the case tha t hoqm=q,k, n a m ely , ho=I b ecau se I = E - 1 (a: ao+
(D> 2 ) .

2) For any natura l num ber a ,

(ada(1)(h0)=- h;,(4=E ll ah';

w ith  hk an d  hk' H -ty pe o f op era to rs. If  ho  con ta in s no te rm  con s is t in g  o f  E - 1  a2, and
E - 1 a: as, th en  h'k and  hk'' a lso con ta in  no su ch  term.

3) I f  h, fo r  j . ,1 con ta in s no term  con sistin g  o f E - 1 a2,  an d  E - 1  a : as, then
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a (H  i ad hf)(hoq.)a '',

with non-negative integers 13 an d  y  is a linear combination o f  q ;  a (0 m ax (f3 + y -
1, 0)) with coefficients o f product-sum s of  H -typ e o f operators at the lef t hand side (or
at the right hand s id e ) ,  w here q ;  is another p seu d od ifie r en tia l operator o f order m.

P ro o f  1) In case that h o = /  and that 0 < m < 1 , the second and third terms at
(3.20) are already form s required. At the first terms it works effectively in order to
rewrite it that E - - 1 G(D> 1 - '=<D> 1 - 'E - 1 G .  In other cases, the equality (3.20) applies
several times to prove the statement of Corollary, namely, by induction with respect to
and m.

2) It is easily proved.
3) In case that 1=1 and that y > l ,  we have that

agadhi(koq .) a'',

= ag(adhiao)(hoq .)a r
o

- i  —a h la d a o (hoqm)ar,- 1

Since hiao=hT<D>+h -  w ith other H-type of operators according to the assumption
for h l ,  all terms are easily rewritten as desired by 1) and 2) of th is coro llary. The
situations in other cases are same. q.e.d.

Let b be an operator of order 2 such that ao is a quasicommutor of b, that is,

(3.23) adao(b)=D b+ri=bg2H-r2.

with q , and r , ( j= 1 , 2) operators of order 0 and of order 1, respectively. For example
62 defined by (2.5) and (2.10) is such an operator b. If c an operator of order 0 is also
a quasicommutor of b, then we have that

(3.24) U(—I, c—qi— ci)bU (t,c)— b

= f o U (— s,c— qi— ci)(ri+ di)U (s,c)ds

and

(3.25) U(—t, c)bU(t, q2+ c2)—b

=S t
o U(—s, c)(r2+ d2) U(s, c+q2+c2)ds,

where

(3.26) adc(b) = cib = b c2 + 4

with c, and d , ( j= 1 , 2 )  operators of order 0 and of order 1, respectively.
The right hand sides of (3.24-25) are operators of order 1 according to 3) of Lemma

3.2 and satisfy the inequality (3.10) with 1 = 1 .  The definition (2.12) of log a o implies
the following lemma.

Lemma 3 .6 .  1 )  L et G (i) be th e same one at 2) o f  L em m a 3 .2  a n d  be a  quasi-
com m utor o f b  such that

(3.27) —adb(G(I))= Q1(1)b Ri(t)=6Q2(t)d R 2(1).
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I f  O W  a n d  R;(1)<D>- 1  o p era to r s  o f  o rd er  0 ( j=1, 2) sa t is fy  th e a ssum ption s a t 2) o f
L em m a 3.2 in  w h ich  G(1) is  r ep la ced  w ith  th em  and  i f  c an  op era tor o f  o rd er  0 and  ao
are quasicom m utors o f b, then

+
17 1-= f

o  
G(t)U(1, c)dt a n d  F 2 =f

. 0

o  
U(1, c)G(t)dt

opera tors o f  o rd er  0 are quasicom m utors o f b.
2) L et G(t) be th e  sam e on e a s a t th e above 1). I f  b a n d  c , ( j=1 , 0) are pseudo-

d iffe r en tia l op era to rs  o f o rd er  2 a n d  o f o rd e r  0 in  x , resp ectiv e ly . th en

Go(t)=S i
o U(s , co)G(s)U(— s, ci)ds

is a lso a quasicom m utor o f b and sa tisfies th e sam e cond ition s a s fo r  G(t) at 1).
3) I f  ao is  a quasicom m utor o f b an operator o f  o rd er 2, th en  log as is a lso a quasi-

commutor o f b.

4 ) b (ao + c ) - 1 —(ao+c—qi —ci) - 1 b

= (a o  +  — q —ci) - 1 (ri+  di)(ao+ 6 - 1

and

b(ao+c+q2d-c2) - - 1 — (ao+c) - '6

= (ao+c) - - 1 (r2+d2)(ao+c-Fq2+c2) - 1 .

P r o o f .  1) By (3.27) and (3.24), we have that

(3.28) b F  =To bG(t)U(t , c)dt

o  
[G(1)— Qi(1)]b U(1, c)dt 0 I  e i(t) U (t , c)dt

f
+00

[G(1)— Q1(t)1U(1,c— qi— ci)dtb0

0 [G(t)—  Qi(t)]S (1)U(1, c)dt

+S
 +-
0 R i (t) U(t, c)dt

where

S ( t ) = I :  U(s, e—qi —c1)(ri + di) U(— s, c)ds.

By the assumption for G(t) and Q i (t), 2) of Lemma 3.2 implies that the first term of the
right hand side is the product of an operator of order 0 and b, and that the second term
is an operator o f order 1 because S (t)  satisfies (3.10) with 1 = 1  so that <D>- 1 [G(t)—
Q1(t)1S(t) satisfies (3 .6-7) in  which G (t) is replaced with it. The third term is an
operator of order 1.

Since the same facts with respect to Fib, bF2 and F2b are proved, it is concluded
that F i  and F2 are quasicommutors of b.

2) Since adc,(b) is a pseudodifferential operator of order 1 in x ,  it satisfies (3.26)
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with c1=c2=-0. The statement is proved as well as at the above proof of 1) and at the
proof of 3) Lemma 3.2.

3) We prove that F = f +: (log t)U (t)d tao  is a quasicommutor of b.

-1-00
(3.29) adF (b )= 10  (log t) U(t)dtadao(b)

— j0
+.

o (log t)adb( U(1))dtao.

By the substitutions that Qi(t)= R  1(6= c = 0 and G (t) = log t  at (3.28), the second term
is equal to

(logt)[U(1,— q1)— U(t)]dtbao

+1
+ c o

0 (log t)S (t)U(t)dtao.

which is rewritten by (3.2) and (3.23) as

f+c.°(log t)S i (t) U(t)dtaob

(log t)S '1(1) Y  U(1)d i f s r i ]

+ j o (log t)S (t)U(t)dtao,

where

S i( t ) =f t
0 U(s, — q i )qiU(— s)ds.

Since (dIdt)U(1)=— aoU(1), the sum of the first and third terms of the above is equal to

1+:(dIdt)[(1ogt)Si(t)] U(t)dtb

+ 1 +:(d/dt)[(1og t)S(I)] U(t)dl,

which is written as the form that g b + r , where q  and r are operators of order 0 and of
order 1, respectively, because the integrands are

1- 1 -Si(t) U(t) +(log t) U (I ,

and
t - I-S (t) U(t)+ (log t) U(1, — qi)ri.

Therefore (3.29) is the same fo r m . Since the other form is proved by the same way, it
is concluded that F  is a quasicommutor of b. Thus log au is a quasicommutor of b.

4) It is trivial from the relations that

(ao+c—qi — ci)b— b(ao+c)=ri+di

and

(ao+c)b— b(ao+c+92-1-c2)=r2-Fal z. q.e.d.
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§ 4. Proofs of Lemmas.

Proof  o f  L em m a 1.1. Let us consider the commutator o f  at,' U(t) W(log t) and
(alao+b).

(4.1)a  U (t)W (logt)(a iao+ b)— (aiao+ b)4  U (t)W (logt)

=at U (t)(adW (logt))(aiao-kb)

-1-a(ad U (t))(a iao+ b)W (logt)

+ (ad4 )(a lao+ b)U (t)W (logt).

The substitutions of W(—logt) and U(—t) for 'V(t) at (1.18) with yields us the
equations (3.2-4).

(4.2) W(log t ) ( a  0 +  — (a  0 +  W(log t)

(log t)adh(a lao+b)W(log t) H- 17 1(t) W(log t),

where

Clog!
Y i (t) =. I W(a)(adh) 2 (alao+b)W (— a)(logt— cr)du.Jo

(4.3) U(t)(aiao+b)— (alao+b)U(t)

= —tadao(aia 0+ b)U(t)+ Y2(t)U(I),

where

Y2(/).== f' U(0)(ada0) 2(aiao+ b) U (—a)(t — a)d cr.

Let us multiply (4.1) by tk- 1  and integrate it in t from zero to infinity after substitutions
of (4.2-3) into (4.1). We have there that

f (log t ) t k - 1 4,U (t)adh(aiao+ b)W (log t)dt

+.0+I 0 i k-i a Jo, U (t) Y i(t)W (logt)dt

0 (Z 4 +=I
 + 0 0

Z 7 ) 1 ' a l,1U (t)W (logt)d t

± [adh(a lao+ b)±  kadao(adh(aiao+b)) ao

+
X  

0 0

f o (log t)tk - la io' U (t)W (logt)dt.

The first term at the right hand side is one of the last term at (1.16) and the second one
is the second term  at the right hand side of (1.16).

Since Y2(t)a,7, k  =Z 8 , we have that

I +: v )U (t)W (lo g t)d t

is one of the last term at (1.16), namely,
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Z8tk - 1 4U(1)W (log t)dt.

The term including — tadao(aiao+b) is the sum of ones including Z5 of the last
term at (1.16) and

(4.4)
o  

tada0(a 1ao+h)1 0 - 1 4 U(t)W (log t)dt,

because

tadao(aiao+b)=- — tadao(a iao+b)4+ Zo4.

The term consisting o f (adak
o )(aiao+b) is equal to the sum o f ones including Z3

and Z6 of the last one at (1.16) and

(4.5)
+ -

ada o (ai)tk - 1  a U(t)W (logt)dt,

because

(ad4)(ez iao+b)ak =k adao(a0+ Z8+ Z3.

Since the right half at (4.4) is equal to the term including Z1 of the last one at (1.16),
it leaves only the calculation of the left half of (4.4). Since adao(aia0)=adao(ai)ao and
— a0U(t)= (dIdt)U(t), we have that

-Foo
(4.6) — jo  tada0(aiao)th - ' U (t) W (logt)dt

=adao(ai)a l
o'f +:2 4 [(dIdt)U(1)] W(Iog t)dt.

