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§ 0. Introduction.

The results by V. Ya Ivrii and V. M. Petkov [4] have a proposition come to mind.
They conjecture that effectively hyperbolic operators must be strongly hyperbolic.
The converse of this conjecture is one of their results. In other words a Cauchy problem
for a partial differential operator 2 will be C+-well posed independent of the lower
order terms if the fundamental (Hamilton) matrix of the principal part P, has two
non-zero real eigenvalues at the singular points of P»=0. (Also refer to L. Hérmander
[1].) Some authors have studied related problems after P. A. Oleinik [8]. Her result
proves the conjecture in the case that »2=2 and that some restrictive relations are assumed
between an initial surface and the principal part, for example, it is required that the
projection of the singular points of characteristics onto the base space should be included
in an initial surface. On the other hand V. Ya Ivrii [3] show that the conjecture is true
if the characteristics have been union of two simple characteristics. (‘“Effectively
hyperbolic” means that they intersect non-involutively.) In two dimmensional cases
the result of O. A. Oleinik implies the complete proof to the conjecture and T. Nishitani
[7] has also treated more general types with analytic coefficients. However, it is still
open in general.

We shall here prove the conjecture to a standard type of second order equations.
It is an equation added a perturbed term of a second order operator with a nbn-negative
principal symbol to one treated by V. Ya Ivrii. Precisely, we consider it to an operator
P with a principal symbol P: of the form (0.1).

(0.1) Py=—(¢0—A1)(Eo—A0)+5s,

where A;=A;(xo, x, £) (j=0, 1) are real pseudodifferential operators in x of homo-
geneous order 1 with a parameter xo and da==4s(x0, x, £) is a non-negative one of homo-
geneous order 2. It means that 2; is hyperbolic with respect to the £o-direction.

Remark. We consider Cauchy problems on domains of R*+! and denote the
variables by (xo, x), where xo is one variable of R and x=(x1, -+, x») are other »-variables
of R". (£o, ) are their dual variables. Xo=(xo, {0). X=(x, §£).
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Let us put main assumptions (0.2-3) and an additional assumption (0.4).
(0.2) {€o—Ao, E0—A1} >0

on the double characteristic points of A, that is, if §o—Ao=E&o—A1=0 and 42=0 at
(Xo, X), where {p, ¢} stands for the Poisson bracket

237=0((0/0§1) p(3/0x5) ¢ —(3/0x5) p(3]3€))g).
(0.3) {Eo— Ao, b2} =cbo,

where ¢ is a pseudodifferential operator in x of homogeneous order 0.
(0.4) 42 is uniformly positive out side a bounded set of x.

Remark. All pseudodifferential operators are sufficiently smooth in their variables
uniformly in x variables and on bounded sets of xo variable in consideration of their
order.

Remark. The assumptions (0.1-3) mean that 2 is effectively hyperbolic.

Let P be a second order operator with the principal symbol 2, a differential opera-
tor in xo and a classical pseudodifferential operator in other variables x. Our main
result is as follows.

Theorem 1. If an operator P satisfies the assumptions (0.1-4), then there exists
a constant [ such that for any function f of HS vanishing at x0<<0, a function u of HS-*
vanishing at x0<<0 salisfies

(0.5) Pu=f
al x0<l and
(0.6) lleell s—1 S Csll f I

And also such a function u vanishes at x0<1 tf f vanishes at x0<<1.

Remark. The constant / depends on the first order term of 2. The regularity
of data and solutions, that is, the bounds to s of H® and HS~/ depend on the regularity
of coefficients of 2. Especially if they are infinitely differentiable, the theorem holds
for any real s, that is, there exist smooth solutions to smooth data.

We take V. Ya Ivrii’s method to prove the theorem. The operator £ intertwines to
a fractional power of another operator and is reduced to an operator to which the energy
method is applicable.

A Simple Example. Let us consider it on R3. The variables and dual variables
are denoted by (¢, x,7) and (r, £, ), respectively. Let us give a principal symbol such that

pr=ri—(t+HT—2"1xty2

It is clearly hyperbolic with respect to the direction (r, 0, 0). It is shown that the cano-
nical type is

p2=2“102—-82w2—lz
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by the canonical transform such that o=2r-+xn, s=¢+€[n, {=r+xn, 5=¢/2—&[(27),
w=n and w=y+xf[n. The standard type treated in this paper is, however, that

pr=rt—A5—bs,

Av=271/2(t 4y —2-V2)|
and

bo=27 g4 2V,
Then it holds that

{r—Ao, 740} =2(30) Ao=21"2| 7|
and
{r—Ao, b2} =0.

Here we consider it on a neighborhood of {$/:=0}, namely, at 0. So they should be
modified on a conic neighborhood of {y=0}.

Remarks on Notations. 1) Throughout this paper, symbols of pseudodifferen-
tial operators are the Weyl symbols because it holds the correspondence between the
facts that an operator is symmetric on the natural duality on R” and that the symbol is
real. An operator ¢(x, D) with the symbol ¢(x, £) is defined by

0.7) 9, D)p=(2m)~* [ g(w+9)]2, Op(y)ducdt.

(For example, refer to C. Iwasaki and N. Iwasaki [5].)

2) When we call ¢ a pseudodifferential operator in « with no note, ¢ is classical one
and may depend on xo-variable as a parameter. In other words ¢ is a classical pseudo-
differential operator valued function in xo-variable.

3) Sometimes we don’t distinguish “operator’” and ‘“symbol” in terms. For
example, an operator A4 is equal to ¢(x, §). It means that 4 is equal to a pseudodiffer-
ential operator with the symbol ¢(x, §).

§ 1. Transformation by an operator power of operator.

We consider another type of problem, which is equivalent to one stated at the
introduction and convenient to proofs. It is global also in xo-variable and has a para-
meter A and a weight function . It includes the equation to exp(—Axo)» replacing
solutions # after changing the scale as a bounded interval in xo-variable comes to the
whole space R.

Let us define a function 4 as (1.1), where v is a real parameter.

@1 p=exp[—(lvxo[24-1)1/2].

The operator 2 is written as following forms.
1.2) P=aiao+2b2+ drao+ardo+2b14-bo.
(1'3) df:’.(fo_l/'/li)_’_)‘, (]:0) ]-))
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where A1=/1(xo, x, £) is a real pseudodifferential operator of order 1 in x, Ao is ident-
ically equal to zero and A is constant.

(1.4) 52>0,

where 42 is a pseudodifferential operator of order 2 in x and 62>e{D>2>0 if |x|>M >0
for a sufficiently large A7. 4: is a pseudodifferential operator of order 1 in x, and & and
bo are ones of order 0.

Remark. {D>=(€|241)1/2,

The assumptions (0.2-3) are replaced by (1.5-6).

(1.5) {p=1€0— Ao, Y160—A1} 2e{D>>0,
if (Ao—A1)2+462<<8D)? at (X, X) for a positive constant 6.
(1.6) {@o, b2} =cobe,

where ¢ is a pseudodifferential operator of order 0 in «.

Remarks. 1) Any symbol of 2 is sufficiently smooth. g (=4;, &;, ¢; or d)
and ~1(9/0x0)*(8/0X)?g are uniformly bounded on R2"*1 in consideration of their
orders.

2) If (1.5) satisfies for sufficiently large |£], it holds for any § after some modifica-
tions of 4; at the bounded set of €.

3) There is nothing against assuming for /o to be identically equal to zero because
the Yu. V. Egorov’s result [2] assures it.

We shall prove the following theorem instead of Theorem 1.

Theorem 2. There exist constants [ and v such that for any datum f of HS a
solution w of HS™' uniquely exists and satisfies that Pu=f on the whole space if A
is sufficiently large, which may depends on s. Here P is defined by (1.1-6) and HS are
the Sobolev’s spaces on R"1.  Moreover it satisfies the estimate

1.7 leells—s < CsMI fls,
where Cs(\) grows in a polinomial order at most as X tends to infinity.

(1.8) is one of the usual definitions to the fractional powers of operators if it is well
defined.

(1.8) A”‘“=F(a)‘1_[:ml“‘1exp(—/lz‘)dt/l".

We use this definition to put a bounded operator into a. The I'-function, however,
has no essential effect to reduce the operator 2. Therefore we use an operator excluded
the I'-function from (1.8).

Remark. We know no exact definition of operator powers when an operator put
into a of (1.8) and A are not commutative to each other. It suffices to define an operator
like one because we need only a part of the properties.
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Let us consider two one-parameter groups on HS.

1.9 U(t)=exp(—ao?)
and
(1.10) W (2)=exp(4t),

where a0 is defined by (1.3) and /4 is a bounded operator on HS such that 4 has norms of
HS with respect to which the operator norms of 4 on H® are uniformly bounded for all s.
Then it is clear that they are well defined and have the estimates (1.11-12) on HS because
@o 20 is formally skew-symmetric and % is uniformly bounded.

(1.11) U @)ls, <exp[(As—A)¢] for £>0.
(1.12) 1 (D52 < Csexp(NVol ).

Remark. 1) If we choose the suitable norms of HS, we can put Cs=1 in (1.12).
2) |l9lls,2 is a norm of Hg defined as

(1.13) llols, =1 £5/2]f2
by means of Z=atao+<{D)2.

We define an operator /' by (1.14).
(1.14) F:agj:”zk—l U)W (log d)d.
It is well defined as an operator from HS to HS—* if
(1.15) £>No and A>As.

We want to find an operator 7~ such that #P#~=/P~ with another #~ and the energy
method is applicable to the equation with respect to 2~. (We shall call such 2~ a basic
type.) So we try the commutation of / and 2. Then we have a lemma.

Lemma 1.1. Zef us denote the operator (1.2) by P=a1a0-+5b. Then we have,
(1.16) j:”zk-lagz/(z) W (log )d¢[arao+8)

=[ala0+b—adao(al)lz]ﬂ“ﬁ—lagU(z) W (log £)dt
+[ad/(@1a0+6)+kad ao(ad k@rao+-8))ao-1]
xﬁrm(log HE-1a U (1) W (log 1)dt
+[I 2@ v @ wogha,
where Z(2) in the last term is described as (1.17).
(1.17) Z()=x" .2,
Zi=—adao()t.
Zy=—adao(a1)(adab U (9)) (%) a5* U (—2),
Zy=(adag)(8)ay”,
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Zs=(log?) [(adag U (1))(adk(ara0+8)) 23" U (—2)
—kadao(adh(a1a0+8)) a3,
Zs= —f(ada’) (adac(araot-8)) az*,
Zs=3%}-,Cri(ad @) (ar) a5,
Zi—a* U(t)j::gtW(o)(ad/z)z(alao—l—é) W(—a)
X (logt—o)doay U(—1)
and

Zo—d" f \U(0)(adao)¥a1a0t-0) U(—o)(t—0)dady*,

Remark on Notations. We denote the commutator of operators 4 and Z by
ad A(B)=AB—BA.

Remark. This lemma will be proved mainly by the formula (1.18) of a one-para-
meter group V(¢)=exp(—A#). (Taylor expansion in 2.)

(1.18) V(=) BV () =2}-o(j) ¢/ (ad4)(B)
+(& !)—lj; V(—s)(ad AY+1(B) V (s)({—s)*ds.

From the right hand side of (1.16) we operate G (1.19) and the inverse of Z (1.20),
which is guaranteed by Lemma 1.3 if 4 is sufficiently large.

(1.19) G:J:mW(——logt) Utk de.
(1.20) H—2-2+1(24—1) !EiW(log[(l-I—a)/(l —))(1—0?)* 1 do.
Then the main parts are discribed as (1.21).

Lemma 1.2. Zet F, G and H be defined by (1.14), (1.19) and (1.20), respectively.
Then we have

(1.21) Flarao+-851GH
=agiao+b—adao(ai)/
+adh(@aotdas| | (logh) U@)ar
+kad ao(adﬁ(alao+b))J:m(log HU@)dt
+aaot+-dao
+R  (Remainder terms).

The operators F, G and H have to be invertible on suitable Sobolev’s spaces in order
that the right hand side of (1.21) will be a reduction of the operator 2 to a basic type.
In fact we have a following lemma.
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Lemma 1.3. & (1.20), which is a bounded operator on H®, is invertible on HS
Sor any s if k is suficiently large. This fact implies the invertibility of F (1.14) and
G (1.19) because they have relations (1.22-23) between them.

(1.22) FG=H+H,
and
(1.23) GF=H+Ho,

where the norms of H-* Hj and H;H\(j=1,2) on H® become small as X tends to infinity.

‘We next choose the bounded operator % to adjust the first order term of the operator
P, which put it hard to apply the energy method. In the same time it also needs to re-
gulate the logarithmic terms which appear at the second and third terms of (1.21) on
account of the commutation by the operator powers of operators. We have Lemma 1.4
to the first order term and Lemma 1.5 to the logarithmic terms.

Lemma 14. There exist a real pseudodifferential operator ho' of order 0 in x
and a real constant 0 suck that, if ho is defined by (1.24), ho satisfies (1.25), where d:
is a pseudodifferential operator of order 1 in x satisfying (1.26), co, c1 and do are of
order 0 and ca is of order —1, respectively.

(1.24) ho=ho'+19.

(1.25) 261 —ad ao(@r) o
=coao+arc1+P2cobo+t+ip2d1+do.

(1.26) d1=d¥>e{D)>0 on HO,

that is, di is symmetric and exact positive on HO,

Remark. 1) We can have ¢ be sufficiently large. 2) 40’ may be chosen such
that %o is bounded by 2/Vo on the whole space if y241/adao(z1) is bounded by a constant
No on the characteristic set £ of 2. We may also put that 0=e/N]' if adae(e:) <
—Nw(D) on ¥ with a positive constant NV;.

Lemma 1.5. Zere exists a pseudodifferential operator hy of order 0 in x, whick
is a linear combination of Ao—AN, be and 0be, such that

1.27) {p2, 21} =Phe(Eo—pAr)+hra(Eo—pAo)+ih2ha,

where hi(j=2, 3 and 4) are psendodifferential operators of order | j|4] in x satisfying with
positive constants o, €1 and €2 that

(1.28) hize,(14v2Q) =6, v| 21| (7=2.3)
and

(1.29) | £4|2<2(145e2) " r2hisbo
when

Q=[(Ao—A1)24-5:)KE>72.



510 Nobuhisa Twasak:

Remark. Only arguments with respect to Lemma 1.5 require the restriction to
v of .

We define an operator % by (1.30-31).
(1.30) ho™=ho v
(1.31) h=ho E~{D>24-40,

where %o’ and 6 are /4o’ and 6 at Lemma 1.4, 41 is 41 at Lemma 1.5 and £ is an operator
defined by £=ajac+<{D>.

