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§ O. Introduction.

In this paper, introducing a  bimeromorphic invariant p ,  w e shall m ake a
systematic study of com pact Kdhler threefolds with 7 = - 0 0 :  For a compact
complex manifold X , we put 13(X)= Max (dim Y; Y  is a compact complex manifold
with tr(Y)_O and there exists a  generically surjective meromorphic map f :  X—>
Y I . Then, if dim X - 4, one can naturally find a generically surjective meromor-
phic map bx : X—>B(X) such that p(X)=dim B(X ) a n d  that f :  X—>Y  above
always factors through B (X ), (cf. 1.1.3 and 1.1.4 of § 1). We now assume that
X  is a compact Kdhler threefold. Then there exists a Zariski open dense subset
U  (resp. U ') o r B (X ) (resp. X ) such that :

(a) bx ,u ,: U'—>bx (U ')=U  is a  proper morphism, and furthermore
(b) for every u GU, the fibre b x - 1 (u) is irreducible and 3(b 1 - '(u))=0.

Thus, if  p(X)=1 or 2, general fibres of bx  a r e  ra tional. Therefore, it is natu-
rally expected that problems of 19 can be translated into those of degenerations
of rational curves or surfaces. In fact, via such translations, we shall prove :

(1) If  7: .g - >X  is a  finite étale cover, then 3 ( k )= 13(X ), (cf. Theorem 3.1.1).
(2) Let g : Z --6  be a  proper smooth morphism o f  M iller manifolds such that
g 1 (s )=X  fo r  some S E S .  A s s u m e  that p(X)=1 or 2. Then p(g - A s'))= 13(X)
for every s 'E S ,  (cf. Theorem 4.1.1).

Further results we obtained are the following :

( I )  Let X  be a compact Kdhler uniruled threefold. Then
(I-a) 13(X )= 0 if and only if  q(X )=h°(X , S 2 (Q1))=0, (cf. Theorem 2.1.5) ;
(I-b) P(X )= 1 if and only if  q(X )>h°(X , S1 2 (S21))=0 ;
(I-c) 8 ( X)=2 if and only if  h°(X , S"(S21))#0;
(I -d ) if 2r: X.'--.X i s  a  finite é ta le  cover, then 7  naturally induces a n  étale
cover b(7r): B(k)—*B(X) with deg b(7r)=deg 7 , (cf. Proposition 3.1.4) ;
(I -e )  if  g : Z—>S is a  proper smooth morphism o f  K n le r  manifolds such that
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g 1(s )=X  f o r  some s E S , then 13(8- 1(s'))= ,Q(X) fo r every s'E S , (cf. Theorem
4.1.1).
(II) ( c f .  Theorm  8.4.1). L e t  X  be a compact Kahler threefold with x(X )_0.
P u t 1= h " ( X ) .  L et r  be th e  rank o f  t h e  subsheaf o f  I21- generated by the
global sections H°(X , Q1), and we denote by (P : X ->Gr(1, 1-r) the meromorphic
map defined generically by

(P: X  --> Gr(1, 1-r)

x {wEH°(X , Qi); w(x)=0}  .

Then we have at least one of the  following :

(a) (X )= 2 ; (b ) r= /= 3 and ( X ) = 0 ;  ( c ) ; (d )  X  is  n o t uniruled
with r-=2< / and  the  meromorphic im a g e  T m  o f  0  has dimension at least 2.

Notation and Convention.
(0.1) Z = th e  se t o f all integers, Z,-=the set of positive integers.
(0 .2 ) g. c. d .( - )  (resp. 1. c. m.(• • .))=the greatest common divisor (resp. th e  least
common multiple) of ••• .
(0 .3 ) A  com plex  variety  is a n  irreducible reduced complex space, a n d  a  man-
if o ld  i s  a  nonsingular complex variety. N ote  that manifolds are always con-
nected. F o r  a  complex space X , w e denote by X r e d  its underlying reduced
complex space, and  an  analytic subset (resp. a  subvariety) of X  means a reduced
(resp. an irreducible reduced) analytic subspace o f X.
(0.4) For a com pact complex manifold X , a  t r ip le  (f : W->Y  , g : W ->X , Y °) is
called a  cov ering f am ily  o f  rational curv es on X  if  th e  following conditions
a re  satisfied :

i) both f  and g  are surjective morphisms of compact complex manifolds ;
ii) Y° is a  Zariski open dense subset of Y , and  f  is smooth over Y°;

iii) for every y G Y°, the fibre W y (=f  - 1 (y )) is isomorphic to P ' and dim g(W )
=1.

A com pact complex manifold X  is called  uniruled i f  there exists a  covering
fam ily o f  rational curves o n  X .  It is known that a  uniruled compact complex
manifold X  which is either Moishezon o r  a  threefold o f class C (cf. 1.2.1) always
admits a  covering family o f rational curves (f  ,  g : W ->X , Y °) on X  such
that g  is generically finite.
(0 .5 ) All modifications in this paper a re  assumed to be proper.
(0 .6 ) F o r  a  (possibly open) n-dimensional complex m anifold X ,  we write (or
=-0x(Kx) (=f2/), where K x  denotes t h e  canonical bundle o f  X . If  there is
no fear of confusion, w e  u s e  locally f r e e  sheaves a n d  vector bundles inter-
changeably.
(0 .7 ) Let f :  X ->Y  b e a  proper morphism o f  complex varieties. F o r  every
analytic subspace F  of Y , we denote by f " ( F )  th e  analytic subspace o f X  ob-
tained a s  th e  ideal-theoretic inverse im age of F .  In  particular fo r every y GY,
f " ( y )  is th e  ideal-theoretic fibre of f  over y .  T h e  set-theoretic inverse im age
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of F  is, however, denoted also by f - '(F ), if no confusion seems likely to result.
F o r  every  compact analytic cycle r o n  Y  (resp. X), we denote by f * (r) (resp.
f* (r)) th e  cycle-theoretic inverse (resp. direct) im age of r under th e  mapping f .
(0.8) Let f: X—>S be a  proper f la t  morphism o f  complex m anifo lds. F ix  an
arbitrary point s  o f S , an d  w e w rite the cycle f* ( s )  as E i l="i p ,r, with multiplici-
ties and  irreducible reduced cycles r, on  X .  Then the fibre X 3(=f - 1 (s))
is called a  multiple singular fib r e  i f  g. C. d. ([L 1 , f l i , ••• , fir)>1.
(0.9) Let f :  .)f.—Y  b e  a  meromorphic map of com pact complex varieties, and
le t F  be a  closed subvariety o f X  which is not contained i n  t h e  s e t  S ( f )  of
p o in ts  o f  indeterminacy o f  f .  Then th e  meromorphic im age of F  under the
meromorphic map f  denotes th e  closure o f f(F — S (f)) in  Y .  T h e  meromorphic
im age of X  under th e  meromorphic map f  is sometimes called the meromorphic
im age of f .
(0.10) "Closed" (resp. "open") means "closed (resp. o p en ) in  Euclidean topol-
ogy" and is distinguished from "Zariski closed" (resp. "Zariski open").
(0.11) L et X  and  Y  b e  co m p lex  sp aces . T h en  X  Y  m ean s th a t X  and Y
are  bimeromorphic, and X Y  m eans that X  an d  Y  a re  isomorphic, i. e., biholo-
morphic.
(0.12) We understand that th e  Kodaira dim ension of a point is 0.
(0.13) L et e be a  locally f r e e  sheaf o n  a  com plex variety X , a n d  L  b e  a
linear subspace of the global sections H°(X, e) o f e. Then th e  subsheaf of e
generated by L  denotes th e  sheaf of Ox -modules w hose stalk  at each  p o in t x
of X  is  the  Ox , x -submodule o f e x  generated by L.
(0.14) Let E =  {Z1 }  tET b e  a n  analytic  fam ily  (o f  divisors, cycles, fibres, etc.)
parametrized by a  reduced complex space T .  We say that general elements of

have  a  property, if  th e  property is possessed by every Z ,  whose in d ex  t
belongs to some countable intersection of Zariski open dense subsets o f T.

In  concluding this introduction, I wish to reco rd  my indebtedness to Pro-
fessors A . Fujiki, M. Miyanishi and K . Ueno ; their constant suggestions largely
improved this p ap e r. In  p a rticu la r , I learned from  Fujiki several interesting
facts o n  nonalgebraic com pact complex manifolds and also o n  Douady spaces,
(cf. 1.2.1, Step 2 of 8.3.1, and  § 9) ; and following a  su g g e s tio n  o f  M iyanishi, I
rewrote 91 from a re la tive point of view, which fairly simplified th e  proofs of
1.3.4 and 1.3.9; I am heartily grateful to Ueno, and  numerous stimulating discus-
sions with him immensely influenced this paper, (cf. 2.3.1, 8.1.1, and  § 5, -9 9).
Note that th e  study o f holomorphic 2-forms on  threefolds was proposed by him
[32], (cf. § 8 ) .

Thanks g o  also to Doctors T . Fujita and M . Ishida, with whom I was able
to  h a v e  fruitful conversations at M ontréal. In particular, Fujita pointed out a
gap in  our original version of § 5 and 6, and  Ishida gave m e several interesting
comments o n  § 2.

Finally, I wish to thank Professors S. Iitaka, S .  Kobayashi, T .  Ochiai, H.
Sumihiro, and Doctors Y. Kawamata, K . Maehara, T . Sugie for their encourage-
ments.
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§ 1. Basic fibrations.

The main purpose of this section is to define a couple of fibrations for com-
pact complex manifolds of dimension 3  or 4. Our construction of fibrations es-
sentially depends on the following : (  i  )  a  general reduction theory, (see for
instance F u jik i [6 ]) , a n d  ( ii)  th e  subadditive property of the invariant o f
algebraic varieties, (see Iitaka [12] and Ueno [30] for standard facts on K ). In
our actual treatment, the problem will be discussed more generally from a relative
point of view. Throughout this section, S  is assumed to be a  (possibly open)
complex variety.

Definition 1.1.1. ( a )  A  complex variety X  with a  proper surjective mor-
phism  7rx  : X—>S whose general fibres are irreducible is said to be an S-variety.
A n S-variety X  is called nonsingular if  X  is, ju st a s  a  complex variety, non-
s in gu la r . For S-varieties X , Y, Z ,••• , we denote the corresponding morphisms
onto S  by 7 X ,  r Y I  7 2 ,  • • ,  and a morpbism (resp. a  meromorphic map, a bimero-
m orphic map) f: X—>Y . is  c a lle d  an  S-morphism (resp. an S-meromorphic map,
an  S-bimeromorphic m ap) i f  7ry o f= 7 rx . Generically surjective S-meromorphic
maps f : X—>Y and  :1: .1Z-- f  are called S-bimeromorphically  equivalent if  there
exist S-bimeromorphic maps i: X .--d  and j: Y—  such that l o i= j . f .

(b) L e t  X  be a n  S -v a r ie ty . We define :  dim (X /S)=dim  X — dim  S , E(X IS )=
K(general fibre of 7rx ). If dim (X/S)=K(X/S), then X  is  sa id  to  b e  of general
type over S .  We furthermore define :

Exis—{(Y,
f :  X --37  i s  a  generically surjective
S-meromorphic map to an  S-variety Y } '

Axis= {(Y, f ) E S  xis ;  tc(Y/S)>=01 ,

p(X /S)=M ax {dim (Y IS ); ( 7  f ) AX/S}

A 1 3 =  {(Y, f ) E E X / S ,Y  is  of general type over SI ,

/(X /S)=M ax {dim (Y/S) ; (Y, f )E  kx/s}

(c) For any two elem ents (Y1, f1), (Y2, f2) f  z1-7 1 f  fo x i s ,  e t , 1*, 2 X - >Y 1  X  S Y 2  be
the S-meromorphic map defined generically by ( f 1 * f 2) (x )= ( f 1(x), f 2 (x))E Yi X 07 2

with x E X .  We furthermore denote by Y 1 *Y 2 th e  meromorphic image of f1*.f2.
Then (Y1*Y2, f 2 * f2 )  is naturally an element of Ex/3.

Proposition 1.1.2. L et X  be an S -variety  with dim (X1

(a) I f  (Y1, f i ) ,  ( Y 2 ,  .f2) EA x15, then (Y 1*Y 2, f1 * f2 )E A 1 1 5 .

(b) I f  (Y1, f i ) ,  (Y 2 , f2 )E A 'x 1 5 , then  (Y i * Y  f1 * f2 )E 4 'x i s .

Proof. The assertion is straightforward in the following three cases :

(1) dim (37
1*Y2 /S)=dim (Y i /S )  or dim (17

2 /S ) , (2 )  either dim (Y i /S) or dim (Y2 /S)
is 0, ( 3 )  dim (Y1*Y2/S)=dim (Yi/S) - Edim (Y2/S) (and therefore Y 1*Y 2 =Y 1 X sY2).
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In  view o f dim (X IS )4 ,  th e  only remaining possibility is

dim (17
1 *Y 2 / 5 ) =  dim (Y1/S)+1 o r dim (Y 2 /S)+1 .

Then by symmetry, we have only to consider the case dim (Y i *Y 21 S)= dim (Y  S )
+ 1 .  Replacing X, Y 1 , Y 2  by their suitable nonsingular models, we may assume
that both f ,  and f 2 a r e  morphisms of complex m anifolds. Let o :  Y 2 *Y2—Y2*Y2
be a  desingularization of Y 1 *Y 2 , and  Y 1 *Y22 -■Y 1--Y 1 be the Stein factorization of
pr i oa, where pr i  Y 2 *Y 2 —>Y1 (i=1, 2) denote th e  natural projections. N ote that
both (Y1, f1) an d  (Y2, f2) a re  elements o f A1 18 (resp. I fx 1 8 ) .  Applying Viehweg's
theorem [26] to th e  morphism obtained by restricting 1) to fibres over a  general
point of S, we see that

K(17 2*Y2/S)?—.K(Y1/S)+K(general fibre F o f y) ,

and therefore th e  proof of (a) (resp. (b)) is reduced to showing

K(F) 0  (resp. F is o f general type) .

Since F sits over a single  point of S, without loss of generality we may assume
that S consists o f  a  p o in t .  Choose a n  analytic slice X i n  Y  such that : =
zr '(E ) h as t h e  same dim ension  as Y 2  and that pre : 2—>Y2 is of maximal
rank at least at a  p o in t o f T . S ince K(Y2) ( = x(Y 2/S)) . 0  (resp. since Y 2  i s  of
general type), there exists a n  in G Z+ su ch  th a t t h e  complete linear system
I mKy 2 1 o n  Y , is nonempty (resp. such that th e  meromorphic im a g e  o f  O m  : Y 2

P N  (N =d im  mKy 2 1) associated with I mKy 2 I h as t h e  same dimension as 37
2 ).

For simplicity, we p u t 2=pre a l , . Taking I general enough, we m ay assume
that f o r  a  general p o in t y  o f E , the fibre 1,- '(y ) is smooth with th e  properties
(2*ImKy 2 1)1,—i ( 2 ) ( r e s p .  dim 0„ 1 (2(y - 1 (y)))=dim 1.)- '(y)) and K(y - 1 ( y ) ) = K ( F ) .  Now
b y  a b u se  o f  terminology, we have 2*1 inKy 2 I  mK2, I, a n d  hence in  view of
(K ),_1 ( 2 )

- K,,-1 ( , ) ,  we conclude that : K(F)=K(1.) - 1 ( y ) ) 0  (resp. F  a s  w ell as
z.)- 1 (y) is o f general type). Q. E. D.

Proposition 1.1.3. L et X  be an S-variety w ith dim (X I S ) 4 .  Then there
exists an element (B(XIS), bx1 5) (rasp. (B'(XIS), b'xIs)) of A 1 1 8  (rasp. 'G Is), unique
up to S-bimeromorPhic equivalence, such that f or every element (Y , f ) of  A11s (rasp.
A'x I s ), w e can f ind a generically  surjective S-nzeronzorphic m ap  h: B(XIS)-0 7

(rasp. h': B/(XIS) — +Y ) which makes the f ollow ing diagram  commutative:

rasp.

      

In particular, 13(X/S)=dim(B(XIS)1S) (rasp.  1 3/(X/S)=dim (13/(XIS)IS)).

P ro o f .  Since th e  proofs are sim ilar, we just consider the case (Y, f ) Axis.
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Choose (Yo, f x s such that dim (Y o/S)=P(X/S). Replacing X by its suitable
nonsingular model, w e m ay assume th a t f  and

 f 0  a r e  S-morphisms. Let XLYL
- - >Y0 be the S tein  factorization of f 0 : X—*Y0 . T h e n  fo r  every  (Y, f)EA.r/s, we
have the commutative diagram  o f S-morphisms :

Y *r, pr2

where pr , : Y*Y — *17 ,  denotes the natural projection. By 1.1.2, (Y*Y- , f*2)E AX/S.
H ence by our choice of Y o ,  dim Y*Y=- dim YL, i .  e., pr 2 is  generica lly  fin ite .
Now fo r  a  general point y of YL, the fibre 2- 1 (y) (-=(f*2) - 1 (PrV(Y))) is irreducible,
a n d  therefore  (degree  o f  pr2)= 1 .  T hus, iden tify ing  Y*YL and Y  v ia  th e
bimeromorphic map Pr2 and denoting by pr i : Y*Y the natural projection, we
obtain the following commutative diagram (modulo S-bimeromorphic equivalence) :

T hen  B(XIS): =.17  a n d  bxls: =2 have the  required properties. Q. E. D.

R em ark 1.1.4. (a) I f  S is  a single point then we denote  13(X/S), P'(XIS),
(B (X IS ), b115)  a n d  (B' (X/S), b 'x 1 8 ) s im p ly  b y  16(X), 13' (X ) , (B(X), b x ) and
(B'(X), b'x ) respectively. Note th a t p(X)=dim B(X) a n d  pi(X)=dim /31 (X ) for
d im  X 4 . T hroughou t ou r paper, for compact complex varieties X  of dimension

w e assum e the following rules :

i) I f  ff(X)>= 0, then (B(X), b1)=-(X, idx).
ii) I f  X  is  o f  general ty pe, then (B'(X),11x )=(X, idx).

iii) B (X ) is nonsingular unless X  is  a s ing u lar v arie ty  w ith  (X) 0.
iv) B '(X ) is nonsingular unless X  i s  a t  th e  sam e  tim e  s in g u lar an d  o f

general type.
y )  I f  dim X> 13(X)=2, then B(X ) is  an  absolutely m inimal complex surface.
vi) I f  dim X > p'(X )=2, then B'(X) is an absolutely minimal complex surface.

(b )  L et g:V—+TV be a surjective morphism o f Moishezon m anifolds w ith con-
nected f ib re s . T hen  there  a re  the  following conjectures of Iitaka :

1) K(V)._x(W)-1--x(general fibre o f  g).
2) If  /c(W ).0  and x(general fib re  o f g) 0, then x(V) 0.
3 )  If  W an d  a  general fibre of g  a re  both o f  general type, th en  so  is  V.

Note th a t  1) implies 2) and  3 ). L et X  be a n  S-variety such  that general fibres
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o f  r x  : X---6 (c f . 1.1.1) a r e  Moishezon. In view  of the proofs of Propositions
1.1.2 and 1.1.3, one easily  sees that (B(XIS), b 118)  (resp. (B / (X /S), V x/8)) as in
1.1.3 ex is ts  ev en  for dim (XIS)>4, if the conjecture 2) (resp. 3)) above is true.
R ecently  w e hear that Viehweg [29] refined the  result of K aw am ata [17] and
proved 1) above under the condition th a t W  is  of general type, though some of
his arguments aren 't c le a r . I f  w e assume h is  r e s u lt ,  th e n  3 )  i s  true, and in
particular (B'(XIS), bfi rl s )  as  in  1.1.3 always exists (independently of dim (XIS))
as long as general fibres of 7rx are Moishezon.
(c) For simplicity, we assume th a t  S i s  a  s in g le  p o in t . F o r  every (possibly
open) algebraic variety X , w e put :

=1 ={(17 , f )
f :  X—>Y is  a dominant strictly rational}
m ap of algebric varieties

Ax = {(Y, f) ,F x ; (Y)?•=0} A'x= {(Y, f) x ; k(Y )=dim  Y},

ig(X)=Max {dim Y; (Y , f  )  A x } , (X)=Max {dim Y; (Y , f )E ,

w h ere  k (Y )  denotes th e  logarithmic Kodaira dimension of Y, (cf. Iitaka [13]).
Since Viehweg's theorem [27 ] plays an  essential role in  the  proofs o f 1.1.2 and
1.1.3, i n  v ie w  o f  Kawamata's generalization [1 6 ] of th is  Viehweg's result to
open varieties, w e naturally expect that a  th e o re m  s im ila r  to  1.1.3 still holds
even if  w e replace A 1 18 ,  A'x18, 43(XIS), 13'(X,/S) by Ax, A ,b' (X ), 13'(X ), Such
a  theorem  ac tua lly  ho lds, though  a t p resen t w e  can  sh o w  th e  uniqueness of
(B(X), bx) and (13'(X), 5',,) only  up to  stric tly  birational equivalence (not proper
birational equivalence).

