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§0. Introduction.

In this paper, introducing a bimeromorphic invariant 3, we shall make a
systematic study of compact Kéihler threefolds with k=—co: For a compact
complex manifold X, we put f(X)=Max{dimY ;Y is a compact complex manifold
with £(Y)=0 and there exists a generically surjective meromorphic map f: X—
Y}. Then, if dim X<4, one can naturally find a generically surjective meromor-
phic map by: X—B(X) such that B(X)=dim B(X) and that f: X—Y above
always factors through B(X), (cf. 1.1.3 and 1.1.4 of §1). We now assume that
X is a compact Kihler threefold. Then there exists a Zariski open dense subset
U (resp. U’) or B(X) (resp. X) such that:

(@) bxw :U'—bx(U")=U is a proper morphism, and furthermore

(b) for every ue€U, the fibre by *(u) is irreducible and S(bx*(u))=0.

Thus, if S(X)=1 or 2, general fibres of by are rational. Therefore, it is natu-
rally expected that problems of B can be translated into those of degenerations
of rational curves or surfaces. In fact, via such translations, we shall prove:

(1) If 7: ¥—X is a finite étale cover, then B(X)=pB(X), (cf. Theorem 3.1.1).
(2) Let g: Z—S be a proper smooth morphism of Kéihler manifolds such that
g X(s)=X for some s&S. Assume that B(X)=1 or 2. Then B(g~(s"))=p(X)
for every s’€S, (cf. Theorem 4.1.1).

Further results we obtained are the following:

(I) Let X be a compact Kéhler uniruled threefold. Then

(I-a) A(X)=0 if and only if ¢(X)=h"(X, S¥(2%))=0, (cf. Theorem 2.1.5);

(I-b) B(X)=1 if and only if ¢(X)>h%X, S*(2%))=0;

(I-c) B(X)=2 if and only if A°(X, S®(2%))+#0;

(I-d) if r: X>X is a finite étale cover, then x naturally induces an étale
cover b(r): B(X )—=B(X) with deg b(x)=deg =, (cf. Proposition 3.1.4);

(I-e) if g: Z—S is a proper smooth morphism of Kihler manifolds such that

*) Supported by Sakkokai Foundation at Osaka University (Japan), and also by NATO
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g s)=X for some seS, then B(g '(s')=p(X) for every s’€S, (cf. Theorem
4.1.1).

(D) (cf. Theorm 84.1). Let X be a compact Kdhler threefold with x(X)=<0.
Put /=h*°(X). Let r be the rank of the subsheaf of Q% generated by the
global sections H(X, 2%), and we denote by @: X—Gr(I, [—r) the meromorphic
map defined generically by

D: X —>Gr{l, I—r)
x— {weH (X, 2%); w(x)=0}.

Then we have at least one of the following:

(a) B(X)=2; (b) r=I(=3 and k(X)=0; (c) r=I[=2; (d) X is not uniruled
with »=2</ and the meromorphic image Im @ of @ has dimension at least 2.

Notation and Convention.
(0.1) Z=the set of all integers, Z,=the set of positive integers.
0.2) g.c.d.() (resp. l.c.m.(--+))=the greatest common divisor (resp. the least
common multiple) of ---.
(0.3) A complex variety is an irreducible reduced complex space, and a man-
ifold is a nonsingular complex variety. Note that manifolds are always con-
nected. For a complex space X, we denote by X, its underlying reduced
complex space, and an analytic subset (resp. a subvariety) of X means a reduced
(resp. an irreducible reduced) analytic subspace of X.
(0.4) For a compact complex manifold X, a triple (f: W-Y, g: W—X, Y is
called a covering family of rational curves on X if the following conditions
are satisfied:

i) both f and g are surjective morphisms of compact complex manifolds;

ii) Y°is a Zariski open dense subset of Y, and f is smooth over Y°;
iii) for every yeY? the fibre W (=f"'(y)) is isomorphic to P' and dim g(i¥,)
=1.

A compact complex manifold X is called uniruled if there exists a covering
family of rational curves on X. It is known that a uniruled compact complex
manifold X which is either Moishezon or a threefold of class C (cf. 1.2.1) always
admits a covering family of rational curves (f: WY, g: W—X, Y° on X such
that g is generically finite.

{0.5) All modifications in this paper are assumed to be proper.

(0.6) For a (possibly open) n-dimensional complex manifold X, we write wy
=0x(Ky) (=82%), where Ky denotes the canonical bundle of X. If there is
no fear of confusion, we use locally free sheaves and vector bundles inter-
changeably.

(0.7) Let f:X—Y be a proper morphism of complex varieties. For every
analytic subspace F of Y, we denote by f~!(F) the analytic subspace of X ob-
tained as the ideal-theoretic inverse image of F. In particular for every ye€Y,
f~(») is the ideal-theoretic fibre of f over y. The set-theoretic inverse image
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of F is, however, denoted also by f~(F), if no confusion seems likely to result.
For every compact analytic cycle y on Y (resp. X), we denote by f*(y) (resp.
f«(7)) the cycle-theoretic inverse (resp. direct) image of 7 under the mapping f.
(0.8) Let f: X—S be a proper flat morphism of complex manifolds. Fix an
arbitrary point s of S, and we write the cycle f*(s) as 23;Z;;7; with multiplici-
ties ;= Z, and irreducible reduced cycles 7; on X. Then the fibre X (=/"(s))
is called a multiple singular fibre if g.c.d.(p, tta, -+, ptr)>1.

(0.9) Let f: X—>Y be a meromorphic map of compact complex varieties, and
let F be a closed subvariety of X which is not contained in the set S(f) of
points of indeterminacy of f. Then the meromorphic image of F under the
meromorphic map f denotes the closure of f(F—S(f)) in Y. The meromorphic
image of X under the meromorphic map f is sometimes called the meromorphic
image of f.

(0.10) “Closed” (resp. “open”) means “closed (resp. open) in Euclidean topol-
ogy” and is distinguished from “Zariski closed” (resp. “Zariski open”).

(0.11) Let X and Y be complex spaces. Then X=Y means that X and Y
are bimeromorphic, and X=Y means that X and Y are isomorphic, i.e., biholo-
morphic.

(0.12) We understand that the Kodaira dimension of a point is 0.

(0.13) Let & be a locally free sheaf on a complex variety X, and L be a
linear subspace of the global sections H(X, &) of &. Then the subsheaf of &
generated by L denotes the sheaf of ©y-modules whose stalk at each point x
of X is the Oy, ,-submodule of &, generated by L.

(0.14) Let E={Z,},er be an analytic family (of divisors, cycles, fibres, etc.)
parametrized by a reduced complex space T. We say that general elements of
Z have a property, if the property is possessed by every Z, whose index t
belongs to some countable intersection of Zariski open dense subsets of T.

In concluding this introduction, I wish to record my indebtedness to Pro-
fessors A. Fujiki, M. Miyanishi and K. Ueno; their constant suggestions largely
improved this paper. In particular, I learned from Fujiki several interesting
facts on nonalgebraic compact complex manifolds and also on Douady spaces,
(cf. 1.2.1, Step 2 of 8.3.1, and §9); and following a suggestion of Miyanishi, I
rewrote § 1 from a relative point of view, which fairly simplified the proofs of
134 and 1.3.9; [ am heartily grateful to Ueno, and numerous stimulating discus-
sions with him immensely influenced this paper, (cf. 2.3.1, 8.1.1, and §5~§9).
Note that the study of holomorphic 2-forms on threefolds was proposed by him
[32], (cf. §5~§8).

Thanks go also to Doctors T. Fujita and M. Ishida, with whom [ was able
to have fruitful conversations at Montréal. In particular, Fujita pointed out a
gap in our original version of §5 and 6, and Ishida gave me several interesting
comments on § 2.

Finally, I wish to thank Professors S. litaka, S. Kobayashi, T. Ochiai, H.

Sumihiro, and Doctors Y. Kawamata, K. Maehara, T. Sugie for their encourage-
ments. '
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§1. Basic fibrations.

The main purpose of this section is to define a couple of fibrations for com-
pact complex manifolds of dimension 3 or 4. Our construction of fibrations es-
sentially depends on the following: (i) a general reduction theory, (see for
instance Fujiki [6]), and (ii) the subadditive property of the invariant & of
algebraic varieties, (see litaka [12] and Ueno [30] for standard facts on £). In
our actual treatment, the problem will be discussed more generally from a relative
point of view. Throughout this section, S is assumed to be a (possibly open)
complex variety.

Definition 1.1.1. (a) A complex variety X with a proper surjective mor-
phism my: X—S whose general fibres are irreducible is said to be an S-variety.
An S-variety X is called nonsingular if X is, just as a complex variety, non-
singular. For S-varieties X,Y, Z, .-, we denote the corresponding morphisms
onto S by 7y, wy, 7z, -+, and a morphism (resp. a meromorphic map, a bimero-
morphic map) f: X—Y is called an S-morphism (resp. an S-meromorphic map,
an S-bimeromorphic map) if myef=my. Generically surjective S-meromorphic
maps f:X—Y and & XY are called S-bimeromorphically equivalent if there
exist S-bimeromorphic maps 7: X—X and j: Y—¥ such that Foi=jef.

(b) Let X be an S-variety. We define: dim (X/S)=dim X—dim S, x(X/S)=
r(general fibre of ny). If dim (X/S)=«(X/S), then X is said to be of general
type over S. We furthermore define:

f: X-Y is a generically surjective }
S-meromorphic map to an S-variety Y )’

Exis={(r, )
Ax;s5={Y, €& xs; &Y /S)=0},

B(X/S)=Max {dim (Y/S); (Y, f)€dxs},

Ay, =Y, f)eExs;Y is of general type over S},
B/(X/S)=Max {dim (Y/S); (Y, fl€dk,s} .

(¢) For any two elements (Y, fi), (Y, fa) of Sxs, let fixfo: XV XY, be
the S-meromorphic map defined generically by (fi*f2)(x)=(fi(x), foa(x))€Y XY,
with x€X. We furthermore denote by Y ,*Y, the meromorphic image of fi*f,.
Then (Y Y, fi*fs) is naturally an element of 5 xs.

Proposition 1.1.2. Let X be an S-variety with dim (X/S)=4.

(@) If (Y4, f1), Vs, fo)EAxs, then (Y %Yo, fixfo)E Ay s.
(o) If Yy, fo), Yy, fo)€ A% s, then (Y Y, fixfo)€dyys.

Proof. The assertion is straightforward in the following three cases:

(1) dim (Y #Y,/S)=dim (Y,/S) or dim (Y,/S), (2) either dim (Y,/S) or dim (V./S)
is0, (3) dim (Y *Y,/S)=dim (Y,/S)+dim (Y,/S) (and therefore Y ;*Y,=Y ;X sY,).
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In view of dim (X/S)=<4, the only remaining possibility is
dim (Y %Y ,/S) = dim (Y,/S)+1 or dim (Y,/S)+1.

Then by symmetry, we have only to consider the case dim (Y *Y,/S)=dim (Y,/S)
+1. Replacing X, Y,, Y, by their suitable nonsingular models, we may assume
that both f, and f, are morphisms of complex manifolds. Let o: Y Y oY 1Y,
be a desingularization of Y,xY,, and Y,*Y,-Y,—Y, be the Stein factorization of
prieo, where pr;: Y xY,—Y,; (i=1, 2) denote the natural projections. Note that
both (Y, fi) and (Y, f.) are elements of Ay,s (resp. A%,s). Applying Viehweg’s
theorem [26] to the morphism obtained by restricting v to fibres over a general
point of S, we see that

(Y %Y,/ S)=k(Y,/S)+k(general fibre F of v),
and therefore the proof of (a) (resp. (b)) is reduced to showing
£(F)=0 (resp. F is of general type).

Since F sits over a single point of S, without loss of generality we may assume
that S consists of a point. Choose an analytic slice 3 in ¥ such that $:=
v™1(Y) has the same dimension as Y, and that pryeo3: S—Y, is of maximal
rank at least at a point of 3. Since £(Y,) (=(Y./S)=0 (resp. since Y, is of
general type), there exists an meZ, such that the complete linear system
|mKy,| on Y, is nonempty (resp. such that the meromorphic image of @,:Y,
PY (N=dim |mKy,|) associated with [mKy,| has the same dimension as Y,).
For simplicity, we put A=pr,°0,3. Taking X general enough, we may assume
that for a general point y of 2, the fibre v~!(y) is smooth with the properties
(¥ mKy,|)i-10#0 (resp. dim @, (A(v"(y)))=dim v=*(y)) and £(v~(y))=«(F). Now
by abuse of terminology, we have A*|mKy,|S|mK3z|, and hence in view of
(K3)-1py=K,-1¢y, we conclude that: x(F)=x(v ! (y))=0 (resp. F as well as
v~}(y) is of general type). Q.E.D.

Proposition 1.1.3. Let X be an S-variety with dim (X/S)<4. Then there
exists an element (B(X/S), bx,s) (resp. (B (X/S), bxs)) of Ax;s (resp. A% ;s), unique
up to S-bimeromorphic equivalence, such that for every element (Y, f)of Ax;s (vesp.
A% s), we can find a generically surjective S-meromorphic map h: B(X/S)—Y
(resp. h': B'(X/S)—Y) which makes the following diagram commutative :

X
bxs f by
resp. A%C‘ s
B(X/S)? Y B’(X/S)?Y

In particular, f(X/S)=dim (B(X/S)/S) (resp. B’'(X/S)=dim (B’(X/S)/S).

Proof. Since the proofs are similar, we just consider the case (Y, f)e4x,s.
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Choose (Y, fo)€Ax,s such that dim (Y,/S)=p(X/S). Replacing X by its suitable
nonsingular model, we may assume that f and f, are S-morphisms. Let XiYé
—Y, be the Stein factorization of f,: X—Y,. Then for every (Y, f)€4y,s, we
have the commutative diagram of S-morphisms:

X
I*2 2
/N

YsY{——r—>vY],
2

pr

where pr,: Y+Y (=Y denotes the natural projection. By 1.1.2, (Y*Y{, f*A)€dxs.
Hence by our choice of Y, dimY#*Yi=dimYy{, i.e, pr, is generically finite.
Now for a general point y of Y, the fibre 2-3(y) (=(f*2)"*(pr3(y))) is irreducible,
and therefore (degree of pr,)=1. Thus, identifying Y*Y; and Y, via the
bimeromorphic map pr, and denoting by pr,: Y*Y(—>Y the natural projection, we
obtain the following commutative diagram (modulo S-bimeromorphic equivalence):

Y$=Y*Y{,WY.

Then B(X/S): =Y§ and by,s: =2 have the required properties. Q.E.D.

Remark 1.1.4. (a) If S is a single point then we denote B(X/S), B'(X/S),
(B(X/S), bxs) and (B’(X/S), bys) simply by B(X), p'(X), (B(X), bx) and
(B’(X), b%) respectively. Note that f(X)=dim B(X) and B’(X)=dim B’(X) for
dim X<4. Throughout our paper, for compact complex varieties X of dimension
=<4, we assume the following rules:

i) If e(X)=0, then (B(X), bx)=(X, idy).
ily If X is of general type, then (B (X), by)=(X, idy).
iii) B(X) is nonsingular unless X is a singular variety with £(X)=0.
iv) B’(X) is nonsingular unless X is at the same time singular and of
general type.
v) If dim X>B(X)=2, then B(X) is an absolutely minimal complex surface.
vi) If dim X>pB/(X)=2, then B’(X) is an absolutely minimal complex surface.

(b) Let g:V—W be a surjective morphism of Moishezon manifolds with con-
nected fibres. Then there are the following conjectures of litaka:

1) k(V)zZk(W)+«k(general fibre of g).

2) If k(W)=0 and x(general fibre of g)=0, then x(V)=0.

3) If W and a general fibre of g are both of general type, then so is V.

Note that 1) implies 2) and 3). Let X be an S-variety such that general fibres
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of 7y:X—S (cf. 1.1.1) are Moishezon. In view of the proofs of Propositions
1.1.2 and 1.1.3, one easily sees that (B(X/S), bx,s) (resp. (B’(X/S), b%s)) as in
1.1.3 exists even for dim (X/S)>4, if the conjecture 2) (resp. 3)) above is true.
Recently we hear that Viehweg [29] refined the result of Kawamata [17] and
proved 1) above under the condition that W is of general type, though some of
his arguments aren’t clear. If we assume his result, then 3) is true, and in
particular (B’(X/S), b,s) as in 1.1.3 always exists (independently of dim (X/S))
as long as general fibres of 7y are Moishezon.

(¢c) For simplicity, we assume that S is a single point. For every (possibly
open) algebraic variety X, we put:

= f: X—Y is a dominant strictly rational
Ex={, )| dominant b
map of algebric varieties

Ax={Y, HleEx; ’(Y)=0}, Ay={Y, f)eEx; &(Y)=dimY},
B(X)=Max {dim Y ; (Y, f)edy}, B/ (X)=Max {dimY ; (Y, /)edk},

where £(Y) denotes the logarithmic Kodaira dimension of Y, (cf. litaka [13]).
Since Viehweg’s theorem [27] plays an essential role in the proofs of 1.1.2 and
1.1.3, in view of Kawamata’s generalization [16] of this Viehweg’s result to
open varieties, we naturally expect that a theorem similar to 1.1.3 still holds
even if we replace Ax;s, A%s, B(X/S), B'(X/S) by Ax, Ay, B(X), B’(X), Such
a theorem actually holds, though at present we can show the uniqueness of
(B(X), bx) and (B’(X), b%) only up to strictly birational equivalence (not proper
birational equivalence).