Corollary. 1) /4o~+170 also satisfies that
(1.32) Y261 —adao(ai)[ 4o~ +70]
=coaotaicit+ypce+y2di+do,

where di s a pseudodifferential operator of order 1 in x satisfying (1.26), co, ¢1 and do
are of order 0 and c2 is one of order 1 being a linear combination of bs and 0b:.
2)  There exist pseudodifferential operators hi~(j=2, 3 and 4) of order [ j|4) such that

(1.33) {p2, ho™} =pha™(Eo—h1)+-hs™(fo—pAo)+p2haT,
hi~Zew(14+v2Q) =e| ho™| (j=2 and 3)
and
| 4™ 12K 2(144e2) L 2™ hs™ b,
with some positive constants eo, €1 and €2 If v is suffictently large.

We have the following properties on the real part of 2. This yields the assumption
to 4 at (1.10).

Lemma 1.6. 1) £, which exists for sufficiently large X's independent of s, is
a bounded operator from HS to HSY? which satisfies the estimates

(1.34) £ ulls+2 A2 E-1ulls < Collulls+Csllulls—1,
where Co is independent of s, and
(1.35) | E-172qoulls+-| -/ D)ulls+N £ 2ul|s < Collulls+ Cslleells—1.

2) £ (1L.31) is a bounded operator on H® and satisfies that
(1.36) [Re(hu. )52 < Collells, ;4 Cslledll3 -1,
with respect to an inner product

(u, v)s 1, =(E5u, v),

where Co is independent of s and 0. hr=h—i0=ho" E~{D>? also salisfies that
(1.37) 12r2el|s,2< Collzells, a4 Csllulls-1,a.

Remark. It is important for Co to be independent of s.



The Cauchy problem for effectively hyperbolic equations 511

According to the above lemmas we get the conclusion of this section.

Theorem 3. 7f the bounded operator h is defined by (1.31) and if the parameter v
is sufficiently large, then the right hand side of (1.21) comes to a basic type which is stated
at the top of next section after some arrangement of each lerm.

Remark. FEach proposition stated without proof in this section will be verified at
Section 3, 4 and 5.

§2. A basic type and the energy method.

Let us define the basic type stated in Theorem 3 at the previous section and apply
the energy method to show the existence and uniqueness of solutions for it.

1) We call an operator /» a basic type if 25 is written as (2.1), where each term is
defined by 2)-12).

2.1) Pry=(a1+pc1log ao+di)(ao+pcolog av+do)
+p2bat-agP2b1+ag (log ao) Y2bseotda
+dspbo-t+ay dap?bo+(log ao) h2csecerda
=4140+B.

2) A weight function ¢ is also defined by
(2.2) $p=exp[—(lvwo[2+1)1/2].
3) eois an operator of order 0 defined by
(2.3) co=E-KD)r=[agao+<{D)* D)2

e is a system of product sums of operators defined as Z~! times ¢, @og1 or aige, where
¢; arc suitable pseudodifferential operators of order j in x and £=a*a¢+<{D)2. More-
over the norms of elements of e; on HO are uniformly bounded in the parameter v.

4) a; (7=0, 1) are operators such that
2.4 ai=i§o—Aj)+A,

where A is a positive constant, 4, is a real pseudodifferential operator of order 1 in x and
Ao is identically equal to zero.

5) &2 is a pseudodifferential operator of order 2 in x such that
(2.5) b2>e{D> on H°
for a positive constant ¢, that is,
(b2, 1) >e({DDu, u)
for any » belonging to S.

6) co and ¢1 are operators such that, for =0 and 1,
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ci=cjoeotciradaj(er), (adao(eo)=0)

where ¢jx are pseudodifferential operators of order 0 in x, and that

(2.6) Re(cju, u)>ev(eon, u)

for a positive ¢, for sufficiently large v and for any #» belonging to S.

7) b3 is a pseudodifferential operator of order 1 in x such that ds+&} is a pseudo-
differential operator of order 0 in x, that is, the principal part is pure imaginary.
Therefore it satisfies

2.7 |Re(su, )| < C(u, ).

8) «¢s and 44 are a pseudodifferential operator of order 0 in x and a system of
order 1, respectively, such that &4 is a linear combination of d2 and 42 with coefficients
of pseudodifferential operators of order 0 and order —1, and that, for a positive e,

(2.8) |(f3everbare, e1642)]
< 2(142¢2) " [Re(3coban, u)+ C(v)(z, ©)]
and
[(Peocsu, can)| < (1+ce2)Re(Pern, u).
9) 41 is an operator of order 1.
Remark on Notations. We call Z an operator of order # if
Y DY ETLET DY F~me,
for sufficiently many a, B and y, are uniformly bounded on H° as A tends to infinity.
10) &o=C(boj) is a system of operators of order 1 such that
(2.9) |(Ppbosre, Ybojrn)| < C(h2bou, u).
11) The commutator of @o and 4. satisfies
(2.10) ad ao(bz) =ipcabat-ds,

where 45 is a pseudodifferential operator of order 1 in x and ¢2 is a pseudodifferential
operator of order 0 in x.

Remark on Notations. Let us say that 4 an operator of order 0 satisfies the
relation (2.11) if there exist d’ and d’’ other operators of order 0, and 4" and 4"’ operators
of order 1 such that

(2.11) Y2bod =d"p2ba+?b and dpba=yibod" 26"

12) dj(j=0, -, 4) are operators of order 0 or their systems satisfying the relation
(2.11).

Remark. 1) The product of such operators is also an operator of order 0 and
satisfies the relation (2.11) in which 4 is replaced with them.
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2) Agy' and U(?) are operators of order 0 and satisfy the relation (2.11).

Remark on Notations. logA is defined by

(2.12) log A=yo— 1" (log Hexp(—As)dz4,

Yo =_[:°° (log ) exp(—2)dZ.

The operator A is clearly one of order 2, so that it is an operator from HS to
Hs-2, We consider an equation (2.13) for 25 on HS.

(2.13) Pou=f.

At first we deal with it on Ho. We take the inner product of Pz and Ao« to
estimate it from the below according to the energy method. Then we shall get Theorem
4.

Theorem 4. 7If the parameter v is sufficiently large, then (2.14-15), therefore
(2.16-17), hold for any element u of S.

(2.14) Re(Aow, )= A—C) [lul|24-elullfy,,.
(2.15) Re((A14o+B)u, Aou) =2 A—C)||Aoul2+-ell o ull;1op+ ellell3.100
+QA—C—CllogAl)llal;.
(2.16) 40222 A—C) 2|24 A—C)elll|Z.4-
(2.17) (41404 B)ul 22 A—C) [A—=C)| Ao ul|2 el Ao ullZLo
+QA—C—CllogA)) llals+ elleellzeLo)-

Remark on Notations. ||«lezoq, ||#lls, ||#llcLos and ||wllsczos mean (2.18-21), res-
pectively. These notations are guaranteed by Lemma 2.1.

(2.18) /17209 =Re(heo(Log ao)u, 1)+8(x, ),

(2.19) llocll = (262 2, ) =(Botpue, pud),

(2.20) lll1Zz o =Re(per(Log ao)u, #)+-8(u, u)

and

(2.21) llzl3c0g=Re(3[b2¢oLog ao-+8(eoLog ao+-22)]u, w),

where Logao=Re(logao) and & is a sufficiently large fixed constant.

Lemma 2.1, [lullorog, [#lls, llellcros and llellscros &y (2.18-21) define norms on S,
respectively, whickh are stronger than the norm ||lu| of HC.

Lemma 2.2. For sufficiently many integer I, E'PyE~' is also a basic type if
Py is a basic type.

Since Lemma 2.2 is easily verified, the estimate for 2 on HS is induced from
Theorem 4 with the help of Lemma 1.6 for £.
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Corollary. Z7iere exist positive constants v independent of s and Cs such that
Sfor any element u of S,

(2.22) (414 0+ B)ull§,,= A—Cs) 41| .
where ||vlls,2 is a norm of H® defined by means of E as
25, =1 £5"2 ]2,
Remark. If we rewrite (2.22) to one for a fixed norm ||«||s of HS, we have
(2.23) (A 14 0+ B) s> Ms(A24-1)~1S' A —Cs) 4[5,
with another positive constant M.

The operator #» was one reduced from 2 (1.2) by £, G and A (1.14, 19 and 20)
such that

(2.24) FPGH1=Ps.
By Lemma 1.3, %, G and A were invertible and had the relation
(2.25) FG=H+H.

Moreover we can prove the estimates (2.26-28) for sufficiently large A which may
depend on s.

(2.26) || Fotlls, 2 < Ms||wtl|s -+, 2.
(2.27) |Gulls, s < Mis|lzls+#,2.
(2.28) A1 25,2 Mslludlls, 2.

Commbining (2.22) and these, we get (2.29) and also (2.30) since the formal dual
operator P* of P is the same type as one of 2, namely, P* satisfies (1.1-6) if the variable
Xo is changed to — Xo.

Theorem 5. Zet P be an operator defined by (1.1-6). Then there exist positive
constants v, k, Cs and Ms such that for any u of S and for X>Cs, the estimates (2.29-30)
hold.

(2.29) || Pat||s+20,2=> Ms(A—Cs)2||ul]s, .
(2.30) ([P *ul|s+28,2=> M s(A—Cs)2||ue]]s,2.

Theorem 5 implies Theorem 2 because the following well known lemma is appli-
cable to it.

Lemma 2.3. LZet 7 be an operator from HS to HS™™ such that for any u of S,
for a fixed I and for sufficiently many s,

(2.31) llells < Csl| 72| 541
and

(2.32) lleells < Cs| T *aell 541
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Then there exists a unigue solution wu of (2.33) belonging to H*=' t0 any f of H° for
sufficiently many o.

(2.33) Tu=f.

Proof of Theorem 4. At first we prove (2.14). Let us consider the inner product
on H° of Aju and » (=0, 1), and take the real part.

(2.34) Re(A4ju, u)=Re(aju, u)+Re(fcilogaowu, u)-+Re(dju, u).
Since a@j+af=2X and ||dj| <C by the assumptions, (2.34) is bounded below as
(2.35) Re(Aju, u)=A—C)||ull24Re(peilog ao s, u).

On the other hand we have Lemma 2.4 for ycjlogae. This implies (2.36) with another
constant C and a positive constant e.

(2.36) Re(Aju, u)=A—C)|ul|2+e(peclog aow, ).
If we put =0, then we get (2.14).
Lemma 2.4. 1) Let us denote the real part of logao &y LOgdoZ(%> [log a0+
(logao)*). Then we have
(2.37) Logao=logA on H° zf A>0.

2) Imlogao=argao the imaginary part of logao is uniformly bounded on HO
as A tends to infinity. More exact it is an operator of order 0.
3) If A is sufficiently large, there exist positive € and 8 such that

(2.38) Re(cilogaon, u) =eRe(Peo Logaou, u)—8(u, u),
where cj is the term cj in A;.

At (2.35) we put j=1 and replace » with 4ox. Then we obtain
(2.39) Re(A1dou, Aou)>A—C)|Aoull2+Aoull2,,,

We next estimate the inner product of B« and A4o.

Noting that @j=—ao+2) and ($22)* =426, we calculate (2.40). According to
the assumption (2.10) we have
(2.40) ayp2ba-tip2baao=—ad ao(f2b2)+2X)25:

=¢2cbatip2c'+ 2N,

where ¢’ is a pseudodifferential operator of order 1 in x. Since 2Re(})2bau, aou)=
Re([agp2b2+1p2b2ao)n, ), (2.40) implies (2.41) according to Lemma 2.5.

(2.41) Re(p2bon, aow)
2N p2bau, 1) —C(p2bau, u) —Cp Du, u)
>A—C") (P2bau, u) =(A—C") |12,

because of the assumption (2.5) for 4.
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Lemma 2.5. Jf g and ¢~ are operators of order O suck that
(2.42) gba—bog™ or qi2ba—2beg™ Is an operator of order 1,
then it holds that
(2.43) |Re(p2gban, u)| < C(f2b2u, u).

Especially (2.42) holds if ¢ is a pseudodifferential operator of order 0 in x or if g is equal
Zo eo.

We obtain (2.44) for the inner product of a3'y261# and aox since agay'=—1
42250
(2.44) Re(ay Y2611, aou) =Re(atay y2b1u, u)

=—Re@b1u, u)+ 2Re(Aay Y261, ).

Since & and Aag* are operators of order 1 and of order 0, respectively, 241 and Aaj 261
are operators of order 1 so that it holds that

(2.45) |Re(ag 212, aou)|
SCEHDdu, u) < C' (2, u)=C"|lull;,

where we used the assumption (2.5).

In the same way we are able to estimate Re(ay 'dap?bow,dox). In fact we have
(2.46) ds= Ata;lds

=—ds+2Xay da-+(log ao)*cipay +dEay’.

ds, do, ag", atcipay and (logao)*as~1 are operators of order 0 and satisfy the condition
(2.42) according to the relation (2.11) and Remarks after (2.11), so that &s is an

operator of order 0 satisfying the condition (2.42). Therefore Lemma 2.5 assures the
inequality

(2.47) | Re(ag dab?bou, Aou)| < C@p2ban, u)=Cllul;.

The terms related to do, d2 and ds are easily bounded because they are operators
of order 0 and satisfy the relation (2.11).

(2.48) | Re(p2bau, dow)l <Cllullz,

according to Lemma 2.5.

(2.49) (@ 2812, dow)| SCWPX D)y u, u) < C'llulf3.
(2.50) (da2e, Ao2)| < Clul| || Aoul.
(2.51) [(dspbore, Aowu)

< Clipborl || Ao 2l S C'llaellel| Ao 2l
because (Ybow, Ypbow) < C(P2bou, u).
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The remainded terms include logao. Lemma 2.5 implies (2.52) since. colmlogao
satisfies (2.42) by the definition of ¢o and by 2) Lemma 2.4.

(2.52) Re(p2bau, heo(log ao)u)
>Re(3bsco(Log ao)u, u)—C|lul;
>Re(y*[42¢0 Log ao+8(eo Log ao+82)] #, ) —C llull;— Cllaoul| llal,

because [leo(Log ao)ul|<Cllao#|l. Lemma 2.1 means that the first term of the right hand
side is a positive definite form. Therefore we have

(2.53) Re(p2b2u, Peo(log @o)w) = [lllfe . — Clleells — Cllaoul| ||ull.

We also part Re(ag’(logao)p2bseon, aon) to Re(ay'(Logao)2bseon, aon) and
Re(ay'i(arg ao)f2bseon, aon). Since ajay'i(argao) and eo are operators of order 0 and
b3 is a pseudodifferential operator of order 1 in x, we obtain (2.54) for the latter.

(2.54) | Re(ag s (arg ao) Y2bseon, u)| < C (2 Ddu, 1) < Cllull}.

On the other hand, 43+8¥ is a pseudodifferential operator of order 0 in x and a5 Log ao
is an operator of order 0 with the bound Cs(A—Cs)~*(|logA|+1) on HS by the as-
sumptions. These facts assure the estimate (2.55) to the former because ~2(ads253eo)
(Logao) and y—2(adi2bs)(eq) are operators of order 1 and of order 0, respectively.