Proposition 1 .1 .5 . Let f :  X—>Y be a  generically  surjectiv e S-meromorphic
m ap of  S-varieties. Then there ex ists a generically  surjective S-nzeromorphic map
b(f): B(XIS)—>B(Y IS ) (resp. b'(f): B/(XIS)— MY ,/S)), unique u p  to  S-bimeromor-
phic equivalence, such that the follow ing diagram  com m utes:

X  y

B(XIS) B ( Y  IS) B'(XIS)  > - B ' ( Y / S )

Corollary 1 .1 .6 . L et X  be an S-variety w ith dim (XIS)_ 11. Then the generi-
cally  surjective S-nwromorphic m ap  bx l s : X-413(XIS) naturally  induces an S-
bimeromorphic map b'(bxi8):B / (X/S)=43'(B(XIS)IS).

Proof o f 1.1.5. The existence of b (f) (resp. b '(f)) is straightforw ard from
the universality of B(XIS) (resp. B'(XIS)), (cf. 1.1.3), and their uniqueness easily
follows from the  commutativity of the diagrams. Q .  E .  D .

lbyls resp. b'x i s 1 1 4 . 1 s

b(f) b'(f)

Proof o f 1.1.6. Since K (B '(X /S)/S )_0, the universality of B(XIS) says that
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there exists a  generically surjective S-meromorphic m ap g : B(X1S)—>B 1 (X IS)
with b 'x is=g ob x /s . Then the naturally induced meromorphic map b'(g):13/(B(X 1
S)/S)—>13/(B/(XIS)/S) (.13 / (XIS)) is the inverse of b/(b118). Q. E. D.

(1.2) We shall next study basic properties o f 48(X /S ) and  43 / ( X /S ) .  Recall the
following definition o f  Fujiki [31 :

Definition 1 .2 .1 .  (a ) A  com pac t complex variety X  is called of class C (or
shortly X EC) if  there exists a surjective morphism of a  com pact Kdhler mani.
fold onto X .  T h is  class o f varieties is known to have good functorial properties,
and  furthermore fo r every compact complex manifold of class C, its each com-
plex cohomology group has a  Hodge decomposition.
(b )  A  proper surjective morphism f : Y —>Z is called o f class C 1„  i f  f o r  every
point of Z , there exist its open neighbourhood U , a  Kdhler manifold /Wu , a prop-
er morphism g: M a —>U, a n d  a  su r je c tiv e  morphism h: M u --÷f - 1 (U )  such that
g= foil. A n  S-variety X  is called o f  class C l „  if  th e  morphism 7r x  : X - 6  (cf.
1.1.1) is o f class Ccoc.

Proposition 1 .2 .2 .  Let X  be an n-dimensional compact com plex  variety . Then

(a )  0 _ 18'(X )_13(X )__.n. (b ) I f  K(X) --= — c o , P(X )<n . (c )  I f  K (X )_ 0 , P(X )=n.
(d) Let X  be M oishez on. I f  K (X )=0, then 13/(X)=0.
(e) Let X E C  and dim ./1( 3. I f  K(X )=-0, then 13/(X )=0.

P ro o f .  (a), (b), and  (c) a re  obvious. Assume that IC(X )= 0 ,  and we consider
(d) and (e) at the  same tim e . L e t  f: X—>37  b e  a  generically surjective mero-
morphic map to a com pact complex m anifold Y  of general t y p e .  Replacing X
by its suitable nonsingular model, we may assume that f  is a  morphism. I f  X
is Moishezon (resp. I f  X e C  and  dim X_.<3), then a  theorem o f Kawamata [17]
(resp. Viehweg [ 2 8 ] )

 asserts that

0=x(X)K(Y)-1-K(general fibre of f)=dim Y+K(general fibre of f ) .

Since w e h a v e  a n  easy inequality h-,(X)_dim Y+K(general fibre of f ) ,  it now
follows that dim Y = 0 . Thus /3'(X )=0. Q. E. D.

Proposition 1 .2 .3 .  Let g: X—>Z be a surjective S-morphisnz w ith connected
f ibres betw een nonsingular S -varieties X  and Z .  Suppose that /3 (general f ibre of
g ) (resp. P'(general fibre of g )) i s  0. T hen f o r  ev ery  e lem en t (Y , f )  o f A118
(resp. the S-meromorphic m ap f  factors th ro u g h  Z , i.e ., f =h o g  fo r  some
generically  surjective S-meromorphic m ap h:Y  — *Z . In  particular, w e hav e:

(a) 13(XIS)= /3(Y  IS) (resp. 13 1 (X 1S)=- 13/(Y  IS));
(b) i f  dim (X IS).5.4, than b(g): B(X 1S)— >B(Y  IS) (rasp. b'(g): B'(X /S)— >B'(Y  /S))
is  an 5-bimeromorphic map.

P ro o f .  Replacing X  by its suitable S-bimeromorphic model, we may assume
that f  is a  morphism. Since both (Z . g ) and (Y, f )  belong to A113 (resp. A'xr. ),
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so does (Z*Y , g*f), (cf. 1.1.2). Let a: Z*Y—>Z*Y be a desingularization of Z*Y,
and we denote by Z*Y-1-'02 4 Z  the Stein factorization of pro cr, where pr i  : Z*Y

is the natural projection. Note that, fo r a  general point z of Z, pr i
- i(z)=

{(z, y )EZxY ; yef(g - 1 (z))). ( f(g - 1 (z))) is irreducible. Therefore p is a  modi-
fication, and furthermore v - '(p - 1 (z)) and f(g - 1 (z )) a r e  bimeromorphic fo r  z  as
above. Thus

(f (general fibre of g))=x (general fibre F  of v) ,

where the  right-hand side was already shown to be nonnegative (resp. dim F)
in the proof of 1.1.2. Then in  view of the fact that 8 (general fibre of g) (resp.
y  (general fibre of g)) is 0, it follows that f (general fibre of g )  consists o f a
s in g le  p o in t. We hence conclude that f  factors S-meromorphically through Z.
(a) and (b) above are now straightforward. Q .  E .  D .

(1 .3 ) Our last task in  this section is to study "general fibres" of bj c : X-43(X)
and b' : X-43'(X) for compact complex manifolds X  of class C with dim X - 3.

Lemma 1 .3 .1 . L et X  be a compact complex manifold with 13(X)=0.

(a) I f  dim X=1, then X P 1. ( b )  I f  XEC and dim X=2, then X  is  rational.
(c) I f  xErc and dim X =2, th en  X  is a surface of  class VII w ith K=

p ro o f . (a) is obvious. Note that, by 13(X)=0, we have  IC(X)= — co. Then
(b) and (c) are straightforward from the classification table of Kodaira [21].

Proposition 1 .3 .2 . L et g: V-411 be a generically  surjectiv e meromorphic
m ap of  com pact complex varieties, where V is nonsingular and W satisfies K(W)

0. Assume that at least one of  the following holds:

( a )  dim W_-<1, (b )  dim V — dim W  1 , (c) d im V 3.
Then there exists a Zariski open dense subset U (resp. U*) o f  W (resp. V ) such
that g i u .: U*-+g(U*)=U is a proper morphism.

Pro o f . If  (c) holds, then so does at least one of (a) and (b). O n the other
hand, it is a standard fact that if (a) holds, then g: V .—H/ itself is a morphism.
Hence we have only to consider the  case  (b). N ow by H ironaka [10], there
exists a  finite sequence of monoidal transformations with nonsingular centres

un-1 un-o te2
V n V n - 1 Vn-2 V1 V0=-V

such that the composite gop of g  with p:=pnopn_io •-• -p i  is a morphism of V,,
onto W . L e t E ç V n  be the  exceptional locus for the modification p, i. e ., E  is
a  purely 1-codimensional closed analytic subset o f V i , with codimv p(E)_>:.2 and

V  E  V  —  p (E ).  Since every irreducible component o f  E  i s  uniruled,
a n d  since K (W )0 ,  we have (go p)(E) W . Then U:— ( g  p ) ( E )  and U* : =
,u((gop) - '(U )) have the required property. Q. E. D.
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Theorem 1 .3 .3 .  Let X  be a nonsingular S -variety  o f class Ci o c . Assume that
dim (X IS) - 2. Let bxls: X — >B(X IS) be as in 1.1.3, and for each sOES, w e put
X 3 =2-c1

- '( s )  an d  B(X IS)3=(7s(xt 3)) - 1 (s), (cf. 1.1.1). Then there exists a Z arisk i
open dense subset U  o f S  having the following properties:

(a) rrx  is sm ooth over U;
(b) fo r  every point s  o f U , the fibre X , is not contained in the set of points of
indeterminacy of bx , s ;
(c) there is a natural binzeromorphic identification o f B(X IS) 3 w ith B (X 3 ) such
that the restriction (b x 1 3)1x 3 : X 3 —>B(XIS) 3 coincides with 1)1 0 : X3— q3(X3).

In particular 13(X 8 )= I3(X IS ) fo r  every sGU.

Pro o f . F ix  a  smooth fibre X , o f xx, (o E S ) .  F irst, let 48(X0 )= 0 : Then by
X 0 EC, X , is  rational. Since x x  i s  of class Ci „,  every sm ooth fibre X , of x x  is
again rational, and therefore w e m ay set B (X IS )=S  and b 1 1 3 = 2r1 . Secondly,
w e consider the case P(X0 )=dim X 0 : T hen x(X0 ) 0, and b y  Iitaka [11], x(Xg)

for every smooth fibre X , of x x . Hence in th is  case, w e m ay  se t B(X IS)
=X  and b x / s = id x .  T h u s , in  bo th  cases, the assertion of 1.3.3 is straightfor-
w ard. W e now  consider the following remaining case :

X , is  a surface with 13 (X0 )=1 (i. e., X , is  an irrational ruled surface).

Let U = Is ES ; X , is smooth} ,  Then every X , (sG U ) is a lso  an irrational ruled
surface. L e t  a , : X 0 —>Alb (X0 ) b e  the A lbanese m a p . Since dim (X IS) - 2 , a
theorem of Fujiki [4] says tha t there  ex ist an S-bimeromorphic model X ' of X
and a relative Albanese variety Alb (X '/S )  such that

(1) over U , the S-variety X ' contains x x
1-(U ) as a Zariski open subset,

(2) A : =A lb (X 1 S ) is  an S-variety, and furthermore
(3) the re  is  an S-morphism a :  X '—>A satisfying 1.4

- 1 (s)=Alb (X 0 )  and a l x3 = as
for a ll s

T hen the fibration -  A la (X , ) :  a(X ')—>S has a  nonsingular curve of positive genus
as a general fibre. Since general fibres of a: X '— >a(X ') are isom orph ic  to  P 1 ,
w e m ay  now  assume th a t  (B (X IS ), b x  3)=(a(X '), a), w here a  is regarded as a
meromorphic m ap from  X  to  a ( X ') .  One can easily check t h a t  (a ), (b),
and (c) above are all satisfied. Q. E. D.

Theorem 1 .3 .4 .  Let X  be a compact complex manifold of class C with dim X
3. Then there ex ists a Z arisk i open dense subset U (resp. LI 3 )  o f  B (X ) (resp.

X ) such that:

(a) bx ,u ,: U 3 —>bx (U *)=U  is a proper smooth morphism , and furthermore
(b) for ev ery  u G U , the fibre X =(bx iv .) - 1 (u) is irreducible and j3(X )=O.

Pro o f . In view  of 1.3.2, it suffices to show, assuming bx  to  be a morphism,
th a t  X „, is irreducible and satisfies 8 (X .)=0 for a l l  points u  o f som e Zariski
open dense subset U  of B ( X ) . This is obvious if 13(X )=0, and hence we may
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assume that 13(X )> 0 . N ote that, by t h e  universality o f  B (X ), every smooth
f ib re  o f  bx  is irreducible. Putting S=B (X ), we have dim (X I S )2 .  Then by
Theorem 1.3.3, there exists a  Zariski open dense subset U  o f S such that P(X.)
=- (X/S) f o r  every u  E U . N ow by V iehw eg [28], K(B(X/S)) K(S) 0, and
hence B(XIS) is bimeromorphic to S .  Thus P(X/S)=-0, and  this completes the
proof. Q .  E .  D .

Definition 1 .3 .5 .  ( i) L et X  be a n  S -v a r ie ty . Choose a  nonsingular model
(resp. X) o f S (resp. X ) such that x x  X---->S induces a  morphism 

Denoting by w 1 t h e  r e la t iv e  canonical sheaf wA„OFel *(co - ' )  of X over w e
naturally have a meromorphic map O m  : X—>P((iik.)* (0)1  )) for each mEZ ± . Let
s be a  general point of S .  Identifying s with th e  corresponding point in we
have the restriction of Om  to  the fibres over s :

)Z3 ----> P((iE Ï )* (co lS )),(=P (IP (Z„ (0C ) ) )

There now exists a n  mo su ch  th a t, f o r  all general points s o f S, m 0 L 3
 is

bimeromorphically equivalent to the  Iitaka fibration o f X , .  L e t Y  be th e  mero-
morphic im age  o f Om ,. T h e n  t h e  generically surjective 5-meromorphic map

: X(,-----4)—>Y is called th e  relativ e Iitaka fibration o f X IS  (see, for instance,
Ashikaga-Ueno [1 1).
(ii) A compact complex variety X  is said to be purely  non-hy perbolic i f  there
exists a  sequence of surjective morphisms of compact complex manifolds

f : , i=1, 2, • • • , r ,

such that th e  following conditions are satisfied:

1) X 0 is  bimeromorphic to X, and  X , is a  point ;
2) general fibres of each f i a r e  irreducible ;
3) if  i  is such that (general fibre of f )# 0 , then 13 (general fibre of f,)=0.

Lemma 1 .3 .6 . Let X  be a purely  non-hy perbolic compact com plex  variety .
T hen p '(X ) is  0 i f  either X  is  Moishezon or X  satisfies both XEC and dim JY1 3.

P ro o f . In  view of (a), (d), and (e) o f  1.2.2, th e  a sse r tio n  i s  a n  immediate
consequence of (a) of Proposition 1.2.3. Q. E. D.

Proposition 1 .3 .7 . Let X  be an S-variety such that one of the following con-
ditions is satisf ied:

(a) dim (X IS )_4  and general f ibres o f Irx  a re  Moishezon;
(b) dim (X/S).3 and X  is, as an S-variety, of class Cioc.
T hen there ex ists a sequence of generically  surjective S-meromorphic maps

f  : t —> X i  , i=1, 2, • •• , r

o f S-varieties such that

1) X 0 =--- X and dim Xi _i >dim X i  fo r  each i,
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2) X , is of general type over S,
3) i f  i  is such that x(Xi _1 lS )= -0 0 ,  then (X i , f i )= (B(X i _i lS ), b x 1 _1 1 8 ), and
4 )  i f  i  is such that ic(Xi_ 1 lS ) - 0 , then X1 _1 —>Xi is the relative litaka fibra tion
of X 1 /S.

Such a sequence o f m erom o rp h ic  711aPS  is unique up to b im erom orph ic equivalence.
Furthermore, fo r  each i, fr'fr-i°  •••  of i: X i-i— ar is b im erom o rp h ica lly  equivalent
to

P ro o f. Note that, by 3) and 4) above, a  sequence a s  above is well-defined
an d  u n iq u e  up to bimeromorphic equivalence, (cf. 1.1.3 and  ( i ) o f 1.3.5). Since
dim X< +00, such a  sequence stops exactly when a  varie ty  (-=-X7.) o f  general
type over S  first comes u p .  Applying Corollary 1.1.6 to the case x(X j _i /S)=-  —00
and Proposition 1.2.3 (b) to the case x(X i /S) 0  (see also (d )  a n d  (e ) o f  12.2),
we see that B '(X ,IS )( X,) S-bimeromorphically. Thus
. f r ' f  i° • • . f i  and b 1 is a r e  bimeromorphically equivalent fo r each i.

Q. E. D.

Tneorem 1.3.8. Let X  be a compact complex manifold o f class C with dim X
▪ 3. Then 13'(X)=-0 if and only i f  X  is purely non-hyperbolic.

P ro o f. T his is straightforward from Lemma 1.3.6 and also from Proposition
1.3.7 applied to the case that both S  and  B'(X ) ( Xr )  consist of a point.

Q. E. D.

Theorem 1 .3 .9 .  Let X  be a compact complex manifold of class C with dim X
▪ 3. Then there exists a Z arisk i open dense subset U  (resp . U * ) o f B '(X ) (resp .
X ) such that:

(a) b u . : U*-4b'x (U*)=U is a proper smooth m orph ism , and furthermore
(b) fo r  every uE U , the fibre X .= (b 'x iv .)'(u ) is ir r ed u b ib le  and I3'(X.)=0.

P ro o f. By th e  same argum ent as in  the form er half o f th e  proof o f  1.3.4,
w e  m ay  assume that 1) bix  i s  a  morphism, and  that 2) 13'(X)> O. Moreover, it
is sufficient to show that i3i(X.)=0 fo r a ll points u  o f some Zariski open dense
subset U  o f  B '(X ) .  We now apply Proposition 1.3.7 to  th e  case : S  is  a point.
Replacing X  by its suitable bimeromorphic model, we m ay assume that every
f i  i n  1.3.7 is  a  morphism of compact complex m a n ifo ld s . Since y(X )> O , w e
furthermore obtain dim X i —dim X ,,  fo r a ll i. In  view of Theorem 1.3.4 and
also of the deformation invariance of  ir for com pact complex surfaces, (cf. Iitaka
[11 ]), there now  exists a  Zariski open dense subset U  o f  B '(X ) such that X .
is purely non-hyperbolic fo r every point u  o f U .  Then by 1.3.8, t h e  proof of
1.3.9 is complete. Q .  E .  D .

Theorem 1 :3 .10 . Let X  be a  nonsingular S - v a r i e t y  o f  class C10 . Assume
tha t dim (XIS)_-< 2 .  Considering the m erom o rp h ic  map b'x I s : X -43'(X IS), we put
X s =7r x

- '(s) and .13/ (XIS),-=(713(xis)) - 1 (s) for each s E S. Then there exists a Zariski
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open dense subset U  o f S  hav ing the follow ing properties:

(a) r x  is sm ooth ov er U;
(b) fo r  every  point s  o f  U, the fibre X , is not contained in the set of points of
indeterm inacy  of b i s ;
(c) there  is  a natural bimeromorphic identification of B '(X IS ), w ith B'(X ,) such
that the restriction (bA-18)113 : X 7—>13'(XIS)7 coincides with WA -7 : X,—>B'(Xs).

In particular 13'(X 8)= 13'(X IS) fo r  ev ery  seU .

P ro o f .  In  view o f  1.3.3 and  ( i) o f  1.3.5, this is straightforward from 1.3.7
above. Q. E. D.

In  th e  appendix (cf. § 10), we shall generalize Theorems 1.3.3 a n d  1.3.10 to
the case dim (X IS )_3 with a  slight modification of the statement.

§2. Holomorphic differential forms on com pact complex threef olds.

For a com pact complex threefold X  o f  class C , we consider t h e  fibration
bx : X—>B(X) defined in  § 1. One then naturally asks how many of the holomor-
phic differential forms o n  X  come from B (X ). T h e  answer is

Theorem 2.1.1. Let X  be a 3-dimensional compact complex manifold of class
C w ith p (X )>0 . T hen fo r  a l l  m, the meromorphic m ap  bx : X—>B(X)
induces the following isomorphisms:

(1) 14: H ° (B(X), f21.4(x))=•-'11° (X ,&'

(2) : H°(B(X), Sni(S2f ( x ) )) H °(X , S 7m(Q11)).

Remark 2.1.2. ( i) For the  case  »z 2= 13(X), the original statement of our
theorem was much weaker than the  above. We owe th e  present improvement
to Professor Ueno, (cf. 2.3.1).
( ii) The case m > 1 = (X ) remained open until recently. Thanks to a  result
o f Kawamata [18], we managed to finish this case.

(iii) L et in, p E Z + ,  and  we p u t m '= 7 1 1 .p .  Since both anda n d  S m (S 2) are

vector subbundles o f 0 [ 4 ,  t h e  proof o f Theorem 2.1.1 is reduced to showing
just the  case p = i  o f  (1) above.

It is plausible that Theorem 2.1.1 is true even in  th e  c a s e  ,e(x)--o. Thus
we raise th e  following :

Conjecture 2.1.3. Let X  be a  3-dimensional compact com plex  m anifold of
class C. I f  p(X )=0, then h 7 °(X )=0.

This conjecture is true, for instance, if one can prove :

Conjecture 2.1.4. Let X  be a  3-dimensional compact com plex  manifold of
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class C w ith K (X )=-0 0 . T hen X  is  uniruled.