Proposition 1.1.5. Let f: X—>Y be a generically surjective S-meromorphic
map of S-varieties. Then there exists a generically surjective S-meromorphic map
b(f): B(X/S)—=B(Y/S) (resp. b’(f): B'(X/S)—B'(Y/S)), unique up to S-bimeromor-
phic equivalence, such that the following diagram commutes:

x—7 oy x—7I oy
bxss o byrs resp. bxis O byrs
b/
Bx/$)—2 o By )s) B /5 —2L = Bryys)

Corollary 1.1.6. Let X be an S-variety with dim (X/S)<4. Then the generi-
cally surjective S-meromorphic map byx;s: X—B(X/S) naturally induces an S-
bimeromorphic map b’(bxs): B/(X/S)ﬁB’(B(X/S)/S).

Proof of 1.1.5. The existence of b(f) (resp. b’(f)) is straightforward from
the universality of B(X/S) (resp. B’(X/S)), (cf. 1.1.3), and their uniqueness easily
follows from the commutativity of the diagrams. Q.E.D.

Proof of 1.1.6. Since £(B’(X/S)/S)=0, the universality of B(X/S) says that
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there exists a generically surjective S-meromorphic map g: B(X/S)—B’(X/S)
with b%,s=g°bx,s. Then the naturally induced meromorphic map b’(g): B'(B(X/
S)/S)—B’(B’(X/S)/S) (=B’(X/S)) is the inverse of b'(by,s). Q.E.D.

(1.2) We shall next study basic properties of 8(X/S) and B/(X/S). Recall the
following definition of Fujiki [3]:

Definition 1.2.1. (a) A compact complex variety X is called of class C (or

shortly XeC) if there exists a surjective morphism of a compact Kidhler mani-
fold onto X. This class of varieties is known to have good functorial properties,
and furthermore for every compact complex manifold of class C, its each com-
plex cohomology group has a Hodge decomposition.
(b) A proper surjective morphism f:Y—Z is called of class Cy,,. if for every
point of Z, there exist its open neighbourhood U, a Kidhler manifold My, a prop-
er morphism g: My—U, and a surjective morphism h: My—f~U) such that
g=feh. An S-variety X is called of class C,, if the morphism 7 y: X—S (cf.
1.1.1) is of class Ci,..

Proposition 1.2.2. Let X be an n-dimensional compact complex variety. Then

(@) 0=R/(X)=BX)=n. (b) If x(X)=—0c0, B(X)<n. (c) If e(X)=0, B(X)=n.
(d) Let X be Moishezon. If g(X)=0, then B’'(X)=0.
(e) Let XeC and dim X=3. If x(X)=0, then B'(X)=0.

Proof. (a), (b), and (c) are obvious. Assume that x(X)=0, and we consider
(d) and (e) at the same time. Let f: X—Y be a generically surjective mero-
morphic map to a compact complex manifold ' of general type. Replacing X
by its suitable nonsingular model, we may assume that f is a morphism. If X
is Moishezon (resp. If XecC and dim X<3), then a theorem of Kawamata [17]
(resp. Viehweg [28]) asserts that

0=k(X)=£(Y)+x(general fibre of f)=dim Y +x(general fibre of f).

Since we have an easy inequality s(X)<dim Y +«x(general fibre of f), it now
follows that dim¥Y=0. Thus B’(X)=0. Q.E.D.

Proposition 1.2.3. Let g: X—Z be a surjective S-morphism with connected
fibres between nonsingular S-varieties X and Z. Suppose that B (general fibre of
g) (resp. B'(general fibre of g)) is 0. Then for every element (Y, f) of Axs
(resp. Alx;s), the S-meromorphic map f factors through Z, i.e., f=heg for some
generically surjective S-meromorphic map h:Y—Z. In particular, we have:

(@) PX/S)=BY/S) (resp. B (X/S)=p'Y/S);
(o) if dim (X/S)<4, then b(g): B(X/S)—>B(Y/S) (resp. b’(g): B'(X/S)—B'(Y/S))
is an S-bimeromorphic map.

Proof. Replacing X by its suitable S-bimeromorphic model, we may assume
that f is a morphism. Since both (Z. g) and (Y, f) belong to Ax,s (resp. A%s),
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so does (ZxY, gxf), (cf. 1.1.2). Let o: ZxY —»ZxY be a desingularization of Z+Y,
and we denote by ZxY->Z%Z the Stein factorization of pr oo, where pri: ZxY
—Z is the natural projection. Note that, for a general point z of Z, pr, (2)=
{z, y)EZXY ; yef(g ' (2))} (=f(g~'(2))) is irreducible. Therefore p is a modi-
fication, and furthermore v~'(z~*(2)) and f(g~'(z)) are bimeromorphic for z as
above. Thus

£ (f(general fibre of g))=x(general fibre F of v),

where the right-hand side was already shown to be nonnegative (resp. dim F)
in the proof of 1.1.2. Then in view of the fact that B(general fibre of g) (resp.
B’ (general fibre of g)) is 0, it follows that f(general fibre of g) consists of a
single point. We hence conclude that f factors S-meromorphically through Z.
(a) and (b) above are now straightforward. Q.E.D.

(1.3) Our last task in this section is to study “general fibres” of by: X—B(X)
and b%: X—B’(X) for compact complex manifolds X of class € with dim X=3.

Lemma 1.3.1. Let X be a compact complex manifold with B(X)=0.

(a) If dim X=1, then X=P'. (b) If X&C and dim X=2, then X is rational.
(¢) If X&C and dim X=2, then X is a surface of class VII with k=—o0,

proof. (a) is obvious. Note that, by S(X)=0, we have r(X)=—co. Then
(b) and (c) are straightforward from the classification table of Kodaira [21].

Proposition 1.3.2. Let g:V—W be a generically surjective meromorphic
map of compact complex varieties, where V is nonsingular and W satisfies x(W)
=0. Assume that at least one of the following holds:

(a) dimW<l, (b) dim V—-dim W1, (¢) dim VL3,

Then there exists a Zariski open dense subset U (resp. U*) of W (resp. V) such
that gy: U*—>g(U*)=U is a proper morphism.

Proof. If (c) holds, then so does at least one of (a) and (b). On the other
hand, it is a standard fact that if (a) holds, then g:V—W itself is a morphism.
Hence we have only to consider the case (b). Now by Hironaka [10], there
exists a finite sequence of monoidal transformations with nonsingular centres

Vn _f“l; Vn—1 f‘"_‘)l n-zii)z —#i’ V1 ﬂ) Vo:V
such that the composite gep of g with pi=p,epp_se -+ oy, is a morphism of V,
onto W. Let ESV, be the exceptional locus for the modification g, i.e., E is
a purely l-codimensional closed analytic subset of V', with codim,u(E)=2 and
tv,-g: Va—E=V—pu(E). Since every irreducible component of E is uniruled,
and since «(W)=0, we have (g-uXE)EW. Then U:=W—(g-p)E) and U*: =
p(gep)™"(U)) have the required property. Q.E.D.
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Theorem 1.3.3. Let X be a nonsingular S-variety of class Cio.. Assume that
dim (X/S)<2. Let byx;s: X—B(X/S) be as in 1.1.3, and for each s€S, we put
X;=7mxs) and B(X/S)s=(mwpcx/s) (s), (cf. 1.1.1). Then there exists a Zariski
open dense subset U of S having the following properties:

(a) myx is smooth over U;

(b) for every point s of U, the fibre X, is not contained in the set of points of
indeterminacy of bxs;

(¢) there is a natural bimeromorphic identification of B(X/S)s with B(X,) such
that the restriction (bx;s)ix,: Xs—=B(X/S); coincides with by : X;—B(X,).

In particular B(X)=B(X/S) for every s€U.

Proof. Fix a smooth fibre X, of wx, (0€S). First, let 8(X,)=0: Then by
X,ecC, X, is rational. Since my is of class C., every smooth fibre X; of nx is
again rational, and therefore we may set B(X/S)=S and by,s=ny. Secondly,
we consider the case B(X,)=dim X,: Then x(X,)=0, and by litaka [11], £(X;)
=0 for every smooth fibre X; of mx. Hence in this case, we may set B(X/S)
=X and by,s=idyx. Thus, in both cases, the assertion of 1.3.3 is straightfor-
ward. We now consider the following remaining case:

X, is a surface with B(X,)=1, (.e. X, is an irrational ruled surface).

Let U={s€S; X, is smooth}, Then every X; (s€U) is also an irrational ruled
surface. Let a,: X,—Alb(X;) be the Albanese map. Since dim (X/S)<2, a
theorem of Fujiki [4] says that there exist an S-bimeromorphic model X’ of X
and a relative Albanese variety Alb (X’/S) such that

(1) over U, the S-variety X’ contains nx }(U) as a Zariski open subset,

2) A:=Alb(X’/S) is an S-variety, and furthermore

(3) there is an S-morphism a: X'—A satisfying 7, '(s)=Alb(X,) and a,x,=a;
for all seU.

Then the fibration 7 4acx:y: a(X)—S has a nonsingular curve of positive genus
as a general fibre. Since general fibres of a: X’—a(X’) are isomorphic to P!,
we may now assume that (B(X/S), bx/s)=(a(X’), a), where a is regarded as a
meromorphic map from X (=X’) to a(X’). One can easily check that (a), (b),
and (c) above are all satisfied. Q.E.D.

Theorem 1.3.4. Let X be a compact complex manifold of class C with dim X
<3. Then there exists a Zariski open dense subset U (resp. U*) of B(X) (resp.
X) such that:

(@) bxiw:U*=bx(U*)=U is a proper smooth morphism, and furthermore
(b) for every ucU, the fibre Xy=(bxy~) " u) is irreducible and B(X,)=0.

Proof. In view of 1.3.2, it suffices to show, assuming by to be a morphism,
that X, is irreducible and satisfles f(X,)=0 for all points u of some Zariski
open dense subset U of B(X). This is obvious if 5(X)=0, and hence we may



Invariant B and uniruled threefolds 513

assume that B(X)>0. Note that, by the universality of B(X), every smooth
fibre of by is irreducible. Putting S=B(X), we have dim (X/S)<2. Then by
Theorem 1.3.3, there exists a Zariski open dense subset U of S such that B(X,)
=p(X/S) for every ueU. Now by Viehweg [28], x(B(X/S))=Z«(S)=0, and
hence B(X/S) is bimeromorphic to S. Thus B(X/S)=0, and this completes the
proof. Q.E.D.

Definition 1.3.5. (i) Let X be an S-variety. Choose a nonsingular model
N (resp. X)of S (resp. X) such that nx: X—S induces a morphism #z: X-S.
Denoting by wg,5 the relative canonical sheaf w)?®77: x'* (wy™") of X over §, we
naturally have a meromorphic map @,,: X—P((# A,)*(a)jf’:;«" )) for each meZ,. Let
s be a general point of S. Identifying s with the corresponding point in S, we
have the restriction of @,, to the fibres over s:

Dz, Ko —> P(E 0 50 (= PHYX,, 02™).

%3

There now exists an m, such that, for all general points s of S, @n iz, is
bimeromorphically equivalent to the litaka fibration of X;. Let Y be the mero-
morphic image of @,,. Then the generically surjective S-meromorphic map
On,: X(=X)>Y is called the relative Iitaka fibration of X/S (see, for instance,
Ashikaga-Ueno [1]).
(i) A compact complex variety X is said to be purely non-hyperbolic if there
exists a sequence of surjective morphisms of compact complex manifolds

fii Xien —> X, i=1,2,-,r,
such that the following conditions are satisfied:

1) X, is bimeromorphic to X, and X, is a point;
2) general fibres of each f; are irreducible;
3) if 7 is such that x(general fibre of f;)#0, then B(general fibre of f;)=0.

Lemma 1.3.6. Let X be a purely non-hyperbolic compact complex variety.
Then B'(X) is 0 if either X is Moishezon or X satisfies both XEC and dim X<3.

Proof. In view of (a), (d), and (e) of 1.2.2, the assertion is an immediate
consequence of (a) of Proposition 1.2.3. Q.E.D.

Proposition 1.3.7. Let X be an S-variety such that one of the following con-
ditions s satisfied:

(a) dim (X/S)<4 and general fibres of nx are Moishezon;
(b) dim (X/S)=3 and X is, as an S-variety, of class Ci,.

Then there exists a sequence of generically surjective S-meromorphic maps
fit Xioi — X, =1,2, -, 7,

of S-varieties such that

1) Xo=X and dim X,_,>dim X; for each i,
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2) X, is of general type over S,

3) if i is such that x(X;-1/S)=—o00, then (X;, fi)=(B(X;_1/S), bx,_,1s), and

4) if 7 is such that £(X;-,/S)=0, then fi: X;-,— X, is the relative Iitaka fibration
of Xi-1/S.

Such a sequence of meromorphic maps is unique up to bimeromorphic equivalence.
Furthermore, for each i, frof,-ye - ofi: Xioy— X, is bimeromorphically equivalent
to by, ys: Xiiy—B'(X;-4/9S).

Proof. Note that, by 3) and 4) above, a sequence as above is well-defined
and unique up to bimeromorphic equivalence, (cf. 1.1.3 and (i) of 1.3.5). Since
dim X< 400, such a sequence stops exactly when a variety (=X,) of general
type over S first comes up. Applying Corollary 1.1.6 to the case £(X;-,/S)=—0o0
and Proposition 1.2.3 (b) to the case x(X;/S)=0 (see also (d) and (e) of 1.2.2),
we see that B’(X,/S)=B’(X,/S)= --- B'(X,/S) (= X,) S-bimeromorphically. Thus
frefere - of; and b, s are bimeromorphically equivalent for each i.

Q.E.D.

Tneorem 1.3.8. Let X be a compact complex manifold of class C with dim X
<3. Then B(X)=0 if and only if X is purely non-hyperbolic.

Proof. This is straightforward from Lemma 1.3.6 and also from Proposition
1.3.7 applied to the case that both S and B’(X) (=X,) consist of a point.
Q.E.D.

Theorem 1.3.9. Let X be a compact complex manifold of class C with dim X
<3. Then there exists a Zariski open dense subset U (resp. U*) of B'(X) (resp.
X) such that:

(@) byuw: U*—=by(U*)=U s a proper smooth morphism, and furthermore
(b) for every ucU, the fibre X,=bxw) () is irredubible and B’(X,)=0.

Proof. By the same argument as in the former half of the proof of 1.3.4,
we may assume that 1) b% is a morphism, and that 2) 8/(X)>0. Moreover, it
is sufficient to show that B’(X,)=0 for all points u of some Zariski open dense
subset U of B’(X). We now apply Proposition 1.3.7 to the case: S is a point.
Replacing X by its suitable bimeromorphic model, we may assume that every
fi in 1.3.7 is a morphism of compact complex manifolds. Since p'(X)>0, we
furthermore obtain dim X;—dim X;_;<2 for all 7. In view of Theorem 1.3.4 and
also of the deformation invariance of ¢ for compact complex surfaces, (cf. litaka
[117]), there now exists a Zariski open dense subset U of B’(X) such that X,
is purely non-hyperbolic for every point u of U. Then by 138, the proof of
1.3.9 is complete. Q.E.D.

Theorem 1.3.10. Let X be a nonsingular S-variety of class Cipe. Assume
that dim (X/S)<2. Considering the meromorphic map byx,;s: X—B'(X/S), we put
X,=m51s) and B(X/S)s=(wpcx155)(s) for each s€S. Then there exists a Zariski
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open dense subset U of S having the following properties:

(a) mx is smooth over U;

(b) for every point s of U, the fibre X is not contained in the set of points of
indeterminacy of bys;

(c) there is a natural bimeromorphic identification of B'(X/S)s with B’(X;) such
that the restriction (b s)ix,: Xs—B'(X/S); coincides with bl : X;— B'(X,).

In particular B'(X,)=p'(X/S) for every s€U.

Proof. In view of 1.3.3 and (i) of 1.3.5, this is straightforward from 1.3.7
above. Q.E.D.

In the appendix (cf. § 10), we shall generalize Theorems 1.3.3 and 1.3.10 to
the case dim (X/S)<3 with a slight modification of the statement.

§2. Holomorphic differential forms on compact complex threefolds.

For a compact complex threefold X of class €, we consider the fibration
by: X—B(X) defined in §1. One then naturally asks how many of the holomor-
phic differential forms on X come from B(X). The answer is

Theorem 2.1.1. Let X be a 3-dimensional compact complex manifold of class
C with B(X)>0. Then for all m, p€Z,, the meromorphic map by: X—B(X)
induces the following isomorphisms:

(1) b%: HY(BX), @ Qpex)=H(X, & Q2),
@) b%: H(B(X), S™(QBcx)=H(X, S™(Q2).

Remark 2.1.2. (i) For the case m=2=3(X), the original statement of our
theorem was much weaker than the above. We owe the present improvement
to Professor Ueno, (cf. 2.3.1).

(ii) The case m>1=p(X) remained open until recently. Thanks to a result
of Kawamata [18], we managed to finish this case.

(iiiy Let m, peZ,, and we put m’=m-p. Since both (%).Qﬁ’( and S™(2%) are

vector subbundles of (%').ij, the proof of Theorem 2.1.1 is reduced to showing
just the case p=1 of (1) above.