(2.55) | Re(ag*(Log ao)2bseon, aow)|
< |Re(Log ao) P2bsecon, u)|+| Re(2A ay (Log ao)2bseon, u)!
<Cli(Log ao)ul| lluil+C(|log A |+ DI Ddu, )|
< Cllaoul [l +C(log A |+ 1)llal;.
By the inequalities (2.54-55), Re(ay (log2o)yi2b3eon, aor) is bounded as
(2.56) | Re(ay " (log ao) p2bseou, aou)| < Clllaoul| |l 4-(|log A 14 1) llel3].

Noting again that @3 'logao and (logao)*a;'logas are operators of order 0, we
obtain that

(2.57) (@3 2012, peo(log ao))|
+1(ay (log @o)2bseon, Peo(log ao)u)|
SCWHDdu,u) < Cllulls,

because 41 and daeo are operators of order 1 by the assumption and because a3~ %colog ao
and (log@o)* af~Yfco(log @) are shown to be also operators of order 0.

We use Lemma 2.6 to estimate Re(Bax, Aox), where
Bi=(log ao)2cseoe1bs.

Lemma 2.6 will be proved as well as Lemma 2.1 and 2.5 will be done.
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Lemma 2.6. There exists a positive € suckh that holds for suffciently large v
that

(2.58) |Re(Bawn, v)|
< Q=) [lrllierog+lI0llZL0g] 4+ C) ladllz +llaorell 2+ 1ol 2).
Therefore it holds that
(2.59) Re(A14ou, Aowe)+Re(p2b2u, peo(log ae)u)+ Re(Bawu, Ao)
2A—=O Ao w2+ e[l oullZpog+ lell5ero]
— Cllull3—Cllaowl|2.
Summing up (2.41, 45, 47-51, 56, 57 and 59), we conclude the following lemma.

Lemma 2.7. There exist positive constants v, C and ¢ such that for any u
belonging to S and for sufficiently large ) it holds that

(2.60) Re([A14 o+ Bu, Ao)
>A—O)lldoull>+ ell doll}zop +elledll3erog
+A—C(|log A |4+ 1)) llzll;—Cllzox]|2.

Moreover ||4ox|| and |leox|| are equivalent to each other, that is, if A is sufficiently
large,

(2.61) lzoul| < CllA oel| < C"l|@ore]l.

In fact we obtain (2.62) by the natural way and (2.63) by the positivity of Re(iico(log @)z,
#)+8(w, #), namely, (2.38) Lemma 2.4.

(2.62) 4 orell <llaozel| 4 Cli(log @o)uel + C'llzel| < Cllaonl].
(2.63) (4 ozl
2 |larl2+-(A+pcolog ao)el|2—Cllu|[?
= |larad|2+-A2leel|24-ipeo(log @o)ul |2+ 2el| |7,y — C llacl|2
2laow||2—Cllul2=C"llaonll?,
where ar=(ao—ag)[2 so that |laou||2=|laral|2+ 2|2

We apply the equivalence (2.61) to Lemma 2.7 to obtain the complete proof of
(2.15) Theorem 4. (2.16-17) are easily deduced from (2.14-15). q.e.d.

§ 3. Various properties related to the operator ao.

It is a well known result that the closurc on HS of the operator —ao defined on
S is a generator of a one-parameter group /(f) on HS for any real number A.
Especially if s=0 and A=0, then the operator a;=aol:-0 is a skew-selfadjoint operator
on H° with respect to the natural inner product because a; is skew-symmetric on S by
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the definition (1.3). Moreover it permits also the pertubation of any bounded operator
on HS. We denote the one parameter group with the generator —(ao+¢) by U(Y, ¢),
where ¢ is a bounded operator on HS for sufficiently many s. If Cs is a bound of ¢
on HS, then U(z ¢) is estimated as

(3.1) U@, o)lls<exp((Cs—N)?]

for #>0. The relation with another U(z, ') is given by
(3.2) U, )— U@, &) =j; U(t—s, (' —0) Us, &')ds
=J; U(t—s, "Y' —c) U(s, e)ds.

Let us consider y*<{DY* E7ao E77{D)~#f~, which is written as for all integers a, B
and vy,
(3.3) Y DY ETao BT D) P =ao+da,

where d. is an operator of order 0. (Refer to Remark after 9) Section 2 for notations.)
In fact we know the following lemma. which is able to apply inductively to (3.3).

Lemma 3.1. 1) adZ(9)=coact-c1 for any psendodifferential operator q of order
m in x, where cj are pseudodifferential operators of order m~+j (=0, 1).

2) E-la}, E-1alD) and E-1(D)? are operators of order 0. There exist f and
fo' operators of order —1 such that

¢a< D>ﬁ Er( E- 1) E—r< D>“’1//“‘
=E1(1+f) =1+, E

3) Pseudodifferential operators of order m in x are operators of order m. If it is
q, then there exists vapy an operator of order m—1 such that

YD ETGE DY Py =g+ apy.

4) If v is an operator of order I, then Y DY E v E-1{D>~P)== is also an operator
of order 1.

Therefore the one-parameter group with the generator —*( DY E7ao E-7{ D)t
is given by U(#,ds). Meanwhile it is also equal to $*{DYFETU(2) E-7{D)~F)~=. Accor-
ding to (3.2) we obtain that

(3.4) YD ETUR)E-T{DYy P
=U(2, da)
— U+ U0 [, U(—)deUGs, di)ds
— U(f)+j; U(s, do)da U(—$)dsU(2).

Since U(z, d.) is uniformly bounded in 7>0 for sufficiently large A on HS, U(¢) is an
operator of order 0. We have a more pricise lemma.
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Lemma 3.2.. 1) If ¢ is an operator of order 0, then there exist constant Cepy
suck that

(3.5 lp=< DY ET U2, ¢) E-T{ DY~ < exp[Cap|2 | —A].

Especially UL, ¢) is an operator of order 0 for t 20 and for sufficiently large M.

2) Let G(2) be a continuous (in the strong sense) function in t>0, which is valued
on operators of order 0, and satisfy the bound such that for sufficient many integers a,
Bandy,

(3.6) llp=L DYPETG(2) ET DY~ P < ganr(®),
where for constants Capr of (3.5) and for sufficiently large A= Cagy,
(3.2) M=, gen(exp(Co—N11at
s uniformly bounded in \. Then we have that
F1=j:°°(;(t) U, &) dt and F2=j:°° U, o) G@dr

are operators of order 0 for sufficiently large X and they satisfy that
(3.8) K DY ET F{ET DY | < Mapy (=1, 2).

3) Let H and cj (j=0,1) be operators of order 0. If Gi() satisfies (3.10) for
a non-negative integer [, then

(3.9) Gra(t)—= j ; U(—s, co) HU(s, 1) Gi(s)ds

is also an operator of order 0 satisfying (3.10) in whick [ is replaced with /1.
(3.10) =L DY ETGi(2) E-1{DY~Py—|
S Napr|2|'exp(Caprl2]).

The same statement holds for

G;+1=j; Ul—s, co) Gis) HU (s, e1)ds
and for

Gisa={ G U(—s, co) HU(s, ex)ds.

Remark. If A is an operator of order m at 3), then Gr41(f) is an operator of
order 7 and satisfies a similar estimate.

Proof. The equality (3.3), to the both side of which cegr =4p*CDY ETc ET{DY~A)
is added, yields the equality (3.4) in which U(¢) and d. are replaced with U(¢, ¢) and
capr+de, respectively. This proves the first statement. The second statement is easily
shown because the assumptions imply the boundedness of $*< DY ET F; E7{D)~*f~=(j=
1, 2). If we put Uo(¢, c)=U(Z, c)la=0, then Gi+1(¢) of (3.9) is equal to

J‘; Uo(—s, co) HUo(s, c1) Gi(s)ds.
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Hence
YU DY EIGria(t) ET{ DY Ff=

=[ Uo(—s, ) Hatr Usls, )G ratn(s)dis
with other ¢;'(7=0, 1) operators of order 0 and with Hep and Glas(s) operators of order
0 such that

Hegr =4 (DY ETHE D)y Fify==

and

Glrapr(s) =Y DY ETGi(s) E-T{ DY =,
By (3.5) we get the estimate (3.10). g.e.d.

1

Lemma 3.2 implies for Az’ and aj'logao to be operators of order 0. More

pricisely we have the following lemma.

Lemma 3.3. 1) Aay' and a;'logao are operators of order O such that for suffi-
ciently large N, which may depend on o, B and vy, they satisfy that

(3.11) el DY ET Ay 1 ETL DY =2 < Ca
and
(3.12) = DY ET [0y log ao) E-7<DY~#||

<CA1(|logA|+1).

2) There exist operators da of order O for sufficiently many integers a, 8 and y
such that

(3.13) Y DYEET(log ao) ET7{D>~Ff—*=log a0+ da.
3) argao=Imlogas and (logao)* a," logao are operators of order 0.
Proof. 1t is trivial because ao has the symbol (7€0+2). q.e.d.

We next discuss about properties related to the relations (2.10~11) and the
condition (2.42).

We call an operator Z on HS a quasicommutor of an operator X of order / or
quasicommutative with & if there exist Q, (=1, 2) operators of order 0 and R;(j=
1, 2) operators of order /—1 such that

(3.14) adH(K)=Q1 K+ R
=KQ:2+Ro.

Lemma 34. 1) Let H an operator of order 0 be a gquasicommutor of K an
operator of order I. If K satisfies that

(3.15) Yo DY ET KET(DY =K +hutr,
where kapy Is an operator of order I—1, then Y*( DY ETHE{D)~* )~ is also a quasi-
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commutor of K.

2) Let H and H' operators of order 0 be quasicommutors of K. Then H—H'
and HH' are also quasicommutors of K.

3) Let H be a quasicommutor of K such that there exist the inverses H™1,
(H—Q1)! and (H+Q2)~! which are operators of order 0. Then the inverse H1 is
also a quasicommutor of K.

Lemma 3.5. Zet ¢ be a pseudodifferential operator of order m in x.

1) If » is a pseudodifferential operator of order I, then adr(g) and adao(g) are
pseudodifferential operators of order [+-m—1 in x and of order m, respectively.

2) Let Fbe one of E~' ay, E-YalD) and E-D)2. Then adF(g) is an operator
of order m—1.

3) Let us put

(3.16) da=y* (DY ET a0 ETCD) Py —a,,
which is an operator of order 0 by (3.3). Then add.(g) is zero.
4) If we put
(3.17) Fapy =Y CDYPETGETLDY Py —g,
which ts an operator of order m—1, then adao(res;) is an operator of order m—1.

For another pseudodifferential operator ¢’ of order [/ in x, advrap(¢’) is an operator
of order I4+m—2.

Proof. 1) Tt is trivial.

2) Let G be one of aj, aD> and <D>2. By 2) Lemma 3.1, there exist c;
and ¢;'(j=0, 1) pseudodifferential operators of order - in x such that

(3.18) adE£-Y(g)=FEtadE(@) E1=E Y aowco+c1) EL
and
(3.19) adG(g)=aoco’ +c1.

Therefore we have that

(3.20) (ad[£71G]))(g) =ad £ (g)G+ £~ 1adG(g)
= £ alDY)KD> el +[E- KDY KDy 2 [ £72G]
+E @l DY)KD) e’ |+ [£7KDYH[KD> 2]

Since E£-1ao (D>, E~1{D)~2* and £-1G are operators of order 0 by 3) Lemma 3.1 and
since [{D>~1¢o], [KDP2¢c1], [{D)>~1co’] and [{(D)>~2c1"] are pseudodifferential operators
of order 72—1 in x, (3.20) is an operator of order 7 —1.

3) It is trivial because 4. is a function in xo.

4) Let us consider the commutator of Y*C( DY E'aoE7{D>~?f~ and 7ap. It is
equal to
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(3.21) [ D>E Eradao(g) £ D>~*p~=—adao(g)].

Since adao(g) is a pseudodifferential operator of order »z, (3.21) is an operator of order
m—1 according to (3.17), ¢ of which is replaced with adao(g). On the other hand the
commutator is also equal to

(3.22) adao(?apr)+[da? apy —7aprdal.

The second term of (3.22) is an operator of order 7z —1 because it consists of the products
of operators of order #z—1 and of order 0. Since (3.21) is equal to (3.22), adao(#«sr)
is an operator of order »—1.

Let us prove the last part of the statement 4). If y=0, then it is trivial because
7apr 1s a pseudodifferential operator of order m—1. 1) of Lemma 3.1 means that
EgE-'=¢g+4F1 and E-1gE=g+F> where F; (j=1, 2) are compositions of pseudo-
differential operators of order 7 —1 and one of the operators at 2) of the present lemma.
Therefore adg’'(#;) (j=1, 2) are operators of order /4+m—2 according to 2) so that
adg' (Y DY ET F; E-7(D>~Pf~) are operators of order /4 —2 because ¢’ satisfies (3.17),
g of which is replaced with ¢’. These facts imply that adg’(ese=1) is equal to
adg’(7«pr) modulo operators of order /4m—2. If it is assumed that adg'(r«s) are
operators of order /+m—2 if |y[<yo, we are able to conclude the same proposition for
ly|<yo+1. Thus we finish the proof by induction for y. q.e.d.

Corollary. Let gm be a pseudodifferential operator of order m in x and {kj}o<ici
be finite number of H-type of operators, where kj is for convenience’ sake called a H-type
of operator if hjis a sum of E-1ay, E-1afao, E'akD) and E-XD)Y® multiplied to
the right hand side by a pseudodifferential operator of order 0 in x.

1) (1=, ad%;)(kogm)

is then discribed as the finile sum of product operators, which consist of finile number
of H-type of operators and a pseudodifferential operator of order m—I1in x at the right
end (o7 at the left end), that is,

D sinite(I ginite A7) gmt
where for [ > 2,
(1=, ad/s) (K) =ad (T i 3ad £5) (K)).

This statement includes the case that hogm=gm, namely, ho=1 because I=E-ay ao+
(D).

2) For any natural number a,

(adad) (k)= fshiat =3 222ak

with hy and ki H-type of operators. If ho contains no term consisting of E-1al and
E-1af ao, then hy, and %y also contain no such term.

3)  If ki for j =1 contains no term consisting of E~1ay and E-1a} ao, then
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ab (114- ,ad ) (fogm) @}

with non-negative integers B and vy is a linear combination of gpai(0< ;< max(B+y—
1,0)) with coefficients of product-sums of H-type of operators at the left hand side (or
at the right hand side), where g, is another pseudodifierential operator of order m.

Proof. 1) In case that Zo=7 and that 0<#» <1, the second and third terms at
(3.20) are already forms required. At the first terms it works effectively in order to
rewrite it that £-1G(DX1""={DH1""E-1G. In other cases, the equality (3.20) applies
several times to prove the statement of Corollary, namely, by induction with respect to /
and .

2) It is casily proved.

3) In case that /=1 and that y>1, we have that

abadhi(hogm) &)
=ab(adhiao)(hogm)dy  —abhiadao(hogm)aly .