Because we generally have :

Theorem 2.1.5. Let X  be  a 3-dimensional uni ruled compact complex manifold
o f class C, and let q(X ) denote the irregularity  o f X . T h e n :

i) I f  13(X )=0, w e have h°(X , S 1m(Qi))=0 fo r  all m EZ ± .
ii) 13(X)=0 if and only  i f  q(X )=h°(X , S2 (Qi))=0.

iii) 13(X )=1 if and only  if  9(X )>h ° (X , S 12 (Q1))=0.
iv) p(X)=2 if and only  i f  h°(X , S"([2 i))#0.

(2.2) In  order to prove 2.1.1 and 2.1.5, w e  sh a ll s tu d y  holomorphic differential
form s in  a  m ore general setting:

Definition 2.2.1 Let f :  X—>Y be a surjective morphism of compact complex
manifolds with connected f ib re s . F ix  a n  a rb itra ry  m EZ ± . F o r  every purely
1-codimensional closed analytic subset 4(=U 14 i ) of Y  with its irreducible com-
ponents 4 ,  w e define  an  effec tive  divisor Zif ,,,„eD iv (Y ) a s  follows :  Express
each P (4 i) a s  E,n 2: 1 [4.5E0 with multiplicities po E Z .,. a n d  p r im e  divisors
Div (X ) .  W e n u m b er E i i ; j=1, 2, •-• , n i ,  s o  t h a t  { j ;  f  m aps E i ;  on to  d i } =
fjE Z ; for some integer k i w ith Let vi ,„, be Min {[m(p i i -1 )
/p i ]; 1 kil, w here fo r every real num ber 2, t h e  sym bol [2 ]  denotes the
largest integer which does not exceed 2 . W e now  put J f ; 1 m = E 7„,:=0,i ,1m,i i .

Proposition 2.2.2. Let f : be a surjective morphism of compact complex
manifolds with connected f ibres, and 4  b e  a p u re ly  1-codimensional closed analytic

subset of Y . L e t  m, p E z + . Suppose (vEH°(X, Sni(S2 21„)) (resp. cuGH°(X, 716 0 1 .
is such that wi x _ f - 1

( i ) is ex pressible as f*(0) for some 0EH°(Y  —4, Sm(S2P)) (resp.

I H° (Y —4, D P)). T hen  0  ex tends to 0/EH ° (Y , (S21',) (4 )) ( re s p . 0'

H°(Y QP)(4 f ,,,))) with (v= f*(0'), where H°(Y , 5 1m(,(n)(4 f ,m ))(resp. H°(Y  , Q?)

(4 f ,,,))) denotes the space of all those meroinorphic sections to Sm (Q) (resp. 7('j;)'  (2 1,3)
on Y whose possible poles are only  along 4 and of order at m ost vi ,„, at each Zli .

Corollary 2.2.3. Let f :  X--A7  b e  a surjective morphism of compact complex
manifolds with connected fibres. Let U  be a Z arisk i open nonempty subset of Y ,
and OEH°(U, ( p E z + )  b e  su ch  th at f *(0) (EH°(f  - 1 (U), W I)) ex tends to  a
global holomorphic section (vEH°(X , Q 11). T h e n  0  ex tends to a global section
O'EH°(Y  , S2) such that (v=1*(0').

Proof  o f 2.2.2. Since Sm(Sn) and Sm(QP) are regarded as vector subbundles

o f  76 S 4  and 8,94 respectively, we may just consider the case wEITP(X, S271).
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Now, using the notation in  2.2.1, we fix a  general point e i ;  o f  E i ,  with
and Choose a  sufficiently small o p e n  neighbourhood V  o f  e i ;  i n  X

( re sp . U  of f ( e )  in  Y )  with a  system of local coordinates (x 1 , •-• , x 1 )  (resp.

(Y i, ••• , Yi,)) such that (1) x 1 -= 0  ( re s p . y = 0 )  is  the local equation o f  E i , i n  V

(resp. 4  in  U ), (2) f (V )= U ,  (3) f*(h)— (1/p 0 ) •x e o , and (4) f*(3 , 7 2 ) . = x 7 2  for 2 - _a

(where n = d im  Y  and  /= d im  X ) .  L et J I  ( re sp . .03) be th e  se t o f  all subsets
o f  {1, 2, ••• , ( r e s p . { 1 , 2 ,  • • •  ,  n }) o f  ca rd in a lity  p , and  Jim  ( re s p . 3 7m) be the
product Ax ••• X 4 (resp . g  X  ••• X 3) of ni-copies of ,A ( r e s p .  _B). F o r  each
A = { a ,  ••• (resp . B =  {p i , ••', } B )  w ith  a i < ••• <a p  ( re sp . Pi< •- •
<pp), w e put

dx A -=dx,„,Adx„A ••• Adx, p  ( r e s p .  dy,B-=dYp 1 AdYP2A ••• AdYg) •
777 7m

We finally define dX A H°(V, Q 11 ) (re sp . dY B E H ° (U, Q 7,3)) by

dX A = d x A 1 O dx A 2 0  • ••® dx A .  (resp . dYli=dyB 4O dYs,®  •• • OdY.R„,)

f o r  every  A =  (A i , A ,, ••, ( re sp . B = (B i , B,, ••• , g m ) .  Then
{dX A  ; A ,Ânt} (resP. 13; B  gm} ) forms a  local base over U  fo r  th e  vector

bundle (73).S21
2), (resp. Q?), and the Laurent expansion of 0  is given by

0 =  E  E  ha.k•Yi k •dYB,
B e g in , 1z — co

w here each  hB , k EC [IY 2, y 3 , • • •  3, ,i] ]  i s  a  holom orphic  function on U .  Note
that, by w e  have the inclusion _B Ç J1 . Since f*(dy i)=x il'i3 -1 • dx j , one can
associate, to each BE gm, a n  in teger r (B )  w ith  0 7(B) m(te, 2 - 1 )  such that
f*(dY  B)= xir (B ) • dXB . Thus

+.0
w = f * ( 0 ) =  E  E  (1 /tio ) k .f *(hB , k )• x i .7± " B ) • d X B  •

B e g n i k =- .0

In  view of w E H ° ( X ,  O ff ) , th e  holomorphic function h g , k

f o r  those (k , B )E Z X  g m  w h ich  sa tisfy  kp i ,± r (B )< 0 .
— nz(pi, - 1)Ipi ) ,  then h g ;  k = 0 .  Hence

y  ,[77,•(tq.) - 1 ) P , )3) • 0 E H°(U .

Since this holds for every j  { 1 ,  2 ,  • • ,  k , }, it follows that y ,'"  .• •  E H ° (U , 761)..QP).

Varying i ,  we now conclude that 0 E H°(Y , DIf )(LI!  . ) ) . Q. E. D.

Proof  of  2 .2 .3 . L et J  be the union of all those irreducible components of
Y — U which a re  1-codimensional in  Y . S in ce  codim y ( ( Y - 4 ) — U ) 2 ,  every w c
H°(U, Q P ) extends to  a  holomorphic section in H°(Y— J ,  f n ) .  We now apply
2.2.2 to m = 1 .  By 4 f ;  i = 0 ,  the assertion of 2.2.3 immediately follows.

Q. E. D.

o n  U  m u st vanish
In  p a rticu la r , if  k <

Before getting into th e  proof of 2.1.1, we here define a  few  notions which
feature rational curves or surfaces.
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Definition 2 .2 .4 .  (  i  )  A compact complex manifold X  is  sa id  to  have Pro-

perty H, i f  h°(X, 8[4)=0 fo r a ll m  Z + .
(ii) F ix  an  arbitrary  positive integer p .  A compact complex manifold X is said
to  have Property (H — p) (resp. (H ' —p)), i f  h°(X, ,(2 )= 0  f o r  a l l  q=1, 2 ••• , p
(re sp . h°(X, Sm1(S2 1)®Sm2(S2i)0 ••• ®SmP(Q 11 ) )= 0  f o r  a l l  nonnegative integers
m i , in , •-• , nz, such  tha t (mi , 102 , ••• , in,)# (0 , 0 , • 0 )).

Rem ark 2 .2 .5 .  Straightforward consequences o f our definition are:

( i ) every unirational compact complex m anifo ld  has Property H;
(ii) every nonsingular K3 surface has Property (H ' - 1), (cf. Kobayashi [191);
(iii) P ro p e rty  II im p lie s  (1P— p) (and in  p a rticu la r (11— p)) f o r  a l l  p E z + .

Now we com e to th e  following theorem which is a  m ain  ingredient of 2.1.1.

Theorem 2 .2 .6 .  Let f :  X—>Y be a surjective inorphisin o f com p a c t complex
manifolds w ith connected fibres. F ixing positive integers p and in arb itrarily, we
assume that general fibres of f  have Property H (resp. (H — p), (1P — p)). Then

every element co in H°(X, asp, (resp. H°(X, 11°(X, Sm(Q))) is expressible

as f*(0) fo r  some 0 in  H°(Y , ( n6  Q p )( i f , 70 )(7 -e sp . H °(Y, S2p), H °(Y , Sm (4)(4 f , .) ) ) ,
w h e re  4  is  the analytic subset o f  Y  consisting o f  a l l  1-codimensional components
o f f({xEX ; f is  n o t o f m ax im a l ra n k  a t x}) in  Y , (and see 2.2.1 fo r  th e  defini-

tion o f  f ; .). I n  p a r t ic u la r ,  i f  dim Y<p, th e n  h°(X, Q )  (resp. hy•°(X),
le(X, Sm(Q 71))) is  O.

Corollary 2 .2 .7 .  L e t f: X—>Y be a surjective morphism of com pact complex
m anifolds w ith connected fibres. P u t p o =dim X—dim Y .  Suppose general fibres
o f f  have Property (11— p0 ). Then f  induces th e  isomorphism f*: H°(Y , S2f,)-
H°(X, D3r ) f o r  each p E z + . In  p a r t ic u la r ,  i f  X  is  o f  class C, then X(X, 0)=

X(Y, 0).

Corollary 2 .2 .8 .  Let f :  X -0 7  b e  a surjective morphisin of com pact complex
m an ifo lds w ith  connected  fib res . P u t p o =dim X—dim Y .  Suppose that general
fibres of f  have Property H (resp. (11' — p0)) and tha t, in  term s of the notation in
2.2.1, the analytic subset d o f Y  a s  in  2.2.6 satisfies the fo llow ing condition:

( ) F o r every iE  {1, 2, ••• , there exists j  {1 , 2 , ••• , such that p = l .

Then f  induces an isomorphism f*: H ° ( Y ,  S4 H '(X ,  [4 )  (resp. f*: H°(Y ,

(Qi3)):H°(X, Sm(Q3.)) f o r  each in, pEZ + .

P roo f o f 2.2.6. Since proofs are sim ilar, w e just consider th e  c a s e  co H°
(X, 5m(S211)). F ix  a n  arbitrary sm ooth fibre f - '(o), oEY , an d  le t V  be an open
neighbourhood o f o i n  Y - 4  w ith  a  system  o f  lo c a l coordinates (y 1 ••• , y.)
(n = d im  Y ). Choosing V  sm all enough, we write f - 1 (V) as  a  u n io n  U  U 2 of its2EA
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coordinate o p en  subsets U 2 w i t h  lo c a l coordinates ( f* ( y i ) ,  f* ( y 2 ) ,  • • •  f* ( y . ) ,
X2 ; 2, • • •  ,  X2 ; 1) (/=dim  X—dim Y ). L e t „A (resp. g )  be the set of all (possibly

empty) subsets of {1, 2, • • • , (resp. 11, 2, •-• , n1), and for each A =  {a1, a2, • ,  as}
(resp. / 3 2 ,  • • •  pt} E  g )  with a1<a2< ••• < a s  (resP. 481<132‹ ••• < pe),

we put

l A i = s =  cardinality o f  A  (resp. /31 = t =  cardinality of B)

and

dx 2 ,A =d x 2 ,,A d x 2 ; a 2 A••• (resp. dy B =-dyp i A dyp,A  ••• A dy f i t ),

where dx2 ; ( r e s p .  dy e,) denotes the constant function 1 o n  .12 (resp. V). Let
g  be th e  s e t  { (A , B)e,A X  _B;141H-IBI=p } , and g , (q =0 , 1, ••• , p )  be its subset
defined by g q = { (A , B )Eg" IA I=q } .  We denote by Yr the se t o f  all set-theoretic
maps o o f  g  into Z .,U {0} such that ( A . . 5 . 0(A, B )=m . F o r each 0 E T  and

qE {0, 1, ••• P}, Put 1 0 1 , =  E  0(A , B ). Then is endowed with the  follow-
(A , B)ETq

ing  partial order :
L et 0 , 0 ' P .  Then 0 > 0 ' if  and  only if Max lq ; 101,*10'1,1 =Max {4 ; 101,.

> 1 0 '1 ,}  0 , where Max (empty set 95) denotes —1.

We now write 0#o)EH°(X, Sm(S2 11)) in  th e  form

w =  E  ( g 2 , 0  H  ( d x 2 , A A f * (
dyB V ( A , B))

oew (A , 13) E g

f o r  some g a ,,b .H°(U 2 , 0). L e t E  be the subset { 0 E  ;  g2, 0 *OEH°(// 2 , 0) for
some 2E Al of Vf , and we fix a  maximal element o f E .  F o r each q e Z + ,  we
put

{leol, if q p ,
rn,=

0 if q>P

A t  each p o in t  y  o f  V ,  we define o,,, 2 E.Ho(x v n u  s.,(sji,do os..(Q L ))
(where X ,= f - 1 (n)) by

v; 2
=

(, g 2; 0 IX <  A , B)eg ( d x  
a; v o c A,e)

Then the local sections {cf,„z ; 2E A l a re  glued together to define a  g lo b a l sec-
tion 0.,EH°(X,, Sm1(S21, v )0 • •• 0,Snin(S2 )). F o r  a  general V  E  V, the fibre X v  has
Property (H I  —p), a n d  hence m 1 = m 2 -=  • • •  = m = =O. T h u s ,  a ,  i s  a constant
holomorphic function fo r  all ye V , and furthermore the maximality of implies
that every element o f  E  is again  m a x im a l in  E .  T h e n , repeating t h e  same
a rg u m e n t a s  above, we can write (,)— If-i(v)— f*(0) fo r some 0 E H°(V, Sm(Q13)).
Since Y — J is covered by such V 's outside a n  analytic subset of codimension
_>_2, it now follows that 0).--1X -f  I (y )  — f*(0) fo r some 0 EH°(Y — J, Sm(S2f)). The
assertion of 2.2.6 is hence straightforward from 2.2.2. Q. E. D.

Proof o f 2.2.7. Since p o is dim X—dim Y, general fibres of f  have Properties
(11—p) f o r  a l l  p e Z + . Then f*: H°(Y  , S2p)_=H°(X, (p Z .,)  immediately
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follows from 2.2.6. I f  X  i s  o f  class C , th en  so  is  Y , a n d  hence X (X , 0)=
E(-1)Ph"(X )=E (-1 )Ph"(Y )=X (Y, 0). Q. E. D.

Proof  of 2.2.8. O ur assumption on  p t ,'s implies that 4j ; m=0. Then 2.2.8 is
a  straightforward consequence o f 2.2.6. Q. E. D.

(2.3) We shall now prove 2.1.1. T he  first important observation is due to Ueno
and  says that the condition (#) o f 2.2.8 is satisfied for those f  whose general
fibres are isomorphic to P '  (cf. the proof o f 2.3.1 below). In particular,

Theorem 2.3.1.*) L e t  f : X — >Y  be a surjective m orphism  of compact complex
manifolds such that (general f ibre):.--'13 '. T h e n  fo r  all m , p  z + , w e have the iso-

morphisms f* Qi")=-'-1/0(X, W ic )  and f*: H°(Y  , Sni(S2))---11°(X , SI"(Q)).

P ro o f .  In  the  below, we use the notation in 2.2.6 (a n d  also 2.2.1). F ix  a
general p o in t y  of 4 ,  a n d  choose a  holomorphic curve T= {r(O ;< 1 }  em-
bedded in  Y  so that in tersects 4  tran sversa lly  a t ju st o n e  p o in t  y i =r(0)=
T h 4 .  Then f :  f - 1(1")--,1' i s  a  proper morphism o f  complex manifolds with
dim F=1 and (general fibre) Pi. Hence t h e  divisor f*(r(0))E Div ( f - i(F ) )  cor-
responding to the central fibre f - 1 (7(0)) has a  component of multiplicity 1. Since
the restriction of f*(4) E Div (X ) to f i (P )  is exactly f*(r(o)) E Div ( f - i (r )), it then
follows that ,tt„ -=1 fo r some jE  {1, 2, • • • , k } .  Noting that P '  has Properties
I I  and (1 l' —1), we now conclude from 2.2.8 that f *  induces t h e  required iso-
morphisms. Q .  E .  D .

Next, using Kawamata's improvement [18] o f  Manin's results, we shall
show  the following :

Theorem 2 .3 .2 . Let X  (resp. Y) be a compact complex 3-dimensional manifold
o f class C (resp. a nonsingular projective curv e), and f: X .—*Y . b e  a  surjective
m orphism  w h o se  g en eral f ib re  is  an irreducible nonsingular rational surface.

Then for all m , p  Z +, we have the isomorphisms f*: H°(Y  ,  S 2 f ) .--- ,!H°(X , . Q 71)
and f*: H°(Y  , Sn'(QP) H°(X, Sm(S2 1k)).

P ro o f .  Since Y  is algebraic, and since general f ib re s  o f  f  a r e  Moishezon
with irregularity 0, it follows that X  is also Moishezon. Then by Kawamata
[18], every singular fibre of f  contains a n  irreducible component o f multiplicity
1. Thus, the condition (#) o f 2.2.8 is satisfied. In  view o f ( i ) and  (iii) of 2.2.5,
we now conclude from 2.2.8 that f *  induces th e  required isomorphisms.

Q. E. D.

Combining Theorems 2.3.1 and 2.3.2, we thus obtain :

Proof  of 2.1.1. Replacing X  by its suitable bimeromorphic model, we may

*) W e here thank Professor Ueno who pointed ou t that this theorem is true for m>1.
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assume that bx : X -43(X ) is  a  m orp h ism . If  p (X )= 3 , then bx =id x , and hence
the  isomorphisms (1) and (2) are obvious. Therefore we consider the remaining
cases : 19(X )= 1 , 2 . Then by 1.3.4, general fibres of bx  a r e  r a t io n a l .  Theorems
2.3.1 and 2.3.2 now finish the proof. Q .  E .  D .

(2 .4 ) We shall finally prove 2.1.5. F o r  later purposes, a  l it t le  m o re  general
situation will be considered.

Definition 2 .4 .1 . L et in, n, and  p be positive integers such that p n .  Let
X be an n-dimensional compact complex manifold w ith h°(X, Sm(S2 71)) 0.
i) A  nonzero element 0 in  H°(X, Sm(S23.)) is said to be neatly (resp. very neatly)
foliated if there exist a p-dimensional compact complex m anifold Y , a generically
surjective m erom orphic m ap f: X--4Y, and a meromorphic (resp. holomorphic)
m-ple p-form 0  in Ignero(Y, wy® r n ) (resp. H°(Y, Oly ° 7 4 ) )  such that 0=1*(0.
ii) L et T*(X ) denote th e  cotangent bundle o f  X .  (Hence DP,=O x (APT*(X)).)
Consider t h e  mapping p m  : A PT*(X)—>S 1n(A  PT*(X )) defined by /. (v)=vni for
each vE A PTI(X ) and  x  X .  A  nonzero element 6 in  H°(X, Sm(Q)) is said to
be of purely multiple type if  one  o f the  following equivalent conditions is satis-
fied:
(ii-a) 0(x) E lm ageu m  f o r  every x E X.
( ii-b )  There exists a Zariski open dense subset U of X such that, for each

is locally written a s  rim' fo r some germ 77E

Remark 2 .4 .2 . It is easily seen that, in 2.4.1 above, a  nonzero element 6 in
H°(X, Sm(S2)) is  o f purely m ultiple type, for instance, if either m = 1  or 6  i s
neatly foliated.

Theorem 2 .4 .3 . Let X be an n-dimensional uniruled compact complex manifold
such that h°(X, Sm(Q3,- 1 ))*0  fo r  some mEZ + . Then any nonzero element 0E
H°(X, Sm(Q1- 1 ) )  which is of purely multiple type is very neatly foliated.