It is plausible that Theorem 2.1.1 is true even in the case F(X)=0. Thus
we raise the following:

Conjecture 2.1.3. Let X be a 3-dimensional compact complex manifold of
class C. If B(X)=0, then h*°(X)=0.

This conjecture is true, for instance, if one can prove:

Conjecture 2.1.4. Let X be a 3-dimensional compact complex manifold of
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class C with k(X)=—o0., Then X is uniruled.
Because we generally have:

Theorem 2.1.5. Let X be a 3-dimensional uniruled compact complex manifold
of class C, and let q(X) denote the irregularity of X. Then:

i) If B(X)=0, we have h*(X, S™23)=0 for all me Z..
i) AX)=0 if and only if ¢(X)=h"(X, S¥L2%))=0.
i) B(X)=1 if and only if ¢(X)>h"(X, S*(£2%))=0.
i) BX)=2 if and only if KX, S™(Q%))%0.

(2.2) In order to prove 2.1.1 and 2.1.5, we shall study holomorphic differential
forms in a more general setting:

Definition 2.2.1 Let f: X—Y be a surjective morphism of compact complex
manifolds with connected fibres. Fix an arbitrary meZ,. For every purely
1-codimensional closed analytic subset 4(=\Ul.,4;) of Y with its irreducible com-
ponents 4;, we define an effective divisor 4;,,€Div(Y) as follows: Express
each f*(4;) as X% pi;Es; with multiplicities p;;€Z, and prime divisors E;;&
Div(X). We number E;;;j=1,2,-,n; so that {j;f maps E;; onto 4;}=
{(f€Z;1=<j<k,} for some integer k; with 1=</k;<n;. Let v;;»n be Min{[m(p;;—1)
/pi;1; 1=S7=k;}, where for every real number 2, the symbol [1] denotes the
largest integer which does not exceed 2. We now put 4;; =317 vi;nd;.

Proposition 2.2.2. Let f: X—Y be a surjective morphism of compact complex
manifolds with connected fibres, and 4 be a purely l-codimensional closed analytic

subset of Y. Let m, peZ.. Suppose ws H'(X, S™(£2%)) (resp. wc H(X, (%Qf{,))
is such that wx_s-1¢sy is expressible as f*(0) for some 6 € H(Y —4, S™(2)) (resp.

6eH (Y —4, &).Q{i)). Then 6 extends to '€ H(Y, S™(R28) (ds,n)) (resp. 0'€
HOY (R QB i) with w=FX0"), where H'Y, S™M(QB)(d 1, w)) (resp. HYY, (6 28)

(dy;m)) denotes the space of all those meromorphic sections to S™(RP) (resp. é(}f/’)
on Y whose possible poles are only along 4 and of order at most vy, at each 4.

Corollary 2.2.3. Let f: XY be a surjective morphism of compact complex
manifolds with connected fibres. Let U be a Zariski open nonempty subset of Y,
and 6 HYU, QF) (pEZ,) be such that f*(0) (€H'(fWU), 28)) extends to a
global holomorphic section wsHYX, 2%). Then 6 extends to a global section
6’ H'(Y, 28) such that w=f*0").

Proof of 2.22. Since S™(2%) and S™(Q2P) are regarded as vector subbundles

of én@.Qﬁ, and énZ)Q{} respectively, we may just consider the case we H*(X, éQ}).
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Now, using the notation in 2.2.1, we fix a general point e¢;; of E;; with 1=i=r
and 1<j=<k;. Choose a sufficiently small open neighbourhood V of ¢;; in X
(resp. U of f(es;) in Y) with a system of local coordinates (xy, -+, x1) (resp.
(31, ==, ¥a)) such that (1) x,=0 (resp. y,=0) is the local equation of E;; in V
(resp. 4; in U), 2) f(V)=U, 3) fXy)=Q1/p:;)x:"i, and (4) [¥(ya)=xq for 2=
<n, (where n=dimY and /=dim X). Let A (resp. 8) be the set of all subsets
of {1,2, -, 1} (resp. {1,2, -, n}) of cardinality p, and A™ (resp. B™) be the
product AX -+ XA (resp. BX --- X B) of m-copies of A (resp. ). For each
A={ay, -, ap} €A (resp. B={Bi, -+, Bp} € B) with o, < -+ <ap (resp. B -
<Bp), we put

dx4=dxa NdX oy - NdXa, (resp. dyg=dyg Ndyg,N = Ndyg,).
We finally define d X, H'(V, & Q2) (resp. dY ze H'U, & Qp)) by

dXA:dxA1®dxA2® -~®dx4m (resp. dYBZdy31®dy32® ®dy3m)

for every A=(A,, A,, -+, Ap) €A™ (resp. B=(B,, Bs, -, Bn) € 3™). Then
{dX ; Aed™} (resp. {dY p; BE 8™}) forms a local base over U for the vector

bundle é[)f{, (resp. (§)Q;’}), and the Laurent expansion of # is given by

+oo
0= 2 E hg;k'ylk'dYB,

CPM k=-co

where each hp, ,=C[[y., Vs, -+, y2J] is a holomorphic function on U. Note
that, by {=n, we have the inclusion 8S.4. Since f*(dy,)=x,"#"'-dx,, one can
associate, to each B 8™, an integer 7(B) with 0=y(B)<m(yu;;—1) such that
HdY p)=x,7®.d Xy Thus

w=f*(6)= Be%m k:i;(l/#ij)k‘f*(hm g X T X

In view of we H(X, éL)Qf{,), the holomorphic function hp,, on U must vanish
for those (k, B)YEZX @™ which satisfy kp;;+7(B)<0. In particular, if £<
—771([,[“_1)/[1”, then hB;k:O. Hence

(atmeres»1rs). g€ HWU, @ 23 .

Since this holds for every j={1, 2, ---, k;}, it follows that y,*im.- = H(U, (%).Qfﬁ).
Varying i, we now conclude that € H(Y, (é Q) 4y, ). Q.E.D.

Proof of 2.2.3. Let 4 be the union of all those irreducible components of
Y —U which are 1-codimensional in Y. Since codimy (Y —4)—U)=2, every we
H'(U, 28) extends to a holomorphic section in H(Y —4, 22). We now apply
222 to m=1. By 4;,,=0, the assertion of 2.2.3 immediately follows.
Q.E.D.

Before getting into the proof of 2.1.1, we here define a few notions which
feature rational curves or surfaces.
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Definition 2.2.4. (i) A compact complex manifold X is said to have Pro-

perty IT, if (X, @ Q1)=0 for all me Z,.

(ii) Fix an arbitrary positive integer p. A compact complex manifold X is said
to have Property (I —p) (resp. (II'—p)), if h°(X, 2%)=0 for all ¢g=1,2-, p
(resp. %X, S™(RL)QS™(23)Q - RS™r(2%))=0 for all nonnegative integers
my, My, ==+, My such that (my, m,, -, mp)#(0, 0, -+~ 0)).

Remark 2.2.5. Straightforward consequences of our definition are:

(i) every unirational compact complex manifold has Property II ;
(i) every nonsingular K3 surface has Property (II’'—1), (cf. Kobayashi [19]);
(ifi) Property II implies (II'—p) (and in particular (Il —p)) for all pEZ,.

Now we come to the following theorem which is a main ingredient of 2.1.1.

Theorem 2.2.6. Let f: X—Y be a surjective morphism of compact complex
manifolds with connected fibres. Fixing positive integers p and m arbitrarily, we
assume that general fibres of f have Property Il (resp. (II—p), (II'—p)). Then

every element w in H(X, Q%.Qf{r) (resp. H(X, Q%), HY(X, S™(£2%))) is expressible

as f*(0) for some 6 in H (Y, (& QEYAy, m)) (resp. HU(Y, Q8), HY(Y, S™L8) ;. m))),
where 4 is the analytic subset of Y consisting of all 1-codimensional components
of f{xeX; f is not of maximal rank at x}) in Y, (and see 2.2.1 for the defini-

tionof dys.m). In particular, if dimY <p, then h“(X,éQf{,) (resp. h?°(X),
h°(X, S™0%))) is 0.

Corollary 2.2.7. Let f: X—Y be a surjective morphism of compact complex
manifolds with connected fibres. Put po=dim X—dimY. Suppose general fibres
of f have Property (I —p,). Then f induces the isomorphism f*:HY, Q)=
HYX, Q%) for each p€Z,. In particular, if X is of class C, then U X, ©)=
xy, o).

Corollary 2.2.8. Let f: X—=Y be a surjective morphism of compact complex
manifolds with connected fibres. Put p,=dim X—dimY. Suppose that general
fibres of f have Property Il (resp. (Il'—p,)) and that, in terms of the notation in
2.2.1, the analytic subset 4 of Y as in 2.2.6 satisfies the following condition:

(#) For every i {1, 2, ---, r}, there exists j{1,2, -+, k;} such that p;;=1.

Then f induces an isomorphism f*: H°(Y,(§Q{})5H°(X,(§>Q§-) (resp. f*: HA(Y,S™
(QPN=H"(X, S™(R%)) for each m, peZ,.

Proof of 2.2.6. Since proofs are similar, we just consider the case weH°
(X, S™(£2%)). Fix an arbitrary smooth fibre f~%(0), o€V, and let V be an open
neighbourhood of 0 in Y—4 with a system of local coordinates (yy, ==, ¥z)
(n=dimY). Choosing V small enough, we write f~(V) as a union XKEJAUz of its
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coordinate open subsets U; with local coordinates (f*(y,), f*(ys), -+, f¥(¥a),
K11 X2ie o, X2;1) ((=dim X—dimY). Let A (resp. B) be the set of all (possibly
empty) subsets of {1,2,---, 0} (resp. {1,2, -+, n}), and for each A={a;, @, -, as}
€A (resp. B={By, Bs, -+ B} € B) with a;<a,< -+ <a, (resp. f;<B,< - <Bo),
we put

|A| = s = cardinality of A (resp. |B| =t = cardinality of B)
and
dx2,4=dX 3,0, ANAX 30y NdX3;ay (resp. dyp=dyg ANdyg, N - Ndyg,),

where dx;4 (resp. dyg) denotes the constant function 1 on U, (resp. V). Let
g be the set {(A, B)eAX 8; | A|+|B|=p}, and F, (¢=0, 1, ---, p) be its subset
defined by F,={(4, B)eF; | A|=q}. We denote by ¥ the set of all set-theoretic
maps ¢ of F into Z,\U{0} such that (A%)Eggb(/l, B)=m. For each ¢¥ and

ge{0, 1, --- p}, put Igblq——-(A,g)egng(A, B). Then ¥ is endowed with the follow-

ing partial order:

Let ¢, ¢'€¥. Then ¢>¢’ if and only if Max{g; [¢|,# ¢’ |} =Max{q; |¢l,
> ¢’ |} 20, where Max (empty set ¢) denotes —1.

We now write 0w H(X, S™(2%)) in the form
pend . ) SCA, B
¢ ¢§F(gx'¢m.£[eg (dx 2 aNfH(dyp)? ")

for some g;,4€HU;, ©). Let 5 be the subset {p¥; g1,,#0€H'(U;, 0) for
some A€ A} of ¥, and we fix a maximal element &, of 5. For each ¢=Z,, we
put
{lfo|q if ¢=p,
me=
0 if ¢g>p.

At each point v of V, we define o, H(X,N\U,, S™(2%,)R -+ QS™(2%,))
(where X,=f"'(v)) by

G0 a=(gaenx) + T (dxz focte®
0 1= (81801 x,) (A'lgeg( 2;4)

Then the local sections {o, ;; A€ A} are glued together to define a global sec-
tion o, H(X,, S™(2%,)Q - ®S™(2%,)). For a general veV, the fibre X, has
Property (II’—p), and hence my=m,= - =m,=0. Thus, ¢, is a constant
holomorphic function for all vV, and furthermore the maximality of &, implies
that every element of & is again maximal in £. Then, repeating the same
argument as above, we can write w s-10n=s*(8) for some §=H(V, S™(2B)).
Since Y—4 is covered by such V’s outside an analytic subset of codimension
=2, it now follows that w x-,;-1gH=s*(8) for some § H(Y —4, S™(£2%)). The
assertion of 2.2.6 is hence straightforward from 2.2.2. Q.E.D.

Proof of 2.2.7. Since p, is dim X—dimY, general fibres of f have Properties
(II—p) for all peZ,. Then f*:H'Y, Qp)=HX, 2%) (p=Z,) immediately
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follows from 2.2.6. If X is of class ¢, then so is Y, and hence (X, O)=
2(=DPr? Y X)=(—1)Ph?(Y)=X(Y, 0O). Q.E.D.

Proof of 2.28. Our assumption on p;;'s implies that 4,,,=0. Then 2.2.8 is
a straightforward consequence of 2.2.6. Q.E.D.

(2.3) We shall now prove 2.1.1. The first important observation is due to Ueno
and says that the condition (¥) of 2.2.8 is satisfied for those f whose general
fibres are isomorphic to P! (cf. the proof of 2.3.1 below). In particular,

Theorem 2.3.1.%¥ Let f: X—Y be a surjective morphism of compact complex
manifolds such that (general fibre)=P'. Then for all m, pEZ,, we have the iso-

morphisms f*: H'Y, @ Qp)=H(X, ® Q) and f*: H'(Y, S™(Qp)=H(X, S™(22)).

Proof. In the below, we use the notation in 2.2.6 (and also 2.2.1). Fix a
general point y; of 4; and choose a holomorphic curve I'={r(t); |t| <1} em-
bedded in Y so that I intersects 4 transversally at just one point y;,=y(0)=
I'md. Then f:f-I')-I" is a proper morphism of complex manifolds with
dim I'=1 and (general fibre)=P!. Hence the divisor f*(y(0))eDiv(f~XI")) cor-
responding to the central fibre f'(y(0)) has a component of multiplicity 1. Since
the restriction of f*(4)eDiv(X) to f~}(I") is exactly f*(r(0))eDiv(f~XI")), it then

follows that p;;=1 for some je{l, 2, -+, k;}. Noting that P' has Properties
II and (/I’—1), we now conclude from 2.2.8 that f* induces the required iso-
morphisms. Q.E.D.

Next, using Kawamata’s improvement [18] of Manin’s results, we shall
show the following:

Theorem 2.3.2. Let X (resp. Y) be a compact complex 3-dimensional manifold
of class C (resp. a nonsingular projective curve), and f:X—-Y be a surjective
morphism whose general fibre is an irreducible nonsingular rational surface.

Then for all m, peZ., we have the isomorphisms f*: H(Y, éQﬁ)EH”(X, égﬁv)
and f*: H(Y, S™Q2P)=H(X, S™2%)).

Proof. Since Y is algebraic, and since general fibres of f are Moishezon
with irregularity 0, it follows that X is also Moishezon. Then by Kawamata
[18], every singular fibre of f contains an irreducible component of multiplicity
1. Thus, the condition (#) of 2.2.8 is satisfied. In view of (i) and (iii) of 2.2.5,

we now conclude from 2.2.8 that f* induces the required isomorphisms.
Q.E.D.

Combining Theorems 2.3.1 and 2.3.2, we thus obtain:

Proof of 2.1.1. Replacing X by its suitable bimeromorphic model, we may

*> We here thank Professor Ueno who pointed out that this theorem is true for m>1.
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assume that by: X—B(X) is a morphism. If B(X)=3, then byx=idy, and hence
the isomorphisms (1) and (2) are obvious. Therefore we consider the remaining
cases: B(X)=1,2. Then by 1.3.4, general fibres of by are rational. Theorems
2.3.1 and 2.3.2 now finish the proof. Q.E.D.

(2.4) We shall finally prove 2.1.5. For later purposes, a little more general
situation will be considered.

Definition 2.4.1. Let m, n, and p be positive integers such that p=n. Let
X be an n-dimensional compact complex manifold with A%X, S™(£2%))+0.
i) A nonzero element @ in H(X, S™(£2%)) is said to be neatly (resp. very neatly)
foliated if there exist a p-dimensional compact complex manifold Y, a generically
surjective meromorphic map f:X—Y, and a meromorphic (resp. holomorphic)
m-ple p-form ¢ in HYyero(Y, 0y®™) (resp. H'(Y, wy®™)) such that 6=/*¢).
ii) Let T*(X) denote the cotangent bundle of X. (Hence Q%=0x(APT*X)).)
Consider the mapping pgm: A?PT*X)=>S™(APT*(X)) defined by pm(v)=v™ for
each ve APT*(X) and x€X. A nonzero element # in H°(X, S™(2%)) is said to
be of purely multiple type if one of the following equivalent conditions is satis-
fied:
(ii~a) @(x)elmage pn for every xeX.
(ii-b) There exists a Zariski open dense subset U of X such that, for each x&U,
6 is locally written as p™ for some germ pe 2%, ,.

Remark 2.4.2. It is easily seen that, in 2.4.1 above, a nonzero element @ in
H(X, S™(2%)) is of purely multiple type, for instance, if either m=1 or @ is
neatly foliated.

Theorem 2.4.3. Let X be an n-dimensional uniruled compact complex manifold
such that h*(X, S™Q%)#0 for some meZ,.. Then any nonzero element <
H(X, S™2%") which is of purely multiple type is very neatly foliated.