Since /fi@o=4A7<{D>+/%~ with other H-type of operators according to the assumption
for 41, all terms are easily rewritten as desired by 1) and 2) of this corollary. The
situations in other cases are same. q.e.d.

Let 4 be an operator of order 2 such that ao is a quasicommutor of 4, that is,
(3.23) adao(b) =¢16+r1=bg2+7-.

with ¢; and #j (j=1, 2) operators of order 0 and of order 1, respectively. For example
42 defined by (2.5) and (2.10) is such an operator 4. If ¢ an operator of order 0 is also
a quasicommutor of 4, then we have that

(3.24) U(—t, c—gq1—c1)bU(2, c)—b

:J:, U(—s, c—q1—c1)(r1+d) U(s, o)ds

and
(3.25) U(—2.0)bU(t, c+gates)—b
= [, U(=s, et a) UGs, c+grteads,
where
(3.26) ade(B)=c16-+dy=beatdo

with ¢; and 4; (f=1, 2) operators of order 0 and of order 1, respectively.

The right hand sides of (3.24-25) are operators of order 1 according to 3) of Lemma
3.2 and satisfy the inequality (3.10) with /=1. The definition (2.12) of logao implies
the following lemma.

Lemma 3.6. 1) LZet G(¢) be the same one at 2) of Lemma 3.2 and be a quasi-
commutor of b such that

(3.27) —add(G() =Q1(D)o+ R1(2)=56Q2(2)+ R=(2).
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If Qi(2) and Ri())XDY~1 operators of order 0 (j=1, 2) satisfy the assumptions at 2) of
Lemma 3.2 in which G(2) is replaced with them and if ¢ an operator of order 0 and ao
are quasicommaultors of b, then

F=[1"60)U, ddt and Fo=|" U, 0G0

operators of order 0 are quasicommaulors of b.
2) Let G(2) be the same one as al the above 1). If b and c¢; (=1, 0) are pseudo-
differential operators of order 2 and of order 0 in x, respectively, then

Go(z)=j; U(s, c)G(s) Ul—s, e1)ds

is also a quasicommutor of b and satisfies the same conditions as for G(¢) at 1).
3) If ao is a quasicommutor of b an operator of order 2, then logao is also a guasi-
commulor of b.

4) baoteo)t—(aot+c—g1—c1)71b
=(@o+c—g1—e1) Hr1+d1)(@o+¢?

and
baotc+gatca) 1 —(ao+c)6
=(ao+c)"Wra+d2)(@o+c+ga+tc2)~L.
Proof. 1) By (3.27) and (3.24), we have that

(3.28) sP=["sG0O U, )dt
=ﬂ°°[0(z)—Q1(z)]b v, c)dt+j:°°kl(z) U@, ods
=["160~ U, c—g1— vy
+[.16O—0u1SO U, Ot
+j:°°kl(x) U, odt

where

S() :ﬂ, U(s, c—gi—e)(r-+d) U—s, Ods.

By the assumption for G(¢) and Q1(¢), 2) of Lemma 3.2 implies that the first term of the
right hand side is the product of an operator of order 0 and 4, and that the second term
is an operator of order 1 because .S(¢) satisfies (3.10) with /=1 so that {(D)~1[G()—
Q1(2)].S(2) satisfies (3.6-7) in which G(¢) is replaced with it. The third term is an
operator of order 1.

Since the same facts with respect to #14, £F> and Fsb are proved, it is concluded
that /1 and /32 are quasicommutors of é.

2) Since adcj(d) is a pseudodifferential operator of order 1 in x, it satisfies (3.26)
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with ¢1=¢2=0. The statement is proved as well as at the above proof of 1) and at the
proof of 3) Lemma 3.2.

3) We prove that #' =ﬁ:w(log ) U(Y)dtao is a quasicommutor of 4.
00
(3.29) ad 7 (&) :jo (log /) U(¢)dtadao(s)

—ﬂ’“’(log £)ads(U(#))dtav.

By the substitutions that Q1(f)=R:1(/)=¢=0 and G(Y)=log¢ at (3.28), the second term
is equal to

j " log N U, —g1)— U())dtbas

+j:°°(1og ) S(0) U dtac.
which is rewritten by (3.2) and (3.23) as

ﬂ“(log 2).S:(8) U dtaok
—j:”(log DS Y U(t)dllgi6-4-71]

+j:°°(1og S0 U dtao,
where
t
Sl(z):jo U(s, —g1)g1 U(—s)ds.
Since (d/d?) U(¢)=—acU(#), the sum of the first and third terms of the above is equal to

j:“(d/a't)[(log NS1()]U(P)ds

+[, @ aniognso1v@ar,

which is written as the form that g4+7, where ¢ and » are operators of order 0 and of
order 1, respectively, because the integrands are

181 U(H)+(og ) U(2, —g1)g1
and
SO U@ +log) U2, —g1)71.

Therefore (3.29) is the same form. Since the other form is proved by the same way, it
is concluded that #'is a quasicommutor of 4. Thus logao is a quasicommutor of 4.

4) Tt is trivial from the relations that

(aotc—g1—e1)b—b(ao+c)=r1+dr

and

(aot+0)b—b(av+c+getc2)=ras+do. q.e.d.
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§4. Proofs of Lemmas.

Proof of Lemma 1.1. Let us consider the commutator of efU(?) W(logz) and
(ald0—|—b).

(4.1) at U)W (log 2)(a1a0+8) —(ara0+-8)al U(2) W (log 2)
=a} U()(ad W (log H)(a120-+8)
+ay(ad U(#)(@1a0+8) W (log 2)
+(adat)(a1a04-8) U@ W (log d).

The substitutions of W (—log#) and U(—2) for V(¢) at (1.18) with £=1 yields us the
equations (3.2-4).

(4.2) W(log ?)(@1a0+8) —(a1a0+8) W (log £)
=(logHadi(arac+b) W (log )+ Vi(2)W (log ?),
where
Yi(@) :ﬁ:gt W(o)(adh)(a1a0+6)W(—0o)(log i —a)da.
4.3) U@)(@ar1a0+8) —(a1a0+6) U(2)
=—radao(@1a0+-8) U@)+ V() U(2),
where

Ya(d) =f; U(o)(adao)¥(a1ao-+8) U(—o)(t—o)do.

Let us multiply (4.1) by 747! and integrate it in # from zero to infinity after substitutions
of (4.2-3) into (4.1). We have there that

j:“’(log )41 b U(H)adi(arao+-8) W(log £)dr
+j:°° 1104 U () Vi) W (log £)dt
:j:w(z4+ Z) 1 ab U)W (log £)dt
+[ad/k(a1a0+8)+ Aadao(adi(aiao+b)) ag ]
o0 '
x fo (log 2) =1 ak U)W (log 1),

The first term at the right hand side is one of the last term at (1.16) and the second one
is the second term at the right hand side of (1.16).

Since a} Va(f) ay* =Zs, we have that
ﬂ‘” 171k Vo) U)W log £)ds

is one of the last term at (1.16), namely,
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ﬂ""zgﬂ—l U)W (log 1)dt.

The term including —zadao(@120+6) is the sum of ones including Z; of the last
term at (1.16) and

(4.4) —J:mtadao(alao+é) 112 U)W log 1)dt,
because

—aktadao(araot8)= —tadao(a1a0+8) ab+ Zsak.

The term consisting of (ada})(a1a0-+8) is equal to the sum of ones including Zs3
and Zs of the last one at (1.16) and

(4.5) & j adau(an)r* ab U)W log 1)dl,
because
(ada(’;)(alao—i—b) agk =kadao(a1)+ Ze+ Zs.

Since the right half at (4.4) is equal to the term including Z; of the last one at (1.16),
it leaves only the calculation of the left half of (4.4). Since adao(21@0)=adao(a1)ao and
—aocU()=(d|d?) U(¢), we have that

(4.6) —ﬂ”zadao(alao)ﬂ—la; U@ W(log #)dt
—adao(a l)agf:“zk[(d/dz) U@ (log #)dt.

If % is sufficiently large (£>/Vo+1 with respect to Vo of (1.12)), then ##U(?)W(log?)
and U(2)(d|de)[* W (log £)]= U()(k+A)*~1 W(log?) are integrable so that the integral
by part is able to apply to (4.6). It is equal to

—adao(al)agJ‘:Ntk_’ U@ (- R W (log 1)dt
— —adaolar) (b4 ﬁ)j:“’ #-12 U)W logt)dt
+o0 k
+j0 Zut*1aE U)W (log 1)dt.

The sum of the first term at the right hand side and (4.5) makes the right half of the
first term at the right hand side of (1.16) and the second term is one of the last term of
(1.16). Therefore we obtain the equality (1.16). q.ed.

Three following lemmas are preparatory ones to shorten the proofs of Lemma 1.2
and 1.3.

Lemma 4.1. Zet us put
4.7 D@, V)=U@E(1+0)[2)PU((1—0)/2).

Then the equalities (4.8-10) Aold.
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(4.8) (d|dt)yD(z, V)
=—0(¢, aeV+Vao)[2—D(2, adao(¥))a/2
=—@(¢, aoV)+ P, adao(¥))(1—0)/2
=—@(¢, Pao)—D(4, adao(¥) )(1+0)/2.

(4.9) (d]dt)2®(t, ¥)+o(d|dt)D(2, adao(P))
=B, aoWao)+D(, (adao)2(¥))[2.
(4.10) O, o'W ak) —(d|dD) 2o, P)

=31 B oCislod|dt) (d]dt) 24Pz, (adao)® ().
Proof. (4.8-9) are easily shown by the differentiations of (4.7) in ¢, and (4.10) by
induction in £>1. q.e.d.

Lemma 4.2. Zet © be one used at Lemma 4.1, W stands for W(log[(1+o)/
(1—0))) and fi(z) (=0, 1) are sufficiently smooth functions in t>0 valued in bounded
operators on HS suck that for 0<5< 2k

(4.11) (@]d#)if(2)ls < Cs exp{Mst).
1)
(4.12) j:‘” =10 U@ W og 1)dt

xf:“’ W(—logs) U(s)atst—1ds

—(24—1) 12-2*+1f+1(1 — 0?1 Wy

-1
+2?’:J +°°J " ¢1(1—09P10((adao)i(¥))dod'r,

where TV g are polynomials of order at most j in o.

2)

(4.13) j:“’(logt)fz*—lag U)W (log 1)dt
oo Eope
XL W(—logs)U(s)ays*(log s)"ds
=201 "ar [ (102 1000(W)do
+22, [ [ g1 —od 1 0((adan (¥ o,

where g and g;i are functions in (r, o) such that

(4.14) g
=(0/dr)**~ 1 {r2*"1[log(r(1+0)/2)) [log(v(1—0)/2)]"}
=Yo<i+i<24-1Cij[log(r(140)/2)]"~[log(r(1 —o)/2)]™
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and

@15 gl
< C(llog(r(1+a)) !+ 1) ([ loglr(1—a)) "+ 1)(| 7 [#+141).

3) If fo or f1 vanishes at {=0, then there exist finite sets g;; (i=0,1 and j=0,
o+, 2k) of functions valued in bounded operators on HS suckh that for gija belonging to

8ij,

(4.16) lgoja(T, 0)lls < Cs(|log(r(1+0))|'+1) exp(MsT),
llg1ia(r, O)lls < Cs(|log(r(1—0))|"+1) exp(Ms7)

and

(4.17) j:w(log ! fold) 1 ak U)W log 1)dt
x 17 W (—10g5) U(9) abst=1£i(s)log s)mds

=2t [} [T 1091 g0 0 ((adan) (#))gr o
with abbreviations that gij=(gija)o<a<p and
§0iPg1;=3k-080jaDg1ja.
Proof. The change of variables (7, 5) to (7, o) on two functions /=7(14o0)/2 and
s=7(1—0)/2 yields that the left hand side of (4.16) (also (4.12-13)) is equal to
z—2k+1j:°°j:(1 — o) 1N (r, 5, D(a: Wal))dodr,

where N(r,0, R)
=72*"1(log(7(140)/2))" fo(7(1+0)/2)
X RA(r(1—a)[2)(log(t(1—0a)[2))™.

The substitution by the equality (4.10) makes it possible to rewrite this to the form
including the derivatives in 7 of ®@((adao)/(¥)). Since in the case 3) it has been as-
sumed that for 0<;<24—1

0/07)/ N(7, 0, R)|:=0=0,

the integral by part transposes all derivatives in 7 of @((adav)/(¥)) to the derivatives
of functions except for @((adao)?(¥)), and the arrangement with respect to @((adao)/(¥))
yields (4.16) and (4.17).

In the case 1) the integral in ¢ at /=0, which constitutes the first term at the right
hand side of (4.12), appears only if the 24-th derivative in 7 of @(¥) is transposed to the
other functions, and the other terms of (4.12) are obtained as well as in the case 3).

In the case 2) it is impossible that all derivatives in 7 of @(¥) are transposed to the
other functions. This part is only discribed as

(4.18) —z—2k+1j:°°jfi(1—02)k-l £(3[01)D(¥P)dodr
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with g defined by (4.14). The equality (4.8), however, assures for this to be equal to

zroi [ (1 g2yt (a0 W) dods

o[ 111 —0) gBladao( P dod.

We obtain (4.13) by the transference of the above second term to the remainder terms

of (4.13).

q.e.d.

Corollary 1. A/] statements of Lemma 4.2 are also valid with =W (log[(1—o)/
(140))) when W(—12) is used instead of W (L), namely, when W(logt) is replaced by

W(—log?) and W(—logt) by W(log?), respectively.
Proof. Substitute —/% to the generator 4 of W(z).
Corollary 2. 1) FG=H+H,

where
(4.19) Hi=32 J:‘”ﬁ 2i(1—0?)*10((adao) (P))dodr
with same gj as (4.12).

And also
(4.20) a0 :j: £1(0)(1—0?) 1 D(adao(P))do-H T,
where

17— 17 g5 —odD((addan) (¥))dds

with g7 such that t¥77g5 are polynomials in o of order j.

2)
(4.21) ﬂ‘”(log N1 UG W log HdtG
=f:°°(1og DaoU(r)dr HAH,

where

(4.22) Hi— 3’:J:“ﬁg;(l—az)k-l¢((adao)f(l}f))dodf
+(26—1) !2‘2*J:w'[ti(log (1 —02)~1(1—0) U(r) N1dodr
+ T g 1 —at) 1 Ve,

(4.23) N1=1—1j; U(—3)®(s, adao(P))ds,

lgo|<C(llog(1+0)[+1)
and g; satisfy (4.15) with =1 and m=0.

q.e.d.
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(Refer to (1.14, 19, 20 and 22).)

Proof. The first statement of 1) is only the determination of A1 at (1.22) by the
result 1) of Lemma 4.2. For the second half, it suffices to apply (4.8) to @e/1 again and
to take same steps as to the first one.