Proof. Step 1 :  L et D  be the Douady space o f X  which parametrizes the
closed analytic subspaces o f  X .  L et p i : Z -4 3  b e  t h e  corresponding universal
fam ily  w ith  a  natural embedding Z g D x  X , w here p i  coincides w ith (resp.
pz : Z—.X denotes) the restriction to Z  o f th e  natural projection D (resp.
D x X — X ). N ow , b y  the uniruledness of X, there exists a  covering family of
rational curves (f : W—>Y, g:W—>X,Y°) o n  X, (cf. (0.4)). We define a  complex
varie ty  r  to be the im age of the m orphism  g X f : W—a . X Y  which sends each
w EW to (g(w), f(w)) Xx Y . Let Tc : r - .3 7  be the restriction to o f th e  natural
projection X x Y — >Y . Then, m aking Y° smaller i f  necessary, we may assume
that 7r is flat over Y ° and furthermore that the  fibre  7-c- 1 (y ) is reduced fo r every
y E Y ° .  N o te  th a t  7r- 1 (y)=g(W y ) X  {y} fo r  y  E  Y ° . Hence we h av e  a  natural
m orphism  :  Y°— ./J which sends each y e Y °  to 2(y): =g(W r ) eD , where g (W )
is regarded  a s  a n  irreducible reduced rational curve o n  X .  Moreover, this
extends to a  generically surjective m erom orphic m ap o f  Y  to  som e compact
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subvariety S  o f  D .  We now p u t Z s=pV (S ), p 's=piiz s ,  and  p.,14 -=p2izs . Note
that general fibres of p : Z s —+S are (possibly singular) irreducible rational curves.
I n  t h e  next step , we shall show that the surjective morphism Zs—a is  a
modification.

S tep 2. Since 0  is  o f purely multiple type, we can choose a  Zariski open
d en se  subset U  o f X  a s  in  (ii-b) of 2.4.1. Making U  smaller if  necessary, we
may assume that U g g ( f - 1 (Y °))n { x E X  ; 6(x)#0 and g  is smooth over x } .  Con-
sider t h e  s e t  Z g := W 1(U)npV (2(Y °)) which contains a  Zariski open dense
subset o f Z s . Note that, if  we can show  the injectivity o f  pig,,zg: zg—u, then
p :  Z s —a is  a m odification. Thus, for contradiction, w e assume that :

(*) p',4]4  : Z . -->I/ is not injective, i. e., there exist points y ',  y "  of Y° such that
g ( W )  and g ( W )  are distinct curves o n  X  which pass through a  common point
uo o f  U.
Put C = g ( W )  a n d  le t  C °  b e  it s  Zariski open dense subset { cECnU ; c  is  a
nonsingular point of C  and g iw v ,  is  unramified over c } . T ak e  a n  o p e n  neigh-
bourhood V (E U )  o f  u o w ith  a  system of local coordinates (x 1 , x2, ••• , x n ). For
a small enough V, 191 v  is expressible a s  rim fo r some H ° ( V ,  S21- 1 ). We write

72= i  h i dx ,A dx 2 A  •-• A c Îx i A  •••  A d x , w ith  h i EH°(V , 0),

and  then define a  nonvanishing vector field z-EH°(V  , T (X )) o n  V  by

h i (alax t ).

F ix  a n  arbitrary point c  o f C °nV , and choose an open neighbourhood N  (Ç V )
o f c  in  X  with a  system o f  lo c a l coordinates (.1, 562 /  • • •  : i / )  such  th at C  is
defined by .2"2-=i' o = •-• = =0 on N .  Fix furthermore a point bE W ,, with g(b)=c,
and  le t N ' (resp. N ") be an open neighbourhood o f b  (resp. y ')  w ith  a  system
of local coordinates (w 0 ,  w 1 , ••• , w 1)  ( r e s p . (y1, yz, ••• 3, 1 )) (where /=dim Y ) such
that :

(1) f (N ') .N ", g (N ')E .N , and
(2) g*("X" ,)=-w i _i  fo r  1 in  a n d f* (3 ,, )= w , for

L et g  be th e  se t o f  all those subsets o f  {1, 2, ••• , 1}  w hose cardinality i s  n-1,
a n d  f o r  each  J= { j„ j 2 , , E g  (where 11 < 12<  ••• < In - i), w e  p u t dlY j =
dw ,,A dw ,,A  ••• A dw i . Since every fibre of f  over Y° is isomorphic to P 1 ,
a n d  since P ' has Property (JP —(n — 1 ) ) ,  (cf. 2.2.4 and 2.2.5), Theorem 2.2.6 as-
serts that g*(0) 1 f -1 ( y 0) is  w ritten  a s  f *(e) fo r so m e  EH°(Y°, 5m(DV 1)). Hence,
on N ', w e have

g*(0)= E q,
1 2

... j  •  dW ,
1 2
di ••• d  j  ,  with qj i j , m EH °(N ', 0),

771 

w here t h e  summation is taken over all ( L ,  . h , • - •  , • • •  X  g . Thus,
there a re  n o  dw o 's  in  the expression o f  g*(0), a n d  therefore i n  v iew  o f th e
equalities
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g*(cL ii)=dw o a n d  g*(0)1N, = (g *( ))M ) N ,

we can write the  value ri(c) o f  77 a t  c  in  th e  form

77(c)=ad 2 Ad 3 A ••• a C*.

Since C is locally defined by .7i,= • • •  = i ' „ = 0  on  N , it  fo llo w s th a t 7 (C ) is
tangent to C a t the  poin t c. Note that c  is  a n  arbitrary point of C€71V. Thus,
in  a  neighbourhood o f  uo i n  V, th e  curve C  (=g (W ))  sits in  a  sing le  orbit of
th e  lo c a l 1-parameter complex analytic group generated by 7. Similarly, the
same thing is also true o f th e  curve g(W y .). Since both g ( W )  and  g(W  ,.) pass
through u,, we then have g(W )=g(W  y .) in contradiction to our assumption (*).
We now conclude that pg, is  a modification.

Step 3. Choosing suitable desingularizations t i :  g - 6  a n d  t2 : 2 s —Z s  o f  S
and Z s  respectively, we obtain a  morphism fi's  : p o c , of 2 s  onto g .  Since
general fibres of p's  a r e  irreducible rational curves, (cf. Step 1), th e  same thing
is true of . Then by Theorem 2.3.1, we have an isomorphism (fi's )* : H°(., Sm
(12r ) ) -='11° (25, S N ,Q •L ')). O n the  other h an d , b y  S tep  2 ,  p'.4.t z : 2 3 — a. i s  a
modification. It is now straightforward that our w is expressible a s  (fi's o (p .
(2)- 1 )*(gb) fo r some (i) H°(g, S m (Q r) ) . Thus, w is very neatly foliated.

Q. E. D.

Corollary 2 .4 .4 . Let X  be an n-dimensional uniruled compact complex mani-
fold such that h°(X, Sm(SP1- ')) ± 0  fo r  some In Z 4.. Suppose one of the following
conditions is satisf ied: (a) X  is Moishezon; (b) X  is of class C together with n=3.
T hen P(X )=n-1.

Pro o f . In  view o f (0.4), there exists a  covering fam ily o f  rational curves
(f  ,  g : W - - > X ,  Y ° )  such that g  is generically finite. Fix a nonzero element
0  o f H°(X, Sm(S2 71- 1 )). Since dim Y =  n -1 , a n d  since general f ib re s  o f  f  are
isomorphic to T h e o r e m  2.3.1 shows that the element g*(0) of H°(W , Sm(S4- '))
is o f purely m u ltip le  typ e . N o te  th a t g  i s  é ta le  over a  Zariski open dense
subset o f X .  Hence 0  is also o f purely m ultip le  type . Then by Theorem 2.4.3,
0  is very neatly foliated. From  the  definition o f  p(X), we now obtain p(x)=
n -1 . Q. E. D.

Once w e have this corollary, th e  preceding 2.1.5 easily fo llow s from  Cas-
telnuovo-Enriques criteria o f rationality o r  ruledness o f surfaces :

Proof  of 2.1.5. i) is straightforward from Corollary 2.4.4 above. Next note
that 13(X)=0, 1 or 2 by th e  uniruledness o f X .  ii): Suppose q(X )=h°(X , S 2 ([21))
= 0 .  Then by q(X )=0, we cannot have 13(X )= 1 . Moreover one obtains i3(X)*2,
because otherwise Theorem 2.1.1 would imply that q(B(X ))=h°(B(X ), ws n ))=0
in contradiction to K(B(X)) 0. Thus we have P (X )= 0 . T h e  other implication
of ii) is immediate from i) above and 2.1.1. iii): Suppose q(X )>0=h°(X , S"(S21)).
Then by q(X )>O, the  case  p(X )=0 does not o c c u r . Furthermore p(x)3=2, be-
cause otherwise 2.1.1 would again imply that h°(B(X ), (oBtii)=0 in contradiction
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to  tc(B (X ))_ 0 . T h u s p (X )= 1 . T he other implication of iii) is immediate from
2.1.1. iv) :  Suppose h°(X , S 12 (S2i)) 0. T hen  p ( X )  0 b y  i), and moreover p(X)
* 1  b y  iii). Thus 13 (X )= 2 . T he  other implication of iv) is immediate from 2.1.1
and Enriques criterion. Q .  E .  D .

§ 3. ta le  invariance of p.

Theorem 3.1.1. Let f :  .)Z—>J1C be an  étale cover of compact complex manifolds
o f  dimension 3. A ssume th at X  is  o f  class C .  T hen w e have:

e ith e r (1) A(Z)= 15(X )-=0 and dim X =3
or (2) the natural meromorphic m ap b(f): B(X)—>B(X) defined in  1.1.5 is an
étale morphism satisf y ing the equality  deg b(f)=deg f .

In  particular, the equality  A (k)=13(X ) always holds.

In  th is theorem , w e very  reasonably  expect that (2 ) ab o v e  h o ld s ev en  in
the situation (1). Thus

Conjecture 3.1.2. Let f :  21Z—>X be an  étale cover o f  compact complex mani-
folds o f  dim ension_3. A ssume that X  is  o f  c lass C . T hen the meromorphic map
b(f): B (X )-41(X ) is again  an  étale morphism and satisf ies deg b(f . )=- deg f .

T he  only open case of th is  say s th a t an y  compact complex threefold X  of
c la ss  C  w ith  p(x)=13 admits conjecturally no  nontrivial finite étale coverings.
Now concerning this 3.1.2, w e can  show  the following :

Proposition 3.1.3. If  Conjecture 2.1.3 is  true, then so is 3.1.2.

Proposition 3.1.4. Conjecture 3.1.2 is  true  f o r all those X  which satisfy  one
of  the follow ing conditions (a) dim X . 2, (b) x(X) 0, (c) X  is  uniruled.

(3 .2 ) Before proving 3.1.1, w e here give a basic information of the degeneration
of certain compact complex manifolds w hich  include, fo r  in s ta n c e , unirational
ones.

Theorem 3.2.1. L e t V  (resp. S ) be a com pact complex m an if o ld  o f  c lass C
(resp. an irreducib le  nonsingular projectiv e curve). P u t  p=dim V -1 , and let
g: V—>S be a surjective morphism w hose general f ibre is irreducible and has Prop-
erty  ( i l - p ) ,  (cf. 2.2.4 (ii) and 2.2.5 ( i ) ) .  T hen g  has no m ultiple singular fibres.

P ro o f .  For contradiction, w e assume th a t a  m ultip le  singu la r fibre  g - i (so)
(so E S )  ex ists , i. e ., t h e  la rg e s t positive in te g e r  e  div id ing  g*(s 0)  in  Div (V)
satisfies e 2. F ix in g  a  general smooth fibre F=g - 1 - (s 1) (s, S), w e have an  e-
fold abelian covering 7r: g—>S w hich is unramified over S— {so , 5,} a n d  has just
one point e g  w ith  ram ification index e  over each  s, (i=0, 1), where g  is
nonsingular. Let y :  V—W' X s g  b e  t h e  normalization o f  V X s g ,  a n d  if : 17—V
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(resp. k.: 17,g) b e  t h e  composite o f  I) w i th  th e  natural projection V x s g-÷V
(resp. V x s g -.3 '). T hen one easily checks th a t  1) 1-/ is nonsingular and 2) is
ram ified just over t h e  b ra n c h  locus F  w ith  m ultip lic ity  e. N o w , fo r  every

coherent sheaf e  o n  V  (resp. 17), w e denote by td (e )=E  td (e ) (resp. id(e)=-i=0 i = 0
Teli (e)) the total Todd class o f E o n  V  (resp. 17). L et S y  be  th e  sheaf o f ideals
defining P= k- - V i )  in V .  T h e n  b y  the exact sequence 0->g*(f21

1,-)-44->cipl(S -p)e
->0, w e obtain td(f2iti)=. g*(td(S2i

14)•id(Spl(S-p)e). Since SP is the pull back k*(sa i )
o f th e  ideal sheaf o f  :5'1, SPASPY is expressible a s  a  d i r e c t  su m  o f  (e-1 )-
copies of op. H ence Fa(SPA 5PY)=1+((e - 1)/2)• ci([P]), w h e r e  ci(CPIEIP(17  ; Z)
denotes th e  Poincaré dual of i n  17. P u t  n =dim  V .  S ince , fo r  th e  ta n g e n t
bundle T S ')  (resp. T (V )) o f  17 (resp. V), one has i d , (Q )= ( - 1 ) i  i (T (17)) (resp.
td1(W )= (-1 ) 'td 1(T (V ))), it then follow s that :

i'd.(T(17 ))= g * (td,,(T(V))) - ((e - 1)/2)•ci(LP1)• g*(t d n-i(T(V)))

Rewriting th is  by  Riemann-Roch's formula, we obtain

0 )= 6 4 (T (f7 )))Cril-=-(td,i(T(V)))(g*Cf71) - ((e - 1)12)(td„-i(T(V)))(g a l )

=e•X(V , 0)- ((e - 1)12)(td,i(T(V)))[F] .

Since F has trivial normal bundle in V , ci(F)=ci(V)IF holds for all i=1, 2, ••• , n-1.
H ence (td 1 (T (V )))[F ]= (td .-1 (T (F )))1F ]=X (F , 0 )=E  ( -1 ) i h i .° (F)=1. Thus
X(17, 0)=- e•X(V , 0)-((e -1 )/ 2 ). LO n t h e  o th e r  h a n d , 2.2.7 show s th a t X(1-7, 0)=
X (, 0) and X(V, 0)=X(S, 0). W e now have X(S', 0)= e • X(S , O)-((e -1)/2), i n  con-
trad ic tion  to  the form ula of Hurwitz 2X (, 0)=2eX(S, 0)-2(e-1) applied to the
ramified cover Tc. Q, E. D.

I f  p = 1 , a  little  m ore general statem ent is possib le . In  fac t, in  the  proof of
Theorem 2.3.1, w e have already (implicitly) shown th e  following :

Proposition 3 .2 .2 .  Let g : V -->S  be a proper surjective morphism of complex
manifolds with (general fibre):--' Pi. T han there ex ists a Zariski open dense subset
S° of  S such that codim s  (S -  S ' )  2 and that g  over S° is flat and has no multiple
singular fibres.

(3 .3 ) W e next prove a  lem m a w hich is a  k ey  to  th e  proof o f  Theorem 3.1.1.

Lemma 3 .3 .1 .  L et a f inite group G  act holomorphically on compact complex
m anifolds X  an d  Y  so  th at  the  action  on  X  i s  f re e . L e t  f :  X-.17 b e  a  G-
equivariant surjective morphism whose general f ibre is irreducible and has Prop-
e rty  (H - p ) ,  w here p=dim X-dim  Y . A ssu m e  that e ither p = i  with (general
f ibre o f  f )E C  or, i f  p # 1 , Y  is projective algebraic w ith X E C .  T hen G  acts
freely  also on Y.

Pro o f . L et H= Ig EG ; g  acts identically on  Y1, a n d  choose a  sufficiently
general smooth fibre F of f. Since H acts freely on F, we have X(FIH, 0)• deg H
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=X (F, 0 )= E  ( -1 ) 1W .°(F )= 1 . Hence H=111, i. e ., G acts effectively o n  Y .  For
contradiction, we now assume that the G -action on Y  is not f r e e .  Then there
exists an  element i# T E G  which fixes a point y° of Y . Let T =11, r , 12 , • • •  ,  7 , - 1 1

be the cyclic subgroup of G generated by r (where r =  rl = th e  order of 7) and let

p : r GL(T y o(Y))

p(r)
b e  t h e  isotropy representation o f  T  o n  th e  tang en t space T o (Y) a t y ° .  Put
C=exp (27cA/ —1/r) and Z r = {0, 1, •  ,  r-1}. Then for a suitable C-basis {e 1, e2, • en}
of T o(Y ), the  element p(r) is expressible a s  4 (i1,12, ••• , in) fo r some (11,12, • • • in)

Z r X  Z r X  • • • X  Z r —  { ( 0 ,  0 ,  •  •  •  ,  0)} w ith n =dim Y, where J(11,12, • • • , GL ( 1 ,  C)
denotes the diagonal matrix with each a-th diagonal element equal to Va. Here
w e  m a y  assum e that • •• an d  le t Y r denote th e  fixed point set of
the T-action on Y. Then an irreducible component W  o f th e  nonsingular analytic
se t Y r p asses  through y° so that T o(W ) is  the eigen space of p(r) correspond-
ing to the  e igen  va lue  1 . Now the  following two cases are possible :

Case 1 : i 1= i 2 = = i n _1 = 0 .  Then W  (Ç_Y r) i s  a  divisor E Div (Y )  passing
through y°.
Case 2 :  1 1 # 0 .  In  th is case, let cr i  : Y 1- 0 1. b e  the (T-equivariant) blowing-up
o f  Y  along W , and let q=M in {a ; i a 0 } .  We then denote by y l the point on
crY (y°) which corresponds to th e  line e , in  T o ( Y ) .  Since y '  is  a  fixed point of
the T-action on Y ,, considering the  isotropy representation

p' : ---> G L (T  ,i(Y  i ))

r p'(r)
o f T  a t th e  p o in t y ', we can express the im age p ' ( r )  of r as the diagonal matrix
4(i;, i , •-• , i;,) fo r  a  suitable C-basis of To(Y 1), w here i'a =i a  ( i f  1_-_ct.- q )  and

i'a = ,  (if q < a n ) .  Note that i a'
a=1 a = 1

Thus in  view of Cases 1 and 2, one always obtains a  finite sequence 0-=

al° • um : 2--2—,•11-1 Y 0=Y  of T-equivariant blowing-ups
such  th at a n  irreducible divisor 0*D ED iv (Y .) is contained in  th e  fixed point
se t Yr. of the T-action on Y . .  B y  a  theorem of Hironaka [ 1 0], corresponding
to the T-equivariant meromorphic map o'of  X — >Y ,,, there exists a T-equivariant
modification p :X '— a  such  th at h d e f n  f o p :  i s  a (F-equivariant)
morphism of compact complex m anifo lds. T h is h  naturally induces a morphism

:  X' I T — >Y  T , and  together with th e  canonical quotient m orphism s 7c: Y.—*
y m i r  and  7•C' : r, our h  and h form th e  following commutative diagram :

X ' 7'
121

Y .
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Here I" acts freely o n  X ', an d  in  particular x y r  is nonsingular. O n  th e  other
h an d , since D  is  an  irreducible component o f th e  nonsingular analytic set 17- „
the  finite morphism 7  is ramified along D  with ram ification index r ( 2) and
the  corresponding branch 7r(D) is contained in  the regular locus (Y„,/r)re g

of ym ir . We now choose a  sufficiently general holomorphic curve S = W O; Iti
< 11 embedded in  ( Y .. /F ) , ,  such that th e  following conditions are satisfied :

i) S  intersects 7 r ( Y )  transversally at only one point a(0)=Sn7r(D);
ii) a  general fibre of 17/ 1T-i ( s )  : 1-2 1(S)—>S i s  a p-dim ensional com pact complex
manifold with Property (H - p) ;
iii) if  p#1, then S  is  a  p a r t  o f  a  nonsingular projective curve sitting in Y nt .

Note that, by i), h - 1 (S ) is  a  complex submanifold o f  (ym/r),,,. In  view of the
above commutative diagram, ii) shows that h iT_I c s ,  has a multiple fibre over a(0)
with multiplicity divisible by r. B ut then this contradicts 3.2.1 a n d  3 .2 .2 . We
now conclude that G acts freely on Y. Q .  E .  D .

(3.4) We shall now prove 3.1.1, 3.1.3, and 3.1.4.

Proof  of 3 .1 .1 . Choose a  finite étale cover h: X *— d o f  .g  such that foil,:
X*—>X is a norm al covering. Denoting by G th e  group of covering transforma-
tions o f X* over X, we obtain X * IG =X . Note that there exists a  subgroup H
o f G satisfying X *IH=-X- . We shall first eliminate the following obvious cases :
C a se  1 . p(X *)=0 with dim X*_- _2 : Then either dim X * = 0  o r  X *  is rational
(and hence simply connected). Hence X*-=.)Z-- - X .  (2) of 3.1.1 now holds.
Case 2. 13(X*)=0 with dim X*=.3 : In  this case, (1) of 3.1.1 is obviously satisfied.
C ase 3. p(X *)=dim  X *: Then ff(X ) -- x(.g)=x(X*) - 0 . Hence B(X )=X , B()Z)=X ,
and b ( f )=f , (cf. 1.1.4). We consequently have (2) of 3.1.1.