Proof. Step 1: Let D be the Douady space of X which parametrizes the
closed analytic subspaces of X. Let p,: Z—D be the corresponding universal
family with a natural embedding ZSDXX, where p, coincides with (resp.
p2: Z— X denotes) the restriction to Z of the natural projection DX X—D (resp.
DX X—X). Now, by the uniruledness of X, there exists a covering family of
rational curves (f:W-Y, g:W—X, Y% on X, (cf. (04)). We define a complex
variety I to be the image of the morphism gXxf: W—XXY which sends each
weW to (g(w), f(w)eXXY. Let =: =Y be the restriction to I" of the natural
projection XXY—-Y. Then, making Y° smaller if necessary, we may assume
that « is flat over Y° and furthermore that the fibre 7~!(y) is reduced for every
yeY® Note that z-(y)=g(W,)Xx{y} for yeY’ Hence we have a natural
morphism 2:Y°—D which sends each yeY® to A(y): =g(W,)e D, where gW,)
is regarded as an irreducible reduced rational curve on X. Moreover, this 4
extends to a generically surjective meromorphic map of Y to some compact
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subvariety S of D. We now put Zs=p7S), ps=puzs and p§=p.zs Note
that general fibres of ps: Zs—S are (possibly singular) irreducible rational curves.
In the next step, we shall show that the surjective morphism p%: Zs—X is a
modification.

Step 2. Since @ is of purely multiple type, we can choose a Zariski open
dense subset U of X as in (ii-b) of 2.4.1. Making U smaller if necessary, we
may assume that US g(f{(Y*)N{xeX; 8(x)#0 and g is smooth over x}. Con-
sider the set Z§:=p% '(U)Np7"(AY") which contains a Zariski open dense
subset of Zs. Note that, if we can show the injectivity of pfg’.zg:Z —=U, then
0s:Zs—X is a modification. Thus, for contradiction, we assume that:

(%) pSizy: Z§—U is not injective, i.e., there exist points y’, y” of Y° such that
gW,.) and g(W,.) are distinct curves on X which pass through a common point
u, of U.

Put C=g(W,.) and let C° be its Zariski open dense subset {c€CNU ;¢ is a
nonsingular point of C and 8w, is unramified over ¢}. Take an open neigh-
bourhood V (SU) of u, with a system of local coordinates (x, xs, -+, x»). For
a small enough V, 6, is expressible as »™ for some pH(V, 2%!). We write

7= hidxs AdxaA - AdXA - Adxn,  with h,eHV, 0),
=1

and then define a nonvanishing vector field re H*(V, T(X)) on V by

: l’l,;(a/axi) .

1

T=
K

Fix an arbitrary point ¢ of C°N\V, and choose an open neighbourhood N (ZV)
of ¢ in X with a system of local coordinates (%, %, -+, £») such that C is
defined by %,=%,= - =%,=0o0n N. Fix furthermore a point bW ,, with g(b)=c,
and let N’ (resp. N”) be an open neighbourhood of b (resp. y’) with a system
of local coordinates (w,, wy, -+, w;) (resp. (y1, y2, ==+ ¥1)) (where /[=dim Y) such
that:

(1) fINHYEN", g(N')EN, and

(2) g*F)=w;-; for 1=<i<n andf*(y)=w; for 1=7=<0

Let 4 be the set of all those subsets of {1, 2, -+, [} whose cardinality is n—1,
and for each J={Ji, Js, -+, Jn-1} €EF (wWhere j;<j,< -+ <Jn-1), We put dW,=
dw; ANdw;,N -~ Adw,,_,. Since every fibre of f over Y° is isomorphic to P!,
and since P! has Property (II'—(n—1)), (cf. 2.2.4 and 2.2.5), Theorem 2.2.6 as-
serts that g*(0);-1voy is written as f*(&) for some £ H(Y?, S™(£2%°Y). Hence,
on N’, we have

g¥0)= " JZE ; Qrydgdm AW s AW gy - dW o, with qs,5,.0, EHWN', ©),

where the summation is taken over all (Ji, Jo, -+, Jn)EZXF X -+ X4. Thus,
there are no dw,’s in the expression of g*(#), and therefore in view of the

equalities
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g*(d%)=dw, and g*(@)n =(g*())™n,
we can write the value 7(c) of 7 at ¢ in the form
p)=a-dE . NdE N - NdEq, aeC*.

Since C is locally defined by %,=%;= - =%,=0 on N, it follows that (c) is
tangent to C at the point ¢. Note that ¢ is an arbitrary point of C°"\V. Thus,
in a neighbourhood of u, in V, the curve C (=g(W,.)) sits in a single orbit of
the local l-parameter complex analytic group generated by z. Similarly, the
same thing is also true of the curve g(W,.). Since both g(W,.) and g(W,.) pass
through u, we then have g(W,.)=g(W,.) in contradiction to our assumption (*)
We now conclude that p% is a modification.

Step 3. Choosing suitable desingularizations 6,: 8-S and ¢, ZS—>ZS of S
and Zg respectively, we obtain a morphism gs: =¢7'epser, of Zsonto S. Since
general fibres of ps are irreducible rational curves, (cf. Step 1), the same thing
is true of g5. Then by Theorem 2.3.1, we have an isomorphism (ﬁ[g)*:H"(g, Sm
(Qg‘l))gH"(Zs, S"‘(.Q%;‘)). On the other hand, by Step 2, pgozZ:ZS—»X is a
modification. It is now straightforward that our w is expressible as (g5°(p%e
;)" H*(¢) for some ¢eH"(§. S"‘(Q%“)). Thus, w is very neatly foliated.

Q.E.D.

Corollary 2.4.4. Let X be an n-dimensional uniruled compact complex mani-
fold such that h°(X, S™(Q%))#0 for some me Z,.. Suppose one of the following
conditions is satisfied: (a) X is Moishezon; (b) X is of class C together with n=3.
Then B(X)=n—1.

Proof. In view of (0.4), there exists a covering family of rational curves
(f: WY, g:W—-X, Y such that g is generically finite. Fix a nonzero element
# of HY(X, S™(£2%1). Since dimY=n—1, and since general fibres of f are
isomorphic to P?!, Theorem 2.3.1 shows that the element g*(8) of H'(W, S™(2% 1)
is of purely multiple type. Note that g is étale over a Zariski open dense
subset of X. Hence 6 is also of purely multiple type. Then by Theorem 2.4.3,
f is very neatly foliated. From the definition of B(X), we now obtain B(X)=
n—1. Q.E.D.

Once we have this corollary, the preceding 2.1.5 easily follows from Cas-
telnuovo-Enriques criteria of rationality or ruledness of surfaces:

Proof of 2.1.5. 1) is straightforward from Corollary 2.4.4 above. Next note
that 8(X)=0, 1 or 2 by the uniruledness of X. ii): Suppose g(X)=h"(X, S*(£2%}))
=0. Then by ¢(X)=0, we cannot have 8(X)=1. Moreover one obtains 3(X)+2,
because otherwise Theorem 2.1.1 would imply that ¢(B(X))=h*(B(X), ws&)=0
in contradiction to #(B(X))=0. Thus we have B(X)=0. The other implication
of ii) is immediate from i) above and 2.1.1. iii): Suppose ¢(X)>0=h°%X, S*(£2%)).
Then by ¢(X)>0, the case B(X)=0 does not occur. Furthermore B(X)#2, be-
cause otherwise 2.1.1 would again imply that h°(B(X), ws%3)=0 in contradiction
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to k(B(X))=0. Thus B(X)=1. The other implication of iii) is immediate from
2.1.1. iv): Suppose h°(X, S*(2%))#0. Then B(X)+#0 by i), and moreover B(X)
#1 by iii). Thus B(X)=2. The other implication of iv) is immediate from 2.1.1
and Enriques criterion. Q.E.D.

§3. Ktale invariance of B.

Theorem 3.1.1. Let f: X—X be an étale cover of compact complex manifolds
of dimension=<3. Assume that X is of class C. Then we have:

either (1) B(X)=pB(X)=0 and dim X=3
or (2) the natural meromorphic map b(f): B(X)—B(X) defined in 1.1.5 is an
étale morphism satisfying the equality deg b(f)=deg f.

In particular, the equality ,8()?)=‘B(X) always holds.

In this theorem, we very reasonably expect that (2) above holds even in
the situation (1). Thus

Conjecture 3.1.2. Let f: XX be an étale cover of compact complex mani-
folds of dimension<3. Assume that X is of class C. Then the meromorphic map
b(f): B(X’)—»B(X) is again an étale morphism and satisfies deg b(f)=deg f.

The only open case of this says that any compact complex threefold X of
class ¢ with A(X)=0 admits conjecturally no nontrivial finite étale coverings.
Now concerning this 3.1.2, we can show the following:

Proposition 3.1.3. If Conjecture 2.1.3 is true, then so is 3.1.2.

Proposition 3.1.4. Conjecture 3.1.2 is true for all those X which satisfy one
of the following conditions (a) dim X=2, (b) #(X)=0, (¢) X s uniruled.

(3.2) Before proving 3.1.1, we here give a basic information of the degeneration
of certain compact complex manifolds which include, for instance, unirational
ones.

Theorem 3.2.1. Let V (resp. S) be a compact complex manifold of class C
(resp. an irreducible nonsingular projective curve). Put p=dim V—1, and let
g:V—S be a surjective morphism whose general fibre is irreducible and has Prop-
erty (II—p), (cf. 2.2.4 (ii) and 2.2.5 (i)). Then g has no multiple singular fibres.

Proof. For contradiction, we assume that a multiple singular fibre g~(s,)
(soeS) exists, i.e., the largest positive integer e dividing g*(s,) in Div(V)
satisfies e¢=2. Fixing a general smooth fibre F=g"'(s,) (s;=S), we have an e-
fold abelian covering 7: 8§58 which is unramified over S— {s,, s;} and has just
one point 3,8 with ramification index e over each s; (=0, 1), where §is
nonsingular. Let v: V-V x5S be the normalization of VxS, and #: V-V
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(resp. Z:V—S) be the composite of v with the natural projection VxsS—-V
(resp. VX s8§—8). Then one easily checks that 1) V is nonsingular and 2) # is
ramified just over the branch locus F with multiplicity e. Now, for every
coherent sheaf € on V (resp. V), we denote by td(é’)zi‘,otdi(e) (resp. 171(6’)=§

i=0
t?i(é’)) the total Todd class of & on V (resp. 17). Let 9% be the sheaf of ideals
defining P~‘=§“(§1) in V. Then by the exact sequence O—»g*(QI‘,)—>Qi‘7—>Jﬁ/(J;)e
—(, we obtain tNd(Qé)zg*(td(Q,‘,))-fZ(J;/(J;)e). Since J¥ is the pull back §*(Jz,)
of the ideal sheaf J; of §), J%/(Jr)° is expressible as a direct sum of (e—1)-
copies of O Hence ZZ(J;/(J;)e):1+((e—1)/2)-cl([ﬁ‘]), where ¢, ([F)eHV:; Z)
denotes the Poincaré dual of F in V. Put n=dim V. Since, for the tangent
bundle T(¥) (resp. T(V)) of V (resp. V), one has td(2%)=(—1) td(T(V)) (resp.
td(20)=(—1)"td(T(V))), it then follows that:

td(T(V)=g*td TV ) —((e—1)/2)- cx( LFD) g*(tdur(T(V))) .

Rewriting this by Riemann-Roch’s formula, we obtain

AUV, 0)=td TNV I=d TNl VD —e—1)/2)td . (T(V))( gL F)
=e UV, 0)—((e—1)/2)(td n-(T(V))F].

Since F' has trivial normal bundle in V, ¢;(F)=c;(V)# holds for all ;=1,2, ---, n—1.
Hence (td,_.(T(V)[F1=@td, (T (F))[F1=X(F, 0)=2(—1)*a*°(F)=1. Thus
UV, ©)=e-A(V, ©)—((e—1)/2). On the other hand, 2.2.7 shows that X(V, @)=
1S, ©) and XV, ©)=X(S, ©). We now have 1S, ©)=¢-%(S, ©)—((e—1)/2), in con-
tradiction to the formula of Hurwitz 2X(S, ©)=2eX(S, O)—2(e—1) applied to the
ramified cover =. Q,E.D.

If p=1, a little more general statement is possible. In fact, in the proof of
Theorem 2.3.1, we have already (implicitly) shown the following:

Proposition 3.2.2. Let g:V—S be a proper surjective morphism of complex
manifolds with (general fibre)=P'. Then there exists a Zariski open dense subset
S° of S such that codimg(S—S°)=2 and that g over S'is flat and has no multiple
singular fibres.

(3.3) We next prove a lemma which is a key to the proof of Theorem 3.1.1.

Lemma 3.3.1. Let a finite group G act holomorphically on compact complex
manifolds X and Y so that the action on X is free. Let f: X—=Y be a G-
equivariant surjective morphism whose general fibre is irreducible and has Prop-
erty (II—p), where p=dim X—dimY. Assume that either p=1 with (general
fibre of f)ec or, if p+1, Y is projective algebraic with X&C. Then G acts
freely also on Y.

Proof. Let H={geG; g acts identically on Y}, and choose a sufficiently
general smooth fibre F of f. Since H acts freely on F, we have X(F/H, ©0)-deg H
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=X(F, )= (—1)'h*°(F)=1. Hence H={l}, i.e.. G acts effectively on Y. For
contradiction, we now assume that the G-action on Y is not free. Then there
exists an element 1#y<G which fixes a point y° of Y. Let I'={1, 7, 7% -, 7"}
be the cyclic subgroup of G generated by 7 (where »=|I"| =the order of 7) and let

p: ' —> GL(T (V)
7> 0(7)

be the isotropy representation of I" on the tangent space T,oY) at y°. Put
{=exp@2r+v/—1/r)and Z,={0,1, ---,r—1}. Then for a suitable C-basis {e,, e, - e}
of T,o(Y), the element p(y) is expressible as A4(iy, 75, =+, 7,) for some (i), 7s, - 75)
eZ.XZ, X xZ,—1{0,0,---,0} with n=dim Y, where 4(i,, 15, -, i) EGL(n, C)
denotes the diagonal matrix with each a-th diagonal element equal to {*». Here
we may assume that 7,<7,< - <i,, and let Y/ denote the fixed point set of
the [-action on Y. Then an irreducible component W of the nonsingular analytic
set Y passes through y° so that T,W) is the eigen space of p(y) correspond-
ing to the eigen value 1. Now the following two cases are possible:

Case 1: 7,=iy= -+ =i,.,=0. Then W (SY') is a divisoreDiv(Y) passing
through y°.

Case 2: i,.,#0. In this case, let ¢,:Y,—Y be the ([equivariant) blowing-up
of Y along W, and let ¢g=Min{«;:,#0}. We then denote by y' the point on
o7'(y°) which corresponds to the line ¢, in T,o(}Y). Since y' is a fixed point of
the [taction on Y, considering the isotropy representation

o' ['—> GL(T x(Y))
7= p0'(r)
of I" at the point y!, we can express the image p’(y) of 7 as the diagonal matrix
AL, iy, -, 17) for a suitable C-basis of T ,:1(Y,), where i,=i, (if 1=a=<gq) and
i =i,—i, (if g<a=<n). Note that ’éli;< 2}:
Thus in view of Cases 1 and 2, one always obtains a finite sequence o=

Im 7m-1 72y, 91 - . . .
G100 - o0m Y m—Y p_y— - —Y,—>Y =Y of I-equivariant blowing-ups

such that an irreducible divisor 0#+#De&Div(Y,,) is contained in the fixed point
set Y of the [taction on Y,. By a theorem of Hironaka [10], corresponding
to the Itequivariant meromorphic map ¢ *ef: X—Y , there exists a J*equivariant
modification p:X’—X such that hd—ef—no“ofo;z:X'—»Ym is a ([-equivariant)
morphism of compact complex manifolds. This & naturally induces a morphism
h:X')'-Y /I and together with the canonical quotient morphisms z:Y n,—

Yn/I and zn’: X’—X'/I, our h and h form the following commutative diagram:

’

X —E—=xr
1o

Ym——=Yn/I.
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Here I acts freely on X’, and in particular X’/I" is nonsingular. On the other
hand, since D is an irreducible component of the nonsingular analytic set Y7,
the finite morphism =z is ramified along D with ramification index » (=2) and
the corresponding branch z(D) (=D) is contained in the regular locus (Y /1),
of Y../I. We now choose a sufficiently general holomorphic curve S={o(t); |t|
<1} embedded in (Y /)., such that the following conditions are satisfied:

i) S intersects m(Y'L) transversally at only one point ¢(0)=SNz(D);

ii) a general fibre of A5-1csy: A %(S)—S is a p-dimensional compact complex
manifold with Property (I1—p);

iii) if p#1, then S is a part of a nonsingular projective curve sitting in ¥ ,.

Note that, by i), 2-%(S) is a complex submanifold of (¥ m/I e In view of the
above commutative diagram, ii) shows that A,5-1¢sy has a multiple fibre over ¢(0)
with multiplicity divisible by ». But then this contradicts 3.2.1 and 3.2.2. We
now conclude that G acts freely on Y. Q.E.D.

(3.4) We shall now prove 3.1.1, 3.1.3, and 3.14.