Let us put /=1 and »=0 at 2) of Lemma 4.2. Then the main part (4.18) ap-
pearing in the middle of the proof for 2) of Lemma 4.2 is equal to

(4.24) —(2/5—1)12-2*+1j:°°ﬁ(1—UZ)k—l(log7)(a/af)<p(vf)daa'f

—f +°°f ii(l—ﬁ)"“‘[ck log(1+4-0)+Ci1(3/or)P(¥)dodr,

and the first term of A1 consists of the other terms. The integral by part is able to
apply to the second term of (4.24) so that the third term of (4.22) is obtained with go=
Crlog(140)+Ch. Since the equality (4.8) shows that @(z, ¥) is equal to

U@)P+ U(t)J-; U(—s5)D(s, adao(¥))ds(1—o0)/2,
the first term of (4.24) splits into two parts as follows.
(4.25) —(2k—1) 12-2~+1K°°(1og 2(3/37) U(T)dfjja—az)k—l Wio
“+oo ("+1
—(2k—1)12~2*_f0 j_l(logr)(l—az)k-la—o)

X (3)an)] U(T)j; U(—95)®(s, adao(¥))ds)dodr.

The first term of (4.25) is equal to the first one of (4.21), because (3/d7) U(r)=—aoU(7),
and the second term of (4.25) to the second one of (4.22) by means of the integral by

part. q.e.d.
We define 0.(/, ) and 7.(a) as follows.

(4.26) 0+(2, )=(adR)(U@) U(—2)

and

0_(J, )= U(—2)(adh) (U (2)).
For any natural number
(4.27) Lm, By=—[ RO U(s)ad) (@) U(—3)ds
and
L, B) == U(=9)(@dh) (@) U R(5)ds,

where R(s) is an operator-valued function. Z:(a, R) for any multi-index o of natural
numbers is inductively defined such that for any multi-indices a and B it holds that

(4.28) 7.((a, B), B)=1.(a, 1:(B, R)).

For any multi-index a of natural numbers we put
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(4.29) I:(0)=1+(a, 1),
where 7 is the identity operator.
Lemma 4.3. 1) For any natural number [ it holds that
(4.30) 0., ) =2 1a1=1C1al +(a),

where a=(a1, -, am) (1 <m <7) are multi-indices consisting of natural numébers and Cia
are positive constants.

2)
(4.31) W()atW(—1)
=k o (7 )12 (adA) (ag)
+@ 1 [ G5) @Ay @ (—)(t—s) s
(4.32) J"O"“' W (s)(adh)*(@ra04-8) W (—s)(log 1—s)ds
=2}=2(7N " (log 2)/(ad k) (a1204-5)
+(/z)—lﬂf“W(x)(ad/z)'ﬂ(alaow) W (—s)(log 1—s)'ds.
3)
(4.33) W(—log?) U)W (log2) U(—1)
= D= o(/)"N(—log )i04(j, )+ Na+(2) U(—12)
and
(4.39) U(—1)W(—log ) U(t)W(log?)
=25/ U(—log )i6-(j, )+ U(—) Na(D),
where
8.(0, =1,
(4.35) Nax(?)
—@) =) 0L, ) VO W)
X (log £—s)'ds
and
(4.36) Na(2)

:(/1)-1(_1):+1ﬂ°“'W(_s) U@B0-(1+1, HW (s)
X (log z—s)‘ds.

4) Let a multi-index a be (o, -+, am). If Bt+y<|a|—m for integers B and y, then
Zipr=ah1.(a) d is sufficiently differentiable and of exponential order at infinity in t>0
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as functions valued in bounded operators on HS. Moreover if 0< <<, then
(@] dt)i ] epr]t=0=0,
[ U@)(@|dt) I-plls. 2 < C(14-| £ ))"exp[(As—A)7]

and
(@d2)i L5y UDlls, 1< C(1+|2)"exp[(As—A)¢]
for ¢>0.
Proof. 1) Let us differentiate 64(/, 7) in 7.
(4.37) (2]dt)0+(Z, 2)

=[(adA)!(U(#)ao—(adA) (U(#)ao)] U(—2).
Leibniz formula applies to (ad4)’(U(#)ao) to yield that
(ad)(U(9)ao) —(ad2)(U(2)ao
=3 72:Ci(adh) (U (2))(adh) '~ (av).
By means of the substitution to (4.37) we get that
(@]d)b+(Z, 2)
=—S5Cib+(7, ) U@)(adh) '~ (a0) U(—12)
so that
(4.38) 0+, 2)
=2550C (=7, 0+(7, *)),

because 04(/,0)=0 (/=1). It is shown inductively in />1 that (4.30) for 0.4(/, #) are
solutions of (4.38). (4.30) for 6_(/, #) is also obtained in the same way.

2) The direct applications of the formula (1.18) yield the equalities (4.31) and
(4.32).

3) We also use (1.18) as V(s)=W(s) and B=U(¢) to expand W(—s)U@) W (s)
in 5. If logZ is substituted to s, then the first parts of (4.33) and (4.34) consist of the
expansion terms multiplied by U(—¢), and Na.(/) are the remainer integral terms.

4) It is proved by induction with respect to ». At first we note that 4f (adao)’
[(adA)*(ao)]@} is an operator of order 0 if f+y<a—1 and 6=>0. In fact, (ad%)(ao)
is one of H-type of operators used at Corollary of Lemma 3.5 so that Lemma 3.1 and
Corollary of Lemma 3.5 imply it if both 8 and y are non-negative or non-positive such
that B4+y<a—1. If B>0>y, then 3) Corollary of Lemma 3.5 also yields for it to
be equal to a sum of the products of operators of order 0 and &}/ (0 < ;j < max(B—a-+
1, 0)), which are operators of order 0 because y—; <0 by the assumption that f+4y<
a—1. In case that 8>0>v, it is also proved in the same way. Since the definition
(4.27) of 7:(a, /) is therefore able to apply 3) of Lemma 3.2 to 7., we get the differ-
entiability and the estimate, namely, the statement 4) when #=1. Here we use the
fact that
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T @E—=5)odll U ($)lle, 2 < exp[(Aa—2)7]

for 0<s<7z. The statements for larger 7 is also proved by induction according to 3)
of Lemma 3.2. q.e.d.

Corollary 1. 1)
(4.39) W(—log?2) U(t)ak
=(ag+ QU)W (—log )+ L+

and
(4.40) at U)W (log?)
= W(log ) U(2) (ao+Q-)+L-,

where

(4.41) Q+=R—+(a*+ RS,
Q-=R+S_(as+R),
Li=(at+R)No+ M,
L_=N_(ag+R)+ M-,

(4.42) R=251(j ) (—log2)i(adk)i(af),
Se=T1 (7)1 (—log£)i8:(5, 1),

(4.43) Mi=]+(2, (adh)*(ap)) U(2),

M= U (@) J-(4,(adh)*(ay)),
(4.44) Ny=]4(¢, 042k, ) U(2)),
N-=/-(¢, U(£)8-(24, 1)),

(4.45) S+, Jo)=(24—1) !—1J‘|DogtW(s_log ) JoW (—s)s2k14s
and
J-(¢.J0)=(2k—1) !_IJLOK’ W(s) JoW (logt—s)s?*~1ds.

2) Let F, G, and H be ones defined by (1.14), (1.19) and (1.20), and some other
operators be defined as

(4.46) F':ﬁ“W(log U@ 14t
G':j:“zk—lag U)W (—log )t
(4.47) Qas :ﬁ“ﬂ—l 0+ U@ W(—logd)dt,

Qa- =f:°°W(1og HUW)Q-1+1ds
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and

(4.48) _Lat=ﬂ°°zk-lzidz.

Then we have that

(4.49) GF=G'F'4+G'Qa_+Qa+F'+Qas+Qa—
+GLa-+LayvF+Larla-

and that

(4.50) GF=H+H>

if Ha stands for Ho+Hee such that

(4.51) Hz1=2?i 1 Tdrjtigj(l —o?)*"1P((adao)!(¥'))do

Hoo [+ ‘
+22[ ar [T (1021 go,@((adan) (F) g1ido
and
(4.52) Hee=GLla_+LarF+LarLa—,

where V' =W(log[(1—o)/(1+0)]), and gi and gi; satisfy the same type of conditions
as at (4.12) and at (4.16-17) with [ and m<4k—2, respectively.

Proof. 1) Let us prove (4.39) because (4.40) is shown in the same way. At
first we commute W(—log?) and 4} to get according to (4.31) that
(4.53) W(—log?) U(¢)al
—(@k+R) W (—log ) U(t)+ M-
The next commutation of W (—log¢) and U(#) according to (4.33) implies that
(4.54) W(—logH)U(?)
—(I+S3) U W(—log )+ Vs
The substitution of (4.54) to (4.53) completes the proof of (4.39), where variables of
integration should be changed to get the expression with the function /.

2) We get (4.55) by means of integration of (4.39-40) in 7 from zero to infinity
after multiplication by ##~1.

(4.55) G—Lar=G"+Qax+
and
F—La =F'+Qa_.

Then (4.49) is the expansion of the product (G—Za4)(F—La-)=(G"+ Qa+)(F + Qa-)
of two above equalities. We use Corollary 1 of Lemma 4.2 in order to prove (4.50).
The equality corresponding to (4.12) of Lemma 4.2 implies for G’ F’ to be equal to

(4.56) (2k—1)12—2k+1j:(1—02)~—1 ¥Y'do
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plus the first term of A1 at (4.51). The change of variable o to —o proves that (4.56)
is equal to /. The other terms except for ones constituting H»s are discribed as the
second term of A»: in virtue of applications of the equalities corresponding to (4.13)
and (4.17) of Lemma 4.2. In fact Q. (therefore Qa.) consist of two parts R and
(a4+R)S+ (or S—_(ag+R)). They are regarded as a*ag*R (or Ragtal), at(7+a5"R).S+
and S_(/+Ray")al. (4.17) is applicable to the terms including the parts connected to
(244 R) S+ or S_(ah+ R) because 4) of Lemma 4.3 assures the conditions for fo and fi
at 3) of Lemma 4.2. (4.13) applies to the terms related only to £. A commutation of
the first one of gotten terms with ao yields expected forms because the coefficients of
@y*R a polynomial in (log?) take the shape of a3'R~ with 2~ operators of order 0.
q.e.d.

Corollary 2. LZet Ow:(l, ¥), Tws(m, R) and Iw.(a) stand for ones defined by
the replacement of kh and U(t) by r and W(Z) at (4.26), (4.27) and (4.29), respectively,
where 7 is ao, a pseudodifferential operator q of order 1 in x or a H-type operator times
g. (Refer to Corollary of Lemma 3.5.) Then it holds that

Ow.(l, )= 1a1=1Cralw+(a),
with a and Cia at (4.30),
(adr)/ [WV(D)] =Ba4(0, YW (&) = W (1) (U, )
and
l(adr)’ [WONI< Csi(1412 1) exp[ Vol 2]].

Proof. The first equality is obvious. The inequalities hold for Zwi(a)W(¢) and
W(¢)Iw—(a) with {a}=/if (adr)/% for 7 =1 are bounded on HS with respect to the
norms || [ls,». In fact it is proved by induction in the number = of the indices a.

q.e.d.

Proof of Lemma 1.2. Let us consider F(a1a0+8)G, namely, operate G at the right
hand side of the equality (1.16). This first term is equal to

[@1a0+b—adao(a1) 2] FG.

By the notation at Corollary 2 of Lemma 4.2, it is equal to
[@1a0+b—adao(er) A (H+ H).
[e120+b—adao(ar) A1 H

is the first line at the right hand side of (1.21) if the operator & in it is excluded by the
multiplication of A-1.

[@1a0+b—adao(a1) A H1H 1

is regarded as one of the forth line and the remainder terms because the second half of
1) Corollary 2 of Lemma 4.2 asserts that @o//1 is an operator of order 0.

The equality (4.21) at Corollary 2 of Lemma 4.2 rewrites the second term of
F(ai1a0+8)G as
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[adA(arao+8)+ kadao(adi(@rast-8)) ay']
xj:"’(log NP1 ah U@ W (log )diH
+[adA(a1)ao+a1adi(ao)+-Aar1adac(adi(an))ay 1 H 1
+[adA(8)+kadao(ar)ad A(ac) a5’
+ 2adao(adA(ar)) + kadao(adk(8)) a1 .

The first term of the above is the second and third lines of (1.21) multiplied by 4.
Since the commutator of @0 and A7 is obtained by the replacement of (adao)’ by
(adao)’+1 in A1 and also adao(# 1) is an operator of order 0, the above second term is
included in the forth line and remainder terms. It is clarified at later arguments that
the above last term may be regarded as one of the remainder terms. The last term
including Z(#) at (1.16) may also be regarded as one of the remainder terms by the
application of 3) Lemma 4.2 except for the term consisting of Z», for which the state-
ment 3) at Corollary of Lemma 3.5 is used.

We put exactly &; at the forth line of (1.21) and the remainder terms in the next
lemmas for later arguments. q.ed.

Lemma 4.4. do, di and R at (1.21) are discribed as

(4.57) do=adk(a)H1,
(4.58) di=aoH\H1
+[adA(ao)+ Aadas(ad/(ad)) @y 1H s
and
(4.59) R=(b—adao(a) ) H H

+adi(ar)adao(H})
1 [adA(8)+kadao(ar)adA(ac) @y’
+ kadas(adi(a) + Aadao(adi(8)) @ 1
+J':°°Z(z)zk-lag U)W (log HdiGH,

where H, H' and Z(8) are at (4.19), (4.22) and (1.17), respectively.

Since we think that /4 should be exactly defined before proving Lemma 1.3, we deal
first of all with Lemma 1.4-6.

Proof of Lemma 1.4. The assumption (1.5) means that

{a1, ao} =¢2d+p1(a1—ao)

with i1 an infinitely differentiable function in x¢ and with & a pseudodifferential operator
of order 1 bounded below by V1{D>>0 at (Xo, X) such that (a1 —a0) 24262 < $28{D)2.
(We denote the set of such (Xo, X) by 2(8).) We define %, a pseudodifferential
operator of order 0 by
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ho=psbr1d~1,
where the right hand side means the product as symbols and
ps=po([p=%(a1—a0)?+62]6"1KD)>~?)

with po(¢) an infinitely differentiable and monotone decreasing function in ¢ such that
po=1 when OS!S—%— and po=0 when 1<¢ Since we are able to take sufficiently

small § >0 such that
|6:d-1|<2No on 3(8)

with Vo a bound of |414-1| on the characteristic set 3 of 2, we may assume that on

the whole space
| 20| <2V,
Therefore, if 4o is defined by (1.24), namely,
ho="ho+10,
then it holds that
P2b1—i{a1, ao} o
=—y1(a1—ao)iko
— 2 (1—pa) ibr—N:6)
Felpsd+ V(1 —pa))6.
Since this is equal to
Y261 —adao(@1) 4o

modulo pseudodifferential operators of order 0 in x, we complete the proof. In fact we
put

dy=[dps-+ Nr(1—pi)< D16+ C
with §=2/V7" ¢ and some large constant C1. Then it holds that
d12e{D).
Since 1—ps vanishes at 3(8/2), it holds that
(1—ps)(2b1— N10)=coba+d,
with ¢o and & pseudodifferential operators of order —1 and of order 0, respectively.

g.e.d.