If  k  is sufficiently large (k>N0-1-1 with respect to /Vo o f (1.12)), then 10 U(t)W (logt)
and U(1)(dIdt)[1 0 W(log t)] = U(t)(k+h)tk - 1  W(1og t)  are integrable so that the integral
by part is able to apply to (4.6). It is equal to

—adao(a1)41 1
0U ( t ) ( k +  h) W(log t)dt

= -  ada o(a i )(k+ h)f +
0

-  th- ( t )  W ( l o g t ) d t

+ f+-
0 Z 2tk - 1  a U(t)W (logt)dt.

The sum of the first term at the right hand side and (4.5) makes the right half of the
first term at the right hand side of (1.16) and the second term is one of the last term of
(1.16). Therefore we obtain the equality (1.16). q . e . d .

Three following lemmas are preparatory ones to shorten the proofs of Lemma 1.2
and 1.3.

Lemma 4.1. Let us put

(4.7) 0(1, V-1 ) =U(41+ a)12)Y -1  U (4 1 -0 /2 ) .

T hen the equa lities (4.8-10) hold.



T he C au chy p rob lem  for effectiv ely  h yp erbo lic equa tion s 529

(4.8) (dIdt)0(1,"11)

=--0(1 , aoW±Wao)/2-0(t, adao(W))cr/2

=--0 (1 ,a 0 W )±0(t, adao(W))(1—o)/2

-= -0 (t, 1'ao)-0(t, adao( 11'))(1+a)/2.

(4.9) (d/dt)20(t, rd-cr(d/dt)0(t, adao (W))

=0(1, adif a o )+0 ( t, (adao) 2(W))/2.

(4.10) 0 (4 4  F 4)— (dIdt) 2 k0(1, W)

= E ki = 1E -  0 Cii(crellelt) 1(dIdt) 2 (k- i)0(1, (adao) 2 i - '(W))-

P r o o f .  (4.8-9) are easily shown by the differentiations of (4.7) in t, and (4.10) by
induction in q.e.d.

Lemma 4.2. L et 0  b e  o n e  u s ed  a t  L em m a  4.1. W  stan d s f o r  W(log[(1-1-o)/
(1—a)]) and f i( t)  ( i=0 ,1 )  a re  su ffic ien tly  sm oo th  fu n ction s i n  t > 0  va lu ed  in  b ou n d ed
operators on  H S  su ch  th a t fo r  0 5 j 2 k

11(dIdI)',I;(1)1155C s exp st} .

U(t)W(logt)dt
Jo

X 14:W (— log s) U(s)a i
ol sk d s

=(2k -1)12 - 2 k+1 1÷ :(1—a 2)k- 1 W du

± E .,2 ! i f dr : I ± l
i g,(1—a 2) * - 1 0((adao) 1 (W))dad T

w h er e  71 - i g, are polynom ia ls o f ord er a t m ost j  in a.

2)

(4.13) f+:(logt)'t*-1 a U(t) W(log t)dt

X 1+
0

-  W ( —log s) U (s)433 1 - ' (log s)'" ds

=  2  k  +1  I+: d rig ( 1 —  a 2)k - l a  00 ( r c i a

- F E  S .: -  cl-rf+ l
i al— cr2)k - 1 0((ada0)-1( r) d a ,

w here g  a n d  g; a re  fu n ction s  in  (7,u) su ch  tha t

(4.14)

_(a/37.) 2 k - 1 I T 20
- 1 [1 0 e ,( 1  +a)/2)]/[log(7-(1—cr)/2)r}

—E osi+rs2k_rCii[log(T(1-ka)/2)]' - i[log(T(1 —cr)/2)r-i



530 N obuhisa  Iw asak i

an d

(4.15) I g ji I

S log(1-(1+0))1'±1)(11og(T(1—u))l'+1)(1 ,  i 2 k - 1 +  1 ) .

3) I f  f o  or le i  v a n ish e s  a t  1= 0 , th en  th ere  ex is t fin ite  s e t s  g i ;  (1=0, 1 and j= 0 ,
,2k ) o f fu n ction s va lu ed  in  bounded  opera tors o n  H s su ch  th a t fo r  g i f . b e lon g in g  to

(4.16) Cs( 1 log(T(1-Hu))Ii+1) exp(Msr),

a)11s_ Cs(1 log(r(1-0)) I ±  1) exp(MsT)

and

(4.17) t)1f0(t)/4-14 U(t)W(log t )d t

+.0
x W( —log s) U (s) 4 sk -  f i(s) (log s)"' d s

Jo

=E , or -:d7-f+ ,1(1—a2r 1 g0;0((adao)i(11-0)glicia

w ith abbrevia tions that g = ( g , 4 0 „ p  a n d

P r o o f .  The change of variables (1,  )  to (T  a) on two functions =7(1+a)12 and
s=1-(1-0/2 yields that the left hand side of (4.16) (also (4.12-13)) is equal to

2- 2 k+lfk ' f + 1 (1—cr2)k- IN(r, a, 0 (4  4 ) ) d u  d r  ,J o

where N(r, a , R)

----T 2k- 1 (log(T(1+Œ)/2)yfo(7-(1+a)/2)

X Rfi(r(1-0)/2)(log(T(1 —a)/2))'.

The substitution by the equality (4.10) m akes it possible to  rewrite this to the form
including the derivatives in T  o f 0 ((ada0 )i(V )). Since in the case 3) it has been as-
sumed that for 0< j<2k-1

olaryiv(T, a, R)1,- . 0 =0,

the integral by part transposes all derivatives in o f 0 ((ad a0 ) 1(T ) )  to the derivatives
of functions except for 0((ada0)i(1')), and the arrangement with respect to 0((ada0)1(W))
yields (4.16) and (4.17).

In the case 1) the integral in a at 1= 0 , which constitutes the first term at the right
hand side of (4.12), appears only if the 2k-th derivative in T  of 0(W) is transposed to the
other functions, and the other terms of (4.12) are obtained as well as in the case 3).

In the case 2) it is impossible that all derivatives in T of 0(T) are transposed to the
other functions. This part is only discribed as

(4.18)
2 - 2 0 + I r f + 1

( 1 — a 2 ) - 1 g ( a / 3 7 ) 0 ( rd a d To - 1
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with g defined by (4.14). The equality (4.8), however, assures for this to be equal to

2- 2 1 - Er f + 1 (1 _ , 2) _Ig0(a 0 W)day/T

—2 - 2 k sr :  f ( 1 — a 2 )k - 1 (1— u)g0(adao(W ))dadT .

We obtain (4.13) by the transference of the above second term to the remainder terms
of (4.13). q.e.d.

Corollary 1. A ll statements o f Lemma 4.2 are also v alid w ith Y1 = W(log[(1 —a)/
(1+a)1) w hen W (— t) is used instead o f  W (1), nam ely , w hen W(logt) is replaced by
W(—logt) a n d  W (— log/) by  W(logt), respectively.

P ro o f .  Substitute — h to  the generator h  o f W (t). q.e.d.

Corollary 2. 1) F G = H +

where

(4.19)H 1 1 J ° ° f ' g j ( 1 —cr2)k- 10((ada0)1(W ))dcrdT

with same g , a s  (4.12).

A nd also
+1

(4.20) aoHi =f gi(0)(1 —0. 2)h- 1 0(adao(W))dcr+HT,

where

HT. = E n i f +: 1 . +
1
1 g7(1 —u2)k- 1 0((adao)i( ll)dadT

with g 7  such that T 2 - jg7  are polynomials in  cr o f order j .

2)

(4.21) f+:(log U(t)W ( log t)dtG

=f
+-

(logT )aoU(T )dT H+11j,0

where

(4.22) H i= E ;! , f+o-f+:g(1—cr2)k-10((adao)i(Vi))dackr

+ i
H -(2 k -1 )1 2 -2 k i 

T
0( lo g  T )(1  — 0 . 2)k- 1 (1 — a)U(T )N icladr

±f
+ 1

_ i go(o)(1 —(72)k- 1  W u,

(4.23) N 1--=T -11U (— s)0(s, adao(W ))ds,

lgo 1- _C(Ilog(1--F-cr)1+1)

and g ; satisfy  (4.15) w ith 1 =1  and  m =0 .
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(Refer to (1.14, 19, 20 and 22).)

P ro o f .  The first statement of 1) is only the determination of H 1 a t  (1.22) by the
result 1) of Lemma 4.2. For the second half, it suffices to apply (4.8) to a o l f i  again and
to take same steps as to the first one.

Let us put 1=1 and m =0  at 2) of Lemma 4.2. Then the main part (4.18) ap-
pearing in the middle of the proof for 2) of Lemma 4.2 is equal to

(4.24) —(2h —1)12 - 0 - Fif (1 —a2) k -  I (log T)(alar)o(w)dcrdTo -1

1+001+1
0 j (1 —a 2 )k- 1 [Ck log(1+a)+Q(3/3T)0(W)dadT,

and the first term of H '1 consists of the other term s. The integral by part is  able to
apply to the second term of (4.24) so that the third term of (4.22) is obtained with g o =
Cklog(1+o) - -F- C k . Since the equality (4.8) shows t h a t  (t, T ) is equal to

U(t)TH-- U(t)f U(— s) 0 (s, ada0( 70)ds(1 —0/2,

the first term of (4.24) splits into two parts as follows.

(4.25) —(2k —1)12 - 2 k+lf+:(log r)(3/3r) u(,-)d4(1— a2)1-1 Vida

—(2k —1)!2 -  2 01-1:f + :(10g TM —02) 0 - 1 (1 —a)

x (3/ar)[u(r)f  0 m — s)0(s, ada o(W))ds]dcrdT

The first term of (4.25) is equal to the first one of (4.21), because (3/ar) u (r)= —ao U(r),
and the second term of (4.25) to the second one of (4.22) by means of the integral by
part. q.e.d.

We define 0±(/, t) and I ±(a) as follows.

(4.26) OW, t) =(ad/z)'( U(t)) U (—t)

and

0_(/, t) =  U(— t)(adh)l(U(t)).

For any natural number m

(4.27) /-1-(nz, R) -= — f:R(s)U(s)(adh)m (a 0) U (— s)d s

and

I_(m , R)= 0 U(—s)(adh)m (a 0 ) U(s)R(s)ds,

where R (s) is an operator-valued function. I ±(a, R) for any multi-index a of natural
numbers is inductively defined such that for any multi-indices a and g  it holds that

(4.28) ((a, la), R)=I±(a, ±(13, R)).

For any multi-index a of natural numbers we put
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(4.29) /*(a) -=/± (a, I ) ,

where /  is the identity operator.

Lemma 4.3. 1) F or any na tu ra l num ber 1 it h o ld s tha t

(4.30) 0±(/,

w h ere • • •, a.) ( 1  m S I )  a re m u lti-in d ices con sis tin g  o f  na tu ra l num bers and  Cle,
are positive constants.