Proof of 3.1.1. Choose a finite étale cover h: X*—X of X such that feh:
X*—X is a normal covering. Denoting by G the group of covering transforma-
tions of X* over X, we obtain X*/G=X. Note that there exists a subgroup H
of G satisfying X*/H=X. We shall first eliminate the following obvious cases:

Case 1. B(X*)=0 with dim X*<2: Then either dim X*=0 or X* is rational
(and hence simply connected). Hence X*=X=X. (2) of 3.1.1 now holds.

Case 2. B(X*)=0 with dim X*=3: In this case, (1) of 3.1.1 is obviously satisfied.
Case 3. B(X*)=dim X*: Then x(X)=r(X)=r(X*)=0. Hence B(X)=X, B(X)=X,
and b(f)=f, (cf. 1.1.4). We consequently have (2) of 3.1.1.

Thus we have only to consider the remaining case 1=<8(X*)<dim X*<3. Then
B(X*) is either a nonsingular curve of genus=1 or an absolutely minimal com-
plex surface of k=0, (cf. 1.1.4). In particular, every bimeromorphic transforma-
tion of B(X*) is biholomorphic. Hence each geG(SAut(X*) induces a
biholomorphic automorphism b(g) of B(X*) (cf. 1.1.5) in such a way that the
corresponding G-action on B(X*) makes the meromorphic map by.: X*— B(X*)
G-equivariant. We now choose a G-equivariant modification p: X**— X* such
that bywp: X¥**>B(X*) is a (G-equivariant) morphism of compact complex
manifolds. Since G acts freely on X**, and since general fibres of by.cu have
Property (I —p) with p=dim X**—dim B(X*) (cf. 1.3.4), Lemma 3.3.1 then as-
serts that G acts freely on B(X*). Since the morphism feh: X*—>X (resp. h:
X*—»)?’) is G-invariant (resp. H-invariant), the corresponding G-invariant (resp.
H-invariant) meromorphic map b(f<h): B(X*)—B(X) (resp. b(h): B(X*)—B(X))
naturally induces a generically surjective meromorphic map jg: B(X*)/G—B(X)
(resp. ju: B(X*)/H—+B()?)). On the other hand, since the canonical quotient
morphism ¢g: B(X*)—B(X*)/G (resp. qy: B(X*)>B(Xy)/H) is unramified, the
inequality #(B(X*))=0 implies x(B(X*)/G)=0 (resp. #(B(X*)/H)=0). Hence by
the universality of B(X) (resp. B()?)), there naturally exists a generically sur-
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jective meromorphic map from B(X) (resp. B(X)) to B(X*)/G (resp. B(X*)/H).
Thus jg (resp. jy) is bimeromorphic. Now the following two cases are possible :

Case (a). B(X*)=1: Then js and jy are both isomorphisms.

Case (b). B(X*)=2: Note that B(X), B()Z'), B(X*) are all minimal models. In
particular, jg (resp. jy) is a modification. Since gg (resp. ¢x) is unramified, the
nonsingular surface B(X*)/G (resp. B(X*)/H) is again a minimal model, and
therefore j; and j, are isomorphisms.

Thus in both cases, we have jg: B(X*)/G=B(X) and jy: B(X*)/HEB()?). Via
these isomorphisms, b(f): B()?)—>B(X ) coincides with the natural quotient mor-
phism ¢: B(X*)/H—B(X*)/G. Hence b(f) is an étale morphism satisfying the
equality

Gl

deg b(f)=deg g= |

=degf. Q.E.D.

T

In the above proof, one can easily see that if ,B()?)=2, we don’t need the
assumption that X is of class €. Thus we have:

Corollary 3.4.1. Let f: X—X be an étale cover of compact complex 3-dimen-
sional manifolds. Assume that ,B()?)=2. Then B(X)=2 and furthermore the
natural meromorphic map b(f): B(X)—B(X) is an étale morphism satisfying
deg b(f)=deg f.

As to 3.1.3 and 3.1.4, we need the following lemma:
Lemma 3.4.2. Conjecture 3.1.2 is true if h2o(X)=0.

Proof. In view of 3.1.1, we may assume ﬂ()?):ﬁ(X)zo and dim X (=dim X)
=3. Then #(X)=—oc0 and dim Alb(X)=0. Hence h*°(X)=h"*(X)=0. Since
Xec, it follows that 1=1—h"°(X)+hr>°(X)—h>*(X)=1X, ©)=(deg f)- XX, O).
Thus deg f=1, i.e., X=X and f=idy. We now obtain deg b(f)=1=deg f.

Q.E.D.

Proof of 3.13. In view of 3.1.1, we may assume 8(X)=0and dim X=3. If
2.1.3 is true, then A%*°%X)=0 and hence Lemma 3.4.2 finishes the proof.
Q.E.D.

Proof of 3.14. In view of 3.1.1, the proof is reduced to showing 3.1.2 on
the following assumption: X is uniruled with ,8()?)=0 and dim X=3.
Now, since P! is simply connected, every rational curve in X can be lifted to
another in X, and in particular the uniruledness of X implies that X is also
uniruled. Then 2.1.5 asserts that A*>%X)=0. By Lemma 3.4.2, the proof is now
complete. Q.E.D.
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§4. Deformation invariance of 3.

The purpose of this section is to prove the following:

Theorem 4.1.1. Let f: X—S be a proper smooth surjective morphism of com-
plex manifolds with irreducible fibres. For each s€S, we put X,=f"%s). Fixing
an arbitrary point o€S, we obtain:

1) If dim X,<2, then B(X,)=p(X,) for every s€S.
) Assume that dim X,=3 and furthermore that the morphism f is of class Ci,ec,
(cf. 1.2.1). Then:
O-a) If B(Xo)=1 or 2, B(X)=B(X,) for every s&S.
O-b) More generally, if X, is uniruled, then B(X;)=p(X,) for every s€S.
O-c¢) If B(X,)=0 and if s€S is such that £(X;)=—oco, then B(X;)=0.

Remark 4.1.2. A proper smooth surjective morphism f: X—S of complex
manifolds with irreducible fibres is of class Ci,., for instance, if every fibre of
f is Moishezon or if X is Kdihler, (cf. Fujiki [5]).

(4.2) We first consider 1) of Theorem 4.1.1: Since the assertion is clear for
dim X,<1, we may assume that dim X,=2. Now, three cases are possible.
Case 1. B(X,)=2 (i.e., #(X,)=0): In this case, by the deformation invariance
of x, (cf. litaka [11]), we see that x(X,)=0 (i.e., B(X,)=2) for every s&S.
Case 2. B(X,=1: Then X, is an irrational ruled surface (i.e., £#(X,)=—c0 and
bi(X,)=even>0). By the deformation invariance of b, and &, every X, is again
an irrational ruled surface, i.e., f(X,)=1.

Case 3. B(X)=0: If B(X,)#0 for some s&S, then in view of Cases 1 and 2
above, we should obtain 8(X,;)#0 in contradiction. Thus f(X;)=0 for every s S.
These now complete the proof of 1) of Theorem 4.1.1.

(4.3) We next consider II) of Theorem 4.1.1.

Proposition 4.3.1. Let X and S be complex manifolds with dim X=4 and
dim S=1. Let f: X—S be a proper surjective smooth morphism of class Coc with
irreducible general fibres. Assume further that a fibre X, (0€S) of [ satisfies
B(X,)=2. Then there exist complex manifolds X', Y, a modification p: X'—X,
and proper surjective morphisms g:Y—S, h: X'—Y such that:

(1) fepu=geh, (ii) general fibres of h are isomorphic to P, and (iii) every smooth

fibre of g is a surface of nonnegative Kodaira dimension.

Proof. Step 1: Let m:Dy;s—S be the relative Douady space of X over S
which parametrizes the compact analytic subspaces of X contained in the fibres
of f, (cf. Fujiki [3]). Now by Theorem 1.3.4, there exists a Zariski open dense
subset V (resp. V') of B(X,) (resp. X,) such that by, :V’'—by (V)=V is a
proper smooth morphism with irreducible fibres isomorphic to P! Correspond-
ing to this smooth family of rational curves parametrized by V, there exists an
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irreducible component D, of Dy,s such that we have a natural embedding
1: VGD, by sending each veV to i(v)=b,;'(v)eD,. Note that, by Fujiki [3;
Theorem 4.57, Tl'amﬂ'|pa:Da-"S is proper. We now consider the universal
family p,: Z.—D, with the natural embedding Z.E D, XX, where p, coincides
with (resp. p.: Z,—X denotes) the restriction to Z, of the natural projection
D,xXsX—D, (resp. D,XsX—X). For each veV, regarding /(v) as a rational
curve on X, one easily sees that the normal bundles Nyx,x and Nyw/x, are
trivial. Hence N;wy,x is again trivial and in particular we obtain A°(G(v), Niw/x)
=3 and h'({(v), Nicw,x)=0. Then dim D,=3, and every :i(v) w€V) is a non-
singular point of D,. Thus p, is a generically finite surjective morphism, and
general fibres of p, are isomorphic to P'. Choose a desingularization j: D,—D,
of D, such that j restricts to an isomorphism over the regular locus of D,.
Let D{,LS’-LS be the Stein factorization of the morphism n,ej:D,—S. We
claim that the proof of 4.3.1 is reduced to showing the following:

(a) «x(general fibre of )=0Q; (b) deg p.=1.

Assume that (a) and (b) are proven. Since all fibres of f are irreducible, this
(b) implies that degv=1. It is now easy to check that, for a suitable modifica-
tion p: X'—X from a complex manifold X’, we have morphisms g: ==,y and
h:=j"tep;opytep with the required properties (i), (ii), and (iii) above.

Step 2: Since (m4°5)"*(0) contains j~'(#(V)) (= V) as its subset, there exists
a point o’ of v~*0) such that an irreducible component (denoted by T') of 17(0")rea
is bimeromorphic to B(X,). Let 4 (£S’) be a small open disc centered at o’
such that 2 is smooth over 4— {0’}. Then by a standard argument (cf. Ashikaga-
Ueno [1]), one easily obtains

k(A s NZe(T)=r(B(X,)=0, for every s'€d—{o’},
which in particular proves (a) of Step 1.

Step 3: General elements of D, are, as curves on X, isomorphic to P
Hence every element of D, represents a connected curve whose support is a
union of rational curves on X. Let W={rezz'o); dimbx (V' NpLp7'()N=1}.
Since B(X,) is not uniruled, the subset U:=V—by (V'Np(po7'W))) of V is
nonempty. We then pick a point » of U, and fix a point x, on the rational
curve #(u), where for each yeD,, we write p,(p7%(7)) simply as 7 if no confusion
seems likely to result. We now claim that p3'(x,) consists of a single point.
Assume the contrary. Then there exists an element 7, of D, such that (1) 7,
as a curve on X passes through x, and that (2) 7,#:(u). Since 7, is a con-
nected curve whose restriction to V’ is mapped to the point u by by, we have
(7 Drea=1(u)= P By c(Xo)ril=ci(X)[#(u)]=2, 7, is generically reduced. In
view of X(ri, ©)=x((w), O)=X((71)rea, ©), it would now follow that y,=i(u) in
contradiction. Thus p3%(x,) consists of the single point z: =(i(u), x;)ED.X s X.
Next by Step 1, D, is nonsingular at 7(u), and so is Z, at z. Since N;qy/x is
trivial, (cf. Step 1), we have the natural isomorphisms

Ticw(Da)=HG(u), Nicwix)=Z(Niawx)e, 2T 2, (X)/T 2,(6(w)) .
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This then shows that p. is unramified at z, and hence we obtain (b) of Step 1.
The proof of 4.3.1 is now complete. Q.E.D.

Proposition 4.3.2. Let X and S be complex manifolds with dim X=n and
dim S=1, where n is an integer with n=2. Let f: X—S be a proper surjective
smooth morphism of class Ci,c with irreducible fibres. Assume that there exists a
dense subset S° of S such that (1) S—S° is a countable union of analytic subsets
of S and (2) (X )=n—2 for all s€S°. Then B(X,)=n—2 for all s€S.

Proof. Since the assertion is obvious for n=2, we may assume that n=3.
For each meZ,, we denote by &, the locally free sheaf S™(27%;%) on X, and
let D, (£S) be the support of the sheaf f«(F,). Note that, by dim S=I1, the
torsion free sheaf f«(F,) is locally free. Since f is smooth, the natural homo-
morphism

Pm,s: f*(gm)“®0,g,sc —> H(X,, glex)(:HO(Xsy Sm(Q};Z)))

is injective everywhere on S, and is isomorphic for every point s of S outside
a nowhere dense analytic subset K, of S. Now, for every s&€S° we have
B(X;)=n—2 and therefore h°(X;, S™(2%,%)#0. In particular,

U Dp 28— U Kn.

Since each D, is a closed analytic subset of S, it then follows that S=D, for

some my=Z,. We now fix an arbitrary point ¢ of S—S° and let s,€S° n=

1,2, .-, be such that lim s,=f{ On a small open neighbourhood U of ¢ in S,
n—co

we choose a local section §€ H(U, fx(Fn,)) such that &(t)#0. Take a large
enough NeZ, so that one obtains s,€U and &(s,)#0 for all n=N. Then by
Theorem 2.3.1 applied to p=n—2 and m=m,, it follows that pn,,,(E(ss)) is
(very neatly foliated and hence) of purely multiple type for all n=N, (cf. 2.4.1
and 2.4.2). Here, letting n—oo, we see that pn, (§() (#0) is also of purely
multiple type, (cf. (ii-a) of 2.4.1). On the other hand, by a theorem of Fujiki [5],
X, is uniruled. Theorem 2.4.3 now says that §(X,)=n—2, as required.
Q.E.D.

Proof of M-a) of 4.1.1. Connecting oS and s S by a chain of nonsingular
holomorphic curves, we may assume that dim S=1 without loss of generality.
If either B(X,) or B(X;) is 2, then Propositions 4.3.1 and 4.3.2 immediately imply
that B(X,)=p(X,). Therefore we may further assume S(X,)=1 and B(X,)+2.
Since X, is of class C, it follows that X, is uniruled with 0<b,(X,)=2-dim Alb(X,).
By the deformation invariance of uniruledness and also of the first Betti number
b, we see that X, is uniruled with 0<b,(X;)=2-dim Alb(X,). Since (X;)#2,
we now conclude that 8(X,)=1=p(X,). Q.E.D.

Proof of 1-b) of 41.1. In view ofI-a) above, we may assume that S(X,)
=0. Since X, is uniruled, so is every X, and hence x(X;)=—oco. Then I -c),
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which we shall prove below, completes the proof. Q.E.D.

Proof of T-c) of 41.1. By Il-a) above, we may assume that B(X,) is neither
1 nor 2. On the other hand, x(X,)=—o0, i.e., B(X;)<2. Thus B(X,)=0.
Q.E.D.

§5. Semipositivity.

For later purposes, using the standard technique of Fujita [7], we shall give
some delicate analysis of semiposivity of the direct image sheaves of relative
differential forms. First we fix our notation: For a proper surjective morphism
g:W—S of normal complex varieties, we denote by 24,5 the sheaf of germs
of holomorphic S-differentials on W in the sense of Grothendieck. Then we put

%15=N12k,s for each g Z,, and let (2%,5)** be the double dual of £2%,s.
Note that (£2%,s)** is a torsion free sheaf on W which coincides with 0%,¢
modulo torsion outside an analytic subset of W of codimension=2.

Definition 5.1.1 (cf. Fujita [7]). A vector bundle (or equivalently a locally
free sheaf) E over a nonsingular projective curve S is said to be pseudo-semi-
positive if either rank £=0 or one has degs Q=0 for any quotient line bundle
Q of E.

Theorem 5.1.2. Let S (resp. W) be a nonsingular projective curve (rvesp. an
n-dimensional compact complex normal variety of class C), and g:W—S be a
surjective morphism only with generically reduced connected fibres. Then for
every qe {1, 2, ---, n—1}, the locally free sheaf g«((£2%,5)**) is pseudo-semipositive.

Proof. Step 1. Put E=_g((2%,s)**) and fix an arbitrary quotient line bundle
Q of E with an exact sequence E5Q—0. Since W is of class C, there exists
a surjective morphism h: Z—W from a compact Kihler manifold Z. Let U be
the Zariski open subset {s€S; the fibre Z,(=(g-h) (s)) is smooth} of S. Put
m=dim Z—dim W and we define a Hermitian metric (, )z of the vector bundle
Ey by setting

(p, Pe=(V/ =] @m0 A Ho) AT

for all ¢, g€ E(=H"Z,, £%,) at each s€U, where w denotes the Kéihler form
on Z. Since this Hermitian metric on E naturally extends to an indefinite
flat Hermitian metric on R%g.«(C)y, the standard argument of second funda-
mental forms (cf. Griffiths [8], Schmid [25]) shows that the curvature form O
of Ey is positive semidefinite. Let (,)o be the canonical metric on @y obtained
by identifying Q. with the orthogonal complement of Kerrz in E,;;. Then
again by the argument of second fundamental forms, the curvature form @4 of
Qw is positive semidefinite.