Proof of Lemma 1.5. Let us assume the following Lemma 4.5, which will be
proved at the end of this section.

Lemma 4.5. Tere exists a pseudodifferential operator As of order 0, which is
a linear combination of Ao—AN1 and 3bs, such that
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{2, Az} =pka(bo—p A1)+ plea(bo—ipAo)F-1h244,

where ks and ks are uniformly positive ones of order O on a conic neighborhood of the
singular points of f and satisfy there that

EE<2(1+4-6e)~1hokabo,
with a positive contant eo.

Let ¥ stand for a function in xo such that (8/0xe) ¥ (v, xo) =tp(v, x0) and ¥(v, 0)=0.
Then | P|<Cv~t because (v, xo)=v1¥(1, xo/v). We also put

Q=[(Ao—A1)2+5:KED2.

Since Lemma 4.5 assures that 424j(=0 and 1) are greater than a positive constant
€0 on 2(8o) for some positive 8o (refer Z(8) to the proof of Lemma 1.4) and since £ is
greater than another positive e: out side Z(80), it holds for /=0 and 1 that

(4.60) hoyj=royit+a[viQ+ v {(Y—1£0-A;, 2)]
>3"1(eo+av2(),

If o is a sufficiently small positive constant and if v is sufficiently large. Infact we have
that with a constant C independent of v

lv2W {f-1go—4;, Q} <3122+ C
because |v¥|<C and |82(2< CQ in virtue of the positivity of £ if 32 stands for
(h2(9/0x0)$2, (9/0x)82, <€>(3[3§)€2).
k2rj—aC >3"1eo on X(8o)
if @ is small and
| A2qj—al|< 3 1au22

out side 3(8o) if v is large. So we conclude the first statement of the lemma since
it is easily shown that there exists a positive ¢ such that

(14v22) >ev| 21},

and that the left hand side of (4.60) is equal to 4j+2 there if 41 is defined by
i=As+aPrv2Q.

We next calculate 44, where

ha=kst+aPv2{b:, Q}.

Since
|a¥Pu2 {4z, 2}12< Cu2b:2822,

the inequality (4.60) and the result of Lemma 4.5 yield that
|£4|2<2(145¢e2) 71 h2kabo,

if v is sufficiently large. q.ed.
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Remark. The choise of the parameter v is able to be fixed independent of
perturbations of A and £2 as far as they keep eo, €1, 80 and the other bounds as noting
in the above proof. For example it is possible that they sway in the parameter v be-
cause they are pullbacks f(¥, x, £) of other functions f(xo, x, £) by V.

Proof of Lemma 1.6. 1) Itis trivial.
2) At first we consider it in the case that s=0. If 4* stands for the adjoint opera-
tor of % on L2, then

2Reh=h+h*=h; E-{DY2-+{ DY E-1 /7.

It is well known that the pseudodifferential operator 4; of order 0 in x is a bounded
operator on L2 and that its bound is fixed by ones of the symbol and its derivatives of
finite order. Therefore there exists a constant Co such that

(4.61) | Re(hu, )| =|(Reku, u)| < Coll«||2
and
lereel| < Collad|.
By Lemma 3.1 or Corollary of Lemma 3.5, we get for a general integer s that
EShRE-S=hr+hsE,
where 4s is an operator of order 1. This implies that
(hu, w)es a=(AESu, ESu)+ (ks ESu, ESu)

and

zerzelles, <o ESul|+||os £5~1ull,
so that

| Re(Au, u)2s,1]
<|Re(AESu, ESu)|+||ks £S5~ 1u|| || ES||.
Since the operator Zs of order 1 is estimated as ||2s2]|< Cs||<DDv||, we have that
s ES=1ul| < Csl| E571/24]).

This combines with (4.61) to imply that

| Re(Au, w)2s,1]|

< Collellys o+ Csllullzs—1allel2s,a
and
12r2l|25,2< Coll2l| 25,24 Csllael |25 -1, .

The interpolation theory will apply to cases for other indices s. q.e.d.

Proof of Lemma 1.3. 1) If A is taken sufficiently large depending on s at (1.36—
37), then it holds with NVo=2C that
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| Re(fu, u)s,1| < Nollulls,;
and
(4.62) 1Rl s,2< Nollu|s, 1,

because ||vlls,s=Allzlls—1,2. These inequalities imply that #/(#), defined by (1.10), satisfies
the estimates

1 (P)lls,»<exp(No| ¢]),
so that
(4.63) 1 (log[(140)/(1—a)]lls,2< 4¥°(1 —a2)~Ne,

Therefore, (1.20) the definition of /A is valid if 2>/o, and so A is a bounded operator
on HS. The invertibility of A is essentially due to the following facts.

Lemma 4.6. Lef us put
1
J(a)=fo(1—ae)ﬂda
and
J@=]"(1—00g(0)do

with a differentiable function g such that (1—o?)*g'(a) vanishes at o=+1. Then it
holds that

1(a)=TI}-,[24/(24+1)]

and
J@=["1—091 g (@) dol2a+ D),

Therefore there exists a positive constant 'y suck that I(a)y~ya~*'% as a tends to infinity
and it holds that

/@< Z(a+1—B)(a+1) supwi<il(1—02) g (@)l].
The operator A splits into the sum of two part such that
H=Ci[21(,—1)+/(A—1)],

where

Cr=272M124—1),

g@)=[ Witomar
and

Wi(e)=W(log[(1+0)/(1—0))).

Since g'(o) satisfies that

lg’(@)lls.a
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<2 1supoge<1 |77 (o7)lls,2
<Cro(1—0o?)Ne=2(lAll5 2+ 1Alls,2),

we get that
lg'(@)|ls,2< Cno(No+16 |+ 1) (No+10 ) (1 —o2)~No~2,

by (4.62-63). Therefore it holds that

I/ (@)lls,2< C(No, )1 (a4 No—1)(a+1)71,
where

C(No, ) =Cno(No+|0]|41)(No+10)).

If % is taken such that

271C(No, 0)(b+No—2)1(A—1)"141<1,

then the existence of the inverse of A on H® is shown by means of Neumann series.
Here we should note that £ is fixed only by Vo and 6 independent of s and A, and that
the operator norms of A and A-! on HS are also independent of s and A.

2) A1 has been written as (4.19) at Corollary 2 of Lemma 4.2. On the other hand,
Corollary 2 of I.emma 4.3 shows that

(adao)i(¥)
=0w-(/,10g[(1+0)/(1—a)] W (log[(1+4-0)/(1—0))))

is estimated as
ll(adao) (¥)lls,1< Csj(1—a?) 7o,
because (adaeo) /4 are operators of order 0. Therefore (4.19) is estimated as

| A 1lls,2
< CS_[:N(I + 1) (1—ot) N~ 2exp[(As—A)7]d7,

according to the definition of @ and (1.12). This implies that
A lls, 2 < CsA—1

as A tends to infinity if £#—No—1>0. H2=~H21+ H22 has also been written as (4.51-52)
at Corollary 1 of Lemma 4.3. The first part A1 (4.51) has the same integral form as
A so that it has the same estimate. It is also proved by the following lemma that the
second part A2 has the same estimate as the other. q.e.d.

Lemma 4.7. Hs», defined at (4.52), has the estimate such that
[ H2zlls, 2 < CA2
as X tends to infinity.
Proof. Since Hee=GLa + La+F+ LarLa_ by definition, it suffices to obtain the

estimates for Gay*, "7, atLa— and Zai aj. We try to estimate Zayal. a*Za_is also
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estimated in the same way. The definitions (4.48) and (4.41) show it necessary to bound
afN+al, 74+ Ray" and Mial. By the definition (4.44) of Vs,

aﬁNwﬁ

—y o8 & — —k b ook
=113 AW (s—log ay ray* W(—ahst 1 ds,

where
J1=at0:(2k, ) U(2)al.
Since
AW ()ag* =T} Crs(adan) (W (s))az’
and

@ W (s)ag= 5= Chi a5’ (adao) (W (s)),
the estimate at Corollary 2 of Lemma 4.3 implies that
llag W (s —log 2) ag* lleallag* W (—s) at lo,2

<C(1+Is—logz)*(1+|s*exp[Vo(ls—logz|+Is)]

<C(1+/logz[)** exp[NVollog ],
because 0< +s< +log# and |lag*ll,a<(A—A)~1. There are 1) and 4) of Lemma 4.3 for
/1. It holds that

Il /1lle,a< €1+ £])%* exp[(A- —N)7].

Therefore we obtain that
(4.64) llatViat llo, < C(A4| 2])2k+¥o(14|log £]) 442~ ¥° exp[(A—A)2].

It is easy to see at (4.42) that (adko)’(a}) a3* is an operator of order 0 according to 2)
Corollary of Lemma 3.5. Therefore (/+X&a;") is estimated as

(4.65) 17+ Rag* o< C(14-log 2 [)24-1.
By the definition (4.43) of M5, Mial is written as
» logt —k kooh—
M+ao=(2k—1)!—1L W (s—log?) Jeag" W(—s)ahstt=1ds U(2)
and
Je=(adk)*(ag) ag.

The combination of 2) and 3) Corollary of Lemma 3.5 shows that /2 is an operator of
order 0. So we get that

(4.66) | M +agllea< C(14-12)¥o(1+|log ) *2~¥° exp[(A. —A)7].
By (4.64-66), L4a} is bounded as
I Z+ah loa < C(1+| £])24+¥o(14 | log 2 [ 84~ 12~ N0 exp[ (A —A)2].
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Since the integration of z4~1Z,a} in ¢ is equal to Zataf by definition, we get that, if
£>No and A>A,+1, then

| Za+aglle,a < CA-L.

It is clear by the definitions (1.14) and (1.19) for the norms of a;*# and Gay* to be
bounded by

cﬂ“ﬂ—1—~°exp[(A,—A)t]dzsC',\—l,
if £>No and A>)X.+1. So we can conclude that
|1 A 22lls, 2 < CA1L. q.e.d.
Remark. It is easily checked by the combination of Corollary of Lemma 3.5
and Corollary 2 of Lemma 4.3 that
Hapr =YK DIETHE DY M=—H

is an operator of order 0 such that the norm of Hag on H° is bounded by CegA~1.
Therefore we can conclude that Z~1 is an operator of order 0 because

Y= DY ET H-1 E-1{ DY~ =(H+ Hapr) L.

Proof of Lemma 4.5. According to the formation of the problem we may omit
the function ¢ to assume that, with non negative function 4,

(4.67) p=—¢&tf and f=42+4,

because the results are independent of the canonical transform as £o—(Ao+41)/2 is
transformed to £€o. The conditions are that

(4.68) {£0, A} %0 at A=4=0
and
(4.69) {Eo—A, 8} =¢85,

where ¢, 4, f and 4 are homogeneous order of 0, 1, 2 and 2 in ¢, respectively.

Let A,=p? be the Hesse matrix of p and /A, be the Hamilton matrix of 2,
that is, o(w, /H,0)=<{u, H,»> with respect to the canonical form o. The conditions
(4.68-69) imply that /A, has a real non zero eigenvalue at the singular points ¥ of p,
namely, p is effectively hyperbolic. In fact the vector v=/p(£0—/1) atains the eigen-
vector corresponding to the eigenvalue

—a=—{§o—A4, ot}
of /H, at &, that is,
(a+/H p)v=0.

The hyperbolicity of A, implies the existence of another real eigenvalue a, of which
eigenvector « satisfies that o(%, )% 0 with respect to the canonical form o. If #, is
defined by the Hesse matrix of p with respect to the fixed coordinate, then a, # and v
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may extend to a neighborhood of the singular point ¥ as holding their relations.
Especially a is a real function.
Let us denote #=(uo, %1, #2) and v=(vo, 1, v2) by the coordinate as

w=2w0(3/0€0)+21(8[0x0)+22(9/0.X),
where X=(x, £). We normalize them as w1=v1=1. Then —wo=vo=a/2.
U=(u+v)/2 and V=(u—v)[2
satisfy that
aV=/H,U and e U=/H,V.
Therefore
ac(V, O)y=a(V,JH,V)={H,V, V).
More precisely the component wise expression shows us that
ao(Va, Us)=a(Va, JHVo)=L{H V2, V2>
=(H Vs, Vo>
=2[o(V2, U2)]*+<Hs V3, V2),
because
H=27AQprA+p?
and
Ve, PA>=0(V2, va)=0(V2, Us),

where Uj=(uj+v)[2 and Vi=(uj—v;)[2 (j=0, 1 and 2) so that U,=0, U:=1,
Vo=—a/2 and 71=0. The existence of a real solution o(?>, Us) for the quadratic
equation implies that

a2—8{Hy V3, Va)2=0.
The positivity of (s 72, V2 at the singular points 3 implies that there
0<o(Vs, Uz)<eaf2.

However o( V2, Us) is not equal to a/2 because o(¥, U)=—a/2+0a(Vs, Us) should not
be zero. Therefore there exists a positive constant o such that

0< (1 +e0)a( V2, Usz)<af2.
Let us consider two functions that
As=<pp, U>=<pf, U>=U(S)
and
abot-p=<p, Vo=V (),
(w=<f, V>=<0f, Vad=Vif)).
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Then it holds that
{#, 45}
=pp, JH,U>+<0f, (8, U
=alpp, UD+<0f, {8, U
=a2fotap+L[Pf: 7p).

Remark on Notations. Z[X:: X::--] means that it is a multi-linear combi-
nation of each component X with coefficients of infinitely differentiable functions.

On the other hand
p="Vaf)=2Vo(D)A+ V()
—20( Ve, Us)A+ Va(d)
and
Llpf : vpl=L[pf o+ LIVblA+ L[ 1 : 2]
Therefore it holds that
{#, 45}

=(a¥2—ao(Vs, Us)+L[pf])(¢o—A)

+(@?/2+ao(V2, Ua)+L[Ff D)o+ )

+aVa(b)+Lps: ps].
We denote it as

{#, A3} =a(ao—Po)(fo—A)+a(ao+PBo)(§o+A)+ayo.

The bound for o(V2, Us) yields that ao—PBe and ao+fo are positive at a neighborhood
of the singular points 5. The combination of them with the following lemma yields
that

Yo<2(1+-¢0/3) "X (ag—Bh)d

at a neighborhood of 2. In fact, for a, B=0a(V2, Us) and y={H:s V2, V2, it holds on
J that

2y=2(c—2P)B
<2(14-¢0/2)"Y(e/2—P)(e/2+B)
because a/2>(14+-co)B. And Va(Va(8))=<{Hs Ve, Vod+L[P8]. Since
2e0(34-€0)"1(24-c0)"2(ag—B7)

absorbs the perturbations by Z[pf], L[4 : 4] and ¢ if a neighborhood and ¢ are small,
we get the conclusions. The inequality at Lemma 4.5 is obtained if e: is put as
Bea=co/3. g.e.d.
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Lemma 4.8. LZet f (¢, x) be an infinitely differentiable function on R, where ¢
is a variable and x is the others. We assume that [ is non negative and denote the
zero point set of f by . Then for any positive € there exists a neighborhood D of X
such that

1(6/02) £ (2, x)|2<2((3[31)2f (¢, x)+¢€) f (¢, x)  on D.