2)

(4.31) W (1)4 W  (-6

= E „  ( j 1 ) - i(t)i(adh)/ (at)

+(1!) - 1 f:W (s)(adh)'+ 1 (4  W(—s)(t—s)ids.

(4.32) flo*g W(s)(adh) 2 (alao+b)W (— s)(logt— s)a's

. 2 0 !)- 1 (log t)i(adh) 1 (a i ao+b)

+(l!) - 1  f : "  W (s)(adh)'+1 (alao+b)W (— s)(logt— s)/ds.

3)

(4.33)

and

(4.34)

w h ere

W( —log t) U(t)W (log t)U(-1)

E 0 ( j ! ) (—log t)-i0+(j, t)+.111.14.(1) U (-1)

U (— t) W(—log t) U (t) W(log t)

= E j!) - 1 ( —log t)i0_(j, t)-F U(— t)Na_(1),

0± (0 ,1 )=I,

(4.35) 111 a±(l)

=-(1!) - 1 (- 1 ) 1+1 f : g f  W (— s)0+(1+1,t)U(t)W (s)

X (log t— s) 1cls

and

(4.36) a_(1)

=-(1!) - 1 (-1 ) '+ 1 f l: g s  W (— s)U  _(1+1, t)W (s)

X (log t— s) tels.

4) Let a  m u lti-index  a be (ai, ••-, a.). f o r  in teg ers 13 and y, th en
lifi r = ag/± (a) aro  is  su ffic ien tly  d ifferen tia b le and  o f ex pon en tia l ord er a t in fin ity  in
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as functions valued in  bounded operators on  IF . M oreover i f  0  j < m ,  then

(didt)i L p r It . 0 = 0,

H U(1)(dIdt)il-P 7 ils,1_C(1+111)mexp [(As —AY]

and

il(dIdt)j li-prU(1)11,9,i_ C(1+1/i) exp[(A s —A)t]

f o r  t 0.

P r o o f .  1) Let us differentiate 0+(l, t) in 1.

(4.37) (dIdt)0±(l, t)

=[(adh)'(U(1))a0— (adh)/(U(t)a0)]U(— t).

Leibniz formula applies to (adh)'(U(t)ao) to yield that

(adh) 1( U(t)ao)— (adh) 1( U(t))ao

=6C ,(adh )i(U (t))(adh )l - ' (a 0) .

By means of the substitution to (4.37) we get that

(d/c11)0+(l, t)

—  Ef7: 1
0
-C,O+(j, U (t)(adh ) (a 0) U ( — t)

so that

(4.38) 0+(i,

0+(i, .)),

because 0 + (/ , 0 )= 0  (/ .1 ). It is shown inductively in / - 1 that (4.30) for 0+ (/, t) are
solutions of (4 .38 ). (4 .30 ) for 0_(/, t) is also obtained in the same way.

2) The direct applications of the formula (1.18) yield the equalities (4 .31) and
(4.32).

3) We also use (1.18) as  V (s)= W (s) and B =  U (t) to expand W (— s) U(t)W  (s)
in s. If log t  is substituted to s, then the first parts of (4.33) and (4.34) consist of the
expansion terms multiplied by U (-1 ) , and N a ± (l)  are the remainer integral terms.

4) It is proved by induction with respect to m .  A t first we note that al3
0 (ad a o) '

[(adh)' (a 0)]ar, is an operator o f order 0 i f  f3H--y a - 1  and I n  f a c t ,  (adh)(a 0)
is one of H-type of operators used at Corollary of Lemma 3.5 so that Lemma 3 .1  and
Corollary o f Lemma 3.5 imply it if both /3 and y are non-negative or non-positive such
that 16-ky_a— l. I f  P > 0 > y , then 3 ) Corollary o f  Lemma 3 .5  also yields for it to
be equal to a sum of the products of operators of order 0 and aro- 1  (0 m a x ( f l — a +
1, 0 )), which are operators o f order 0 because y — j 0  by the assumption that /9-Fy_
a - 1. In case that g > 0 > y , it is also proved in the same w a y . Since the definition
(4.27) of M a, I )  is therefore able to apply 3) of Lemma 3.2 to / ± pr ,  we get the differ-
entiability and the estimate, namely, the statement 4) when m = 1 .  Here we use the
fact that
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U(1—s)II21I U(s)II,,25expRA,-01

fo r 0< s< t. T h e statements for larger m is a lso  proved by induction according to 3)
of L em m a 3.2. q.e.d.

Corollary 1. 1)

(4.39) W( — log t) U(1)4

=(a-* Q+)U(1)W( — log I)+ L+

and

(4.40) al,;U (I) W(log t)

W(log t) U(1)(a l,14-Q_)+L_,

where

(4.41) Q+-=R+(e4H-R)S+,

Q _-= R ±S _ (4 ±R ),

L+=(aô+ R) 1 V++ M+,

L _= N _ (4 -+ R )+ M _ ,

(4.42)R = '( j  0- 1 ( —log 1)1(adh )/ (a ),

Si = E ;!T 1 ( j ! ) - 1 ( —log W M/ t),
(4.43) 11/±=1.+.(t, (adh) 2  k (4 ))U ( I),

il1_=U(t)j_(1,(adh) 21 (4 )),

(4.44) N +=J ±(1 , 4.(2k , 1)U (I)),

_+--J _(1, U _(2k , 1)),

(4.45) j+ (t, jo)- (2k — 1) 1: g-- W(s —log t)J0W(—s)s 2 h- Ids

and

j_(t,J0)------(2k-1)!-11.01°°'W(s)JoW(logt—s)s2k-lds.

2 )  Let F , G, and H be ones defined by (1.14), (1.19) and (1.20), and some other
operators be defined as

(4.46) F ' W(logt)U(t)a,1!,tk-ldt,
Jo

G' =.1 o 1 4 - 1 4 U(1)W ( — log t)clt

(4.47) Qa+ = .f7 th - 1  Q+U(1)W ( — log t)dt,

Qa_=----$:°W(logt)U(1)Q_tk-ldt
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and

(4.48) L a i =  t k - 1  L at .

Then we have that

(4.49) G F=G ' F' Qa_d-Qa+F' +Qa+Qa_

G La_+ La+F+ La+La_

and that

(4.50) GF =H+ H 2

if  H2 stands for H21+H22 such that

(4.51) H 2 1 = E .f +:eir 1.4-1
1g;(1—Cf9h - 1 0((ada0)-1(11-P))da

+ E o f - E:(171. ± :(1—a2)k- Igo,0((adao)j( 111 '))glida

and

(4.52) H 2 2 = G L a _ +  La+F+ La+La_,

w here 11-P=W(log[(1—cr)1(1+cr)]), and g , and g i; satisfy  the  sam e ty pe of  conditions
as at (4.12) and at (4.16-17) w ith  lan d  m  4k — 2, respectively.

P ro o f  1) Let us prove (4.39) because (4.40) is shown in the same w ay . A t
first we commute W(—log t) and to get according to (4.31) that

(4.53) W( —log t) U(t)

=-(a° +R ) W(—log t) U(t)H-+M _.

The next commutation of W(—log t) and U(t) according to (4.33) implies that

(4.54) W( —log t) U(t)

=(/+ S.f.) U(t)W(—log t) +N.+..

The substitution of (4.54) to (4.53) completes the proof of (4 .39), where variables of
integration should be changed to get the expression with the function J

2 )  We get (4.55) by means of integration of (4.39-40) in t  from zero to infinity
after multiplication by tk -1 .

(4.55) G— La+=G' 4-Qa+

and

F —  La_=F' +Qa_.

Then (4.49) is the expansion of the product (G — L a + )(F —  La _)=(G' ±Qa+ )(F' Q a _)
of two above equalities. We use Corollary 1 of Lemma 4.2 in order to prove (4.50).
The equality corresponding to (4.12) of Lemma 4.2 implies for G' F' to be equal to

+1
(4.56)( 2 k - 1 )  ! 2- 2 0 4 - 1  (1  — cr2) 4 - 1 d a-1
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plus the first term of H21 at (4.51). The change of variable a to —u proves that (4.56)
is equal to H .  The other terms except for ones constituting H22 are discribed as the
second term of H21 in virtue of applications of the equalities corresponding to (4.13)
and (4.17) of Lemma 4.2. In fact Q i (therefore Qa±) consist o f two parts R  and
(a ko +R)S+ (or S_(a ok  R ) ) .  They are regarded as a koa -o h R (or R a -,  ak ok) ,  a  ok a -o k s

and S_(.1d-Ra -o k )a,k) . (4.17) is applicable to the terms including the parts connected to
(a ko +R)S+ or S_(a ko + R) because 4) of Lemma 4.3 assures the conditions for fo and fi
at 3) of Lemma 4.2. (4.13) applies to the terms related only to R .  A commutation of
the first one of gotten terms with ao yields expected forms because the coefficients of
a -o k  R a polynomial in (log t )  take the shape of (IT,' R -  with le -  operators of order 0.

q.e.d.

Corollary 2. L et  O w .( l , t ) ,  lw ±(m ,  R )  a n d  lw . ( a )  s t a n d  fo r  on es d e fin ed  b y
th e r ep la cem en t o f h  a n d  U (t) by r  and  W (t) a t (4.26), (4.27) a n d  (4.29), respectively,
w here r  is ao , a p s eu d o d i fe r en t ia l operator q o f  ord er 1 in  x  or a  H -type operator tim es
q. (R efer to C orollary o f  Lemma 3.5.) T hen it holds that

Ow ±(l, t)=-E rai ./ClaIw ±(a),

w ith  a and  CI. at (4.30),

(adr):[ W(t)] =ûw+(/, t)W(t)= W(t)Ow_(/, t)

and

II(adr)'[ W(t)]ll Csr(1+ It D'exp[Nol tn .

P r o o f .  The first equality is obvious. The inequalities hold for lw+ (a)W (t) and
W (t)/w_(a) with I a H I if (adr)jh for 1  a r e  bounded on Hs with respect to the
norms II jIs,. I n  fact it is proved by induction in the number n  of the indices a.

q.e.d.

Proof of L emma 1.2. Let us consider F(alao+b)G , namely, operate G at the right
hand side of the equality (1.16). This first term is equal to

[aiao+b— adao(ai)h]FG.

By the notation at Corollary 2 of Lemma 4.2, it is equal to

[aiao+b— adao(al)h](H +H i).

[aiao+b— adao(ai)h]H

is the first line at the right hand side of (1.21) if the operator H in it is excluded by the
multiplication of H- 1 .