Thus we have only to consider the  remaining case 1._3(X*)< dim X * 3 .  Then
B(X *) is either a  nonsingular curve o f  g e n u s 1  o r  a n  absolutely minimal com-
plex surface of IC _>_0, (cf. 1.1.4). In particular, every bimeromorphic transforma-
tio n  o f  B (X *) i s  biholomorphic. Hence each g E G (g A ut (X *)) induces a
biholomorphic automorphism b(g) o f B (X *) (cf. 1.1.5) in such a  way that the
corresponding G-action on B(X *) makes the m erom orphic m ap bx .: X*—>B(X*)
G -equivarian t. We now choose a G-equivariant modification p: X**— , X * such
that bx .. p: X **— >B(X *) i s  a  (G -equivarian t) m orphism  of com pact complex
m a n ifo ld s . Since G acts freely o n  X**, and since general fibres of bx *.p have
Property (H -p)p) with p=dim X**—dim B(X *) (cf. 1.3.4), Lemma 3.3.1 then as-
serts that G  acts freely o n  B (X *). Since the morphism X5—>X (resp. h
X *— d) is  G-invariant (resp. H-invariant), the corresponding G-invariant (resp.
H-invariant) meromorphic map b(f .h): B (X *)-43(X ) (resp. b(h): B(X*)—>B(X- ))
naturally induces a  generically surjective meromorphic map j o  B(X *)1G--*B(X )
(resp. : B(X*)IH—>B()Z)). O n  th e  other h an d , since t h e  canonical quotient
m orphism  qG : B(X *)-43(X *)1G (resp . qH : B(X*)—q3(X,K) IH )  is  unramified, the
inequality x (B (X *)).0 implies K(B(X - )/G).>_0 (resp. K(B(X* )I H ) _ 0 ) .  Hence by
t h e  universality o f  B (X ) (resp. B(X )), there naturally exists a  generically sur-
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jective meromorphic m ap from  B(X ) (resp. B ( ) )  to  B (X*)IG  (resp. B(X*)I H).
T hus j G (resp. /I f )  is  bimeromorphic. Now the  following two cases are possible :

C a se  (a ) . P(X*)=1 : T hen  j G a n d  j H  a r e  both isomorphisms.
Case (b). 13 (X *)= 2 : Note th a t  B(X), B(k), B(X*) a re  a ll m inim al m odels. In
particular, j G (resp. 1H )  is  a  m odification. Since qG (resp. qH )  is  unramified, the
nonsingular surface B(X*)IG (resp. B(X*)I H) is  a g a in  a  m inim al m odel, and
therefore j G a n d  j H  a r e  isomorphisms.

T hus in  both cases, w e  have Jo: B(X*)IG B (X ) and j :  B (X * )IH B (k- ). Via
these isom orphism s, b(f): B ( ) —>B(X) coincides with th e  natural quotient mor-
phism q: B(X*)IH--÷B(X*)IG. Hence b (f) is  a n  étale morphism sa tisfy ing  the
equality

deg b(f)=- deg q=  — deg f . Q. E. D.

In  the  above proof, one can easily  see  that i f  p(X)=2, w e  d o n 't  n e e d  the
assum ption that X  is  o f  class C .  Thus w e have :

Corollary 3 .4 .1 . Let f :  X--, X be an  étale cover of compact complex 3-dimen-
sional manifolds. A ssum e that 13(50=2. Then 13(X )= 2 an d  furthermore the
natural meromorphic map b(f): B(5)— .8(X) is  a n  é tale  morphism satisfying
deg b(f)= deg f.

A s to  3.1.3 and 3.1.4, w e need th e  following lemma :

Lemma 3 .4 .2 . Conjecture 3.1.2 is true if h2 0 (X)=0.

P ro o f. In  view  o f 3.1.1, we may assume p(X)= p(X)=0 and dim X (=dim  X )
= 3 . T h e n  r(X)= — c o  a n d  dim Alb (X )= 0 . H ence h3 ' 0 (.X ')=  h "(X )= 0 . Since
f ( G C ,  i t  fo llo w s  th a t  1=1— h "(X )+  2h ,0( .2Z)_h3,01 ,

=
 Z(X , 0)= (deg f)•Z(X, 0).

Thus deg f = 1 ,  e . ,  ) Z=X and f= id x . W e now obtain deg b(f)-=1=deg f.
Q. E. D.

Proof o f  3.1.3. In  view  o f  3.1.1, w e m ay assume 8 (X)=0 and  dim X = 3 . If
2.1.3 is  true, then h 2 '°(X)=O and  hence Lemma 3.4.2 finishes th e  proof.

Q. E. D.

Proof o f  3.1.4. In  view  o f 3.1.1, th e  proof is reduced  to  show ing  3.1.2 on
t h e  following assumption : X  is uniruled w i t h  p(5 )= -0 a n d  dim f(---3 .
Now, since P 1 is sim ply connected, every rational curve in  X  c a n  b e  lif te d  to
an o th e r i n  X ,  a n d  in  particu lar th e  uniruledness o f X  im plies that X  is also
uniruled. Then 2.1.5 asse rts  tha t h2 , 0 Cit = O. B y  L e m m a  3.4.2, th e  proof is now
complete. Q .  E .  D .
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§ 4. Deformation invariance of p.

The purpose of this section is to prove the  following :

Theorem 4.1.1. Let f: X—>S be a proper smooth surjective morphism of com-
plex manifolds with irreducible fibres. For each sES , w e put X 0 = f - 1 (s). Fixing
an arbitrary  point oE S , we obtain:

I) I f  dim then 13(X 0 )=-13(X0 ) fo r  every  sES .
) Assume that dim X 0 =3  and furtherm ore that the morphism f  is of class -

(cf. 1.2.1). Then:
I I -a )  I f  I3(X 0 )-=1 or 2, 13(X 8 )=p(X 0 ) fo r  every  sES .

-b) More generally , i f  X ,  is uniruled, then p(X ,)=p(X o ) fo r  every  sES .
-c) If 13(X0 )=0  and if sE S  is such that K(X ,)=-00, then 19(X 8 )=0.

Remark 4.1.2. A  proper smooth surjective morphism f: X — >S o f  complex
manifolds with irreducible fibres is of class C/„ , for instance, if every fibre of
f  is Moishezon o r if  X  is Kdhler, (cf. Fujiki [5]).

(4 .2 ) We first consider I)  o f  Theorem 4.1.1: Since the  assertion  is  c le a r  for
dim X, we may assume that dim X0 = 2 . Now, three cases are possible.
Case 1. 13(X 0 )=2  (i. e., x(X0 ).>_0) : In this case, b y  th e  deformation invariance
of x, (cf. Iitaka [11]), we see that ff( X 3 ) 0  (i. e., 13(X ,)=2) for every s E S.
Case 2. 13(X 0 )= 1 :  Then X 0 is  an  irrational ruled surface (i. e., K(X0 )= -00  and
bi (X0 )= even> 0). By the  deformation invariance of b, and r, every X , is again
an  irrational ruled surface, i. e., p(X 8)=1.
Case 3. 13(Xo )= 0  : If 1 3(x8) o for some s ES, then in  view of Cases 1  a n d  2
above, we should obtain p(X.,) * 0 in contradiction. Thus i8(X8)=0 for every s E S.
These now complete the  proof of I) o f  Theorem 4.1.1.

(4 .3 ) We next consider II)  o f  Theorem 4.1.1.

Proposition 4.3.1. Let X  and S  be complex manifolds w ith  dim X =4  and
dim S = 1 . Let f: X — >S be a proper surjective smooth morphism of class C 1 0 , with
irreducible general f ibres. Assume f urther that a f ibre  X , (oE S ) o f  f  satisfies
48(X 0 )=2. T hen there ex ist com plex  manifolds X', Y , a  modification pt: X'—>X,
and proper surjective morphisms g h :  X '— > Y  such that:
(i) f  op=goh, (ii) general fibres of h are isomorphic to P 1, and (iii) every smooth

fibre of g is  a surface of nonnegative Kodaira dimension.

Pro o f . S te p  1 : Let it : D 1 15 —>S be the relative Douady space of X  over S
which parametrizes the compact analytic subspaces of X  contained in the fibres
of f ,  (cf. F u jik i [3 ]) . Now by Theorem 1.3.4, there exists a  Zariski open dense
subset V  (resp. V') of B (X 0 )  (resp. X 0 )  such that b./ro w , : V'—>bx o (V ')=  V  i s  a
proper smooth morphism with irreducible fibres isomorphic to P ' .  Correspond-
ing to this smooth family of rational curves parametrized by V, there exists an
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irreducible component D a  O f  Dx I s  such  that w e h a v e  a  natural embedding
i : V ç D a  by sending each v E V  to i(v)= b  ( v )E  D  a . Note that, by Fujiki [ 3 ;

f   7Theorem 4.5], 7r,, d e n  riDa D  ---6  i s  p r o p e r .  We now consider the  universal
family p i : Z a —>Da  w ith  th e  natural embedding Z„ÇD„X s X, where p i  coincides
with (resp. p 2 : Z„ , X  denotes) the restriction to Z „ o f  t h e  natural projection
D a X s X—>Da  (resp. D a X s X—, X ) .  F o r  each v E V, regarding i(v) a s  a  rational
curve on  X, one easily sees that th e  n o rm a l bundles Nx o , x  a n d  N i c o / x o  a r e
t r iv ia l .  Hence N 2 , ( t ) i x

 is again trivial and in particular we obtain h°(i(v), N icol x)
=3 and  h i (i(v), Nicol x )= 0 . Then dim D,e=3, a n d  every i(v ) (vE V )  i s  a  non-
singular po in t o f D a . Thus p ,  is a  generically finite surjective morphism, and
general fibres of p i  a re  isomorphic to P ' .  Choose a  desingularization j :
o f  D a  su ch  th a t j  restricts to a n  isomorphism over th e  regular locus of 13,,.
L et D'a l 6 ' »-1 6  be the  S te in  factorization o f  t h e  morphism 0,0 j : We
claim that th e  proof o f 4.3.1 is reduced to showing th e  following :

(a) ff, (general fibre of ; (b ) deg p2=1

Assume that (a) and (b) a re  p ro v e n . Since all fibres of f  a r e  irreducible, this
(b) implies that deg v= 1 . It is now easy to check that, fo r  a  suitable modifica-
tion II: X' , X  from a  complex manifold X ', we have morphisms g :  = -7 ” .]  and
h : =  p i . pV. du  with th e  required properties ( i), (ii), and  (iii) above.

S t e p  2 : S in ce  (r a . j ) ' ( o )  contains j - 1 (i(V)) V ) a s  its subset, there exists
a  po in t o '  o f v - 1 (o) such that an irreducible component (denoted by T) of 2 - 1 (0 ' )' r e d

is bimeromorphic to B(X o ). L et LI (ES') be a  small o p e n  disc centered at o'
such that A is smooth over 4— {o'}. Then by a standard argument (cf. Ashikaga-
Ueno [1]), one easily obtains

K(2- 1 (s'))_ K(T)=E(B(X 0 )) 0 , fo r ev e ry  s ' 4— lo'l

which in  particular proves (a) of Step 1.
Step 3: General elements o f D a  a r e ,  a s  curves o n  X , isomorphic to P i.

Hence every element of D a  represents a  connected curve whose support is  a
union of rational curves o n  X .  L e t  W = E7r; 1(o); dim bx0(1/71p2(t0T1(r)))=11.
Since B(X 0 )  is  n o t uniruled, t h e  subset U : =V —b x  0 (V' n p2(pT 1(W ))) o f  V  is
nonempty. We then pick a  p o in t u o f U , and f ix  a  p o in t  x , o n  th e  rational
curve i(u), where fo r each T D,,, we write p 2 ( p T 1 ( 7 ) )  simply as r if no confusion
seems likely to result. We now claim that p ( x i )  consists o f a  s in g le  p o in t.
A ssu m e  th e  contrary. Then there exists a n  element r, o f  D a  such that (1) ri
a s  a  curve o n  X  passes through x „  and that (2) 2', i(u). Since Ti i s  a  con-
nected curve whose restriction to V ' is mapped to the  poin t u by b x o , we have

P l .  By c1(X2)Cri=c,(X,,)[i(u)]=- 2, n is generically reduced. In
view o f  X(7'1, 0)=- x(i(u), 0)=X((n)red, 0 ),  it would now follow that r i =i(u )  in
contradiction. Thus pV (x ,) consists of the single point z : = (i(u ), x i ) GD„x s X.
Next by Step 1, D a  is nonsingular at i(u), and so is Z,, a t  z. Since Ni (.)/x is
trivial, (cf. Step 1), we have the  natural isomorphisms

T (.0)(D a)--= H° (i(u), (N ico l xi(X)IT xi(i(u)).
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This then shows that p , is  unramified at z , and hence we obtain (b) of Step 1.
The proof of 4.3.1 is now complete. Q. E. D.

Proposition 4 .3 .2 . Let X  and S  be complex manifolds w ith  dim X =n  and
dim S =1, w here n  is an integer w ith n 2. Let f : be a proper surjective
smooth morphism of class C i „ w ith irreducible fibres. A ssume that there exists a
dense subset S° o f S  such that (1) S— S° is a countable union of analytic subsets
o f S  and (2) /3(X 8 )=n - 2  fo r  all seS °. T hen p(X ,)=n —2 fo r  all

Pro o f . Since the assertion is obvious for n= 2 , we m ay assume that
For each  7nEZ .,, we denote by g n ,  the locally free sheaf Sm(S211) on X, and
let D .  ( .S )  be the support of the sheaf f * (g „,) . Note that, by d im  S = 1 , the
torsion free sheaf f * (9-

7„) is locally f re e . Since f  is smooth, the natural homo-
morphism

pm, s :  f * (  g .  s ®  s C 11°(X,, gmix s )(=H ° (Xs, S m (Q3c-,2)))

is  injective everywhere on S , and is isomorphic for every point s  of S  outside
a  nowhere dense analytic subset K „, o f S. Now, for every s E S 0 , w e  have
13(.2(8)=n —2 and therefore h°(X„ Sm(S21-,2))± 0 .  In particular,

U D r o  S ° — U K m .
m=1 m = 1

Since each a n,  is  a  closed analytic subset of S , it then follows that S =D , i o  for
some m o Z ± . We now fix an arbitrary point t  of S— S°, an d  le t s„ n =
1, 2, ••• , b e  su ch  th a t lim s n = t .  On a small open neighbourhood U  of t  in S ,

we choose a local section eG1-1°(U, f * (g 1 0 0 ) )  s u c h  th a t  (t)=0. T ake  a large
enough N E Z ., so that one obtains s„E U  and e(s 7 i )= 0  for all T h e n  b y
Theorem 2.3.1 applied to p  =  n -2  and m=m o ,  it  fo llo w s th a t p„,,,, n (e(s„)) is
(very neatly foliated and hence) of purely multiple type for a ll n_1\1, (cf. 2.4.1
and 2.4.2). Here, letting n w e see that p .,,t(e (t)) (#0) is  a ls o  of purely
multiple type, (cf. (ii-a) of 2.4.1). On the other hand, by a theorem of Fujiki [5],
X 8 i s  uniruled. Theorem 2.4.3 now says that P(X,)=- n-2, as required.

Q. E. D.

Proof  of -a ) o f 4.1.1. Connecting o  S and s E S  by a chain of nonsingular
holomorphic curves, we may assume that dim S = 1  w ithout loss o f generality.
If either j3(X0 )  or 48(X 0 )  is  2, then Propositions 4.3.1 and 4.3.2 immediately imply
that je(X ,)= P (X ,). Therefore we may further assume P(X0 )= 1  and p(X 2.
Since X 0 is of class c, it follows that X , is uniruled with 0< b i (X0 )=2. dim Alb (X0).
By the deformation invariance of uniruledness and also of the first Betti number
b1,  w e  se e  th a t  X 8 i s  uniruled with 0< bi (X s )=2. dim Alb (X s) . Since 13(X 8 )*2,
we now conclude that 13(X1)=1=P(X0). Q. E. D.

Proof  of II-b) o f  4.1.1. In view of II-a) above, we may assume that 13(X0)
= 0 .  Since X , is  uniruled, so is every X „ and hence ic(Xs ).= — co. Then 111-c),
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which we shall prove below, completes th e  proof. Q. E. D.

Proof  o f  171-c) of  4.1.1. By 11-a) above, we may assume that 13(X,) is neither
1 nor 2. O n tile other hand, tc(X8)= — 00, e . , 2. Thus p(X,)=0.

Q. E. D.

§ 5. Sem ipositiv ity.

F or later purposes, using the standard technique of Fujita [7], we shall give
some delicate analysis o f  semiposivity o f th e  d ire c t im a g e  sheaves of relative
differential forms. First we fix our notation :  F o r  a  proper surjective morphism
g : W -6  of norm al complex varieties, we denote by 121,,,,s  t h e  sheaf o f  germs
o f holomorphic S-differentials on  W in  th e  sense of Grothendieck. Then we put
Q ,, 3 =  Q1,15 fo r each q e Z + , and  le t (S4 18 )* *  b e th e  d o u b le  dual o f  S27,7 s .
N ote  th at (S274,18 )* *  i s  a  to rs io n  f re e  sheaf o n  W  which coincides with S4, 8

modulo torsion outside a n  analytic subset o f W o f codimension_2.

Definition 5.1.1 (cf. Fujita [7 11). A  vector bundle (or equivalently a  locally
f r e e  sheaf) E  over a  nonsingular projective curve S is said to be pseudo-semi-
positive if  either rank E=0 or one  has deg s  Q 1:1 fo r an y  quotien t line bundle
Q o f  E.

Theorem 5 .1 .2 . L et S (resp. W) be a  nonsingular projective curve (resp. an
n-dimensional compact complex norm al v ariety  o f  class C), and g : W -6  be a
surjective morphism only  w ith generically  reduced connected fibres. T hen for
every gE 11, 2, •-• , n-11, the locally f ree sheaf g * ((S27v 1 5 )**) is pseudo-semipositive.

Proof . S tep  1. Put E = g * (([4, 18 )**) and fix an arbitrary quotient line bundle
Q o f E  with an  exact sequence EQ—>C1. Since W is o f class C, there exists
a surjective morphism h : Z—*W from a com pact Kdhler manifold Z .  L et U  be
t h e  Zariski open subset {s ES ;  the  fibre Z 8(= (g .h ) 1 (s)) is smooth} o f S .  Put
m=dim Z—dim W and  we define a  Hermitian metric ( , )E  o f  t h e  vector bundle
E10 by setting

(ça , 0 )E = (\ / -1 1 , , (0- - - q- A h*(ço) A h* (0)

fo r all ço, OE E s(=H°(Z s, Dqz ,)) at each s E U, where co denotes th e  Kdhler form
o n  Z .  Since this Hermitian metric o n  E lu  naturally extends to  a n  indefinite
f la t  Hermitian metric o n  R q g*(C)in, the  standard  argum ent of second funda-
mental forms (cf. Griffiths [8 ], Schmid [25]) show s that th e  curvature form eE

o f E lu  is  positive semidefinite. L et ( , )Q be th e  canonical metric on Q,u  obtained
by identifying Q,u  w ith  the  o rthogona l complement o f  Ker r  i n  Eiu. Then
again by the argum ent of second fundamental forms, th e  curvature form e Q of
Q1u is positive semidefinite.

Step 2. Fix a n  arbitrary point so o f  S— U. We choose an open neighbour-
hood T= fltj <11 o f  so i n  S with a  lo c a l coordinate t such that Tn(s-u)=.
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-=  4=01 . Take a  lo c a l b a se  {00,çb1, •-• Or} over T  fo r  th e  vector bundle
E  so that (i ) 7 ( 0 0 =0  in  H °(T , E ) fo r a=1, 2, •-• , r, a n d  th a t ( i i )  r(0 0 ) i s  a
lo c a l b a se  o f  Q  over T .  Write the fibre g - 1 (s 0 )  as a  un ion  UyL i G, of its ir-
reducible components, and  we choose a  sufficiently small o p e n  neighbourhood
W y =  iv ,,,1 <  6  for a ll 24  (0<  <1 ) in  W  o f  a  general point of G, with a system
of local coordinates (u),,i, u{.1; 2, Wj; 71) such that g*(t)=w„, i . We next express
each h*(G ; )EDiv  (Z ) as kG,, k  with multiplicities di ;  k E Z., and prime divi-
sors G3 ;  k  on Z . Furthermore, le t  Z,-= {1 Z.); pl fo r all p l ( 0 <6 <s )  be a  neigh-
bourhood ( Z )  o f  a  general p o in t o f  G ,,, with a  system of local coordinates

z i , 2, ••• Z j ;  n + m ) such that (i ) h*(ut, ; ,) =(z , ; ,) d i•1 a n d  (ii) h*(w, ; ,) =z , ; , for
v=2, 3, ••• , n .  Choosing 5 small enough, we may assume that Z ,, j=1, 2. ••• ,
are  mutually disjo in t. N ow , fo r every cOEC with I cl <6, we put :

F, ; ; ;= {p E 1475 ;  W i ; l ( P )
=

C} Fc ; ;=h - 1 (F, ; ;)(1Z i, j=1, 2, •-• , 771 ,

F,=C ) F,J=1.