Step 2. Fix an arbitrary point s, of S—U. We choose an open neighbour-
hood T={|t| <1} of s, in S with a local coordinate ¢ such that TN\(S—U)=
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{s¢}={t=0}. Take a local base {¢o, ¢, -**, ¢} over T for the vector bundle
E so that (i) n(¢o)=0 in HYT, E) for a=1, 2, -+, r, and that (i) =(¢,) is a
local base of Q over T. Write the fibre g~(s,) as a union \UM,G; of its ir-
reducible components, and we choose a sufficiently small open neighbourhood
Wi={lwj,,| <e for all v} (0<e«1) in W of a general point of G; with a system
of local coordinates (wj,1, Wjq, **+, W) such that g*(t)=w;;;. We next express
each h*(G;)eDiv(Z) as 24 dj; +G; » with multiplicities d;, , € Z, and prime divi-
sors G, on Z. Furthermore, let Z;={|z;;,| <0 for all u} (0<d<e) be a neigh-
bourhood (£Z) of a general point of G, with a system of local coordinates
(2j:1, Zji2y =" » Zj;nem) SUCh that (1) h¥wy )=(z;; )%t and (i) h*(wj,)=z;, for
vy=2,3, ---, n. Choosing ¢ small enough, we may assume that Z;, j=1, 2, ---, m,
are mutually disjoint. Now, for every ¢cC with |c|<d, we put:

Foj={peW;; wip)=ct, Foy=hFe)NZ;, j=1,2,--,m,

Fcz(n)Fc;jy Fé':GFé;j-
j=1 j=1

We then define A.4(c)eC (a, 10,1, -+, r}) by

M) it 20, A=, o™ ARKGur) N Gpir),
[4

(2) if =0, Aaﬁ(o):jﬁldj;1SF,0‘jwm+n_q_1/\ll*(¢ali'0)/\h*(ﬂbﬂlFo):

where in both cases, ¢, and ¢ being regarded as elements of H*(g™(T), (2%,5)**),
their restrictions ¢ar, and ¢ 5, are naturally in H(F,, £2%) via the isomorphism
(2%, ) \p,=02%,. Here, in view of h*(w;;,)=(z;:)%51, every A.g(c) is a continuous
function of ¢ on {c=C; |c|<d}. Let A(c) be the least eigen value of the (r+1)
X(r+1) Hermitian matrix (Aag(c)sae. psr and o(2r+1) be the sphere {a=
(ao, a4, -+, a)EC™!; T-olaq|?=1}. Pick an arbitrary a=(a,, a;, - a,)<
g(2r—+1). Since {¢o, ¢1, ---, ¢,} is a local base for E, and since g~'(s,) is generi-
cally reduced, 3%-0@apair, regarded as an element of H(F,, 2%) does not
vanish identically on F, and hence >%_ca.h*((air)#0€H (Fq, %:0). Thus
(Aas(0))osa, psr is a positive definite Hermitian matrix, i.e., 2(0)>0. On the other
hand, for ¢+0,

Eit=c~ a,p=0

((éoaagbay éoaa¢a) = %__ aadﬂAaﬁ(C)gz(c)-

Since A(c) is a continuous function of ¢, in view of 6«1, there exists a positive
constant K such that:

Itni«{(zagb 3 aa),; 0% 1t1<0, aco@r+ D} 2K.

Then by a lemma of Fujita [7; (1.13)], it follows that:
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(7(¢o), m(o))= K,  for all ¢t (€T) with 0+ |¢|<4.
Step 3. Finally by the formula of Fujita [7; (1.16)], the above two steps
give us degs QgSU@QgO, as required. Q.E.D.

§ 6. Some criteria of positiveness of Kodaira dimension.

Throughout this section, we use the following notation: Fix positive in-
tegers p, n such that p<n, and we denote by ¢ and ¢’ the binomial coefficients
2Cp and ,-,C,_; respectively. X is an n-dimensional compact complex manifold
of class € such that h?°(X)#0, and f: X—Y is a surjective morphism of X onto
a nonsingular projective curve Y with connected fibres. For every smooth fibre
Xy (=f"%y)) (y€Y), we denote by 7}: H'(X, 28)—H(X,, .Qf{,y) the natural pull-
back of p-forms induced by the inclusion 7,: X,GX. For every coherent sheaf
g on X, the natural isomorphism of HX, &) and H°(Y, f«(F)) is written as
c: HY(X, F)= H(Y, f«(F)) by using a common letter ¢.

(6.1) The purpose of this section is to prove the following:

Theorem 6.1.1. Let L, be a nonzero C-linear subspace of H(X, 2%) satisfy-
ing the following conditions:
(1) L.sKerd¥ for every smooth fibre X, of f.
(2) «(L,) generates an invertible subsheaf L, of f«(2%).
(3) dim L.=2 (or we may replace this by the weaker condition that L, is ample).
Furthermore, let 2;: f+(2%2)*)—Hom (L., f«(wx)) be the sheaf homomorphism
on Y naturally induced by the wedge product (¢, )€ 2% X Li—~pNpE Q% .=
wy . (x€X), and we assume that A, is not trivial. Then x(X)>0.

Theorem 6.1.2. Assume that there exist vy, Vs, -+, Ye-1 €EHY X, 2%) satisfying
the following conditions:
1) BG)=i5G)= =057 -)=057)=0 for every smooth fibre X, of f.
(2) Let & denote 2% regarded only as a locally free sheaf on X. Then 71/A7s
A o ATe1#0 as an element of HYX, A°¢71€).
Let L, be a C-linear subspace of {g:-7iATVe/\ - AVeor; g€C(X)INHYX, A1)
with dim L,=2 such that ¢«(L,) generates an invertible subsheaf Ls of f«(N°7'E).
Furthermore, let Ay: f+(Q%)*)—Hom (.Ls, fi(ws®)) be the sheaf homomorphism
on'Y naturally induced by the pairing (¢, 7)E2% v+ X Li—P Anpedet(€) ;=052 ):
(xeX), and we assume that 2, is not trivial. Then (X)>0.

(6.2) We shall first show that the above A, and A, are well-defined:

(i) Fix a smooth fibre X,, and its point x, arbitrarily. In view of the exact
sequence of coherent sheaves on Y,

O—Qf*(Q})—*Qk—)QX/Y—)O,

we have QE2=A"PQL =% ?/(f*(2HANL2%P-Y). Let ¢t be a local coordinate
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of Y centered at y,. Then by (1) of 6.1.1, every ¢= L, is locally written as
f*(dt) A(holomorphic (p—1)-form) around x, and hence ¢gAp=0 for all ¢=
(Y 2PNLQ%P");,. This shows that the pairing

(@, QE(HRDNLY P X Ly —> g NpELRY ;=wx, &

is trivial for every x on a Zariski open dense subset of X. Moreover, wy being
a torsion free sheaf, this pairing is trivial everywhere on X. Then we have a
natural sheaf homomorphism: f«(2%;2)—Hom(.L,, f«(wx)), which induces a well-
defined 2,.

(ii) The conditions (1) and (2) of 6.1.2 show that, on a Zariski open dense subset
U of X, the sheaf f*(Q2})ALQ%L?' is locally free with a base {ri, 7e -+, 7).
Hence for every ¢e(f*(2$)AR% 1Y), with x€U, we have GATIATA -+ ATe=
0e(A®*&),. In particular, the pairing

(@, PEHRINLE N X Ly —> g Ay Edet (€),=(ws),

is trivial for every point x on UU. Then by the same argument as in (i), the
sheaf homomorphism 2, is well-defined.

(6.3) Let {yi, y2 - ¥,} be the set of all those points of ¥ over which f has
singular fibres, and we express each f*(y,)€Div(X) as Xjhe,;;D;; with multi-
plicities e¢;;€Z, and prime divisors D;; on X. Fixing a point y, on Y —{y,, ---,
y,}, we denote the prime divisor f*(y,) by D,. Put ¢,=1 and m,=1. We
then define positive integers d and e;, 0=i/=p, by

ei=l. c.m. (e,—,l, Cigy 7, eimt) Z=1, 2, L0,

eo=l.c.m.(e;, s, =+, €,), d=eep--e,.

We now have a d-fold abelian covering = : ¥—Y which is unramified over ¥ —
{y0. 1, - v,} and has d/e; points Jiwe¥, 1Za=d/e; of ramification index e;
over each y;, 0=/=p, (see, for instance, Kodaira [20]). Let u:)?—>X><yl~’ be the
normalization of XXY}N, (={(x, y~)eX><}~’;f(x)=7r(y~)}, and 7#: X—X (resp. f:)?
—Y) be the composite of v with the projection pr,: X Xy¥—X (resp. prq: X Xy Y
—Y) to the first (resp. second) factor. Then for each 7, j (0=i<p, 1<7<my),
the divisor #*(D,;) is written in the form

d/ei eij ~
ﬁ*(Dij)=a§l ,gl(ei/eij)ngk
with prime divisors ﬁ%yk (1=a=d/e;, 1=k=e;;) on X. Note that every fibre of
f is reduced and connected. By XecC, we have X<, and hence by 5.1.2,

(a) f*((.lem,)**), 1=¢=n-—1, are pseudo-semipositive locally free sheaves on Y.

Let X° be the Zariski open nonsingular subset )?—U’L?:lﬁ‘l (Sing (f~Y¥1)rea)) Of )?,
where Sing (f~(y:)req) denotes the singular locus of f~*(¥;)req. Clearly codimg (X
—X%>2. We now define a Cartier divisor R on X° by
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2 1

p mid/ei eij
R=% 2 2 2 ((ei/ei)—1)D¢rizo .
1=0 j=1a=1 k=1

Then by a straightforward computation, we obtain

(b) (ﬁ*wx)@o:a)fo(—R).

Let 7° be the restriction Ffizo of F to X°, and for every sheaf  on X° the
natural isomorphism of H°(X°, ) and H°()7, (F4(F)) will be written as ¢ ; H°
(X°, F)=HAY, (f)%(F)) by using the common (. Let & denote 22 regarded
only as a coherent sheaf on X. Since L, (resp. L) is generated by ¢(L,) (resp.
¢(L5)), the mapping which sends z*(:(p))e H'(Y, n*.L,) (resp. () eH' Y, n*.L5))
to (F*(p)izo) e H (Y, (f“)*(Q}é)) (resp. !°(7~r*(ﬁ)|,fo)€H°(f’, (FO«(A°1€)) for each
@€ L, (resp. y€L,) naturally induces a sheaf homomorphism

Jit L (FO(2) (resp. ja: T Lo T (FO4(ACT1E)).

Then 7*.L, (resp. 7*.L,), as a subsheaf of (°)«(22) (resp. (F*)x(A1&)), satisfies
the following:

Lemma 6.3.1. (i) 7*.L,S(/)«(22(—R)).
(i) * LS (FORUATE)N—C'R)).

Proof. Let gL, and p& L, It then suffices to show ﬁ*(@).{goéH“()?% .QAI;
(—R)) and ﬁ*(ry)lgoeH“()?", (A €)X —c’R)). Fix an arbitrary ﬁg'j,, and let @ be
its general point. We choose a sufficiently small open neighbourhood U of
(resp. U of #(#)) with a system of local coordinates (%, %, -+, X.) (resp. (x4,
Xs, =+, X)) such that (1) ﬁ(ﬁ)gU, (2) %,=0 locally defines 52‘,~k, 3) #*(xy)=
%,4/% and (4) #*%(x,)=2%, for 2<y=<n. Let A be the set of all those subsets of
{2, 3, -+ n} whose cardinality is p—1, and for each A= {a,, as, -+, a,} €A with
a,<az< - <ap, We put S4=dx  AdXa, AdX o N -+ /\dxap and §,=d# AdX., A
dZag/\ - /\da?ap. Then, in view of (1) of 6.1.1 and (1), (2) of 6.1.2, the restric-
tions ¢ and %,y are written in the form ¢y=dx,A{ and 77|U-_—‘(A€/\J s)A¢ for
some {eH'(U, 2%*) and ¢=HYU, A°-“~'€). Hence

¥pho=(ei/e {0 dENTFHD),

a*(pho=(ei/eiy)" X, “ei"‘”"”(Ae/}d SONTHY) .

Thus, when restricted to )?“, our #*(¢) (resp. #*(x)) has a zero along each f)?jk,
of order at least (e;/e;;)—1 (resp. ¢'((e;/e;;)—1)), as required. Q.E.D.

(6.4) By the same argument as in (6.2), to every (¢, go)e((.Q’)LJS,’.’)**)J;><L1 (resp.
(¢, n)e((Q;/?)**)ixLZ), we can associate the wedge product

(@, w¥(p) — PATHP) (233,
(resp. (¢, 7*(n) —> AT*(P) E(NEH)z),

which naturally induces the sheaf homomorphism
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a2 Fel(QE 29 ®o0, 7% Ly —> fx(Q1)F%),
(resp. pta: Fal(22,,**)Qo,F* Ly —> fx((A°E)™)).
Now by 6.3.1, 7*L,S(f)x(Q2(—R)) (resp. 7* LS (F)+((A°71E)(—¢’R)), and hence
Image 1t S (7 )x((Q)**(— R))=(F")slwzo(—R))
=(f(F*wx)izo), (cf. (b) of (6.3)),
=f«(F*wy), (because codimy (X—)ZO)gz),
resp. Image 1S (7 )x((A8V**(—c'R)=(F")x(0)®" (—¢'R))
( =(F (70 x)® p0) =T+ (F*0x)®") )
Thus we have the natural homomorphism
By Fl@2-pY%) —> Hom (x* £y, Jo(ZHwr))
(resp. Zy: f4((22 ,)%*) —> Hom (a*.L,, [4((#*0x)®)))
of locally free sheaves on Y.

Proof of 6.1.1 (resp. 6.1.2). Note that A, (resp. A, is not trivial. Hence
neither is i, (resp. 4;). Now by 5.1.2, f*((Q;j?P)**) (resp. f*((.Qj";/f,)**)) is pseudo-
semipositive, and therefore its image S, (resp. S.) under the map 4, (resp. A2)
is again a pseudo-semipositive locally free sheaf on Y. Since dim L,=2 (resp.
dim L,=2), .L, (resp. .L,) is ample, and so is z*.L, (resp. n*.L;). Then every
quotient line bundle of S,@n*.L, (resp. S.Qn*.L,) has positive degree, and hence
by a theorem of Hartshorne [9], S.Qzn*.L, (resp. S,Qn*.L,) is ample. Since
S;SHom (n*.fl,f*(ﬁ*wx)) (resp. S;SHom (n*Iz,f*((ﬁ*wX)@c’))), we naturally
have an inclusion of sheaves

F S Ful(F*wx)®)

by putting e=1 (resp, e=c¢’) and F=S,QF*L, (resp. F=S.,Q7*L,), where ¥ is
an ample locally free sheaf. Note that, for every d=Z,, the image of the sub-
sheaf SUF) of SUF«((F*wx)®®)) under the natural sheaf homomorphism

Cat SUT(FFwx)®) —> Fal(FFox)?%)

is nontrivial. We first choose a large enough d’eZ, such that S¥ () is gen-
erated by global sections. Then there exists a section s HYY, S¥ (%)) which
satisfies {4.(0(F,))#0 for some point ¥, on 7. Next, let d”€Z, be such that
I5,-S¥(F) is generated by global sections, where J;, is the ideal sheaf of 7, in
Y. We can then find a section reH(Y, S¥(F)) with &4()#0 and (§,)=0.
Now, (L (0))®%" and (£4-(2))®¢ are C-linearly independent in H(Y, F+(#*wx)®% ¢°9)).
Thus
0<e(F* oy, X)=rlwy, X)=r(X),

which completes the proof. Q.E.D.
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Remark 6.4.1. (a) The arguments in (6.3) and (6.4) are still valid even if
we replace f: X—¥ by the “semi-stable reduction” (cf. Mumford et al. [24]) of
f:X—Y, although such replacement doesn’t so much simplify the proofs of 6.1.1
and 6.1.2,

(b) Theorems 6.1.1 and 6.1.2 can be generalized in various ways. For instance,
it is easy to extend them to asymptotic cases. We shall discuss such a topic in
a separate paper [22].

§7. L-fibrations.

In this section, we shall define the concept of L-fibrations and give the basic
properties.

Definition 7.1.1. Fix positive integers p, n with p<n. Let X be an n-
dimensional compact complex manifold such that 4?-°(X)>0, and L be an arbitrary
C-linear subspace of H*(X, 2%) with /=dim L>0. We denote by » the rank of
the subsheaf of 2% generated by L, and let Gr(/, [—r) be the complex Gras-
smann variety of (/—r)-planes in L (=C'). We consider the meromorphic map
U: X—Gr(l, [—r) defined generically by

V. X—Gr{, [—r)
x—> {we L ; o(x)=0} .

1) The closed subvariety Im ¥ of Gr(l, [—r) denotes the meromorphic image of
X under the meromorphic map 7.
2) The fundamental subspace L, of L is the linear subspace of L spanned by

UWP(Z) where P(z) denotes the (/—#)-plane in L corresponding to z.

3) A surjective morphism f: X’—Y of compact complex manifolds with con-
nected fibres is called an L-fibration of X, if there exist a modification j: X'—X
and a generically finite surjective morphisn v:Y—Im ¥ such that the following
diagram commutes :

X'-———>X
1 <Cr
y—2—=>Im¥.

Note that, given X and L, an L-fibration of X always exists as follows: Let K be
the algebraic closure of C(Im¥) in C(X), and we take a nonsingular projective
variety Y such that (i) C(Y)=K, and that (ii) the meromorphic map v: Y —>Im ¥
‘nduced by CIm¥)SC() is a morphism. Since C(Y)SC(X), we have a
meromorphic map g:X—Y. Choose a modification j: X’—X from a compact
complex manifold X’ so that fde:mgoj: X'—Y is a morphism. This f now de-
fines an L-fibration of X. Moreover, given X and L, all possible L-fibrations
of X are mutually bimeromorphically equivalent, because Y is a Moishezon mani-
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fold characterized bimeromorphically by C(Y)=K.