§5. Verification of the reduction to a basic type.

Proof of Theorem 3. We shall check the definitions from 1) to 12) of a basic type
at the top of Section 2, referring to Lemma 1.2. The first line at the left hand side of
(1.21) is the main part. aiao, the principal part 252 of &, a part of the first order term
d(ao+a1) and the term of order 0 4o are left as they are. The remainded part of the first
order term 124 is changed by means of 4, defined at (1.31), as in 1) Corollary of Lemma
1.5. So we have that

Y261 —adao(a1)
=y261—adao(ar) (k5 +0)+ E-1 ajack;
=coaotaic1+y2eat+P2di+do
+E1athao+ E-1aradac(4y).

Therefore it holds that
a1a0+6—adao(ar)/
=a1a0-+§%(be+d1+4-C)+dr0aotardootY2ca4-d5,
where
doo=d-}c1,
dro=d~+cot+E1agh;,
dy=bo—ada1(d) +do+ E-'afadao(hy)—y2C

and C is a positive constant. Here if a positive constant C is sufficiently large, then the
above d24d1+C is b2 at (2.5) in virtue of the Garding type inequality proved by A.
Melin, because &1 defines a norm on H/2(R*) according to (1.26).

Lemma (4. Melin [6]). Let ps be a pseudodifferential operator of homogeneous
order 2 and its symbol be real non negative. Then for any constant € suck that € plus
half of positive trace of the fundamenial matrix of pa is positive at the characteristics of
P, there exists another constant C such that for any u belonging to S

(5.1) Re(pau, u)+elK DYV 2 4|2+ C |22 >0.
Especially it is valid if ¢ is positive.

On the other hand doo, 210 and &g are operators of order 0 by Lemma 3.1 because
they consist of pseudodifferential operators and £-1a? time pseudodifferential operators.
Moreover it is shown by Lemma 3.5 that they satisfy the relation (2.11). Therefore
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they are able to be constituents of 4o, &1 and 42 at (2.1). It is clear that the pseudo-
differential operator ¢z of order 1 is a member of &o at (2.1), that is, it satisfies (2.9).

We now turn our attention to the second line of (1.21). By the definition (2.12)
of logae

adi(araot-B)ao| . (log2) U)d

is equal to

(5.2) —ad#(a1a04-6)logac+yeadi(aiae+5).

Since the second term is equal to
yo(adi(ai)ao+aiadi(ao)+adi(d)),

it consists of terms which should be passed to the terms d1ao, @1do, d2 and dsfido at (2.1).
In fact, ad%(e:) and ad/(ee) are product sums of H-type operators at Corollary of
Lemma 3.5 so that they are operators of order 0 and satisfy the relation (2.11). The
terms of ad/4(8), with respect to the terms of & except for the principal part 24, are also
combinations of @; and produt¢t sums of H-type operators, which are constituents of
do, di and d: at (2.1). adA(P2b2) is equal to P2adi(bs)+ads(h?)ée, which is equal to
godbap2+g16:{ DY~1f2, with g; product sums of H-type operators, modulo product
sums of H-type operators, which are passed to 4z at (2.1). Here the following Lemma
5.1 shows that
£00b2p?+g18:{ D)~ 12

has the same properties as members of the term dsdo at (2.1) satisfy. Namely it is
a linear combination of pseudodifferential operators satisfying (2.9) with coefficients of
operators of order 0.

Lemma 5.1. 1) Zere exists a positive constant C such that |9b:2|2°<Chs by
the assumption that b2>0 if 0b2 stands for

(=K DY=1(3[dx0)b2, {(DY~1(30x)b2, (3]3£)b2).
Therefore it holds that with other positive constants e, which may be small, and C’,
C(bau, u)—(0b2u, 0b2u)+e| KDYV 2 1|2+ C" ||ul[2 2 0.

2) Let p and g be two real pseudodifferential operators of ovder 0 in x such that
Jfor a positive constant e,

p=2e>0
and
p2g2—p.
Then there exists a positive constant C suck that
(g2, )| <((p+C<DY>Yu, u).

Remark. Both the first and second statements are applications of Garding type
inequality by A. Melin.
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We use the results at 2) Corollary of Lemma 1.5 for the first term of (5.2).

(5.3) ad4(aiao+6)

=adkg(a1a0+52) eo+Agadeo(araot52)+ (ad /g eo)(b—b2)
with /45, defined at (1.30), because 6 is constant

ad/g(@1a0+82)
=aw(lhy+d3)+ P(hs+d35)aot P2hida
with 47 (j=2, 3 and 4), defined at Corollary of Lemma 1.5, and with pseudodifferential
operators 47(j=2, 3 and 4) of order —1 in x. We put for 7/=0 and 1,
(5.4) cio=Ahj,+C{D>?
and
ci1=4hg.

The inequality (1.33) implies that with a positive constant e,
(5.5) Re(cjou, u) Zev[(u, u)+|(ciru, )] (=0 and 1),

if the constant C, which may depend on v, is sufficiently large, because Lemma 5.1 is
able to apply it. This inequality implies (2.6) if the constant C at (5.4) is replaced by
a large one because adao(eo)=0 and |ladai(eo)x||2 is uniformly bounded by Co(eox, %)
with a constant Co independent of the parameter v. The lower order terms

[(@F12+C{D> Veoajay logadlao (=0 and 1)

are passed to the term Jiao at (2.1), since eoar (£4=0 and 1) time a pseudodifferential
operator of order —1 in x is one of H-type operators so that it is an operator of order 0
satisfying (2.11) and since Lemma 3.3 and 3.7 prove that a;'logaois also. The terms of
adA(8) except for ad4(i24:), and &7 are also passed to the terms do, 41 and 42 at (2.1)
as well as at the second term of (5.2), because they are combinations of @; and product
sums of H-type operators multiplied by @ 'log ae, which is an operator of order 0 satisfy-
ing (2.11).

Fyadeo(p2s) =gohghih' ba-t+g1 high?0be

modulo lower order term, which are operators of order 0 satisfying (2.11), where g;
is product sums of H-type operators. According to the inequality (1.33), it holds that

[£712<2(144e2) =1 A5h5he,
| =162 < C | v | 82 < Cum2 hishihe
and

| Ag06212 < Cu=2 Ay k5o,

Therefore /4gjadeo(i252) is equal to ¥2gg modulo operator of order 0, where gg is a linear
combination, with coefficients g=(g/) of product sums of H-type operators, of pseudo-
differential operators ¢=(g:) of order 1 in x such that
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[g112LCv=2 i3 5he.

Moreover g includes the factor eo. If we put ca=43"?, ba1i=43"""¢ and ece]=g, then

we obtain that 4y adeo(242) is equal to
P2eseoeibar

modulo operators of order 0 satisfying (2.11). The operator norm of ¢ on H° is
uniformly bounded in the parameter v. £&a41 and so {ao, 841} are linear combinations
of 042 and 42 with coefficients of pseudodifferential operators.

|641|2< Cv—2436a

and
(5.6) |ea|2=45
so that
(baru, baru)
< Cv[Re(hybau, u)+C(KDdu, u)]+ C(v)(%, u)
and

(csu, cau)<Re(crou, u)
with ¢10 at (5.4) according to Lemma 5.1. Therefore if v is sufficiently large, then
(2616412, €36412)]
< 2(14-dea)~2ea[Re(pohzhart, )+ C{Ddu, )+ C()(x, )]
and
[(Peav, csv)| <Re(eio, v).
The estimate for 4]eo=cseoc; 4, modulo lower order terms, is that
(2es A, c5" i)
<4(14-4e2)2[Re(f?h30:u, u)+C(KD)u, u)+C(v)(%, ).
Therefore we get the estimate (5.7) for

Peseoerba=ycseo(cy Ayt €1641)

that
(5.7) I(z/:‘*eléqu, elém)l

<4(14-3e2)HRe(phzb2u, )+ C(KD)u, )+ C(v)(u,u)]
and

|(fesw, csv)| <Re(erov, v).

The discussion about the first terms of (5.2) finishes if it is found that the definitions of
¢j at 6) Section 2 and (5.4), and the inequalities (2.5-6) and (5.5), deduce the inequalities
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(2.8) from the above (5.7). In fact the error terms are absorbed by means of replace-
ment of the constants 2(143¢2)~! to 2(1+42¢2)~! and 1 to (1+4¢2) if the parameter v
is as large as needed. The replacement of 42 in this section by 4. at (2.5) Section 2
is possible in the same time according to (5.5).

At the third line of (1.21) it is important that the principal part of £adao(ad/%(e120-+
b)) is essentially pure imaginary. In fact we can check it as follows. At first we note
that

|3 t0g U@)dt=az*yo—togas),
which is an operator of order 0 and satisfies (2.11) by Lemma 3.3 and 3.7.
(5.8) adao(adi(ai1ae+8))
=adao(e1)ads(eo) —a1(adao)?(%)
+adao(adi(a1)ae+adao(ads(8)).
ad/4(ao)= —adao(%;e0)
=—adao(%;)eo.
So the principal part of ad4(ao) is discribed as goeo with a real pseudodifferential
operator go of order 0 in x. adao(e1) is a pseudodifferential operator of order 1 in «x
with the pure imaginary principal symbol, from which the weight function 4 is taken
out. Therefore adao(ai)ads(ao) is equal to dseco with a pure imaginary pseudo-

differential operator 3o of order 1 in x modulo product sums of H-type operators. This
concludes that

adao(a1)adA(ao) f (og) Ut

is equal to
l/léaoeo('yodal —a, llog @o)

modulo terms included into the terms diao and 4 at (2.1). It is clear that the second
and third terms at the right hand side of (5.8) are passed into the terms @1do, 2120 and
ds at (2.1) even if they are multiplied by ay'logae or @5'. The forth term of (5.8) is

also equal to
adao(ad/4y(P262))e0 modulo aigotgiao+geas+gs

with product sums of H-type operators g; (j=0, --+, 3). Since Lemma 3.3 and 3.6

imply that ¢¥a5' is an operator of order 0 satisfying (2.11),

(a1g0+g1a0+g2at +g3)(yoay ' —ay Hlogao)

is divided among the terms a@1do, d1ao and da at (2.1). The principal symbol of the
pseudodifferential operator adao(ad/Zj()242)) is equal to ¢)26a1 with a pure imaginary
symbol 431 of order 1 in x modulo lower order terms. Therefore the forth term of (5.8)
time J':“(log ) U(H)dt is equal to

P2bareo(yoay’ —ay log ao)
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modulo terms passed into the terms a@ido, dizo and 42 at (2.1). The above results
combine to assert that the third line of (1.21)

adao(adi(a 1ao+b))ﬁ*’°(1og HUWdr
is equal to
$263(yoa;" —ay ' logao)

modulo terms passed to the terms aido, dizo and &z at (2.1), where ds=bso+bs1 is
a pseudodifferential operator of order 1 in x with a pure imaginary symbol.

Now we consider the forth line and the remainder terms at (1.21), the exact forms
of which are there at Lemma 4.4. We assume that Z-1, H1, aoH1, A1 and adao(H7)
are operators of order 0 satisfying (2.11) and that the commutators of them with ¢, a
pseudodifferential operator of order 1, are written as

adg(K) =a;1K1<D>+A’o

where X is one of them and &;(7=0, 1) are operators of order 0 satisfying (2.11). We
will prove it after the present proof. Then o and 4 at (4.57-58), namely, at the forth
line are operators of order 0 satisfying (2.11). The first term at (4.59) is included in the
terms a1do, 2 and a; 261 at (2.1) except for the part with respect to 22, because it
is equal to

a;l(b—t/lzbz —adao(a1)A)acH H!
+a;laddo(5—¢l2bz—adao(dl)/l)Hlfl_l

so that it is divided to @ time an operator of order 0 and ;' time an operator of order
1 modulo operators of order 0.

Yoo\ H Y =a 2bsao H1 H-+ay (cop?bet+p2er) L H1
with ¢j(=0, 1) pseudodifferential operators of order ; in x by the assumption (1.6).
The assumption to 71, ao/1 and A yields that
Yoo\ H ' =ay dpbet-ay " P2d]
with &7(7=0, 1) operators of order ;. The second term at (4.59) is an operator of
order 0 satisfying (2.11).
There are two types in the third term at (4.59), namely,
[ad/(8)+Aadao(ad/(a0))] H1
and
(2adao(ar)adA(a)+ Aadae(adh(d))] a3 Hi.
At the first one, adA()44adao(ad%(a1)) is equal to adA(y262) modulo product sums of

H-type operators. The consideration after (5.2) or (5.6), and the assumption to A
yield that the first one is divided among the term dsifbo and 2z at (2.1). The second one

is regarded as yi2ga; A1, where g is a linear combination of pseudodifferential operators
of order 1 in x with coefficients of product sums of H-type operators. It is equal to
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ay " WrgH1—ay adao(y? g)as Hy
so that it is passed to @ 'y241 at (2.1).

The term including Z is left. The exact form of Z exists at (1.17). By the as-
sumption (1.6) we have that

(5.9 adao(0) =y2b2f2+ Y2 1+ Yfoae+fo,

where f; and fi are pseudodifferential operators of order jin x. The term including
Zy1, Zs, Zs and Zs, that is,

f:“(zl 4 Zast Zst Zo) 11 aE U)W (log G H
is equal to
(X512 /et 10)ay"+ Sieo foiag | FCH Y,
where fi; are pseudodifferential operators of order 7 in x. Therefore it is passed to the
terms @y '261, a3 dwp?b: and d> at (2.1) because FGH-1=/-+H 1 H-* and because 4)

Lemma 3.6 are applicable to the change of places between a3 and other pseudodiffer-
ential operators. Since (d/d?) U(¢)+aoU(¢)=0, the integral by part implies that

ro“zszk-l U)W (og 1)dt
=a31ITZ§(t)t"‘1a$ U@ W (log )ds,

where

Zi(?)
:az'HJ-:)U(a)(adao)z(alao-l—b) U(—0)(k—(h—1)o|t)doay**.
By the assumption (1.6), Z§(?) is discribed as
s3] U(0) 2 U(—0)(b—(b—Dolt) doay?

with g; which are same types of operators as the right hand side of (5.9). Therefore
the relations (3.24-25), 3) of Lemma 3.2 and 2) of Lemma 3.6 yield that

j:“'zs(t)zh—l U@ W(log t)dt
=a;! ¢252j:“02(t)t’“1 ak U)W (log t)dt
+az DTG b U W log

+j:“Go;k-1ag U)W (logt)d.