We then define A o ,s(c)EC (a , pE 10, 1, •-• , r1) by

(1) i f  c , A ( c ) = - o,n'+" -/-1 A h * (0.1F,) A h* (06s e )

(2) if c = 0 , A ,,(0)= d,, i ,ÇF ,0 ;  ) a n + n - '2 -1 A  h* (01F o) A h Nbp [F0 ) ,

where in both cases, Oa  and OA being regarded as elements of H°(g - 1 (T),(S27, 1 s )**),
their restrictions 6T  a IF ,  and 0131F, are  naturally in  H°(F„ f2%) v ia  th e  isomorphism
(,(2(4,

/s)* * IF =' ,(4 , .  Here, in view of h*(w 3 ,1)=(z ,,i) d ) , {, every A „p(c) is a continuous
function o f c  o n  {c E C ;  c  <O}. L e t  2(c) be th e  least eigen value of the (r+1)
x  (r+ 1 ) Hermitian matrix (A„,9(c))0,,,, a n d  o-(2 r+ 1 ) b e  t h e  sphere {a=
(a 0 , a 1 , ••• , ar)EC' ; I a.1 2 =1}. P ic k  a n  arb itrary  a= (a o , al, • • • a,-)
a (2 r+ 1 ). Since {di 6L T  0 ,  T  1 , ,  Or} is  a local base for E , and since g - 1 (s 0 )  is generi-
cally reduced, E';,=0.0.1F 0 regarded  a s  a n  element o f  H ° (Fo, QT0) does not
vanish identically o n  F , ,  a n d  hence E r,-0a.h*(0,,IF 0 ) 0E H ° ( F ,  f 24 - 0 .  Thus
(A4(0))0,,,, /35r is a positive definite Hermitian matrix, i. e., 2(0)>0. O n the other
hand, for c# 0,

a 4 a ) aacii3A 4(c) 2(c).
a=0 E lt=c a  13=0

Since 2(c) is a  continuous function o f c , in  view o f 6 <1 , there exists a positive
constant K  such that :

Inf acr0„, aa0a) ; 0#1t1 <a, aEa -(2 r+ 1 )}_ K .
t,a a = ° a=o E

Then by a  lemma o f  Fujita [7 ;  (1.13)], it follows that :
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(7 t(çbo), 7r(00))(2-.K , for a ll t  (E T ) w ith  0  I t .1 <3 .

Step 3. F in a lly  b y  the formula of Fujita [7; (1.16)11, the above two steps

give us deg s

u
0 Q _>.0, as required. Q. E. D.

§ 6. Some criteria of positiveness of Kodaira dimension.

Throughout this section, we use the fo llow ing notation : F ix positive in-
tegers p , n such that p < n ,  and we denote by c  and c ' the binomial coefficients

and n _1C2,_ 1 respective ly . X  is  an n-dimensional compact complex manifold
of class C  such that h 13•°(X )  0, and f: X — >Y  is a surjective morphism of X  onto
a nonsingular projective curve Y  with connected fibres. For every smooth fibre
X , (=-f - '(y)) (y E Y), we denote by it : H°(X, S2 71)-41°(X ,, Q % ) the natural pull-
back of p-forms induced by the inclusion i y : X ,C7,X . For every coherent sheaf
F on X, the natural isomorphism of H °(X , g ) and H°(Y, f ( g ) )  is  w ritten  as
c: H°(X , ,  f ( g ) )  by using a  common letter c.

(6 .1 ) The purpose of th is section is to prove the following :

Theorem 6.1.1. Let L 1 b e  a nonzero C-linear subspace of H°(X , Q5c ) satisfy-
ing the following conditions:

(1) L i ç_Ker Pt fo r  every  sm ooth f ibre X , of f .
(2) c(L i )  generates an invertible subsheaf  -C  of  f ( - Q ) .
(3) dim L 1 . 2  (or we m ay replace this by  the weaker condition that £ 1 is ample).
Furtherm ore, let 21 : .4 ( ( [2 17?) * * )— dlom f*((ox)) be the sheaf  homonzorphism
on Y  naturally  induced by the wedge product (0, ço)E9 11-4,x X AçoEQ11-,x=
w x , x  (x  X ), and we assume that 2 , is not tr iv ia l. Then IL(X )> 0 .

Theorem 6.1.2. Assume that there exist r i ,  1 2 ,  • • •  , ..(4 )  satisfying
the following conditions:

(1) 4(7.1)=4(1'2)= ••• =it(r2 , -1)=4(re , )=0  fo r  every smooth fibre X , o f  f .
(2) Let e  denote WI(  regarded only  as a locally free sheaf  on X . T h e n  r i A n

A ••• A1 c _1
#0 as an element o f H°(X ,

Let L , be a C-linear subspace o f  {g•riA T, A  ••• A rc-1; gEC(X )} nH
°(X , Ac - le)

w ith dim L 2 2 such that c(L 2 )  generates an invertible subsheaf £ 2  of f*(A c - l e).
Furthermore, let 22: f*((f4/y) * * )--41 om(_E2, f * (0 4 '"))  be the sheaf homomorphisnz
onY  naturally induced by the pairing (0, 72) x X L2 — >çb A )2 det (C) x = (cox' )s
(x E X ), and we assume that 22 is  no t tr iv ia l. Then K(X )>0.

(6.2) W e shall first show that the above 2, and 22 a re  well-defined :

( i ) F ix a  smooth fibre X , o and its  point x o a rb itra r ily . In view of the exact
sequence of coherent sheaves on Y,

0 f*(,%) -- > S21- - - - -> Q X IY ,

w e have .(27,iy 4=  A n- PQ jr / y =g21- P/(f*(Qn A Q'j,=P - l ). Let t  be a local coordinate
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o f  Y  cen tered  at y o . Then by (1) o f 6.1.1, every ça L ,  is locally written as
f*(dt)A(holomorphic ( p -1)-form ) around x o ,  a n d  hence 0Aço -=-0  f o r  all
(f * (Q11-)AQI- P - 1 )xo . This show s that th e  pairing

(0 ,  ,9 ) C  (f * ( Q11') A Q I - 1 3 - 1 )x X L1 --->  OAÇOCS27k,x -- - 0 4,.x

is  triv ia l for every x  o n  a  Zariski open dense subset of X .  Moreover, cox  being
a torsion free  sheaf, this pairing is trivial everywhere o n  X .  Then we have a
natural sheaf homomorphism : f a r/7P - 41 0m (-CI, f ( m ) ) ,  which induces a  well-
defined 21 .
(ii) The conditions (1) and  (2) o f 6.1.2 show  that, on a Zariski open dense subset
U  o f X, t h e  sheaf f*(QY.)A W1-1  is  lo c a l ly  f r e e  w ith  a  b a s e  { r  r1 , 2 7  ‘ . . rc , }
Hence f o r  every OEU * (Q1, )AS271-1 ),, w ith x GU, we have OATIAT2A ••• Arc , =
OE( A c' -44e) x . In  particular, the pairing

(0, 72)E(f*C(211, ) A Q - 1 ).2x L2 , çbA72Edet(e)x— (wP').2

i s  tr iv ia l fo r  every  point x  o n  U .  Then by th e  same argument a s  in  ( i), the
sheaf homomorphism 2 2  is well-defined.

(6.3) L e t {y„ y 2 , ••• y p }  be th e  se t o f  all those points of Y  over w hich f  has
singular f ib res , an d  w e  express each f*(y i ) Div (X )  a s  ETjo e.„D„ with multi-
plicities e i , E Z ,  and prim e divisors D i ,  on  X .  Fixing a  point y o  on Y— {y„ ••• ,
y d ,  w e denote th e  p r im e  divisor f*(y o ) b y  D „, .  P u t e 1 ,= 1  and  m0 = 1 .  We
then define positive integers d  and by

e i =1. c. m. (e i e 1 2 , •••  , e in id  i=1 , 2 , I p

e0 =1. c. m. (e 1 , e 2 , ••• , d=eie i-•• e p .

We now h av e  a  d-fold abelian covering 7r: f—;17 which is unramified over Y—
{Yo, Y i ,  ••• y d  and has d le i  p o in ts  57i ,  E of ram ification index e i

over each (see, for instance, Kodaira [2011). Let X— xx y f  be the
normalization o f X x y k  ( = { (x ,  5 7 ) Xx fT; f (x )=7r(y )} , a n d  Fr' (resp. f :
, k )  be the composite of y with the projection pr i  : (resp. pr 2 : Xx y k
.—) ) to th e  first (resp. seco nd ) fac to r. T hen f o r  each i ,  j
the  divisor Ff

*
( D i i )  is w ritten in  the  form

d l e i  e i i
Ft*(D O = E E (e1/e01)/

1
1jk

a = 1  k = 1

with prim e divisors ;67, k (1.- a _ d l e 0 , 1 12- e 0 1 )  on X .  Note that every fibre of
is reduced and connected. By XEC, w e have X- EC, and  hence by 5.1.2,

( a )  f * ((,(4 1k )**), 1- q- n —1, a re  pseudo-semipositive locally free  sheaves o n  k.

L et X° be the  Zariski open nonsingular subset X—U.•;= i 5E-1  (Sing(f 1 (Y ,),-0d)) o f  ,-
where Sing ( f - 1 (Y i)red) denotes the singular locus of f - 1 ( y i ) r e d .  Clearly codims,

X

— X °)_2. We now define a  C artier divisor R  o n  X° by
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p  n t i  d  l e i  e ij
R = E E E ((ei/e0)-1)D7ik110 .

1-0 a=1  k=1

Then by a  straightforward computation, we obtain

( b )  (it*cox )do=co20(—R) .

Let 10 b e  the restriction L o  o f  J  t o  .g°, and for every sheaf g  on the
natural isomorphism of H°()Z°, g ) and H°(k, (P ) * ( g )) will be written a s  c° : H°
(50, H ° ( ,  ° ) * (g ) )  b y  u s in g  th e common c°. Let denote QT, regarded
only as a coherent sheaf on :X". Since (resp. ..C2) is generated by c(L 1 )  (resp.
t(L 2 )), the mapping which sends 7-4•*(c(v))) H°(k., 7*..f 1 ) (resp. 7r*(c(77)) H°(}', 7*...C2))
to c°(if*(ya),,k.o) ,  ( 1 °)*( 2 ))  (resp. /° (7-e* (7))110)ŒH°0-7., (7

0
)*( A C- Y ) ) )  for each

çaŒL, (resp. E L 2 )  naturally induces a  sheaf homomorphism

:  (.70)*(Q12) (resp. I :  7
C* .•C 2 >  ( J ) * ( A c - 1 )) •

Then 7*.f i  (resp. 7r* 2 ), as a  subsheaf of (.70
)*(Qi) (resii (1 ° )*(A )), satisfies

the following:

Lemma 6 .3 .1 .  (  i  )  7r*
C I  (.7°)*(S4( — R)).

(ii) 7 r*  2  .(P )* ((A e- Y )( — R ) ) .

P r o o f .  Let so E L i  and ij L 2 . It then suffices to show ir*(W)1,f0E/P( 0, Q P,

( —R)) and "fr*(72),,,-0EH°()Z°, ( Ae- Y )(— c'R )). Fix an arbitrary /16k and let i t  be
its  gen era l point. We choose a  sufficiently small open neighbourhood Ci of it
(resp. U  of 77(iI)) with a  system of local coordinates (i's, • ••  (resP. (x1,
x 2 , ••• , x p ) )  su ch  th at (1) Fe(Ci) U, (2) 3'ci =0  locally defines ETik, (3 ) Fr* (x1)=

eileii, and (4) ie*(x r )= -  for 2_<7.n . Let J1 be the set of all those subsets of
{2, 3, ••• n} whose cardinality is  p-1 , and for each A= Ice2 , a 3, ••• ap1 E,A with
a 2 <a 3 < ••• G a p , w e put sA =dx i Adx, 2 Adx, 3 A ••• Adx a ,  an d  ",i =d.X' i Adi",,,A
di' a 3 A••• A d 'X'„p . Then, in view of (1) of 6.1.1 and (1), (2) of 6.1.2, the restric-
tions y iu and 7)1u are written in the form yol u =-dx 1 AC and = ( A  sA)A0 for

A E ,À
some CEH°(U, Q2}{

- 1 )  and 0EH°(U, Ac - c— le). Hence

it* (yo)in = (ei/ei) (ei"ii )  1 d . 1 A  7^E* (C)

it * ( 71)10 = ( e i l  e 1C' ( " i l e i j ) - 1 )
(  A  ŜA) A Fe*(0).AE,A

Thus, when restricted to k"°, our Fe *(ça) (resp. 714 (27)) has a zero along each /37.5 0 ,
of order at least (e i le 3 ) - 1  (resp. c'((e 1/e3 ) -1 )), as required. Q. E. D.

(6 .4) By the same argument as in (6.2), to every (0, ço)E((S2n2 7)**).-x L i  (resp.
(0, 77)G((f21-;) ** )1X L2), we can associate the wedge product

(0, 7 * (ço)) A 7 * (g9) ( ( ,(21) * * )

(resp. (0, 7c*(72)))-0 . OA 7r*(7)) ((A q)**),i) ,

which naturally induces the sheaf homomorphism
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p i : 7 4 ,(211,1) * * )0 0 k Ft* -C ---> f*((Q;) * * ) ,

(resp. p2 .7*((1212/ii )* * )00kit * C2 f*(( A ''')**)) •

Now by 6.3.1, Tc*.r1_(.7°)*(.(21(—R)) (resp. 7c*-C2 (P)*((A c - 1 e )( — c/R))), and hence

Image p i  (P)*((p1) * * (— R))=- (f  °)*(04-0(— R))

=(.7
0
)*((iE* 0)x)110) , (cf. (b) of (6.3)) ,

=1*(7-1* (0 x ) , (because codiml(z1Z-5('') 2),

(resp. Image p2_Ç--(.70)*((A ce) * * (— c'R ))=(7 °)*((w.k.0)' ( — e'R))

=(.17° )*((Fc* w x r c' 1.0)=7*((*(0x)Ø9 •
Thus we have the  natural homomorphism

;1 : 7*((pIT,,P)* * ) Horn (e-Ci, .7*(Ft * 00x))

(resp. ;R'2 7*((f2 /k)** ) Hom(7*-C2, *(Cie *0) xre' )))

of locally free  sheaves on

P r o o f  of 6.1.1 (resp. 6.1.2). Note th a t 21 (resp. 22) is  n o t  trivial. Hence
neither is ; 1 (resp. ;2). Now by 5.1.2, f*(( [21

.a ) * * )  (resP. f*((g42
/ 2.)* * )) is pseudo-

semipositive, and  therefore its image S1 (resp. 5 2 ) under t h e  m ap ; 1 (resP. 2 2)
is  a g a in  a  pseudo-semipositive locally free  sheaf o n  /-7. Since dim L 1 2 (resp.
dim L 2 - C I  (resp. £ 2 )  i s  ample, and so is 7r* (resp. z *  2 ). Then every
quotient line bundle o f  siorc*si (resP. 6207r* S2) has positive degree, and hence
by a  theorem o f Hartshorne [9 ], S i O rrC i  (resp. 8 207*.r 2 ) i s  a m p le .  Since
Sig-Hom (7c*Si, h ( i -r* (ox )) (resp. ,s 2 gHom (7*-C 2, 7*(( * wx)®9 ) ) ,  we naturally
have an inclusion of sheaves

g  _i*((77 * (ox)®e)

by putting e=1 (resp, e =c ')  an d  g=.5' 107-r*-C1 (resp. g =S 20Fc*-E 2 ), where g  is
an ample locally free  sh e a f . Note that, fo r every d Z ,  the  im age of the  sub-
sheaf Sd(g) o f S d(7*(Cie* w x r e)) under th e  natural sheaf homomorphism

Cd: Sd (.7*(R * W Xre)) - ›  * ( R * ( 0  Xr de )

is nontrivial. We first choose a  la rge  enough d 'E Z ,  such that Sd '(g ) is gen-
erated by global sec tions. Then there exists a section (rEH°(k, Sd'(g)) which
satisfies C a , ( a ( 5 1 0 ) ) * 0  f o r  some point 50 o n  k .  Next, le t  d" Z_F b e  su ch  th a t
S p o •S d'(g) is generated by global sections, where S Do i s  th e  ideal sheaf of 57o in
k . We can then find a  s e c t io n  z-GH°(k , S e ( g ) )  w ith  Cd

, (z-) * 0  an d  z-(5/0)=0.
Now, (Ca , (a))® ' and ( .(v))®' a re  C-linearly independent in H ° (  .7* ((  *0 ) x  d  d e ) )

Thus

.

0< ( * (ox, f()=1c(wx, X )=K(X ),

which completes the  proof. Q. E. D.
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R em ark 6 .4 .1 . (a) The arguments in (6.3) and (6.4) are still valid even if
w e replace j t : X—>P. b y  the "semi-stable reduction" (cf. Mumford et al. [24]) of
f :  X—>Y, although such replacement doesn't so much simplify the proofs of 6.1.1
and 6.1.2.
(b )  Theorems 6.1.1 and 6.1.2 can be generalized in various w ays. For instance,
it is easy to extend them to asymptotic cases. We shall discuss such a  topic in
a  separate paper [22].

§ 7. L -fib rations.

In this section, we shall define the concept of L-fibrations and give the basic
properties.

Definition 7.1.1. Fix positive integers p, n with p n. L et X  b e  a n  n-
dimensional compact complex manifold such that h°(X )> 0 , and L be an arbitrary
C-linear subspace of Ht)(X, QP,) with 1= dim  L >0. W e denote by r  the rank of
the subsheaf o f S 4 - generated by L, and let Gr(1, 1—r) be the complex Gras-
smann variety of (l—r)-planes in  L  (=C 1). We consider the meromorphic map

X—›Gr(1, 1—r) defined generically by

: X Gr(1, 1—r)

x {wE L ; w(x)=0} .

1) The closed subvariety Im Vf of Gr(1, 1—r) denotes the meromorphic image of
X  under the meromorphic map T.
2) The fundam ental subspace L , o f  L  is  the linear subspace of L  spanned by

U  P (z ), where P(z) denotes the (l—r)-plane in  L  corresponding to z.=Elm
3 )  A surjective morphism f :  X'—>Y of compact complex manifolds with con-
nected fibres is called an L-fibration o f  X , if there exist a modification j: X'—>X
and a generically finite surjective morphisn ).) : Y—>Im tr such that the following
diagram commutes :

X'

Y

Note that, given X and L, an L-fibration of X always exists as follows : Let K be
the algebraic closure of C(Im Yr) in C(X), and we take a  nonsingular projective
variety Y  such that ( i ) C(Y )=K , and that (ii) the meromorphic map Y—>Im
*nduced by C (Im W )C (Y ) i s  a  m orphism . S ince C(Y)_ÇC(X), w e  have a
meromorphic m ap g : X—>Y. Choose a modification from a compact
complex manifold X ' so that f 

 d e f n

 goj: X'—>lr7  i s  a  morphism. This f  now de-
fines an L-fibration of X .  Moreover, given X  and L ,  a l l  possible L-fibrations
of X are mutually bimeromorphically equivalent, because Y is a Moishezon mani-
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fold characterized bimeromorphically by C(Y)=K.
4) L et X ', (= f - Ay)) (y Y ) be an  arbitrary smooth fibre of f .  T hen, in  terms
of the notation above, j*(w)ixv=0EH °(X;, (Q3-)i 1 y )  fo r a ll coEP(v(Y)).
5) L et i,: X ',c,X ' be th e  natural inclusion. Then we define the horizontal sub-
space L i ,  o f L  by

L,,-= fwE L ;j * ) ( w ) - = 0  fo r every smooth fibre .7c, of f} ,

where 4. j*: H°(X, , Wir d  denotes th e  natural pullback of p-forms
b y  j o i y . F o r  fixed X  an d  L , th is L I,  is independent o f th e  choice of L-fibra-
tions of X.

T h e  following theorem is of crucial importance in our later study of holo-
morphic 2-forms on compact complex threefolds.

Theorem 7 .1 .2 . Let p , n c z ,  with p n ,  a n d  le t  X  b e  an  n-dimensional
compact com plex  m anifold o f  class C  such that h "° (X )> O . Fix  an arbitrary
nonzero C-linear subspace L  o f H°(X, Q5( ). Then, between the fundamental sub-
space L o o f  L  and the horizontal one Lry, o f L , we have the inclusion Lo Ln.