4) Let X, (=f"'(») (y€Y) be an arbitrary smooth fibre of f. Then, in terms
of the notation above, j*(w).XIyZOEH“(X;, (.Qf{n),x,y) for all weP(u(y)).

5) Let 7,: X3S X" be the natural inclusion. Then we define the horizontal sub-
space L, of L by

L,={weL; (% 7*)(w)=0 for every smooth fibre X, of f},

where %% HY(X, 25)—-H(X}, .Q?{/y) denotes the natural pullback of p-forms
by jei,. For fixed X and L, this L, is independent of the choice of L-fibra-
tions of X.

The following theorem is of crucial importance in our later study of holo-
morphic 2-forms on compact complex threefolds.

Theorem 7.1.2. Let p, neZ, with p=n, and let X be an n-dimensional
compact complex manifold of class C such that h?%X)>0. Fix an arbitrary
nonzero C-linear subspace L of HYX, 2%). Then, between the fundamental sub-
space L, of L and the horizontal one L, of L, we have the inclusion L,S L.

Proof. Let Y° be the Zariski open subset {yeY ; X} is smooth} of Y. Since
goP(v(y)) spans L, in L, the proof is reduced to showing (% /*)(P(v(y’)))= {0}
Yy

for all y, y’€Y" Fix an arbitrary weP(u(y’)). By 4) of 7.1.1, we have j*(w).X'y,
=0eH (X}, (.Q},)lx'y, ), and in particular (7%, - 7*)(@)=0. Since ¥\g-1o: YY)
—Y?is locally trivial as a C*-fibration, every p-cycle y on X; can be deformed to
a p-cycle 7/ on Xj. over a piecewise-smooth path €Y. Hence (7,)«()—G, )«(7")
=or for some (p+1)-chain r on X’, and we obtain

[ G5 m0@r={ Gseim@—{ @3- )

w——-garw:&dw:O ,

S(i;,).(r)—(iy).(ﬂ)

where do=0 follows from XeC. Thus (7} 7*)(w) is cohomologous to 0. In view
of X, ¢ (which follows from X&), the holomorphic p-form (i} 7*)(w) vanishes
identically. We now conclude that (73 7*)(P(v(y")))={0}. Q.E.D.

Remark 7.1.3. If p=n—1 and dim Y =1, then Theorem 7.1.2 is valid even
if we get rid of the assumption that X is of class ¢. This is an immediate
consequence of the following facts:

Let M be an m-dimensional compact complex manifold. Then
(1) Every holomorphic (m—1)-form w on M is d-closed, because SM doNndow=
SM d(@Ad@)=0 implies dw=0. '

(2) Every holomorphic m-form » on M which is cohomologous to 0 is identically
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0, because 7 is written as d§ for some C* (m—1)-form £ on M and hence S AT
M

=, d€ndd=0 implies y=o0.

(7.2) We shall here make a little more study of L-fibrations. First we give the
following technical lemma.

Lemma 7.2.1. Let X (resp. Z) be an n-dimensional (resp. p-dimensional) com-
pact complex manifold, and g: X—Z be a surjective morphism with connected
fibres. Assume that h?°(X)>0, and suppose ws H'(X, 2%) satisfies the following
condition:

(8) There exists a Zariski open dense subset U of X such that, for every xeU,
w 1s locally written as s-g*(&) for some s€Cyx,, and E€ 028 ;), where g*é)e
0% . denotes the natural pullback of & by g.

Then there exists n€HZ, 2%) such that o=g*(n).

Proof. Let V be the Zariski open dense subset {z€Z; g %(z) is smooth} of
Z. Fix a point v on V and a point w on g '(v) arbitrarily. We choose a suffi-
ciently small open neighbourhood N, of v in Z (resp. M,, of w in X) with a
system of local coordinates (z;, zz, ==+, zp) (resp. (g%(zy), g*(z2), =+, g*(zp), X1, X4,
-+, Xn-p)). Then around w, we can express @ as a sum s-g*(dz;Adz, A\ -+ ANdzp)
+w’, where s€0y,, and o' =22PP;Adx; with ¢;€0%5. Now, the condition
() above shows that w'=0 (even if we&U). Thus w/g*(dz;A -+ Ndz,) is a
holomorphic function on g=(N,). Since g«Ox=0z, it then follows that wz-1cx,»
= g*(€) for some £ HYN,, 23). Varying v in V, we obtain p€H%V, 2%) such
that w,-10»=g*(y), and the assertion of our lemma is now straightforward
from 2.2.3. Q.E.D.

The following fact on horizontal subspaces associated with L-fibrations will
be needed in §8.

Proposition 7.2.2. Let p, neZ, with p=n, and let X be an n-dimensional
compact complex manifold such that h?°(X)>0. Fix an arbitrary nonzero C-linear
subspace L of HYX, 2%), and let f: X'—Y be an L-fibration of X. We assume
that dim Y =1 and that the horizontal subspace L, of L has positive dimension.
Then

(@) The locally free sheaf f+(2% ¥)**) on Y is not a zero sheaf.
(b) Assume furthermore that there exists a quadruple (Z, g, g’, Y°) satifying the
following conditions:

i) g:X'—Z isa surjective morphism of X' onto a p-dimensional compact complex
manifold Z with connected fibres.

ii) g’':Z-Y is a surjective morphism such that f=g’-g.

iii) Y° is a Zariski open dense subset of Y such that, for every yeY®, the re-
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striction gixy: Xi(=fUy)—Z (== g" X)) is a morphism of compact complex mani-
folds inducing an isomorphism (glxly)*:HO(Zy, Qg;‘)zH“(X’, .Qg;‘).
v

Then every we L, is expressible as g*(n) for some neHZ, %) (=HZ, Kp)).
In particular p(Z)=dim L,.

Proof. Note that, without loss of generality, we may assume X'=JX.

(a) Let 0#weL,. Then for a general smooth fibre X; of f, we have a),xrtho
in H°(X, (.Qﬁr).xly). Let 7,: X;& X’ (=X) be the natural inclusion as usual. In
view of 7}(w)=0, to each tangent vector 00T, (Y), we can associate a well-
defined (p—1)-form 0+wys HY(X,, Qf{ny) by the following equality. Namely, we
put

wy(0s, G5, -+, Op)=w(8y, b,, -+, 0p), for all b, 0y, -+, 0,€T (X)),

at each point x’ of Xj, where 6,7 ,.(X’) is a tangent vector satisfying f«(8,)
=0. Thus f((2% v)**),Qoy. vC’:‘H"(X’y, Qf{ny)rﬁ {0} for general smooth fibres X,
of f, i.e., f*((2%.,,)**) is not a zero sheaf.

(b) Let 0#weL,. Fix a point x’ on f~(Y°) arbitrarily, and we put y=j(x’)
and z=g(x’). Choose a C-basis {6,, 6., -+, 8,} for the tangent space T, (X")
such that 6;€T (g '(2)) for 1=i=n—p and that 6;€T..(X;) for 1<i<n—1.
Let A be the set of all those subsets A of {1, 2, ---, n} which satisfies AN
{1,2, -, n—p}+#¢. For each A={ay, as, -, ap} €A (Where a,<a,< - <ap),
we have two possibilities :

Case 1: ne&A. Then by i(w)=0, it follows that (0o, Oay, -+, 0%):0.

Case 2: neA. In this case, a,=n and we put 6=f4(0,)T,(Y). Then, using
the notation in (a) above, we have

w(aaly 0(127 T 0”1)):(_1)1%1(00(0"1’ 0(12’ ] 6ap_1):0’
where in the last equality, we use the condition iii) above.
Thus, in both cases, we obtain @(fa,, Oay, =+, Oa p)=0. This now shows that,

around each point x’ of f~YY?), w is written as s-g*¢) for some s€0y.,, and
£e0? yon. Then by 7.2.1, we can find e HZ, 2%) such that o=_g*(p).
Q.E.D.

§8. Holomorphic 2-forms.

The main purpose of this section is to give a partial affirmative answer (cf.
8.4.1) to the following conjecture:

Conjecture 8.1.1. Let X be a 3-dimensional compact complex manifold of
class C, and let v be the rank of the subsheaf of 2% generated by the global
sections H (X, 2%). Then
(i) If f(X)=—o00 and h*°(X)>r, then B(X)=2.

(i) (Ueno [32]). If x(X)=0, then h*°(X)=r (and in particular h*°(X)=<3).
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Remark 8.1.2. If Conjecture 2.1.3 is true, then so is (i) of 8.1.1.

Proof of 81.2. Since £(X)=—oco, one has three possibilities: S(X)=0, 1, 2.
First, if B(X)=0, then 2.1.3 says that h1*°(X)=0. Secondly, if B(X)=1, Theorem
2.1.1 shows that A*>%(X)=h>°(B(X))=0. Thus, in both cases, we have a con-
tradiction to h*°(X)>r. Hence B(X)=2. Q.E.D.

(8.2) The following observation due to Ueno and myself gives an affirmative
answer to the case r=3 of (ii) of 8.1.1.

Proposition 8.2.1. Fix positive integers p ond n arbitrarily with p=n. Let
X be an n-dimensional compact complex manifold with £(X)=0, and r be the rank
of the subsheaf of Q% generated by the global sections HY(X, 2%). Suppose r
coincides with the binomial coefficient ,Cp. Then £(X)=0 and h?*(X)=r.

Proof. Since the rank of the locally free sheaf 2% coincides with 7, there
exist sections 7y, 7s, -+ 7> H(X, 2%) which form a local base for 2% over a
Zariski open dense subset of X. Then 7,A7:A --- A7, regarded as an element
of H(X, det(£2%)), is nonzero. On the other hand, putting e=,_,C, ;, we have
det (2%)=w,®°. It now follows that £(X)=0, and hence x(X)=0. Assume, for
contradiction, that AP °(X)>r. Completing {ri, -, 7.} to a C-basis {ri, -, 7
Tri1, -} for HY(X, 2%), we express 7,4+; as >, f:7; with meromorphic functions
f: on X. Since all of f,, f;, --- f» cannot be constant, we may assume that f, is
nonconstant. Then 7,41 A72A -+ AT (=fi71AT2A - AY,) and 71 AT.A -+ Ay, are
C-linearly independent global sections of w,®¢ on X, which contradicts the equality
£(X)=0. Q.E.D.

(8.3) We next give a couple of results which brought us a definite progress in
the study of the case =<2 of Conjecture 8.1.1.

Theorem 8.3.1. Let X be a compact complex 3-dimensional manifold of class
C with k(X)<0. Assume that there exists a 2-dimensional C-linear subspace L of
H(X, 2%) which generates a subsheaf of rank 1 in 2% Then B(X)=2.

Theorem 8.3.2. Let X be a compact complex 3-dimensional manifold of class
C with e(X)=0. Assume that there exists a 3-dimensional C-linear subspace L of
HYX, 2%) which generates a subsheaf of rank 2 in 2%. Let ¥W:X—P? be the
meromorphic map defined generically by

U: X — Gr(3, 2)(=P?
x—> {we L ; w(x)=0}.

Then either B(X)=2 or ¥ is generically surjective.

Proof of 83.1. Step 1. Let {w,, w,} be a C-basis for L, and consider the
generically surjective meromorphic map ¥ : X—P* defined generically by
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qf: X——>P1={(ZO: 21)}
x > (0o(x) 1 0:(x)) .

Fixing an L-fibration f: X’—Y (cf. 7.1.1) of X, we have the commutative diagram
x—l =X
fl Yy lqr
y —X—=p1,

where j: X’—X is a modification and v:Y—P! is a finite morphism. Since ¥
is generically surjective, the fundamental subspace L, of L must be L itself,
(cf. 7.1.1). Hence by 7.1.2, for every smooth fibre X; of f, the subspace j*(L)
={*w);ws L} of HX’, Q%) is contained in the kernel of i}: HY(X’, 2% )—
H(Xy, .Q}.y ), where 7,: X,;C X’ denotes the natural inclusion. Moreover, since
@)= ¥ (T*(z1/z0))* ¥ (@)= f*(v¥(2:/20))- 7*(w,), We see that ¢(j*(L)) generates an
invertible subsheaf .£ in f«(2%), where ¢: HY(X’, 2%)=HY, f«(2%)) is the
canonical isomorphism. Let A: fx((Q% ,v)*)—Hom (L, f+«(wx.)) be the natural
sheaf homomorphism induced by the wedge product (¢, ©)ER2% v,z X L=¢ A
Ewy,, »(x'€X’). Since k(X)=k(X)<Z0, Theorem 6.1.1 then asserts that 2 is
trivia. We now fix a general smooth fibre X of f, and let «,: X;—Alb(X})
be the Albanese map. First, by (a) of 7.2.2, dim &,(X})=1. It then follows that
dim a,(X;)=1, because otherwise the pairing

(2% 12)*),Qoy, ,C(=HYX}, Qe DXL —> flwx),Qoy,,C(=H"X}, wx))

(n, @ 7Ne
would be nontrivial in contradiction to the fact that A is a zero homomorphism.

Step 2. We put U={yeY ; X; is smooth}. Since a general fibre of f is a
nonsingular surface, a theorem of Fujiki [4] states that, choosing a suitable
bimeromorphic model X” of X’ with f~(U)SX”, one has a compact complex
variety T and a surjective morphism f”: X”—Y with the next two properties:
(1) f” coincides with f when restricted to the Zariski open subset f~%(U) of X”;
(2) f”:X"—Y factors through T, where a and y below are morphisms such
that for each yeU, i) r"'(y) is a complex torus, and ii) the morphisms ax, : Xy
—a(Xy) and a, : X;—a,(X};) coincide via an identification of a(X}) with ay(X ).

X”————-—->Y
\CN
Note that the image a(X”) of X” is a (possibly singular) surface. Taking a

suitable nonsingular bimeromorphic model X of X7 (resp. Z of a(X”)) with
fFFUU)EX (resp. r"{(U)S Z), we have the following commutative diagram
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i
Y
dG/
T
Z:

where over U, the morphisms 7, &, 7 coincide with f”, «, r respectively. Now
by (b) of 7.2.2, we have p,(Z)=dim L,=dim L=2, and in particular £(Z)>0.
Then from

X

ng()?)gx(general fibre of a)+«x(Z2), (cf. Viehweg [277),

it follows that x(general fibre of @)=—oo. Hence /c()?)gx(general fibre of &)+
dim Z=—o0. Thus 2gﬁ(f)gdim Z=2, and we conclude that ‘B(X)=‘B()?)=2.
Q.E.D.

Proof of 8.3.2. Once for all, we assume that ¥ is not generically surjective.
Let {w,, w;, w,} be a C-basis for L, and we write 2% as &, regarding it only as
a locally free sheaf on X. Then, from our assumption, w,Aw;, ®; Aw,, Wy Aw,E
H°(X, A2¢) generate a subsheaf of rank 1 in A22. Note that ¥ is generically
given by

U: X — P*={(z: z;: z,)}
x> (01 A@e)(x) 1 (we Aw1)(x) & (W Awy)(x)) .

Because of Theorem 8.3.1, we may assume that any two distinct elements of L
are linearly independent over C(X). Hence no hyperplanes of P? can contain
the meromorphic image Im ¥, and therefore

i) S: =Cw; Aw;+CwyAw,+CwyAw, is a 3-dimensional subspace of HYX, A%€);
ii) the fundamental subspace L, of L coincides with L.

Now, fixing an L-fibration f: X'—Y (cf. 7.1.1) of X, we have the commutative
diagram

X/_—j__a‘x

1 C
v

Y—>—=Im?,

where j is a modification and v is a finite morphism. In view of ii) above,
Theorem 7.1.2 shows that, for every smooth fibre Xj of f, all /¥w,) (a=0, 1, 2)
are contained in the kernel of /¥ : H'(X’, 2%.)—H(X,, .Qiny), where 7,: X; G X
denotes the natural inclusion. We now write 2%, as &, regarding it only as a
locally free sheaf on X’. From the equalities f*w,Aw.)=f*(W*(za/20)) ¥ (w1 Aws),
a=1, 2, it then follows that ¢«(7*(S)) (: ={«(y*(s)); 0 =S}) generates an invertible
subsheaf S of fx(A2%E), where ¢: H(X', N2&)=H Y, f+(A%E)) denotes the canon-
ical isomorphism. We now apply Theorem 6.1.2 to the fibration f: X’—Y with
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n=3 and p=2: Let A: fx((2% ;»)**)—Hom(S, f«(w,??)) be the sheaf homomor-
phism on Y naturally induced by the pairing (3, /*(0))€ 2% /v, 2 X 7¥(S)—n A j*(0)
edet(2%)=(03?)(x'€X’). Since £#(X’)=0, Theorem 6.1.2 then asserts that 1
is trivial. We now fix a general smooth fibre Xj of £, and let a, : X;—Alb(Xj)
be the Albanese map. First, by (a) of 7.2.2, dim a,(X})=1. It then follows that
dim a,(X;)=1, because otherwise we should have a nonzero locally free sheaf
f+((Q%. »)**) on Y in contradiction to the fact that A is a zero homomorphism.
Thus, just by the same argument as in Step 2 of the proof of 8.3.1, we now
conclude that B(X)=2. Q.E.D.