Here G (7=0, 1, 2) are operators of order 0 and satisfy the conditions for G(¢) at Lemma
3.6 and also the conditions for fo at 3) of Lemma 4.2 with /==0 and with f1=1 so
that the terms corresponding to gi; at (4.16-17) are operators of order 0 and quasi-
commutors of §24:. Therefore we conclude that
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J:”Zs(t)t"‘lag U)W (log H)dtGH 1

is passed to the terms a@j'i261, ay' dap?be and e at (2.1), if it is shown that (4.17) is an
operator of order 0 and a quasicommutor of 24, from the condition that gi; are so.
The terms including Zz and Z, are passed to ag'24; at (2.1) because Lemma 4.2
is applicable to them.
The term corresponding to Z7 should be improved such that

Zr=3 11 j1 1 ag U(2)(log 1) (adk)i(arae+6) a5* U(—12)
+7;
and
Zi— (a1 UQ) j W (0)(ad )P ¥(ara0+-0)
X W(—0)(log r —0)?*+1 doay* U(—1).

At the first term, (ad%)/(z1a0+4) are H-type operators if 7>2 so that it is concluded
according to Lemma 4.2 that the term corresponding to the first one is one of &2 at
(2.1). The application of 3) Corollary of Lemma 3.5 to (ad%)2(@1a0+5) yields that

ak(adk)?*+2(a1a0+-b6) aly=¢

is a product sum of H-type operators so that it is an operator of order 0 and a quasi-
commutor of 24s. Therefore

(5.10) f:"'z,'ﬂ—lag U)W (log ) dtGH

=J':°° U@ W) dtf:“zk-l W) Uty dLH 1,
where
W(t)—=(2h+ 1)z—1f;°“'agW(o) @5 $as W (log 1— o) d(log 1—a)?*+1do
and
Wa()=ay" W(—log?)at.

Since it is checked by (4.31) that Wi(f) and Wa(f) are operators of order 0 and satisfy
the conditions of G(#) at Lemma 3.6, it is concluded that (5.10) is an operator of order 0
and satisfy (2.11), that is, it is passed to &2 at (2.1). q.e.d.

We give a note on the facts assumed in the previous proof.
Let R and ¢ be an operator of order 0 and a pseudodifferential operator of order 1
in x, respectively. We consider the case that ao, 252, ¢ and R satisfy the relation that

(5.11) adg(R)=a3 ' Ri{D>+Ro
adao(R)=LR:
Y202 R=Rap2b2+ R4{D)

and
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Ry2ba=y2b:R s+ Re{D),

where Rj(j=0, ---, 6) are operators of order 0. We assume that the sets of four ao,
P2b2, ¢ and one of R;(=0, -+, 6) also satisfy successively the relation (5.11) sufficiently
many times. Then we shall say only that R satisfies the relation (5.11).

Let us consider another relation for a function &(a, 7) in (o, 7) valued in operators
of order 0. It is that, for a pseudodifferential operator ¢ of order 1 in «,

(5.12) adg(R)y=1R{D>+Ro
adao(R)=R:
b2by R = Ratp2bo+ R (D
and
Rip2ba=yp2b:Rs+ R (D)
with R;(7=0, -+, 6) functions in (o, 7) valued in operators of order 0. We assume that

Rji(j=0, -, 6) also satisfy such a relation. We consider three such functions &, .S and
7, and ones generated finitely from them by means of the relation (5.12). We denote
the sets of such functions by £~, S~ and 77~. We assume for any triplet (&', .S’, 7)
of R~X.S™X 7~ that

(5.13) [ [Chaesrsri@fan - 1@j0r S NI @07y 771
X exp[(C—N)1]dodr<<4 o0
for any non-negative integer a, B and y.

Lemma 5.2. LZLef a triplet (R, S, T') of functions in (o, 1) valued in operators of
order O satisfy the above (5.13). Then

(5.14) G=ﬂ°° " RD.(S)Tdods
satisfies the relation (5.11).

Remark on Notations. @.(X) means the existence of pseudodifferential oper-
ators ¢o and ¢ of order 0 in a4 such that

B.(1, X)=Ulco, {1—0)|2) X Ulc1, £(1+0)/2).

Proof. 1t is trivial for G and ada«(G) to be operators of order 0 and especially for
adao(G) to have the same integral type as G.

= :«,[ ti[ad?(R)‘Df(S)T + RD(S)adg(7))dodr
+f :wf iF (adg)(@(S)) T dodr.

It holds for the second term that
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(5.16) adg(D.(.))
=1(r(1—0a)/2, do)D.(.S)
+P:(8I(—1(1+0)/2, 41)
+P:(adg(.5)),

where do and 4 are pseudodifferential operators of order 1 in x. According to Lemma
4.3 it is easily checked for 7=1/(zf(0), 4){D)~* with a continuous function f(c) in o that
it and functions generated by means of the relation (5.12) are bounded by Cexp(C7).
Therefore adg(G) is finite sums of two integral types

j:“f}m,(S) Tdodr{D>
and
[ " oS Tdodr,
where R, .S and 7" satisfy (5.13). The second one has the same integral type as G.
On the other hand we know the equality that
(9/3)P(X)
=—aoP(X)+(1+0)P.(adae(X))/2
—D(coX(1—0)[24+ Xc1(140)/2)
+@((8/9r)(X)).

This implies that
aoj:“j}k@(S)Tdadf
is equal to

_I :N,I- ti”" (8[3r)(P(S)) T dodr

modulo the same integral type as G.  The integral by part in 7 assures that it is also the
same integral type as G. We conclude that

adg(G) =dy G1{D>+ G,

where Go and G are finite sums of the same integral type as G. For the commutation
of G with 242, (5.15-16) hold if ¢ is replaced by 242 and if the notation adg(X) is read
as gX—X'g or ¢ X'— Xg with another operator X’ of order 0, while 7(¢, &) at (5.16)
should be replaced by

70 d)=j; Ulco—s)dUler, 5)ds.

Therefore R;(j=3, ---, 6) at (5.11) for G are also finite sums of the same integral type
of G. This fact applies inductively to assert that G satisfies the relation (5.11).
q.e.d.
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Lemma 5.3. 1) LZet fbe a function in o such that
41
Bi=[" 1 f 100t Modo< oo
with No at (4.63), and L; (j=0, 1, 2, --*) be
2i=[" f(adan)(®)do,
where V=W (log[(1+0)/(1—0a)])). Z/en
M}-1(adgs)(Z)

are operators of order 2h-\mr—1 if q» are pseudodifferential operators of order mr or ao
with mr=1. Their bounds are majorated by By. Therefore L; salisfies the relation
(5.11).

2) Let f be a function in (o, v) such that
JTI:W [(8/37) FI(1—0a2) Neexp[(C—A)7]dr<<+oo,
Then
M j:j:“ftif¢((3ddo)j(¥’))dadr

satisfies the relation (5.11).
3) H, H-\, H\, asH\, Hi and adao(H1) are operators of order 0 satisfying
(5.11).

Proof. 1) The results are guaranteed by Corollary 2 of Lemma 4.3.
2) At (5.14), we put R=f(1—0?)2%, S=V¥ and 7=1. Then they satisfy (5.13)
so that A/; has the relation (5.11).

3) They except for Z-1 are sums of two types of operators at 1) and 2) by their
definitions. Therefore they satisfy (5.11). For A-1, it holds that

adg(H-1)=—H-'adg(H)H1

with respect to g=ao, 22 or a pseudodifferential operator of order 1 in x. The results
for A imply ones for A1, q.e.d.

§ 6. Positive definite forms.
Here we prove the lemmas at Section 2.
Let 4 be a generator of one parameter semigroup
V(d, H=V({)=exp(—A4?),

and B be a symmetric operator on H°, We assume that 4 and B have a common core
S and that with a positive e

(6.1) Re(Au, u)>e(u, u),
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for any « belonging to S. Then it holds on S that

(6.2) (ad*V(@)B= —J‘:) V*(@—r)(ad*A)(B) V(7)dr
and
(6.3) (ad* ¥V (#)(ad* V(s))(B)

:j;jo V*(t+s—r—o)(ad* A)A(B) V(r-+0)dodr.
Remark on Notations.
(6.4) (ad*X)Y=X*Y—VX.
Let us define 41/2 by
(6.5) A 1/2=P(1/2)—1ﬂ"°a—1/z V(0)doA.
Then we have that
(6.6) Re(BAu, u)=(BAV2u, A1/2u)-+Re(R1A2u, 1)
=(BAY2u, AV124)+(1)2)(Rau, %)
for any # belonging to S, where
(6.7) Ri=(ad*A42)(B)

—I(12)127 [ w32 X (r)r,

X1(?) :J-’0 V*(¢t—1)(ad*4)(B) V(r)dr
and
(6.8) Ro=BA-+}+ A*B—2A4*1/2B 41/2

=r(1/2)—zz—zﬂ“ﬂ“z—a/zs—sz(z, $)dsdt,
X2, ) =M° V*(t4-s—r—o)(ad* 4)2(B) V(r+0)dod-.

Let us consider two other operators 4o and 4; with a common core S such that
(6.9) A1B—BAo=Z1 on S
and
A=(A40+4¥]2 on S.
Then we have that
(6.10) Re(BAozg, #)=Re(BAu, u)—2"1Re(Z1u, u)
for any « belonging to S and

(ad*A)(B)=(Z1—Z})[2 on S.
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Let B a symmetric operator be non negative and satisfy the relation with X and
Y operators of order 0 that

(6.11) BX—YB=2,

where Z is an operator of order /. Then Re(BXw, #) is estimated as with positive
constants pu and C,

(6.12) Re(BXu, u) < p(Bu, u)+CKDY'u, u)

for any » belonging to S.

In fact if we put do=p—X and 4,=p— ¥ and if we take p sufficiently large, then
A=p—(X+ ¥Y*)/2 is a bounded operator and Re(Aw, «)>e(x, x). Since V(A4,?) and
(ad*A4)(B) are operators of order 0 and of order |, respectively. &R141/2is an operator
of order /. This implies that

IRe(R1AY2u, u)| KC(KD>'u, u).
The fact that [(BA4%u, A1/2)| >0 yields that

Re(B(p— X)u, u)=>—C(KD>'u, u).
therefore, the conclusion.

Proof of Lemma 2.5. 2bs is positive and symmetric by definition. If we put
X=yig~1, then the above proves Lemma 2.5 because ({D)u, u) < C (b2, 2). q.e.d.

Proof of Lemma 2.1. 1t follows from the assumption (2.10) for 242 and ao that
adao(3b2co) =yup3beco+60{D),
where yo and 8¢ are product sums of H-type operators. Therefore

baco(log ao) —(log(ao—yo)lp*baco

and
(log ao)y3baco—ip3baco(log(ao+ya))

are operators of order 1 and the same results for (logao)* hold. Since logao—log(ae+
yo) and Imlog ao are operators of order 0 and satisfy the relation (2.11) from the above,
that is, (6.11) with /=1, we have that

2Re(f3b2c0 Log o, u)
>Re([h2b2c0+(P3baco) ¥ Log aouw, ) —C(h3b2u, ).
In fact
adLogao[(*2c0)*] =y1(2baca)* -+,

where y1 is an operator of order 0 and satisfies (6.11) of 7 with 342co and 81 is an oper-
ator of order 1. Therefore (6.12) with /=1 applies to Re(w, y)352coy12) so that Re(y}381,
%) and it are bounded by C(3b2%, ). Now we put

B=y3bsco+ (f3b2co)*+8ifs3
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with a sufficiently large constant 8. Then B is symmetric and non negative and satisfies
the relation with 4o=Logao that there exists an operator y2 of order 0 such that for
Ar=Aotys, Zy=A1B—BAo at (6.9) and also ad4;(Z1) (=0, 1) are operators of order
1 multiplied by 4% This implies according to (6.6) and (6.10) that

Re(BAou, u) >Re(BAV2u, AV 2u)—C 3 Dul.

Therefore we conclude that ||ll},.,, at (2.21) is positive definite on H°. The results for
llellezos and |l#llczoq are also shown more simply by means of (6.6). q.e.d.

Proof of Lemma 2.4. The statements 1) and 2) are already proved at Section 3.
The statement 3) is proved by applications of the above method to 4=logaes and B=

Re(fci—epeo). g.e.d.

Proof of Lemma 2.6. At first we part Ba into capeo(log ao)perda and the others.
The inner products corresponding to the others are estimated by |lz|3-+l]|2 accor-
ding to the assumption for 44 and Lemma 2.5. Since ||[¥|ls10y defines a norm on Ho,

| Re(espeo(log ao)perdban, v)|
< “lﬁeleu”nLoy ”t’sl/“ul_op.

If we substitute Logao for 4o and Re[(1+-ea)fcr—cheofecs] for B at (6.9), then the
assumption (2.8) applies the same way as the proof of Lemma 2.1 to prove that

llesvlleros < (1+52)”1’“0Loy-

On the other hand the form related to e1d4 is estimated as follows. Let B at (6.9) be an
operator consisting of

((9/38)52, (3]0x)62{D>~1, (3/0x0)b2KD>~1, b2{D)>~1)

on (Ho)2"+2,  And A4, is equal to Logao times the identity operator on (H%)2"+2, Then
the assumption (2.10) assures that Z is a system of pseudodifferential operators of order
0 in x and that 4 is a generator of one parameter semigroup and satisfies (6.1) if A is
sufficiently large. Therefore R, at (6.7) is an operator of order 0. And 41/2—4}/*
and 41/2*— 4;’? are also operators of order 0. If these apply the vectors consisting of
all same elements #, it holds that

|I¢e164ullfL,, <Re(fdeoe16a4Y 2u, 61644V 2u)+C(2bou, u),
where e16441/2 means ¢;8.A4/2 with some other system ¢7 of operators. Since
€164 AY* u=erbs(Logao)2u
in the above notation, the non negativity of Re(eov, v) implies that
”‘/'8154””01.03
<Re(Y3eoe1ba(Logan)t/2u, e1bs(Log ao)l/2u)1/2
+Re(3eoe1ba(AV2— A3 Yy u, e1b4(A 1’2—A;/2)u)1’2
+C(p2bau, u)1/2.
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Therefore it holds according to the assumption (2.8) that

herba2elleLog

<2(142e2)~1Re(P3baco(Log ao)1/2u, (Logao)t/2u)1/2
+8(n-+1)Re(f2baco(AV2—AY ®yu, (AV2—AY PYu)1/2
+ Clllaoul|+ilzlls).

Since (42— A% satisfies (6.11) with B=Reyi3b2co and /=1, it holds that

Re(y3boco(A12— AY?)u, (A12— AY%u) < C(llaou||2+lu]3).

We again use the proof of Lemma 2.1 conversely to get that

lperbazelleLog
<2(1+2e2)t||#llscLog+ C(ll@ozel| +l2ells).

Therefore we get the conclusion because

(1]
(2]
[3]
[4]

[5]

(6]

(71
(8]

e=1—(1+2e5)~1(1+£2)>0. qed.
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