[aiao+b— adao(a1)4H1H-1

is regarded as one of the forth line and the remainder terms because the second half of
1) Corollary 2 of Lemma 4.2 asserts that aoH i is an operator of order 0.

The equality (4.21) at Corollary 2 o f Lemma 4.2 rewrites the second term of
F(aiao+ b)G  as
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[adh(aiao+b)+ kadao(adh(aLao+b)) a (711

x  0
4 - ° (1og U(t) W(log t)d 1 H

±[adh(aL)ao+aladh(a0)-kkaladao(adh(a0DaVy/i

[adh(b)+kada o(aL)adh(ao) a-
0

1

±kadao(adh(aL))± kada o(adh(b)) a-
0

1 1H1.

The first term of the above is the second and third lines of (1.21) multiplied by H.
Since the commutator of ao and Hi is obtained by the replacement of (ada o) j  by
(ada o)i+ 1 in H i and also adao(H- 1 ) is an operator of order 0, the above second term is
included in the forth line and remainder terms. It is clarified at later arguments that
the above last term may be regarded as one of the remainder terms. The last term
including Z (t)  at (1.16) may also be regarded as one of the remainder terms by the
application of 3) Lemma 4.2 except for the term consisting o f Z 7 , for which the state-
ment 3) at Corollary of Lemma 3.5 is used.

We put exactly d , at the forth line of (1.21) and the remainder terms in the next
lemmas for later arguments. q.e.d.

Lemma 4.4. do. d1 and  R  at (1.21) are  discribed as

(4.57) do= adh(a L)H1,

(4.58) dl=a01/11/-1

± [adh(a0)-1-kadao(adh(ao))

and

(4.59) R=-(b— adao(ai)h)111H- 1

+adh(aL)adao(Hi)

▪ [adh(b) kada o(a adh(ao) ao

± kadao(adh(aL))+ kadao(adh(b))

+ i  0  Z(1)1k - 1 4U(t)W (logt)dtGH - 1 ,

where H 1 , H I and Z(1) are at (4.19), (4.22) and (1.17), respectively.

Since we think that h should be exactly defined before proving Lemma 1.3, we deal
first of all with Lemma 1.4-6.

Proof  of  L em m a 1.4. The assumption (1.5) means that

{al, ao} =4,b2 d+01(al— ao)

with ?AL an infinitely differentiable function in xo and with d a pseudodifferential operator
of order 1 bounded below by N i <D> > 0 at (Xo, X ) such that (a  _ , 0)2+02b 2 •.< 02<p>2 .

(We denote the set of such (Xo, X )  by E (8 ).) We define h'0  a pseudodifferential
operator of order 0 by
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h'o=pabid - 1 ,

where the right hand side means the product as symbols and

pa=po([0 - 2 (ai—a0) 2 +b2]&- 1 <D>- 2 )

with po(t) an infinitely differentiable and monotone decreasing function in t  such that
po=1 when 0 S t S -

1  

and po = 0  when 1St. Since we are able to take sufficiently2
small 8 > 0  such that

I bid- 1 1S 2 N 0  on 1(8)

with No a bound of I bid- II on the characteristic set I  of P , we may assume that on
the whole space

h'o S2No.

Therefore, if ho is defined by (1.24), namely,

h 0 =h 'o d-i0,

then it holds that

02b1—i {ai, ao}ho

= —01(a —ao)iho

—0 2 (1—pa)(ibi—N1O)

+ 0 2 [padd-N i (1—p6)]0.

Since this is equal to

0 2bi — adcgo(ai)ho

modulo pseudodifferential operators of order 0 in x , we complete the proof. In fact we
put

d i.=[d p N 1(1— p a)<D>]0 +
with 0 = 2N -, 1 E and some large constant C 1 . Then it holds that

E<D>

Since 1—pa vanishes at 1(812), it holds that

(1— p8)(ibi— N10)=c0.62+ d 'a

with co and d 'o pseudodifferential operators of order —1 and of order 0, respectively.

q.e.d.

Proo f  o f  L em m a 1.5. Let us assume the following Lemma 4.5, which will be
proved at the end of this section.

Lemma 4 .5 .  T here ex ists a pseudodifferential operator / 1 3  o f  order 0, w hich is
a  linear com bination of  A 0 —A 1 a n d  8b2, such that
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{ ,52, A..}  ==.0k 2(e .-0A 0-H bk3(e0-1/1110)±02k4,

w h ere  k2 and  k3  a r e  un ifo rm ly  p o s i t iv e  on es o f  o rd e r  0 on  a  con ic n eighborh ood  o f  th e
s in gu la r  p o in ts  o f f  and sa tis fy  th ere tha t

k2
4 5 2(1+ 6e2) - 1 k2k3b2,

w ith  a  positive contant 02.

Let Yi stand for a function in So such that (a/axo)W(v, x 0 ) =0(1, So) and T(v, 0)=0.
Then I WI because I'(, x o) = v - IT(1, xo/v). We also put

f2=[(A o_A 0 2 +b 2]<e>- .
Since Lemma 4.5 assures that k2+;(j=0 and 1) are greater than a positive constant
so on X(80) for some positive 80 (refer 1 (8) to the proof of Lemma 1.4) and since Q is
greater than another positive oi  out side E(80), it holds for j----0 and 1 that

(4.60) h2±)-=k2+.0-a[112S2+1,2W {11, - 1 e 0 -A i, Dr]
>3 - 1 (s 0 d-av 2 ,f2),

If a is a sufficiently small positive constant and if v is sufficiently large. In fact we have
that with a constant C independent of v

2y.flo-1eo _ A J , Q11 3-1v 2s2+c

because I IA/ I SC and I an 12 CS2 in virtue of the positivity of Q if an stands for

(0- 1 (alax0)S2, (3lax)S2, <M a/ ) Q ) .

k2+; —aC on E(80)

if a is small and

I k2+, —aC I c1.,2,f2

out side E(So) if v is large. So we conclude the first statement of the lemma since
it is easily shown that there exists a positive s such that

(1±1 2S2).e1Ih1

and that the left hand side of (4.60) is equal to hi+2 there if h1 is defined by

h i =A 3 +aW v 2 S2.

We next calculate h4, where

h4=k4-kaWv2 {b2,12) .

Since
a1h v 2 {b2, S412 C'1 , 2 b2Q2 ,

the inequality (4.60) and the result of Lemma 4.5 yield that

Ih412 . 2(1+5e2) - Ih2h3b2,

if v is sufficiently large. q.e.d.
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Remark. The choise of the parameter I., i s  able to be fixed independent of
perturbations of A ; and Q as far as they keep s o,  si , So and the other bounds as noting
in the above proof. For example it is possible that they sway in the parameter v be-
cause they are pullbacks f (V- e)  of other functions f (xo, x, e)  b y  W.

Proof of Lemma 1.6. 1 )  It is trivial.
2) At first we consider it in the case that s=-0. If h* stands for the adjoint opera-

tor of h on L 2 , then

2Reh=h+h*=h;- E - 1 <D> 2 +<D> 2 E - 1 h-j.

It is well known that the pseudodifferential operator h,"; of order 0 in x  is  a bounded
operator on L 2 and that its bound is fixed by ones of the symbol and its derivatives of
finite order. Therefore there exists a constant Co such that

(4.61) Re(hu, u)I CoduP

and

By Lemma 3.1 or Corollary of Lemma 3.5, we get for a general integer s that

EshRE- s =hR-Fks.E- 1 ,

where ks is an operator of order 1. This implies that

(hu,u)2s,2=--(hEsu, u)+(ksEs - lu, u)

and

11hRull2s,2511hREsull-FIlks.Es-1ull,

so that

Re(hu, u)25,2

Re(hEs u, u)1+iiksEs - 1 u11ilE 5  nil.

Since the operator ks of order 1 is estimated as IlksvIIS CsII<D>vil, we have that

IlksEs - luIl CsIIEs - ' / 2 ull-

This combines with (4.61) to imply that

I Re(hu, 1428,21

011U11228 ' 1+ C 442S-1,4142S ,1

and

11hRUI12 S,2 2S,2+ CAW 2S-1.2.

The interpolation theory will apply to cases for other indices s. q.e.d.

Proof  of Lem m a 1.3. 1 )  If A is taken sufficiently large depending on s at (1.3Œ-
37), then it holds with No=-2C0  that
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1Re(hu, u)s ,21 °Hull, 29 ,2

and

(4.62)

because These inequalities imply that W (t), defined by (1.10), satisfies
the estimates

W(1)11.9,2_ exp(Noi t i),

so that

(4.63) IIW(log[(1-1- 0/(1 —a)] 4N°(1 —cr2 ) - - N0 .

Therefore, (1.20) the definition of H  is valid if k >N o , and so H is a bounded operator
on H s .  The invertibility of H is essentially due to the following facts.

Lemma 4 . 6 .  Let us put

1(a) =  1
0 (1 — cr2 ) d a

and
+1

J (a) 
= j

 1 (1— cr2 r a g (cr) d cr

w ith a  differentiable function g  such that (1—cr2 )" g' (a) v anishes at a = ± 1 .  T hen it
holds that

1(a) -11:.1[2k/(2k+1)]

and
+1

f(a ) 1(1 —cr2) ig'(o)dri[2(a+1)] - 1 .

Therefore there exists a  positive con stan t y  such that /(a) ,--ya- 1 /2 a s  a  ten d s to infinity
and it holds that

11/(a)11 i(a+ 1 —43)(a+ 1) - 1 [suP ■.1s111(1 —a2)P g'(a)11] •

The operator H  splits into the sum of two part such that

H =C le[2 I(k - 1)+J( k - 1 ) ],

where

C k =2 -  2 h + 1 (2k - 1)!

g (a) = $ W ( a r) d r

and

W (a) =-- W (log[(1+ cr) / (1 —cr)]) .

Since g' (c) satisfies that
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5 2 - 1  supo 1 11 W' (crr)Ils

we get that

Ile(0)11s,25 CN(N0+101+1)(No+10 D(1 —a2 ) - N0 - 2 ,

by (4.62-63). Therefore it holds that

11_7(a)11,9„?..C(No,0)1(a-i-No-1)(a+1) - 1 ,

where

C(N o 0) = C o(1V o +101+1)(N 0 +1 19 1)

If k is taken such that

2- 1 C(No, 0 )1 (k + N o-2 )1 (k -1 ) - 1 k- l <1,

then the existence of the inverse of H  on H s  is shown by means of Neumann series.
Here we should note that k is fixed only by N o and 0 independent o f s  and A, and that
the operator norms of H  and H - - 1  on H s are also independent of s and A.