Pro o f . Let Y ° be the Zariski open subset {y EY ; X'y  is smooth} of Y. Since
U P(v(y)) spans L a in  L , th e  proof is reduced to showing (it. j*)(P(v(y ')))= {01

y ey0

fo r a ll y, y' E Y ° . Fix an arbitrary coEP(1.)(y')). By 4) of 7.1.1, we have j"(w)iry ,
=OEH°(X 1,,, ) ,  a n d  i n  particular (it, . j* ) (w )= 0 . Since gr i w- 1( y 0) :
—, Y° is locally trivial as a C"-fibration, every p-cycle y on x ; can be deformed to
a p-cycle 7- on over a piecewise-smooth path _ Y ° .  Hence (4 ) * (7)—(i y ,) * (2,- )
= a t -  fo r some (p+1)-chain z- o n  X ', and we obtain

(it° .1* )(0 ) ) = - ( it° .7.*)((0)H .°  . 1 *X(0)
r•

cho=0,
Ci y).CD Ci y' ).0" 7

where da)=0 follows from X E C . Thus (it. j*)(w) is cohomologous to O. In view
of X ,E C (which follows from XG e), the holomorphic p-form (ito j* )(co ) vanishes
identically. We now conclude that (itoj*)(P(v(y')))=.  Q. E. D.

Remark 7 .1 .3 . I f  p = n -1  and  dim Y = 1 , then Theorem 7.1.2 is valid even
i f  w e  g e t  r id  o f  t h e  assumption that X  is  o f class C .  T h is  is  a n  immediate
consequence o f th e  following facts :

L e t M  be an m-dimensional compact complex m anifo ld . Then

(1) Every holomorphic (m-1)-form w o n  M  is d-closed, because cloAdco=

d(wA diii)= 0 implies clw=0.

(2) Every holomorphic m-form on Mwhich is cohomologous to 0 is identically
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0, because 72 is written as de for some 0° (m-1)-form  o n  M  and hence 72A

d (eA d f )=0  implies 72=0.

(7.2) W e shall here m ake a  little  more study o f  L-fibrations. First we give the
following technical lemma.

Lemma 7 .2 .1 . Let X  (resp . Z ) be an n-dimensional (resp. p-dimensional) com-
pact complex manifold, and g: X — , Z  be a surjective m orphism  with connected
fibres. Assume that h ° ( X ) > 0 ,  and suppose coEH°(X , S 2) satisfies the following
condition:

( ) There exists a Z arisk i open dense subset U  o f X  such that, fo r  every x e U ,
co is locally written as s• g*(e) fo r some s 0 x ,„ and e e f n , g ( , ) ,  where g*(e)
Q?),,, denotes the natural pullback of e  by g.

Then there exists 72 H°(Z , .S4) such that w=g*(72).

P ro o f. L et V  be  th e  Zariski open dense subse t { zGZ ; g - 1 (z ) is smooth} of
Z .  Fix a  point y o n  V  and  a  po in t w on g - 1 (v ) arbitrarily . W e choose a  suffi-
ciently small open neighbourhood N , o f  y  in  Z  (resp. M „, o f  w  i n  X )  w ith  a
system  of local coordinates (z 1 , z 2 , ••• , zp) (resp. (g*(zi), g * (z2), ••• , g * (zp), xl, x2,
•-• , x ,_ ,)). Then around w, we can express co as a sum  s • g*(dz i A dz ,A  •-• Adz,)
± a ,  w here sE 0 x , , ,  and co'=E 7,1

1 1O1Adx, w ith  0,E S2 . Now, the condition
(# ) above show s that w '= 0  (even i f  w ErU). T h u s  colg*(dz i A  ••• A d z )  i s  a
holomorphic function o n  g - 1 (N 2 ). Since g * 0 x =0 z ,  it then follow s that  W g 1 ( N 2 )

= g* (e) fo r some ÇEH°(N„, D ) . V a ry in g  y in  V , w e obtain 72 EH°(V, [4) such
th a t  wi g -i ( ) = g * ( ) ,  a n d  th e  a s s e r t io n  o f  our lem m a is now  straightforw ard
from  2.2.3. Q. E. D.

T he  following fact on horizontal subspaces associated with L-fibrations will
be needed in 8.

Proposition 7 .2 .2 . Let p ,  n E Z ,  with p - n , and let X  be an n-dimensional
compact complex manifold such that h " ( X ) > 0 .  Fix an arbitrary nonzero C-linear
subspace L  o f H°(X , D3.), and let f :  b e  a n  L -f ibration o f X . W e  assume
that dim  Y = 1  and that the horizontal subspace L . o f L  has positive dimension.
Then

(a) The locally free s h e a f  M O  i y )**) on Y is not a zero sheaf.
(b) Assume furthermore that there exists a quadruple (Z , g, g ', Y °) satify ing the
following conditions:

i) g : is a surjective morphism of X ' onto a p-dimensional compact complex
manifold Z  with connected fibres.
ii) g': Z–.1 7  is  a surjective m orphism  such that
iii) Y° is a Z arisk i open dense subset o f Y  such that, fo r  every yE Y °, the re-
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striction g i r v : X ',(=f - 1 (y))—÷Z y ( g ' - '(y )) is a morphism of compact complex mani-
folds inducing an isomorphism  (gLx , )* : H ° (Z r , ‘2 1)- H°(X /y ,

T hen every  coEL h  is expressible as g*(72) fo r  som e 12 EH°(Z , Q) (-=H°(Z , K s )).
In particular p g (Z ).d im  L h •

P ro o f .  Note that, without loss o f generality, we may assume X'=-X.

(a) L et 0 - 0)EL h . Then fo r  a  general smooth fibre X 'y  o f  f ,  we have wi r y  #0
in  H ° (X 'p, (DDIry ). L et i y : X 'i / c_ X ' (=X )  be th e  natural inclusion as usual. In
view o f  it(w)=0, to each tangent vector 0  0  T y (Y ), we can associate a  well-
defined (p -1 ) - fo rm  0#0,0EH°(X'y , S211-y ) by th e  following equality. Namely, we
put

W O ( 0 2 ,  0 3 ,  • • •  ,  0 p )
=

0
)
( 0 1 ,  0 2 ,  • • •  O p ) ,  fo r a ll 02 , 0 3 , ••• , Op E T ,,(X ;),

at each point x ' of X ,  where Oi E T .,,(X ') is a  tan g en t vector satisfying f ,(0 1 )
= O .  Thus if,v ((Q3,,, y )**),00 y ,u C H ° ( X '  {0} for general smooth fibres X ;
of f , j. e., f*((S23,, y )**) is not a  zero  sheaf.

(b) L et 0#w L h.. Fix a  p o in t x ' on f - 1 (Y°) arbitrarily, and  w e  p u t  y= f  (x ')
a n d  z = g ( x ') .  Choose a  C-basis {0 i , 02, ••• , 0.1 fo r the  tangen t space T x ,(X ')
such that 0,E T x , (g  1(z )) for a n d  th a t 01 E T x ,(X )  for —1.
L e t Jt b e t h e  s e t  o f  all those subsets A  o f  {1, 2, ••• , n }  which satisfies An
{1, 2, ••• , n—p} # 0 .  F o r each A =  {ai , a 2 , ••• , ay } E ,,q  (where a 1 < a 2 < •-• <ap),
we have two possibilities :

Case 1 :  nEEA • Then by it(w)=0, it follows that co(Oal , 01 3 , ••• Oa p )=0.
Case 2 :  n E A .  In  this case, a p =- n and we put 0 = f * ( 0 ) E T y (Y ) .  Then, using
the notation in (a) above, we have

co(0 2 1 , ••• 0 , y )=(-1 )P - l coo(0,,,, 0a 2 , ••• Oap _1)=0,

where in  th e  last equality, we use the condition iii) above.

Thus, in  both cases, we obtain co(e a „ 0, ••• , 5“ p )= 0 .  T h is  now show s that,
around each point x ' of f - 1 (Y °), co is written a s  s•g*(e) fo r  some sE 0 x ,, ,  and
eES2f, g c x . Then by 7.2.1, we can find 72E IP(Z , f n )  such that c o = g * () .

Q. E. D.

§ 8. Holomorphic 2-forms.

T he m ain  purpose o f this section is to give a partial affirmative answer (cf.
8.4.1) to th e  following conjecture :

Conjecture 8.1.1. Let X  be a  3-dim ensional compact com plex  m anifold of
c lass  C , and let r  b e  the ran k  of the subsheaf  o f Q i generated by  the global
sections H°(X , Q I ) .  Then

(i) I f  K (X )=-00  and h 2 .°(X ) >r, then p(X )=2.
(ii) (Ueno [321). I f  r(X )=0 , then 11 2 .°(X ) =r (and in  particu lar h"(X )_3).
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Remark 8 .1 .2 . If Conjecture 2.1.3 is  true, then  so  is  (i)  o f 8.1.1.

Proof  of 8.1.2. Since K(X )= - 0 0 ,  one has three possibilities : 1S(X)=0, 1, 2.
First, if 13(X)=0, then 2.1.3 says that h " (X )= 0 . Secondly, if p(X)=1, Theorem
2.1.1 shows that 112 .°(X )-=h 2 •°(B (X ))=0. Thus, in  both cases, w e have a  con-
tradiction to h 2 '°(X ) > r .  Hence P(X )=2. Q. E. D.

(8.2) T he  following observation due to Ueno a n d  m yself gives an affirmative
answer to the case r= 3  o f (ii) of 8.1.1.

Proposition 8 .2 .1 .  Fix  positive integers p  and n arbitrarily  w ith 1,_12. Let
X  be an n-dimensional compact complex manifold with x(X ) 0, and r be the rank
o f th e  subsheaf  o f  f l'ir  generated by  the global sections H°(X , Q 2,;( ). Suppose r
coincides w ith the binomial coefficient 7,C p . T h e n  (X )=0  and h ° ( X ) = r.

P ro o f .  Since the  rank o f th e  locally free  sheaf WI coincides with r , there
exist sections r i ,  1 2 ,  • - •  r r E H ° ( x ,  S25,-) which form a  lo c a l b a se  fo r  Q ,- over a
Zariski open dense subset o f X .  Then r1A r2A  • A ir ,  regarded as  an  element
o f H°(X , det (QP), is nonzero. O n the other hand, putting e= n _i Cp_ i ,  we have
det (S23-)=coP .  It now follows that ti(X )>.0, and hence E(X )---0. Assume, for
contradiction, that h ° ( X ) > r .  Completing {ri, ••• , rr }  to  a  C-basis {ri, •-• , IT,

rr+i, •• fo r H°(X , Q ),  we express r r + i  as 1 f  i1  with meromorphic functions
f  on X .  Since all of f l, f2, ••• f r  cannot be constant, we may assume that f ,  is
nonconstant. Then r r + 1 A r 2 A  • • •  A r r  (= f 1 r1 A r2 A  • • •  A i r ) and r i Ar 2 A A i r  a re
C-linearly independent global sections of  W i ® 2  on X, which contradicts the equality
ti(X )=0. Q. E. D.

(8.3) We next give a couple of results which brought u s  a  definite progress in
th e  study of the  case  r_.<2 of Conjecture 8.1.1.

Theorem 8 .3 .1 . Let X  be  a compact complex 3-dimensional manifold of class
C with K(X )_<0. Assume that there ex ists a 2-dimensional C-linear subspace L  of
H °(X , Q i) w hich generates a subsheaf  o f rank  1  in  ,Q2, Then 13(X )=2.

Theorem 8 .3 .2 . Let X  be a compact complex 3-dimensional manifold of class
C with r(X ) 0 .  Assume that there ex ists a 3-dimensional C-linear subspace L  of
H°(X, S2Lif ) w hich generates a subsheaf  o f rank  2 in Q .  Let ?If  :  X — >P 2 b e  the
meromorphic m ap def ined generically  by

:  X Gr(3, P2)

x {co L ; w (x )=-0}  .

T hen either 43(X )=2 or is generically  surjective.

Proof  of 8.3.1. S tep 1. L e t {wo , oh} be a  C-basis fo r  L , a n d  consider the
generically surjective meromorphic m a p  :  X—, P 2 defined generically by
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: X ---> p i =- {(zo: z1)}

x (wo(x): wi(x)).

Fixing an L-fibration f: X '-> Y  (cf. 71.1) of X, we have the commutative diagram

where j :  X '- , X  is a modification and 7.): Y->P1 is  a  finite morphism. Since gr
is generically surjective, the fundamental subspace L o o f  L  must be L  itself,
(cf. 7.1.1). Hence by 7.1.2, for every smooth fibre X ; of f ,  th e  subspace j* (L )
=-{j*(o)); wE L I  o f  H°(X', Q i, )  is contained in  the  kernel of it : H°(X',
H °(X , W „vy), where i : XV...X ' denotes the natural inclusion. Moreover, since
/ *(0.0 = j *( W* (zitzo))•/*(wo)=f * (l)* (zi/z0)) . ./* ((00), we see that c(j*(L)) generates an
invertible subsheaf _C in f * (Q I,), where c: H°(X', , f* (S.2 ) )  i s  the
canonical iso m o rp h ism . L e t : f*(([2.1- , iy)* * )--.Hom(X, f *(0)x .)) b e  the natural
sheaf homomorphism induced by the wedge product (0, ço)EQ1- ,1y, X  L ,-*OAço
Ewx ,, s ,(x / E X '). Since K(X / )=  K (X )-0 , Theorem 6.1.1 then asserts that 2 is
tr iv ia l. We now fix a  general smooth fibre X'y o f  f ,  a n d  le t  au : X ,-A lb  (X;)
be the Albanese m a p . First, by (a) of 7.2.2, dim a 0 (X;) 1. It then follows that
dim a 0 (X ;)=1 , because otherwise the pairing

f*((SA- , iy)** )y Ooy ,,C(=H °(X ;, 121-y )) X L — > f*(wr) yOo y ,„C(=IP(XV, w ry ))

( 71,S O '  77 AS°

would be nontrivial in contradiction to the  fact that 2 is a zero homomorphism.

Step 2. We put U= {y e Y ; X ; is smooth} . Since a  general fibre of f  is a
nonsingular su rface , a  theorem o f  Fujik i [4 ] states that, choosing a  suitable
bimeromorphic model X " of X ' with f - 1 (U) X " , one  h as a  com pact complex
variety T  and a surjective morphism f": X "->Y  with the  next two properties :
(1) f "  coincides with f  when restricted to the Zariski open subset f - 1 (U) of X ";
(2) f": X "-+Y  factors through T , where a  a n d  r below a r e  morphisms such
that for each y E U , i) r i(y ) is  a  complex torus, and ii) the morphisms a i x  :  X',
- .a (X ) and a ,: X H a y (X )  coincide via an identification of  a (X )  with a y (X ).

f l l

N ote th at the  im age  a (X ") o f  X" is a  (possibly singular) surface. Taking a
suitable nonsingular bimeromorphic model X' o f  X "  (resp. Z  o f  a (X ")) with

(resp. ri(U)g Z), we have the following commutative diagram
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Z ,

where over U, th e  morphisms f ,
 Cr,j. coincide with f" , a, y  respectively. N o w

b y  (b ) o f  7.2.2, w e  have p g (Z)..dim L h =dim L=2, an d  in  particular K(Z)>0.
Then from

0__.r(2?)_ ._K (general fibre of ii)+K(Z), (cf. Viehweg [27]) ,

it fo llow s that (general fibre of â )= —o0. Hence K( )_tc(general fibre of ii)-F
dim Z = —co. Thus 2 i3(X) dim Z=2, and we conclude that 13(X)=13()=2.

Q. E. D.

Proof of 8.3.2. O nce for all, we assume that Yr is not generically surjective.
L et {coo, (01, oh} be a  C-basis fo r  L, and w e w rite Q i a s  e, regarding it only as
a  locally free  sheaf o n  X .  Then, from our assumption, w 0 Aw 1 , w1Aw2, (00A(02Œ
H°(X, A 2e) generate a  subsheaf o f rank 1 in  A 2e .  Note that gr is generically
given by

: X P2=  {(4 : : z2 ) }

x ((0) 1 A w2)(x) : (w o A (0..)(x ) : ( wo A (00 (x )) .

Because o f Theorem 8.3.1, we m ay assume that any two distinct elements of L
a re  linearly independent over C (X ). Hence no hyperplanes o f  P 2 can contain
th e  meromorphic image Tm ?Jr, and therefore

i) S: =Co, Aw2d- Cwo Awi+Coo Aw2 is  a  3-dimensional subspace o f  H°(X, A 2e);
ii) the  fundamental subspace L o o f  L  coincides with L.

N ow , fixing an L-fibration f: X'— , 17  (c f . 7.1.1) o f  X, w e have the com m utative
diagram

2c, >..7c

Y  Im 31f ,

w here j  i s  a  m od ifica tion  and  v  is  a  finite morphism. In  view of ii) above,
Theorem 7.1.2 shows that, fo r every smooth fibre X', of f ,  a ll j*(w a ) (a=0, 1, 2)
a r e  contained in  th e  kernel o f it: H°(X', S21-,)—>H°(X; , S2.

2k,
v ), where X'y c•X'

denotes the  natural inc lusion . We now write Q3,, as C , regarding it only a s  a
locally free  sheaf on X '.  From the equalities f*(w0A0.)0=f*(1) * (za/z0))•/* (w0A(02),
a=1, 2, it then follows that c(j*(S)) ( : =- {c(j*(cr)); a ES1) generates an  invertible
subsheaf S of f (  A 2 ), w h ere  : H°(X', A 2 e) H°(Y , f* ( A 2 é)) denotes the canon-
ical isom orphism . We now apply Theorem 6.1.2 to th e  fibration f :  X'—, 17  w ith

.6\

gr



Invariant p and uniruled threefolds 545

n =3  and p= 2 : L e t  2 : f*((f2i ,/y)* * )--.Hom(S, f*((ox, 2 )) be the sheaf homomor-
phism on Y naturally induced by the pairing (77, j*(a)) ,f2i , Y ,x , X j * (S)'—*)2 Ai* (0)

det (S21,)x,-=(0)/,2)x,(x'E X7). Since K(X ' )._ .0, Theorem 6.1.2 then asserts that 2
is tr iv ia l. We now fix a  general smooth fibre o f  f , and let : X,-.Alb (Xi,)
be the Albanese map. First, by (a) of 7.2.2, dim a „( X ) .- 1. It then follows that
dim a,(X ',)=1 , because otherwise we should have a nonzero locally free sheaf
f * ((Q1, 1 y )**) on Y in contradiction to the fact that 2 is a zero homomorphism.
Thus, just by the same argument as in Step 2 of the proof of 8.3.1, we now
conclude that 13(X)=2. Q. E. D.

Remark 8.3.3. Without the assumption that X  is of class C, w e still have
the following statement* ) .

L et X  be a compact complex manifold of dimension n 2 .  Assume that there
exists a nonzero C-linear subspace L  of  H°(X , Q1- ') which generates a subsheaf
o f  rank 1 in  S21- 1 . L e t fa) ( f )- 2 ,  ' • '  oh} be a C-basis for L , and V : be

the meromorphic map defined generically by

qf : X  ---> P` - '= {(z1: z2: • • • : z1)}

x (a),(x): w 2(x): ••• :oh(x)) •

We furthermore assume that the meromorphic image Tm Y.  has dimension at least
n - 1 .  Then

i) dim Im T. = n —1, (cf. Bogomolov [2]).
ii) Fix ing an arbitrary L-f ibration f  X '— .Y  o f  X  with its associated modifica-
tion j : we can express each element co in  L  as (f o j ') * ( )  f o r  some y
Ho(y ,

iii) If K(X ) 0, then general f ibres of  f  in  ii) above are (an d  in  particular
tc(X )= —co).

Proof of  8.3.3. i) is straightforward from the inequality dim Im n-1
which is a  consequence of a theorem of Bogomolov [2; (12.2)].
ii) Since f : X '— >Y  i s  a n  L-fibration o f X , there exists a  generically finite
morphism Y—>Im P such that the following diagram commutes :

X ' i X

4 c  T 1

Y ImTg.P1-1 .1)

For each a, 1SmZ w ith  1_-<a< let rap: r -  denote the meromorphic
projection (z ,: z ,: •••: z 1) ,—>(za : Z p) to the a-th and I3-th factors. Replacing X '
an d  Y  by their suitable bimeromorphic models respectively, we may assume
that every 7ra fiov : Y--*P1 (1  a < 13- /) is a  morphism. We now take a  general

*) When n = 3 , this reduces to a  special case of 8.3.1.
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point = (0 1 : 0 2 . ••• O I )  o f  Im such  that t h e  following conditions are  all
satisfied :

(a) 0  is  a  nonsingular point of Im
(b) Oi tO , and Fk: = (7C1Pk ° V° f ) -1 ((e 1: p k ) )  is smooth for any k E {1, 2, • • n - 1},
where {Pi, ••• , ••• , /I) is such that (71,s k .v 'f  ) * (zp„Izi), k=1, 2, •-• ,
n -1 , form a  system of local parameters of Tm gr a t  O.
(c )  (v o f) - 1 (0 ) is smooth (and in  particular reduced).