2 )  H i  has been written as (4.19) at Corollary 2 of Lemma 4.2. On the other hand,
Corollary 2 o f Lemma 4.3 shows that

(adao)j(W)
=Ow+ (/, log[(1+a)/(1 —a)] W(logR1 a)I(1—a)]))

is estimated as

il(adao)i(r I ls ,_C ,9 ;(1 _ , 2) - N0 - 1
7

because (adao) h are operators of order O. Therefore (4.19) is estimated as

c s i0 .

+

o (1 +,02k-1( _0. 2)k- N0 - 2 exp[(As —A)r]

according to the definition of 0 and (1.12). This implies that

CsA- 1

as A tends to infinity if k— No-1 > O. 112 =H2i+H22 has also been written as (4.51-52)
at Corollary 1 of Lemma 4.3. The first part Hz, (4.51) has the same integral form as
H I  so that it has the same estimate. It is also proved by the following lemma that the
second part 1122 has the same estimate as the other. q . e . d .

Lemma 4.7. H n , d efin ed  a t (4.52), has the estim a te su ch  tha t

111122Il5,25CA- 1

as A tends to  in fin ity .

P r o o f .  Since H22=-GLa-+La+FH-La+La_ by definition, it suffices to obtain the

estimates for Gap , a (7, k  F, a k
oLa_ and La+ 4. We try to estimate La+ 4. a k„La_ is also
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estimated in the same way. The definitions (4.48) and (4.41) show it necessary to bound
—k kao N ± a o ,  I+R a o and Af+ao. By the definition (4.44) of N+,

a: N f a:

----(2k —1)1 - 1 f  l
o

o g ' a:W(s —log 1)4 k j W(—S)a:S2k-1 ds,

where

Ji=a:0+(2k , t)U (t)a:.

Since

a:W (s)a -
o
- k  = E k

i . 0 Cki(adao) 1 (W (s))4 1

and

et h W (s)a:=E k
.i. o Cki 4 l (adao) l (W(s)),

the estimate at Corollary 2 of Lemma 4.3 implies that

Ila W (s — log (2; k 11,./114 * — s)411.,2

5 C(1+ I s —log t pk(14- s j)k exp[No(i s —log t1+  Is

log ti)" exp[Noi log t l],

because 05 +s5 +log t  and 114 1 110,25(À„—A) - 1 . There are 1) and 4) of Lemma 4.3 for

It holds that

11/111.,25 C(1- 1- 111)2 k  exp[(A,,—)i)t].

Therefore we obtain that

(4.64) lia N+411.,25 C(1+ItD 2 k +N0 (1+ I log t 1)4 kt- N0 expRA,,—A)/].

It is easy to see at (4.42) that (adho)'(4)4 k is an operator of order 0 according to 2)
Corollary of Lemma 3.5. Therefore (I+R a,Y . ) is estimated as

(4.65) II/d-RafT, kC ( 1 H -I log tD2k--1.

By the definition (4.43) of M+, M a : is written as

M-Fa: = (2k — 1)1- 1 f  W(s — lo g  . 7 24 k W  (—  a :S 2 k - 1  ds U(1)

and

J2---- (adh)"(4) a:.

The combination of 2) and 3) Corollary of Lemma 3.5 shows that J2 is an operator of
order O. So we get that

(4.66) 11/14a:Ila,15 C(1+ I ti)"°(1+ I log t I) 3 k t- Ne exp[(À

By (4.64-66), L a : is bounded as

C(1+ It I) 2k o (1+110g t  )

6 11—No exp[(A,,—À)/].
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Since the integration of tk - iLl-ak„ in t is equal to L a+4  by definition, we get that, if
h >N o  and A.. )t,,-k 1, then

It is clear by the definitions (1.14) and (1.19) for the norms of ez-o- k F and Ga * to be
bounded by

f+.0
0 t h - 1 - N 0 exp[(k — A )t]dt5C ' A- 1 ,

if h >N o  and A > k + 1 .  So we can conclude that

IIH2211..,2_ CA- 1 . q.e.d.

Remark. It is easily checked by the combination o f Corollary o f Lemma 3.5
and Corollary 2 of Lemma 4.3 that

114 r =1,0<D>PErHE - r<D>- fttli-  — H

is an operator o f order 0  such that the norm of H 4 ,  on Ho is bounded by Co r A- 1 .
Therefore we can conclude that H - 1  is an operator of order 0 because

tk' <D>ft Er H - 1  E- r <D>- =  ( H  H  0 - 1  .

Proof  of  L em m a 4.5. According to the formation of the problem we may omit
the function 0 to assume that, with non negative function b,

(4.67) p = and f =A 2 +b,

because the results are independent of the canonical transform as e0_00 4  - A012 is
transformed to e 0. The conditions are that

(4.68) le°, t 0 at A =b =0

and

(4.69) {Co— A ,b1=cb,

where c, A , f  and b are homogeneous order of 0, 1, 2 and 2 in e, respectively.
Let H p = 172p be the Hesse matrix of p  and iH p  be the Hamilton matrix of p,

that is, a(u ,JH p v)=-<u, Hp v> with respect to the canonical form a. The conditions
(4.68-69) imply that iH p  has a real non zero eigenvalue at the singular points E of p,
namely, p is effectively hyperbolic. In fact the vector v=117(fo— A ) atains the eigen-
vector corresponding to the eigenvalue

— a=  — {e.--A, o+A)
of IH p  at E, that is,

(a-I-JHp )v =0.

The hyperbolicity of H p  implies the existence of another real eigenvalue a, o f which
eigenvector u satisfies that cr(u, v) 13 with respect to the canonical form a. I f  H p  is
defined by the Hesse matrix of p with respect to the fixed coordinate, then a, u  and y
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may extend to a  neighborhood of the singular point .N as holding their relations.
Especially a  is  a  real function.

Let us denote u=(uo, ui, u2) and v= (v o , vi, v2) by the coordinate as

w =wo(a/ae o) wi(a/axo)d- w2(3/aX),

where X =(x , e ) . We normalize them as u l = v 1 = 1 .  Then —u0=-v o = a/2 .

U=(u+v)/2 and V---(u—v)/2

satisfy that

a V =JH p U and a U = jH p V.

Therefore

aa (V , U )=a (V ,illpV )=<H p V, V>.

More precisely the component wise expression shows us that

aa( V2, U2)=a( V2,JHp V2)= <H  V2, V2>

=<H f V2, 1/ 2>

=2[a( V2, U2)] 2 <H b V2, V2>,

because

H1----217A0VA+17 2 b

and

<17 2, 17A>=- * V2, V2)=0"( V2, U2),

where U;=(uf-Fvf)12 a n d  V.;=-(ui—vi)/2 ( j = 0 ,  1  and 2 )  so  th a t U0= 0 , U 1 = 1 ,
Vo= —a/2 and  V 1 = 0 .  The existence of a real solution a( V2, U 2 )  for the quadratic
equation implies that

a 2 -8 < 1  eV2, V2> 0.

The positivity of <Hi 17 2, 1/2> at the singular points implies that there

0Scr(V2, U2)5 a/2.

However a( V2, U2) is not equal to a/2 because a(V , U)=— al2d-a(V 2, U2) should not
be ze ro . Therefore there exists a positive constant eo such that

(1 - 1- 60)a( V2, U2) S a/2.

Let us consider two functions that

/12—<pp, U>=<pf, U > = U (f )

and

aeo+p,=<p,V >=V (p),

(,1— <vf,V >=<vf,V 2>=V 2(f)).
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Then it holds that

1p,A31
--_-<vp,fHpu>+<i7f,{p,(7)>

=a<17P, u>+<vf, ip, (7)>
= a 2e 0 ±a/.0±.L[pf : vp].

Remark on Notations. L [X i :  X2: ••.] means that it is a multi-linear combi-
nation of each component Xi with coefficients of infinitely differentiable functions.

On the other hand

1.4-= V2( f ) =  2 V 2(A )A +17 2(b)

= 2a( V2, U2)11+ 1/2(6)

and

L [pf  :17p]----I[V f]eo+L [17b]A +L [  176: 176].

Therefore it holds that

{p, i t }

= (a 2/2—acr( 1/2, U2)+L [Ff]X eo — A)

4-(a 2/2-Facr(17 2, U2)-FL[FfNeo-FA)

+a V2(b)+L[rb : 17b].

We denote it as

{ p, A.3} =a(ao —130)(eo — A )-Fa(a0+130)(e0±A )-F ayo.

The bound for a(V 2, U2) yields that ao—po and ao-f-130 are positive at a neighborhood
of the singular points E .  The combination of them with the following lemma yields
that

)45 2(1+60/3) - 1 -(4-13,2)b

at a neighborhood of E. In fact, for a, /3= a ( 1/2, U2) and y =<H b V2, V2>, it holds on
E  that

2 y = 2 (a -2 )fl

< 2(1+ e0/2) - 1 (a/2 —fl)(a/2+/3)

because a/2 (1-Feo)/3. And V2(V2(b))=<1-16 V2, V2>+ L [ N ] .  Since

200(3+00) - 1 (2+ e 0 ) - 1 (a,;

absorbs the perturbations by g p f ],  L [v b  v b ] and e if a neighborhood and E are small,
we get the conclusions. The inequality at Lemma 4.5 is obtained i f  02 is  put as
602=00/3. q . e . d .
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Lemma 4 .8 . Let f ( t , x )  be an in fin ite ly  d ife r en t ia b le  fu n ct io n  on 12"+1 ,  w h e r e  t
i s  a v ariable and x  i s  t h e  o th e r s .  W e  assume t h a t  f  i s  non n ega t iv e  and  d en o te  the
zero p o in t  set o f f  b y  E .  T h e n  f o r any positive s  th ere ex ists  a  n eighborhood  D  o f  E
su ch  tha t

i(alat) f (t , x) 2 2((al3t)v(t, x)+ e)f(t, x) o n  D .

§ 5. Verification of the reduction to a basic type.

P roo f o f T h eo rem  3. W e  sh a ll check the definitions from 1) to 12) of a basic type
at the top of Section 2, referring to Lemma 1.2. The first line at the left hand side of
(1.21) is the main part. aiaz, the principal part t/s2 b2 of b, a part of the first order term
d(ao+ ai) and the term of order 0 bo are left as they are. T h e  remainded part of the first
order term ;Obi is changed by means of h, defined at (1.31), as in 1) Corollary of Lemma
1.5. S o  w e  have that

0 2 bi — adao(a

---0 2 bi— adaz(ai)(h--Fi0)+E - 1  a :a oh ,-;

= coa o+ a ici+ 0 2 c2+1,G2 di+  do

E - 1  a:h (Tao+ E - 1  a:adaz(h -j) .

Therefore it holds that

a i a o +b— adao(ai)h

--, ----a iaz+ 0 2 (b2 + 4 + 0 + d ioa o -F a id oo+  0 2 c2+

where

doo= d+ ci,

dlo=  d+ co+ E - 1

d:= bo— adal(d) + do+ E - 1 a :a d a o (h )  —0 2 C

and C is a positive constant. Here if a positive constant C is sufficiently large, then the
above b2H-di+C is b, at (2.5) in virtue of the GArding type inequality proved by A.
Melin, because dI defines a norm on H 1 1 2 (R") according to (1.26).

Lem m a (A . M elin  [6]). Let p2 b e a p seu d od iffer en tia l opera tor of  hom ogeneous
o rd e r  2 and  i t s  s ym b o l b e  r ea l non n ega t iv e . T h en  fo r  a n y  constant e su ch  that e p lu s
ha lf o f p ositiv e trace of the fundam ental m atrix  of pz is _positive at the cha ra cter istics of
pz, th ere ex ists anoth er constant C su ch  tha t fo r an y u  b elon gin g to  S

(5.1) Re(p2u, u)+Eii<D> 1 / 2 u112 +Clizell 2  O .

E sp ecia lly  it is  va lid  if  s  is positive.

On the other hand doo, dlo and d :  are operators of order 0 by Lemma 3.1 because
they consist of pseudodifferential operators and E - 1 a :  time pseudodifferential operators.
Moreover it is shown by Lemma 3.5 that they satisfy the relation (2 .1 1 ). Therefore
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they are able to be constituents of do, di  and d2 at (2.1). It is clear that the pseudo-
differential operator c2 of order 1 is a member of bo at (2.1), that is, it satisfies (2.9).

We now turn our attention to the second line of (1.21). By the definition (2.12)
of logao

adh(aiao+b)ao I (logt)U(t)dt
Jo

is equal to

(5.2) —adh(alao+ b)logao+yoadh(alao+b).

Since the second term is equal to

yo(adh(a0a0d-aladh(a0)+adh(b)),

it consists of terms which should be passed to the terms (Iwo, ciao, d2 and d 3 0 0  at (2.1).
In fact, adh(a].) and adh(a o)  are product sums of H-type operators at Corollary of
Lemma 3.5 so that they are operators of order 0 and satisfy the relation (2 .1 1 ) . The
terms of adh(b), with respect to the terms of b except for the principal part 0 262, are also
combinations o f ai and product sums of H-type operators, which are constituents of
do, di and d2 at (2.1). a d h ( 0 2b2) is equal to 0 2 adh(b2)+adh(0 2)b2, which is equal to
goab20 2 + 02< D > - 1 0 2 ,  with g i product sums of H-type operators, modulo product
sums of H-type operators, which are passed to d 2 at (2.1). Here the following Lemma
5.1 shows that

go3b202+g1g2<p>-1412

has the same properties as members of the term ei3t,bbo at (2.1) satisfy. Namely it is
a linear combination of pseudodifferential operators satisfying (2.9) with coefficients of
operators of order O.

Lemma 5 .1 .  1) T h er e  ex is ts  a  p o s i t iv e  co n s ta n t  C  s u c h  t h a t  lab212 SCb2 by
th e assum ption  that b2_.0 i f  ab2 stan d s fo r

(0- 1 (.0> - 1 (a laxo)b 2, <D>- - 1 (3lax)b2, (alae)b 2).

T h ere fo re  it h o ld s th a t w ith  o th er  p o s itiv e  con sta n ts  e , w h ich  m a y  b e sm a ll, and  C',

C(b2u,u)—(ab2u,abg,)+6 11<D>"2 u112 + C'llull 2 O.
2) l e t  p  and  q b e tw o  rea l pseudodiferential op era tors o f  o rd e r  0 in  x su ch  tha t

fo r  a  p o s it iv e  constan t e,

p _ e > 0

and

T hen  th ere ex ists a  positive con stan t C su ch  tha t

1(qu,u)15((p+C<D> - 9u, u).

Remark. Both the first and second statements are applications of Gdrding type
inequality by A. Melin.



550 Nobuhisa Iwasaki

We use the results at 2) Corollary of Lemma 1.5 for the first term of (5.2).

(5.3) adh(aiao+b)

=adh(aiao±b2) eo+h,Tadeo(aiao+b2)+ (adk7e0)(b—b2)

with hg', defined at (1.30), because 0 is constant

adh(aiao+b2)

=.110(h; - i- d ;)+  tii(hi"-Fd;)ao+ P h d 4

with h ; (j= 2 , 3 and 4), defined at Corollary of Lemma 1.5, and with pseudodifferential
operators d ;( j= 2 ,  3 and 4) of order —1 in x .  We put for j = 0  and 1,

(5.4) eio=h;+2+ C<D>- 1
and

C jl.

The inequality (1.33) implies that with a positive constant s,

(5.5) Re(ciou, u)+1(ev1u, u)i] ( j = 0  and 1),

if the constant C, which may depend on is sufficiently large, because Lemma 5.1 is
able to apply it. T h is  inequality implies (2.6) if the constant C at (5.4) is replaced by
a large one because adao(eo)=0 and Iladai(e0)u112 is uniformly bounded by Co(eou, u)
with a constant Co independent of the parameter v. The lower order terms

Rd7+2+C<D> - 1 )eoafa-, a d a o  (j-=0 and 1)

are passed to the term diao at (2.1), since eoak (k=0 and 1) time a pseudodifferential
operator of order —1 in x is one of H-type operators so that it is an operator of order 0
satisfying (2.11) and since Lemma 3.3 and 3.7 prove that aVlogao is also. The terms of
adh(b) except for adh(0 2 b2 ), and c/ are also passed to the terms do, di and d2 at (2.1)
as well as at the second term of (5.2), because they are combinations of a; and product
sums of H-type operators multiplied by a-, 'log ao, which is an operator of order 0 satisfy-
ing (2.11).

h-jadeo(02b2)==goh;00'62-kgi h;0 2 862

modulo lower order term, which are operators o f order 0 satisfying (2.11), where g;
is product sums of H-type operators. According to the inequality (1.33), it holds that

h-
4

 2  2(1+4E2) - 1  h;h';'b 2 ,

Ihôt1J- 1 0' b2I 2h ; h - 3 - 6 2

and

Ih -o- ab2■2,<_cv-2 h;h;b 2.

Therefore h-
o adeo(0 2b2) is equal to tit2gq modulo operator of order 0, where gq is a linear

combination, with coefficients g = (g i)  of product sums of H-type operators, of pseudo-
differential operators q = (q t) of order 1 in x  such that
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q112 C1) - 2 h ;h ;b 2 .

Moreover g includes the factor eo. If we put c3=h -
3
- 1 - 1 2 , b41---=h; - 1 1 2 q and eoe7=g, then

we obtain that hò adeo(0 2b2) is equal to

0 2 c3e0e7b41

modulo operators o f order 0  satisfying (2.11). The operator norm of e  on H ° is
uniformly bounded in the parameter v. bu  and so {ao, .641} are linear combinations
of abz and bo with coefficients of pseudodifferential operators.

641125 C v 2 h "ib

and

(5.6) Ic312=h;

so that

04111, b410

C2d- 2 [R e (h ;b 2 u , u) d- C (<D>u , u)]+ C(v)(u , u)

and

(c3u, c3u)SRe(ciou, u)

with cio at (5.4) according to Lemma 5.1. Therefore if v is sufficiently large, then

1(03 6i-641 u, e1.41u)l

__2(1-1-4e2) - 3 e2[Re(0 3 h;b2u, u )+C (<D >u,u )+C (v )(u ,u )]

and

1(03v, c3v)I Re(Ociov,

The estimate for h;e0=c3e0c-
3

1 h. -4 modulo lower order terms, is that

0 1 3 6 -31 hu , 4 1 hTiu)1

4(1±4e2) - 2 [Re(0 3 h;b2u, u)+ C (<D> u , C(v)(u u)].

Therefore we get the estimate (5.7) for

0 2 c3eoeib4----02e3e0(6- 1 h-
4 + e7641)

that

(5.7) (tkae1b4u, etb4u)1

S4(1-1-3e2) - 2 [Re(,b3 h;b2u, u)+C(<D>u, u) C (v)(u ,u)]

and

1(0c3v, c3v)ISRe(tisciov, y).

The discussion about the first terms of (5.2) finishes if it is found that the definitions of
c; at 6) Section 2 and (5.4), and the inequalities (2.5-6) and (5.5), deduce the inequalities
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(2.8) from the above (5.7). In fact the error terms are absorbed by means of replace-
ment of the constants 2(1+3E2) - 1  to  2(1+222) - 1  and 1 to (1+2 2)  if the parameter v
is as large as needed. The replacement of b2 in this section by b2 at (2.5) Section 2
is possible in the same time according to (5.5).

At the third line of (1.21) it is important that the principal part of kada o (adh(a i ao +
b)) is essentially pure imaginary. In fact we can check it as follows. At first we note
that

f+:(logt)U (t)d t--=a-01(yo —log ao),

which is an operator of order 0 and satisfies (2.11) by Lemma 3.3 and 3.7.

(5.8) ada 0(adh(aia 0+ b))

ada o (a i) adh (ao)—ai(adao) 2 (h)

+ ada o(adh(a l )a o + adao(adh(b)).

adh(a 0) =— adao(hjeo)

-=—adao(h;)eo.

So the principal part of adh(ao) is discribed as Ogoeo with a  real pseudodifferential
operator go of order 0 in x .  ada o (a i) is a pseudodifferential operator of order 1 in x
with the pure imaginary principal symbol, from which the weight function tit is taken
out. Therefore adao(ai)adh(a0) is equal to ti/b30e0 with a pure imaginary pseudo-
differential operator boo of order 1 in x modulo product sums of H-type operators. This
concludes that

adao(ai)adh(a0)17(logt)U(t)dt

is equal to

tiib3oeo(yoa; 1 —a-
0

- 1 1og ao)

modulo terms included into the terms diao and da at (2.1). It is clear that the second
and third terms at the right hand side of (5.8) are passed into the terms aido, diao and
d2 at (2.1) even if they are multiplied by aT, I logao or a-

0
- 1 . The forth term of (5.8) is

also equal to

adao(adh0 2 b2))eo modulo a1go+g1ao±g2a:+ga

with product sums of H-type operators g ; (j= 0 ,••• , 3). Since Lemma 3.3 and 3.6

imply that a:(4- 1  is an operator of order 0 satisfying (2.11),

(a1go±g1ao+g2a:+g3)(yoa,7 1 —a-
0

1 1ogao)

is divided among the terms aido, diao and d2 at (2.1). The principal symbol of the
pseudodifferential operator ada o (adho

- (0 2 b2)) is equal to 02 b31 with a pure imaginary
symbol ba1 of order 1 in x modulo lower order terms. Therefore the forth term of (5.8)

+0.
time So (log t) U(t)dt is equal to

0 2b3leo(yoa;- 1 — ef,"; i log ao)
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modulo terms passed into the terms aido , d iao and d2 at (2.1). The above results
combine to assert that the third line of (1.21)

adao(adh (a la od - b )) 0 (log t) U (t)dt

is equal to

0 2b3(yoa-
(; 1 —a 1 log ao)

modulo terms passed to the terms a id° , d ia o  and d2 at (2 .1 ), where b3=b30.-1-bai is
a pseudodifferential operator of order 1 in x  with a pure imaginary symbol.