Then by Remark 7.1.3, ir(j*(co r )) =0 for all kw {1, 2, • • • , n -1 }  and ra={1, 2, • • • , /},
where i k : F k c_,X ' denotes th e  natural inclusion. Now, one easily sees that there
exists a  Zariski open dense subset U  o f  X ' such  that, f o r  a n y  x 'E U ,  each
/* (wr) (1 - r•-</) is locally written a s  s . f* ( e )  for some sE0 1 ,, x ,  a n d  ES21. 1“.x•).
Applying Lemma 7.2.1 , we can finally express each j*(w) (coE L) as f *(2) for
some 72 EH°(Y,
iii) From ii) above, we obtain p g (Y)_1>1, a n d  in  particular K (Y )> 0 .  Hence
i n  v iew  o f  t h e  inequality O x(X') (Y)-1-K(general fibre of f ) ,  (cf. Viehweg
[27]), we now conclude that K(general fibre of f )  e ., general fibres of
f  a re  P 1 . Q. E. D.

(8 .4 )  Combining 8.2.1, 8.3.1, and 8.3.2, we finally obtain :

Theorem 8 .4 .1 . L et X  be a com pact complex 3-dimensional manifold of  class
C  w ith  x (X )_0 . Pu t 1=h 2, °(X ) .  L et r  be the  rank o f  th e  subsheaf o f  Q i gen-
erated by the global sections H °(X , Di), and we denote by 0 : X—Gr(1, 1—r) the
meromorphic map defined generically by

0 :  X Gr(1, 1—r)

 {coEH°(X, Qi); w(x)=0} .

Then we have at least one of  the following:

(1) p ( X ) 2  (and hence (X )= -00 ).
(2) r=1=3 and K(X )= 0.
(3) r=1 - 2.
(4) X  is not uniruled with r=2<1 and the meromorphic image Tm 0  o f  0  has
dimension at least 2.

P ro o f. If  r= 3 , then by 8.2.1, we obtain (2) above. O n  th e  other hand, if
r= 0 , it follows that 1 = 0, and  hence (3) is  th e  c a se . In  view of r l , there are
three remaining possibilities :

C ase  (a ) . 1 :_ r = / .2  :  Then we have (3) above.
Case (b). r = 1 < /  :  Then, applying Theorem 8.3.1 to a n  arbitrary 2-dimensional
C-linear subspace L  o f H °(X , S21), we obtain (1) above.
Case (c). r = 2 < 1  :  Choose a  3-dimensional C-linear subspace L  o f  H°(X, DI)
which generates a  subsheaf of rank 2  in  D i .  L et T . : X---Gr(3, 2) be the mero-
morphic map defined generically by
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: X  --> Gr(3, 2)(=P 2 )

x {oE L ; co(x)=0} .

Then by Theorem 8.3.2, either we have (1) above or 2=dim Im Im
Thus, in view of (4) above, it suffices to consider the  following subcase of (c):

Subcase : X  is uniruled with r=2</ .

But then Corollary 2.4.4 asserts that (1) above is true in this subcase, and now
the proof of 8.4.1 is complete.

Remark 8 .4 .2 . Conjecture 8.1.1 and Theorem 8.4.1 will be reconsidered in a
separate paper [22 ] from a  different viewpoint.

§ 9. Appendix (I).

In this appendix, we shall give a  rough sketch of how one can divide the
compact complex threefolds of negative Kodaira dimension into several interest-
ing classes. The theorems given below a r e  somewhat o f  expository nature,
heavily depending on the recent results o f F u jik i [4 ], [6 ], and Ueno [31] ; we
also use the standard techniques of K awai [14], [15], and Ueno [30].

Definition 9 .1 .1 . Let X  be a compact complex variety.

(a) (cf. U eno [30]). A n algebraic reduction alg x : X*—>Xa t g  o f  X  i s  a  natural
morphism of a  nonsingular bimeromorphic model X *  o f  X  onto a projective
algebraic manifold X,i i ,  with C (X )= C (X a t g ). We then pu t a(X):=dim X a i g .
(b) (cf. F u jik i [6 ]) . A  C-reduction c x  : X*—>X, of X  is a  morphism o f  a  non-
singular bimeromorphic model X *  o f  X  onto "the largest" compact complex
manifold X, of class C which is dominated by X .  We put c(X):=dim X c .
(c) (cf. F u jik i [6 ]) . X  is  ca lled  simple, i f  there are  no  pair o f surjec tive
morphisms o f  c o m p a c t complex varieties (7r: Z X ,  p :  Z-4 Y )  such that
0< dim 7-c(p - 1 (y))<dim X  fo r a  general point y of Y.

We need the following results of Fujiki :

Theorem 9 .1 .2 . (F u jik i [4 ]) . L e t X  b e  a  compact complex variety  w ith
dim X —  a(X )=2 and XE C. Then we have an algebraic reduction algx: X *-->Xalg
o f X  such that, i f  U  is the Z arisk i open dense subset X az g l  X t :=a lg i i ( u )  is
smooth} o f X a i g ,  then one of the following holds:

(a) Each X t (u U) is a complex torus.
(b) Each X t is a K 3 surface, and a ( X ) =0  i f  u  is a general point of U.
(c) E ac h  X t  is  an alm ost hom ogeneous relatively  m inim al ruled surface of
genus 1.

Theorem 9 .1 .3 . (F u jik i [6 ]). Let X  be a compact lathier 3-dimensional mani-
fold w ith a(X )=-1. Assume that general f ibres o f an algebraic reduction o f  X
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are  either K 3  surfaces or non-algebraic complex tori. Then there exists a
generically surjective meromorphic map from X  to a non-algebraic K 3 surface.

(9 .2 ) We now consider compact complex threefolds of negative Kodaira dimen-
sion . The cases X EC  and X E C  will be treated separately.

Theorem 9 .2 .1 . Any compact complex 3-dimensional manifold X  with X EC
and IC(X)= - o 0  belongs to one of the following seven types of compact complex
manifolds:

Type a(X ) p(X )
general fibre of an
algebraic reduction
of X

general fibre of
bx: X—>13(X) other structure

I 0 0 X X simple

II 1 0 complex torus X Xaig—Pl

III 1 0 K3 surface X X alg=Pl

IV 2 0 elliptic curve X a  suitable X a i g  i s  P 2

V 3 0 single point X ?

VI 3 1 single point rational surface uniruled

VII 2 PI uniruled

P ro o f. Since K(X)=— 00, we have 18(X)=0, 1, or 2 . Then the following six
cases are possible :

Case 1. a(X )=j3 (X )=O : In this case, by Fujiki's theory of W*-reduction [6], X
is easily shown to be simple as follows. For contradiction, w e assume that X
is not simple. Then, letting f: X -417  be a n  W*-reduction of X, one sees that Y
is a compact complex surface of class C with a(Y )= 0. Y would now be bimero-
morphic to either a  complex torus o r a  K3 surface in contradiction to (:1 13(Y)

p(x)=o. Thus X  is simple, and is of type I above.
Case 2. a(X )=1 and P(X )=0 : First, in view of 0 - 13(Xat g ) - 13(X)=0, we obtain
X a i g =P 1 . Secondly, by 9.1.2, we can find an algebraic reduction a/g x  : X*—>Xa i g

of X  whose general fibre is one of the following :  (a) a complex torus, (b) a  K3
surface, (c) a  ruled surface of genus 1. We shall eliminate the last case ( c ) .  If
(c) is the case, then denoting by Alb(X/Xa / g )  the relative Albanese variety of
X  over Xat g ,  (cf. Fujiki [4]), we have a generically surjective meromorphic map
of X  to the surface Alb(X/Xat g ). Since Alb(X/Xa tg )  is of class C, the inequal-
ity 0_p(Alb(X/Xat g )) --13(X)-=0 implies that A lb(X /X at g ) is rational. Then a(X )
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dim A1b(X/Xa 1 g )=2 which contradicts our assumption a (X )=1 . Thus (c) cannot
occur. Hence in our Case 2, X  is of type either II or DI.
Case 3. a(X)=2 and p(X)=0 :  Since a(X )=dim  X-1, a  general fibre of aigx  :
X*—>Xa i g  i s  a n  elliptic curve. On the other hand, 0 p(X a 1 g ) 1S (X ).0 , and
therefore Xa i g  is  a  rational surface. Thus, in this case, X  is of type N.
Case 4. a(X)=3 and 19(X)=0 : T h e n  X  is clearly of type V.
Case 5. p(X)=1 : By Theorem 1.3.4, a  general fibre of bx  is a rational surface,
and in particular X  is  uniru led . Furthermore, since B (X ) is algebraic and since
a general fibre of bx : X—>B(X) is Moishezon with irregularity 0, it follows that X
is also Moishezon, j. e ., a (X )= 3 . Hence X  is of type W.
Case 6. P (X )= 2  : By Theorem 1.3.4, general fibres of bx  are isomorphic to P 1,
and in particular X  is uniru led . Thus X  is of type VI Q. E. D.

Remark 9 .2 .2 . In Theorem 9.2.1, we further assume that X is Kdhler. Then
from Theorem 9.1.3, one immediately obtains :

1) Type DI cannot occur ;
2) if  X  is of Type II, general fibres of an algebraic reduction of X  are abelian
varieties.

Theorem 9 .2 .3 . L e t  X  b e  a com pact complex 3-dimensional manifold with
XEre an d  K (X )= -0 0 . A ssum e th at  X  cannot dom inate any  non-Keihler K3
surface by  a generically  surjective merornorphic m ap. T hen algx  an d  cx  are
bimeromorphically equivalent, and we have one of  the following:

(1) a (X )= 13 (X )= c (X )= 0 : Then two cases are possible.
(a) X  is simple.
(b) (cf. F u jik i [6 ]) . There exists a generically  surjective meromorphic map

a: X-3,5 o f  X  to a compact complex surface S  of  class VIL, with .'c(S)=-00 and
a(S)=0 such that i) f o r some Zariski open dense subset U  of  X , altr : U—*o- (U ) is
a proper morphism having a general f ibre isomorphic to either P '  or an elliptic
curve, and that ii) f o r any generically  surjective meromorphic m ap f: X—>Y of
X to  a compact complex variety Y  w ith 0<dim Y<dim X , there ex ists a generi-
cally  f inite meromorphic map f': S—>Y satisfy ing f = f . c .
(2) a(X )=c(X )=1 and p(x)--o: Then a general f ibre of algx  is bimeromorphic
to one of  the following surfaces, (cf. Kawai [14], [15], Ueno [30]):

(a) K3 surface;
(b) hyperelliptic surface;
(c) Enriques surface;
(d) complex torus;
(e) elliptic surface with trivial canonical bundle;
(f) surface of  class VI10;
(g) rational surface;
(h) ruled surface of  genus 1.

(3) a(X)=- c(X )=1 and 13 (X )= 1 : Then a general fibre of  algx  is bimeromorphic
to one of  the following surfaces, (cf. Ueno [30], [31]).
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(a) non-algebraic K3 surface;
(b) non-algebraic complex torus;
(c) surface o f  class V110 w ith  x=-0 0;
(d) rational surface;
(e) ruled surface of  genus 1.

(4) a(X )=-c(X )=2 an d  13(X) -5_1: T hen X. 1,  i s  a n  either rational o r  ruled
surface, and a general f ibre o f  algx  is an elliptic curve.
(5) a (X )=c(X )=1 and 13(X)=2: T hen B (X ) is an elliptic surf ace w ith odd
f irs t  Betti num ber fibred over the curve B(X ).1,=X. 1„, and a general f ibre of
bx  is isom orphic to P 1 .
(6) a(X)= 13 (X )= c (X )= 2 : We choose a suitable X a t ,. Then X. 1„ (resp. B(X))
is a  ruled surface (resp. an elliptic surface w ith odd f irst Betti number) over the
curve C:-=B(X).1,, and a general f ibre of  algx  (resp. b x ) i s  a n  elliptic (rasp.
rational) curv e. Furtherm ore, replacing X  by  its suitable bimeromorphic model,
w e hav e  a  generically  f inite surjectiv e morphism b x Xalg x : X—>B(X)XcX.i,
which sends each x E X  to  (bx(x), algx(x))EB(X)XcX.I g .

Remark 9 .2 .4 . Since there is a  gap  in  th e  paper of Todorov [26] who
claims that every K 3 surface is Kdhler, we are unable to eliminate th e  above
cumbersome assumption that X  cannot dominate any non-Kdhler K3 surface by
a  generically surjective meromorphic map.

Proof  o f  9.2.3. Replacing X  by its suitable bimeromorphic model, we may
assume that bx : X—*B(X) is holomorphic and that a  C-reduction of X is given
by a  morphism cx : X—>X,.

Step 1. First we consider the case 13(X)=2: Then by a theorem of Viehweg
[27], general fibres of bx  a r e  isomorphic to P ' .  In  particular, X IEC  implies
B(X)EEC. Thus B (X ) is  a  non-Kdhler surface with K(B(X)) 0. Being unable
to be a  K 3 surface, B (X ) is now an elliptic surface with odd first Betti number,
(cf. Kodaira [21], Miyaoka [23]).

Step 2. Next we consider the case c(X )=- 2 :  In this c a se , a  general fibre
of cx is an  elliptic curve, (cf. F u jik i [6 ]) . Then ff(X ,)= -00 , because otherwise
K ( X ) =  -  0 0  would imply x(general f ib re  o f cx)= —00, which is a contradiction.
Thus X , is an  either rational or ruled surface. In particular, cx  a n d  a/gx  a r e
bimeromorphically equivalent.

Step 3. Now we come back to the general situation : In view of n(X)= —o0
and XEEC, we have 13(X) 2  and c(X ) 2. Since X e = X a i g  f o r  c (X )1 ,  Step 2
above implies that cx  a n d  a/gx  a re  always bimeromorphically equivalent. Hence
a(X )=c(X ), and we may assume cx=a/gx. Since (a (X ), P(X ))*(0, 1), and since
by Step 1, (a(X), 13(X))*(0, 2), we have one of the following: ( i )  a(X)=i3(X)
=c(X )=0, (ii) a(X )=c(X )=1  and p(X )=0, (iii) a(X )=c(X )=1  and 13(X )= 1 , (iv)
a(X )=c(X )=2 and 3 ( x ) 1 ,  (y) a (X )=c(X )=1  and 13(X )= 2 , (v i)  a(X)=I3(X)=-
c(X)=2.

Step 4. We consider each of six cases of Step 3:
Case ( i ) :  Assume that X  is not sim ple. Choose a  W *-reduction f :  X.-17. o f
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X , (cf. Fujiki [61), where i n  our case Y  can be taken a s  a  relatively minimal
surface with a (Y )= 0 . Then a  general fibre  of f  i s  a  curve which is either
elliptic o r  r a t io n a l .  I f  r(Y)= —o0, then Y  is a  surface  of class VII 0 , a n d  hence
according to Fujiki [6], we have the situation (b) o f  (1) above. If  K(Y) . 0,  then
Y  would be either a  K3 surface  or a  complex torus in contradiction to 0 8(Y)

13 (X )= 0 . It now follows that, in  our Case ( i ) ,  we have (1) above.
Case ( ii): In  this case, it is well-known that (2) above holds, (cf. Ueno [30]).
Case (iii): Then a  recent result o f Ueno [31] together with standard facts (cf.
Ueno [30]) immediately implies (3) above.
Case ( i v ) :  Since X a i g = X e , Step 2 shows that (4) above holds.
Case ( y ) :  Then by Step 1, B (X ) i s  a n  elliptic su rface  w ith odd first Betti
number. Since aigscx).bx : X—>B(X) a i g  i s  a  morphism with connected fibres,
we infer from a (X )=1  that th e  curve B(X) a l ,  coincides with X a i g . Hence (5)
immediately follows.
Case ( v i ) :  Then by Step 1, B (X ) i s  a n  elliptic su rface  w ith odd first Betti
number (naturally fibred over t h e  curve C := B (X )a zg ). N o w , bx : X—>B(X)
naturally induces Ex: Xa t , - -4 C  (w e m ay assum e that Ex  i s  a  morphism by
replacing X  and X a i g  by their suitable bimeromorphic models i f  necessary), and
we obtain th e  following commutative diagram of surjective morphisms :

X

aigx

X a tg

b 1
B(X)

Ialgs(x)

> C—B(X) a r g .

 

Ex

Since a/gs(x).bx is a  morphism with connected fibres, so is Ex . Now choose a
general point z o f  B (X ).  Then b-x l(z).- I '',  and algx(b -xl (z )) sits in  a  fib re  o f Ex.
Here algx(b7x 1 (z )) is not a point, because otherwise a/gx  w o u ld  fa c to r  through
B (X ) so  th at alg x =g.b x  f o r  some generically finite surjective meromorphic
map g: B(X)—>X a i g  in contradiction to a (B (X ))= 1 . Thus X a i g  is  a ruled surface
over C, and b x  X alg x  : X—>B(X)X c  X „i i s  a generically finite surjective morphism.
We now obtain (6). Q. E. D.

§ 10. Appendix (II).

Finally, we shall generalize Theorems 1.3.3 and  1.3.10 a s  follows : L et X
be a  nonsingular S-variety o f class Ci o ,  with dim(X/S)=3, (cf. § 1). Considering
the meromorphic maps b 1 1 3 : X—>B(XIS) and b'x I s : X—>B'(XIS), (cf. 1.1.3), we
put X 8 =7r 1

- l(s), B(X/S)8---(7ra(x/s)) - 1 (s), /3 / (X/S)3=(773 , (113)) - '(s )  fo r  each
where the  morphisms 7rx, 73(1/8), 773, (x/s) a re  a s  in  (a )  o f 1.1.1.

Theorem 10.1.1. I f  X , is a general f ib re  o f  7rx , th e n  th e re  is  a  natural
bimerornorphic identif ication of  B(XIS) 3 w ith  B (X 8)  such  that the restriction
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(bxl, )ix s : X s —q3(XIS), coincides with bx,: X,—>B(X,) bimeromorphically. In partic-
ular, p(X,)-= p(XIS) fo r  general points s of S.

Theorem 10 .1 .2 . I f  X , is a general f ibre o f  7r1 ,  th e n  th e re  is  a  natural
bimeromorphic identification of B/(XIS), w ith  B '(X ,) such that the restriction
(b'x15)11 3 : X,--q3'(XIS), coincides w ith 6'1 3 : b i m e r o m o r p h i c a l l y .  In
particular, P'(X,)=-p '(X IS ) fo r general points s of S.

Outline of the proof  o f 10.1.1. If s (general fibre of 7rx )_ -_0, then one  has
B (X IS )=X  together with B (X ,)=X„ where s ES is general, and  therefore the
assertion is obvious. Thus we m ay assume that K(general fibre of xx)=-
Now in  view of Theorem 4.1.1, the following three cases are possible:

Case 1. p  (general fibre of 7x )=-0 : Then p(XIS)=0 a n d  i f  s ES is general,
3(X,)=0 . Hence this case is clear.
Case 2. p  (every smooth fibre of 7x)=1 : Note that, in this case, every smooth
fibre of r x  is  Moishezon (see the proof of 4.3.1). Then we m ay take B(XIS)
a s  th e  meromorphic im age of the  re lative Albanese map axis : X-0A1b(X/S),
and kris is naturally identified with axis. Now if  s E S is genera l, bx,:
B (X ,) is regarded a s  «,: X,--cx,(X,), w here a ,: X,—>A1b(X,) is  the Albanese
m ap. The assertion is then straightforward.
Case 3. 13 (every smooth fibre of 7rx)=2 : In th is case, the assertion follows
from the same arguments as in the proof of 4.3.1, (we don't go into details).

Q. E. D.

Proof  o f 10.1.2. I n  view  o f  10.1.1 a n d  ( i )  o f  1.3.5, this is an easy con-
sequence of 1.3.7.

Remark 10 .2 .1 . Let X  be a  4-dimensional Moishezon manifold, and we con-
jecture the following :

(a) Choose a modification p: X*—>X f rom  a compact complex m anifold X* so
that bx . du: X*-->B(X) is  a morphism. Then P(general f ibre of bx .p)=0.
(b) Choose a modification I): X 5 -#X  f rom  a compact complex manifold X 5  so that

X 5 -->B'(X) is  a morphism. Then p'(general f ibre o f b'x .v)=0.

By 10.1.1 and 10.1.2 above, one easily sees that these conjectures are true i f  1)
of (b) of 1.1.4 is so under the condition dim V=4.
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Added in  proof : B y recen t re su lts  o f  Kawamata-Viehweg, 1) o f  (b ) of
1.1.4 is  tru e  fo r dim V = 4 . Hence conjectures in  10.2.1 a re  both affirmative.