Now we consider the forth line and the remainder terms at (1.21), the exact forms
of which are there at Lemma 4.4. We assume that H - 1 , Hi, aoH i, H I and adao(H)
are operators of order 0 satisfying (2.11) and that the commutators of them with q , a
pseudodifferential operator of order 1, are written as

adq(K )= a -, 1 Ki<D>+Ko

where K  is one of them and K i( j= 0 ,  1) are operators of order 0 satisfying (2.11). We
will prove it after the present proof. Then do and di at (4.57-58), namely, at the forth
line are operators of order 0 satisfying (2.11). The first term at (4.59) is included in the
terms a id o , d2 and a-, 1 0 2 b i at (2.1) except for the part with respect to 0 2b2, because it
is equal to

ai-,1(b-02b2—adao(ai)h)a0H1H-1

±a;;; l a d a . ( b - 4 2 62— adao(ai)h)H1H - 1

so that it is divided to a i time an operator of order 0 and a -
0

1 time an operator of order
1 modulo operators of order O.

0 2b2H1H-  1=a7;102b2aoH iH-1+a(cotli2b2+02c1)H1H-1

with ci(j=0, 1) pseudodifferential operators of order j  in x  by the assumption (1.6).
The assumption to H - 1 , a o l l i  and Hi yields that

0 2b2H1H- 1 =a -
0

 l d ;0 2 b2+a -
0

1 0 2 dI

with d 7 ( j= 0 ,  1 ) operators o f order j .  The second term at (4.59) is an operator of
order 0 satisfying (2.11).

There are two types in the third term at (4.59), namely,

[adh(b)d-hadao(adh(ao))1H1

and

[hadao(ai)adh (a 0 ) + kadao(adh(b))] H

At the first one, adh(b)±kadao(adh(a1)) is equal to adh(0 2 .62) modulo product sums of
H-type operators. The consideration after (5.2) or (5.6), and the assumption to III
yield that the first one is divided among the term dvkbo and d2 at (2.1). The second one
is regarded as 0 2g a -,, 1 H 3' ,  where g is a linear combination of pseudodifferential operators
of order 1 in x  with coefficients of product sums of H-type operators. It is equal to
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a 10 2 gH;.—aVadao(0 2 g)a 1 H ;

so that it is passed to aVO 2bi  at (2.1).

The term including Z  is left. The exact form of Z  exists at (1.17). B y  the as-
sumption (1.6) we have that

(5.9) ada (b) 2b2f2+ tk2f -F-Ofoao-FA,

where f ;  and f ;  are pseudodifferential operators of order j  in x .  The term including
Z1, Z3, Z5 and Z6, that is,

r(zi+Z3+ Z5+ Z6) l k - 1 4u(t)W(log t)dtGH - 1

is equal to

[E , .1 (0 2 b 2 f2 .4 0 2 f i . i ) a -01+ 0 fo x -o
1 ] FGH - 1 ,

where f ;  are pseudodifferential operators of order j  in x .  Therefore it is passed to the
terms d(Ti til2bi , 1 d402b2 and d2 at (2.1) because FGH - 1 =/-1-1/11/- 1  and because 4)
Lemma 3.6 are applicable to the change of places between aT, 1 and other pseudodiffer-
ential operators. Since (dIdt)U(1)±,a 0 U (t)=0 , the integral by part implies that

Z 8tk- 1  a U(t)W(log t)dtro

ro  
4 (t )P - 1 4 U(t)W(logt)dt,

where

4(1)

=a k
o

+ 1  St
o U(a)(ada0) 2 (alao+b)U( — a)(k — (k - 1)alt)daa k - i .

By the assumption (1.6), Z ( t )  is discribed as

U(o) g U(—a)(k —(k —1)a I t) dcra,7

with g j  which are same types of operators as the right hand side of (5.9). Therefore
the relations (3.24-25), 3) of Lemma 3.2 and 2) o f Lemma 3.6 yield that

ro  
z8(61 ,-14u(t)W (lo g  t)dt

,
02b2 f 0 G2(1)1k- 1  4u(1)W(lo g  t)dt

- FaV.0 2 < D > ro ( t ) t  k - 1  4 U(t)W(log 1)dt

±f ' Gotk-i 4u(t)W(lo g  t)dt.+o

Here G.; (j=0 , 1, 2) are operators of order 0 and satisfy the conditions for G(t) at Lemma
3.6 and also the conditions for fo at 3) of Lemma 4.2 with /=m=0 and w ith f,=1 so
that the terms corresponding to gi; at (4.16-17) are operators o f order 0 and quasi-
commutors of tir2 b2. Therefore we conclude that
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2(61 k  a koU(1) W (logt)dIGH - 1

Jo

is passed to the terms aV0 2bi, aT, 1 d40 21.2 and do at (2.1), if it is shown that (4.17) is an
operator of order 0 and a quasicommutor of 0 2  from the condition that gi; are so.

The terms including Z 2 and Z 4  are passed to aV 0 2 b i at (2.1) because Lemma 4.2
is applicable to them.

The term corresponding to Z 7 should be improved such that

Z 7 = V V -2. 1  j 1- 1  al4 U(t)(logt)j(adh)-i(alao+b)a,Y  U(—t)

+Z ;

and

=- (2k+ 1)1 - 1  a
 U ( t ) f : (

 W(cr)(adh)2h-F2(alao+b)

X W(—u) (log r —cr) 2 k+idado
- k  U(—t).

At the first term, (adh)i(aiao+b) are H-type operators if j . - 2  so that it is concluded
according to Lemma 4.2 that the term corresponding to the first one is one of d o  at
(2.1). The application of 3) Corollary of Lemma 3.5 to (adh) 2 (a l ao + b ) yields that

a/
0
. (adh) 2 h +2 (ai ao+b) 64 =0

is a product sum of H-type operators so that it is an operator of order 0 and a quasi-
commutor of 0 2 62 . Therefore

(5.10) f  Z;tk - 1  U(t)W (log t)d1GH - 1

+-=-1 U (t)W 1(t)d if  1 1- 1 W2(1)U(1)(1/11- 1 ,

where
logt

W 1(t) = (2k + 1)1- I f W(a) a-o- k W ( log t— a) 4 ( l o g  o ) 2 0 +1 do.

and

W  2(t)=a W(—log t)a j
o'

Since it is checked by (4.31) that Wi(t) and Wo(t) are operators of order 0 and satisfy
the conditions of G(t) at Lemma 3.6, it is concluded that (5.10) is an operator of order 0
and satisfy (2.11), that is, it is passed to do at (2.1). q . e . d .

We give a note on the facts assumed in the previous proof.
Let R  and q be an operator of order 0 and a pseudodifferential operator of order 1

in x , respectively. We consider the case that ao, 0 2b2, q and R  satisfy the relation that

(5.11) adq(R)= aV R i<D>+R o

adao(R) = R 2

02b2R=R302b2-FR4<D>

and
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RIP2b2=0 2b2R5+ R o <D>,

where R)(j =0, ••• , 6) are operators of order O . W e assume that the sets of four ao,
02b2, q and one of R)(j=0, • • • , 6) also satisfy successively the relation (5.11) sufficiently
many times. Then we shall say only that R  satisfies the relation (5.11).

Let us consider another relation for a function R(a , T) in (a, 7.) valued in operators
of order O. It is that, for a pseudodifferential operator q of order 1 in x,

(5.12) adg(R) = TR 1<D> + R

ada o(R) =R 2

1b2 b2R--- - R3tii 2 b2 - FR4<D>

and

RO2b2=02b2R5H-Ro<D>

with 12,(j=0,•••, 6) functions in (a, T) valued in operators of order O. We assume that
R i( j= 0 , « ,  6) also satisfy such a relation. We consider three such functions R, S and
T , and ones generated finitely from them by means of the relation (5 .1 2 ). We denote
the sets of such functions by R ,  S -  and T .  W e  assume for any triplet (R ', S ', T ')
of .12-  x S -  x T -  t h a t

(5.13) f+0.1+:e+P+rii(alar)R'1111(alar)Ps'1111(alar) TT'll

X exp[(C—A)r]dadr< + co

for any non-negative integer a, p and y.

Lemma 5.2 . L et a  tr ip le t (R , S , T ) of  functions in  (a, T) v alued in  operators o f
order 0 satisfy  th e above (5.13). Then

(5.14)

satisf ies th e relation (5.11).

+cos+1
G=- f RO,(S)TdadTo - 1

Remark on Notations. 0 ,(X ) means the existence of pseudodifferential oper-
ators co and ci  of order 0 in x such that

4P(t, X )= U ( co , t( 1- 0)/2)XU (c i , t(1+a)/2).

Proof . I t  i s  trivial for G and adao(G) to be operators of order 0 and especially for
adao(G) to have the same integral type as G.

(5.15) adq(G)
=

Jo [adq(R)41,(S)TH-R(S)adq(T)]dcrdr - 1

r o f ± :R(adq)((S))Tdcrdr.

It holds for the second term that
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(5.16) adq(C(S))

=I(r(1— a)12, do)C(S)

+(S )1(— r(1+a)12, d1)

+( ad q ( S ) ) ,

where do and d 1 are pseudodifferential operators of order 1 in x. According to Lemma
4.3 it is easily checked for T- 1 /(rf (a), d)<D>- 1  with a continuous function f  (a) in a that
it and functions generated by means of the relation (5.12) are bounded by Cexp(CT).
Therefore adq(G) is finite sums of two integral types

r-Foof+3.
TRO,(S)Tdadr<D>J o  -1

and

r+co ,
R O,(S )T dadr,

J O  -1

where R , S  and T  satisfy (5.13). The second one has the same integral type as G.
On the other hand we know the equality that

(aiar)o,(x)

=— a0 (X )+( l+a) (ad ao (X ) )1 2

— (coX (1-0 /2+X ci(1+cr)/2 )

+o,((a13,-)(x)).

This implies that

a o

f-FT .
TR I),(S )Tdadro - 1

is equal to

f  o f+ TR(alar)(4),(S))Tdadr
0 - 1

modulo the same integral type as G .  The integral by part in T  assures that it is also the
same integral type as G .  We conclude that

adq(G) -=a,VG1<D>+ Go,

where Go and G1 are finite sums of the same integral type as G .  For the commutation
of G with 0 2.32, (5.15-16) hold if q is replaced by tir2b2 and if the notation adq(X) is read
as qX — X 'q or qX '— X q with another operator X ' of order 0, while I ( t ,  d) at (5.16)
should be replaced by

L (t, d)=f:U(co— s)dU(ci, s)ds.

Therefore 123 ( j=3 ,••• , 6) at (5.11) for G are also finite sums of the same integral type
of G .  This fact applies inductively to assert that G satisfies the relation (5.11).

q.e.d.
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Lemma 5.3. 1) Let f  be a function in  a such that

rd-k
B I  = j_ i lf 1(1 — Œ9- N 0 d a < ± c °

w ith N o at (4.63), and I ;  ( j= 0 ,  1, 2, ••-) be

L;r= f+ l
i f(adao)j(W)da,

w here 'If= W(logR 1 +a)/(1— a)]). Then

i
k .,(adqk)(L;)

are operators of  order E l
k ,m k -1  if  qk are pseudodifferential operators of  order mk or ao

w ith  m k = 1 . T heir bounds are ma/orated by  B 1. T h e re f o re  L ;  satisf ies the relation
(5.11).

2) Let f  be a function in (a, T ) such that

rolo ia r y f l ( 1 — a 2 ) - N 'e x p [ ( C — A ) T ] d T < +  co.

Then

M ;=1
11 + 1

f 0((adao)i(Wpdcrdro -1

satisf ies the relation (5.11).
3) H ,  H - 1 , H , ,  a o l l i ,  H ;  a n d  ad ao (H ) a re  operators o f  o rd e r 0  satisfy ing

(5.11).

P ro o f .  1) The results are guaranteed by Corollary 2 of Lemma 4.3.
2) A t (5.14), we put R =1(1 — 0'2 ) 2 k  .5 = - T  and T = 1 .  Then they satisfy (5.13)

so that M , has the relation (5.11).
3) They except for H - 1  are sums of two types of operators at 1) and 2) by their

definitions. Therefore they satisfy (5.11). For H - 1 ,  it holds that

adq(H - 1 ) = —H - ladq(H )H - 1

with respect to q=a0, 0 2 62 or a pseudodifferential operator of order 1 in x .  The results
for H  imply ones for H - 1 . q.e.d.

§ 6. Positive definite forms.

Here we prove the lemmas at Section 2.

Let A  be a generator of one parameter semigroup

V(A , t) V ( t ) =  exp( — A t),

and B be a symmetric operator on H o . W e assume that A  and B  have a common core
S  and that with a positive s

(6.1) Re(Au, u) s(u , u),
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for any u belonging to S .  Then it holds on S that

(6.2) (ad* V(1))B * (t — T)(ad* A)(B)V (T)dT

and

(6.3) (ad* V(l))(ad* V(s))(B)

t i s
V * (i +S  — T - 0 ( a d * A ) 2(B ) V(TH-cf)dcrckr.0 o

Remark on Notations.

(6.4) (ad *X)Yz----X*Y— YX.

Let us define A 1 /2 by

(6.5) A1/2 = R i f , y 1 ro s, 1 , 2 V(cr)dcr A .

Then we have that

(6.6) Re(BAu,u)----(BA1/2u, Al/ 2 u )+ R e (R iA 1 1 2 u,u)

=_(BA 1 /2 u, A 1 /2 u)+(112)(R 2 u,u)

for any u belonging to S, where

(6.7) RI , ---(ad *A 1 /2 )(B )

--.P(112) - 1 2- 1 f 0T_ 3 /2 X1(r)dr,

Xi(t)=-1 0 V*(t—T)(ad * A)(B) V (T) a' T

and

(6.8) R2=BA+A*B_2,44,1/2B,41/2

_R1/2)-22-4 0 f o / - 3 t2s- 3 /2 X 2 (t, s)dsdt,

X2(1, s)=- f o o V * ( t + s  —a)(ad *A ) 2 (B ) V (+u )d ad T .

Let us consider two other operators Ao and A1 with a common core S such that

(6.9) A1B— BA0=Z1 on S

and

A = (,4 0 + .4 )/ 2  on S.

Then we have that

(6.10) Re(BAou, u)=Re(B Au , u) - 2 - 1 R e (Z  , u)

for any u belonging to S and

(ad * A )(B ) =  (Z  — Zt)/2  on S.
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Let B  a symmetric operator be non negative and satisfy the relation with X  and
Y operators of order 0 that

(6.11) BX — Y B— Z,

where Z  is  an operator of order 1. Then R e(B  X u, u) is estimated as with positive
constants js and C,

(6.12) Re(B X u, u).11(Bu, u)+C(<D>lu, u)

for any u belonging to S.
In fact if we put A 0 =11,— X and A 1 = —  Y and if we take ,u sufficiently large, then

A =- Y * ) 1 2  is a bounded operator and Re(Au, u) s(u, u). S ince V (A , t) and
(ad*A )(B ) are operators of order 0 and of order 1, respectively. R I A 1/2 is an operator
of order 1. This implies that

1Re(R I A i / o u ,  u)I C(<D> ,

The fact that lo  A 1/2u, A 1 / 2 1#  0 yields that

Re(B(p,—  X )u, le). — C(<D>'u,

therefore, the conclusion.

Proof  o f  L em m a 2.5. 0 2b2 is  positive and sym m etric by definition. If we put
X=0q1,11- 1 , then the above proves Lemma 2.5 because (<D>u, u)__C(b2u, u). q.e.d.

Proof  of  Lem m a 2.1. It follows from the assumption (2.10) for 0 2b2 and ao that

adao(0 3b2c0)=y003b2e0+80<D> ,

where yo and So are product sums of H-type operators. Therefore

0 3b2co(log a 0) —(log(ao —yo))0 3b2co

and

(log ao)Ikab2co-0 3b2co(1og(ao+yo))

are operators of order 1 and the same results for (log ao)* hold . Since log ao—log(ao+
yo) and Imlog ao are operators of order 0 and satisfy the relation (2.11) from the above,
that is, (6.11) with 1=1, we have that

2Re(03b2co Log aou, u)

. Re([0 3b2co-k(III3 b2co)*]Logaou, u)—C(0 3h2u, u).

In fact

adLog a 0[(03boco)*] =y1(11, 3 b2co)*+0 381,

where yi is an operator of order 0 and satisfies (6.11) of 1 with 0 3b2co and Si is an oper-
ator of order 1. Therefore (6.12) with 1=1 applies to Re(u, 0 3bocoyiu) so that Re(0 381u,
u) and it are bounded by C(0 3bou , u ). Now we put

B o-f- (ti0 b2e 0*  +803
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with a sufficiently large constant 8. Then B is symmetric and non negative and satisfies
the relation with A 0-=Log ao that there exists an operator yz of order 0 such that for
A i= A o ± y o ,  Zi =A1B  —BA o at (6.9) and also adAi(Zi) 1 )  are operators of order
1 multiplied by 0 3 . This implies according to (6.6) and (6.10) that

Re(BA ou, u)>_Re(BAitou, A 1 / 2 0
—Cii ,1i3 <D>nii.

Therefore we conclude that Ilug a o , at (2.21) is positive definite on H o . The results for

IUlleLog and Ilulla,eg are also shown more simply by means of (6.6). q.e.d.

P ro o f of L em m a 2.4. The statements 1) and 2) are already proved at Section 3.
The statement 3) is proved by applications of the above method to A =logao and B =
Re(tkci—etkeo). q.e.d.

P ro o f o f L em m a  2.6. At first we part B4 into c3Ikeo(loga0)0164 and the others.
The inner products corresponding to the others are estimated by a c c o r -
ding to the assumption for 64 and Lemma 2.5. Since II WII,Lo g  defines a norm on Ho,

Re(eztiseo(logao)1,beib4u, v)I

511111eib4ulleLoglIc3vil9Log.

If we substitute Logao for Ao and Re[(1±e2)Oci—e:eoailez] for B  at (6.9), then the
assumption (2.8) applies the same way as the proof of Lemma 2.1 to prove that

ile3v110Log5(1±62)livileLog.

On the other hand the form related to 6'164 is estimated as fo llow s. Let B  at (6.9) be an
operator consisting of

R am  (aiax)h<D>--i, (aia,0)b2<p>, , b2<p>--1)
on (H G) 2 '1+ 2 . And Ao is equal to Logao times the identity operator on (H 0) 2 "+ 2 . Then
the assumption (2.10) assures that Z  is a system of pseudodifferential operators of order
0 in x and that A  is a generator of one parameter semigroup and satisfies (6.1) if À is
sufficiently large. Therefore R1 at (6.7) is  an operator of order 0. And A 1 1 2 --A l

o/2

and A 1 /2* - 4 1 2  are also operators of order 0. If these apply the vectors consisting of
all same elements u, it holds that

Ikbeibaull:/ag 5Re(Peoe1b42/ 1/2u, eib4Aliau)+C(0 2 bzu, u),

where el b4A 1/2 means e-
2B A 1 /2 with some other system ei  of operators. Since

eib44 2 u =eib4(Log ao)" u

in the above notation, the non negativity of Re(eov, v) implies that

Ilt,beib4u11./.09

5Re(Oseoeib4(Logao) 1 1 2 u, eib 4(Loga0) 1 /  2 u ) 1  / 2

-1-Re(0 3eoe164(A 1 / 2 . A ' 2 )  u,e1b4(41/ 2 ___ A ov 2) u )1/ 2

+ C (0 2b211, u)112.
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Therefore it holds according to the assumption (2.8) that

ilike1b4ulieLog

_.< 2(1+ (Loga0) 1 /2 u) 1 /2

+8(n+ 1)Re(0 3b2CO(11 1 2 - 161P1 2 )21, (A1 1 2  — A 1
0

1 2 )20 1 /  2

+C(11a0Zill+

Since (Al/ 2
—  A l 2 ) satisfies (6.11) with B=Ret/i 3b2co and 1=1, it holds that

Re(0 3b2co(A 1 / 2 — , 416/ 2 )u, (A 1 /  2
 — A r ) 11)-- Caa OUP+

We again use the proof of Lemma 2.1 conversely to get that

Illke1b4u11,Log

Therefore we get the conclusion because

s=1—(1+262) - 1 (1-1-E2)>0. q.e.d.

R E S E A R C H  IN S T IT U T E  FO R M A T H E M A T IC A L  SCIEN CES

K Y O T O  U N IV E R SIT Y , K YO TO  606, JA P A N
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