Remark 8.3.3. Without the assumption that X is of class C, we still have
the following statement®.

Let X be a compact complex manifold of dimension n=2. Assume that there
exists a nonzero C-linear subspace L of H°(X, 2% ) which generates a subsheaf
of rank 1 in Q%' Let {w, ws, -, w} be a C-basis for L, and ¥ : X—P'* be
the meromorphic map defined generically by

UV:X— P '={(z,:2,: 1 20)}
x> (0(x): @a(x) 1 -t (X)) .

We furthermore assume that the meromorphic image Im ¥ has dimension at least
n—1. Then

i) dimIm¥=n—1, (cf. Bogomolov [2]).

ii) Fixing an arbitrary L-fibration f: X'—Y of X with its associated modifica-
tion j: X'—X, we can express each element w in L as (fej )*(n) for some pe&
H(Y, Qz-1).

iti) If k(X)=0, then general fibres of f in ii) above are P*, (and in particular
£(X)=—00).

Proof of 83.3. i) is straightforward from the inequality dimIm¥<n—1
which is a consequence of a theorem of Bogomolov [2; (12.2)].
ii) Since f: X’—Y 1is an L-fibration of X, there exists a generically finite
morphism v: ¥—-Im ¥ such that the following diagram commutes:

XI____.L%X
(S
Y ———=Im ¥cpi-,

For each a, e Z with 1=a<B=/ let m,5: P'"'->P* denote the meromorphic
projection (z;: z,: -t 2;)=>(24: zp) to the a-th and B-th factors. Replacing X’
and Y by their suitable bimeromorphic models respectively, we may assume
that every mq,gev: Y —=P! (1=a<pB=[) is a morphism. We now take a general

*) When n=3, this reduces to a special case of 8.3.1.
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point 8=(6,: 0,:---: 0,) of Im¥ such that the following conditions are all
satisfied :

(a) @ is a nonsingular point of Im ¥,

(b) 6,0, and Fp:=(mg,°v°f)"((0,: 0p,)) is smooth for any k{1, 2, --, n—1},
where {81, -, Ba-1} (E{L, -+, [}) is such that (mg,°vef)*(zp,/2), k=12, -,
n—1, form a system of local parameters of Im ¥ at 4.

(c) (vef)~%(@) is smooth (and in particular reduced).

Then by Remark 7.1.3, 7¥(j*(w,))=0 for all k= {l, 2, ---, n—1} and ye {1, 2, ---, 1},
where 7,: F,G X’ denotes the natural inclusion. Now, one easily sees that there
exists a Zariski open dense subset U of X’ such that, for any x’€U, each
7¥w,) (I=7r=)) is locally written as s-f*(€) for some s€0x., ., and £€Q37} 0.
Applying Lemma 7.2.1, we can'finally express each j¥(w) (weL) as f*(y) for
some pEHY, £371).

iii) From ii) above, we obtain p,(¥Y)=/>1, and in particular £(Y)>0. Hence
in view of the inequality 0=k(X")=k(Y)+«x(general fibre of f), (cf. Viehweg
[27]), we now conclude that x(general fibre of f) =—oo, i.e., general fibres of
f are P, Q.E.D.

(8.4) Combining 8.2.1, 8.3.1, and 8.3.2, we finally obtain:

Theorem 8.4.1. Let X be a compact complex 3-dimensional manifold of class
C with f(X)=<0. Put [=h*°(X). Let r be the rank of the subsheaf of 2% gen-
erated by the global sections HY(X, 2%), and we denote by @ : X—Gr(l, I—r) the
meromorphic map defined generically by

Q. X— Gr(l, I—r)
x—> {weHY(X, 2%); w(x)=0}.

Then we have at least one of the following:

(1) B(X)=2 (and hence r(X)=—o0).

(2) r=I[=3 and k(X)=0.

Q) r=i=2.

(4) X is not uniruled with r=2<I and the meromorphic image Im @ of @ has
dimension at least 2.

Proof. 1f r=3, then by 8.2.1, we obtain (2) above. On the other hand, if
r=0, it follows that /=0, and hence (3) is the case. In view of =/, there are
three remaining possibilities:

Case (a). 1=<r=[<2: Then we have (3) above.

Case (b). r=1<!: Then, applying Theorem 8.3.1 to an arbitrary 2-dimensional
C-linear subspace L of H%X, £2%), we obtain (1) above.

Case (¢). r=2<![: Choose a 3-dimensional C-linear subspace L of H%X, 2%)
which generates a subsheaf of rank 2 in 2%. Let ¥: X—G#(3, 2) be the mero-
morphic map defined generically by
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V: X— Gr3, 2)(=P?)
x+— {weL; w(x)=0}.

Then by Theorem 83.2, either we have (1) above or 2=dim Im ¥<dim Im @.
Thus, in view of (4) above, it suffices to consider the following subcase of (c):

Subcase: X is uniruled with r=2</.

But then Corollary 2.4.4 asserts that (1) above is true in this subcase, and now
the proof of 8.4.1 is complete.

Remark 8.4.2. Conjecture 8.1.1 and Theorem 8.4.1 will be reconsidered in a
separate paper [22] from a different viewpoint.

§9. Appendix (I).

In this appendix, we shall give a rough sketch of how one can divide the
compact complex threefolds of negative Kodaira dimension into several interest-
ing classes. The theorems given below are somewhat of expository nature,
heavily depending on the recent results of Fujiki [4], [6], and Ueno [31]; we
also use the standard techniques of Kawai [14], [15], and Ueno [30].

Definition 9.1.1. Let X be a compact complex variety.

(a) (cf. Ueno [30]). An algebraic reduction algy: X*—X,, of X is a natural
morphism of a nonsingular bimeromorphic model X* of X onto a projective
algebraic manifold X,;, with C(X)=C(Xq4;,). We then put a(X):=dim X,,.
(b) (cf. Fujiki [6]). A C-reduction cy: X*—X, of X is a morphism of a non-
singular bimeromorphic model X* of X onto “the largest” compact complex
manifold X, of class ¢ which is dominated by X. We put ¢(X):=dim X..

(¢) (cf. Fujiki [6]). X is called simple, if there are no pair of surjective
morphisms of compact complex varieties (z:Z—X, p: Z—Y) such that
0<dim z(p~*(y))<dim X for a general point y of Y.

We need the following results of Fujiki:

Theorem 9.1.2. (Fujiki [4]). Let X be a compact complex variety with
dim X—a(X)=2 and XeC. Then we have an algebraic reduction algy: X*¥*—Xa1,
of X such that, if U is the Zariski open dense subset {usXq,,| X% :=algx(u) is
smooth} of Xaig, then one of the following holds:

(@) Each X¥ (u€U) is a complex torus.

(b) Each X% is a K3 surface, and a(X%)=0 if u is a general point of U.

(¢) Each X% is an almost homogeneous relatively minimal ruled surface of
genus 1.

Theorem 9.1.3. (Fujiki [6]). Let X be a compact Kdhler 3-dimensional mani-
fold with a(X)=1. Assume that general fibres of an algebraic reduction of X
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are either K3 surfaces or non-algebraic complex tori. Then there exists a
generically surjective meromorphic map from X to a non-algebraic K3 surface.

(9.2) We now consider compact complex threefolds of negative Kodaira dimen-
sion. The cases XeC and Xe&C will be treated separately.

Theorem 9.2.1. Any compact complex 3-dimensional manifold X with XeC
and k(X)=—co belongs to one of the following seven types of compact complex
manifolds :

Type | a(X) | B(X) gfgne)?gig ?’g?iu%ftizg g‘ife}}ig??) of other structure
1 0 0 X X simple
I 1 0 complex torus X Xag=P!
j1jf 1 0 K3 surface X Xa=P!
v 2 0 elliptic curve X a suitable X,;, is P?
A% 3 0 single point X ?
VI 3 1 single point rational surface uniruled
VI 2 P uniruled

Proof. Since k(X)=—oo, we have B(X)=0, 1, or 2. Then the following six
cases are possible:
Case 1. a(X)=pB(X)=0: In this case, by Fujiki’s theory of W*-reduction [6], X
is easily shown to be simple as follows. For contradiction, we assume that X
is not simple. Then, letting f: X—Y be an W*-reduction of X, one sees that YV’
is a compact complex surface of class ¢ with a(Y)=0. Y would now be bimero-
morphic to either a complex torus or a K3 surface in contradiction to 0=p(Y)
<B(X)=0. Thus X is simple, and is of type I above.
Case 2. a(X)=1 and B(X)=0: First, in view of 0=8(Xa.:,)=B(X)=0, we obtain
Xo,=P'. Secondly, by 9.1.2, we can find an algebraic reduction algy: X*—X,,,
of X whose general fibre is one of the following: (a) a complex torus, (b) a K3
surface, (c) a ruled surface of genus 1. We shall eliminate the last case (c). If
(c) is the case, then denoting by Alb(X/X,.,) the relative Albanese variety of
X over X, (cf. Fujiki [4]), we have a generically surjective meromorphic map
of X to the surface Alb(X/Xai.). Since Alb(X/X,:,) is of class C, the inequal-
ity 0=<B(AIb(X/X4:4))<B(X)=0 implies that Alb(X/Xq.,) is rational. Then a(X)
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=>dim Alb(X/ X,:;)=2 which contradicts our assumption a(X)=1. Thus (c) cannot
occur. Hence in our Case 2, X is of type either II or II.

Case 3. a(X)=2 and B(X)=0: Since a(X)=dim X—1, a general fibre of algx:
X*—>Xq, is an elliptic curve. On the other hand, 0= (X ,)=p(X)=0, and
therefore X,,, is a rational surface. Thus, in this case, X is of type IV.

Case 4. a(X)=3 and B(X)=0: Then X is clearly of type V.

Case 5. B(X)=1: By Theorem 1.3.4, a general fibre of by is a rational surface,
and in particular X is uniruled. Furthermore, since B(X) is algebraic and since
a general fibre of by : X—B(X) is Moishezon with irregularity 0, it follows that X
is also Moishezon, i.e., a(X)=3. Hence X is of type VI

Case 6. B(X)=2: By Theorem 1.3.4, general fibres of by are isomorphic to P’,
and in particular X is uniruled. Thus X is of type VI Q.E.D.

Remark 9.2.2. In Theorem 9.2.1, we further assume that X is Kdhler. Then
from Theorem 9.1.3, one immediately obtains:

1) Type II cannot occur;
2) if X is of Type II, general fibres of an algebraic reduction of X are abelian
varieties.

Theorem 9.2.3. Let X be a compact complex 3-dimensional manifold with
X&C and k(X)=—oo. Assume that X cannot dominate any non-Kdhler K3
surface by a generically surjective meromorphic map. Then algx and cx are
bimeromorphically equivalent, and we have one of the following:

1) a(X)=B(X)=c(X)=0: Then two cases are possible.

(@) X is simple.

(b) (cf. Fujiki [6]). There exists a generically surjective meromorphic map
g: X—S of X to a compact complex surface S of class Vi, with k(S)=—oc0 and
a(S)=0 such that i) for some Zariski open dense subset U of X, op:U—0o(U) is
a proper morphism having a general fibve isomorphic to either P' or an elliptic
curve, and that ii) for any generically surjective meromorphic map f: X—=Y of
X to a compact complex variety Y with 0<dimY <dim X, there exists a generi-
cally finite meromorphic map f'. S—Y satisfying f=f'-0.
2) a(X)=c(X)=1 and B(X)=0: Then a general fibre of algx is bimeromorphic
to one of the following surfaces, (cf. Kawai [14], [15], Ueno [30]):

(@) K3 surface;

(b) hyperelliptic surface;

(c) Enriques surface;

(d) complex torus;

(e) elliptic surface with trivial canonical bundle;

) surface of class VI,;

(8) rational surface;

(h) ruled surface of genus 1.
3) a(X)=c(X)=1 and B(X)=1: Then a general fibre of algy is bimeromorphic
to one of the following surfaces, (cf. Ueno [30], [31D).
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(a) mnon-algebraic K3 surface;

(b) non-algebraic complex torus;

(c) surface of class Vl, with k=—oco;

(d) rational surface;

(e) ruled surface of genus 1.
@) a(X)=c(X)=2 and B(X)<1: Then Xay is an either rational or ruled
surface, and a general fibre of algx is an elliptic curve.
G) aX)=c(X)=1 and B(X)=2: Then B(X) is an elliptic surface with odd
first Betti number fibred over the curve B(X)q;3=2Xaiq, and a general fibre of
by is isomorphic to P*.
6) a(X)=B(X)=c(X)=2: We choose a suitable X,;. Then Xu;z (resp. B(X))
is a ruled surface (resp. an elliptic surface with odd first Betti number) over the
curve C:=B(X)a1g, and a general fibre of algy (resp. bx) is an elliptic (resp.
rational) curve. Furthermore, replacing X by its suitable bimeromorphic model,
we have a generically finite surjective morphism bxXalgx: X—B(X)XcXq14
which sends each x€X to (bx(x), algx(x))EB(X)X cXai4.

Remark 9.2.4. Since there is a gap in the paper of Todorov [26] who
claims that every K3 surface is Kidhler, we are unable to eliminate the above
cumbersome assumption that X cannot dominate any non-Kihler K3 surface by
a generically surjective meromorphic map.

- Proof of 9.23. Replacing X by its suitable bimeromorphic model, we may
assume that by: X—B(X) is holomorphic and that a C-reduction of X is given
by a morphism cy: X—X,.

Step 1. First we consider the case S(X)=2: Then by a theorem of Viehweg
[27], general fibres of by are isomorphic to P! In particular, Xe&C implies
B(X)&c. Thus B(X) is a non-Kihler surface with £(B(X))=0. Being unable
to be a K3 surface, B(X) is now an elliptic surface with odd first Betti number,
(cf. Kodaira [21], Miyaoka [23]).

Step 2. Next we consider the case ¢(X)=2: In this case, a general fibre
of ¢x is an elliptic curve, (cf. Fujiki [6]). Then &(X,)=—oo, because otherwise
£(X)=—oco would imply x(general fibre of cx)=—oc0, which is a contradiction.
Thus X, is an either rational or ruled surface. In particular, cx and algy are
bimeromorphically equivalent.

Step 3. Now we come back to the general situation: In view of £(X)=—o0
and Xe&C, we have B(X)=2 and ¢(X)=<2. Since X.=X,;, for ¢(X)=1, Step 2
above implies that ¢y and algy are always bimeromorphically equivalent. Hence
a(X)=c(X), and we may assume cy=algy. Since (a(X), B(X)#(0, 1), and since
by Step 1, (a(X), B(X)+(0, 2), we have one of the following: (i) a(X)=p(X)
=¢(X)=0, (ii) a(X)=c(X)=1 and B(X)=0, (iii) a(X)=c(X)=1 and B(X)=1, (iv)
a(X)=c(X)=2 and B(X)=1, (v) a(X)=c(X)=1 and B(X)=2, (vi) a(X)=B(X)=
o(X)=2.

Step 4. We consider each of six cases of Step 3:

Case (i): Assume that X is not simple. Choose a W*-reduction f: X—Y of
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X, (cf. Fujiki [6]), where in our case Y can be taken as a relatively minimal
surface with a(Y)=0. Then a general fibre of f is a curve which is either
elliptic or rational. If x(Y)=-—oco, then Y is a surface of class VI, and hence
according to Fujiki [6], we have the situation (b) of (1) above. If x(Y)=0, then
Y would be either a K3 surface or a complex torus in contradiction to 0= B(Y)
<B(X)=0. It now follows that, in our Case (i), we have (1) above.

Case (ii): In this case, it is well-known that (2) above holds, (cf. Ueno [30]).

Case (iii): Then a recent result of Ueno [31] together with standard facts (cf.
Ueno [30]) immediately implies (3) above.

Case (iv): Since X,;,=X,, Step 2 shows that (4) above holds.

Case (v): Then by Step 1, B(X) is an elliptic surface with odd first Betti
number. Since algpxyobx: X—B(X)4., is a morphism with connected fibres,
we infer from a(X)=1 that the curve B(X).;, coincides with X,,,. Hence (5)
immediately follows.

Case (vi): Then by Step 1, B(X) is an elliptic surface with odd first Betti
number (naturally fibred over the curve C:=B(X)q,). Now, by: X— B(X)
naturally induces by: X, ,—C (we may assume that by is a morphism by
replacing X and X,,, by their suitable bimeromorphic models if necessary), and
we obtain the following commutative diagram of surjective morphisms:

X bx B(X)
algxl CN algacx
Xa.lg EX C:B(X)a.lg-

Since algpcxyoby is a morphism with connected fibres, so is by. Now choose a
general point z of B(X). Then b3(2)=P", and algx(b3'(z)) sits in a fibre of by.
Here algx(b¥'(z)) is not a point, because otherwise algy would factor through
B(X) so that algy=g-by for some generically finite surjective meromorphic
map g: B(X)—X,,, in contradiction to a(B(X))=1. Thus X,;, is a ruled surface
over C, and by Xalgy: X—B(X)X ¢Xa:, is a generically finite surjective morphism.
We now obtain (6). Q.E.D.

§10. Appendix (II).

Finally, we shall generalize Theorems 1.3.3 and 1.3.10 as follows: Let X
be a nonsingular S-variety of class C,,. with dim(X/S)=3, (cf. §1). Considering
the meromorphic maps by,s: X—B(X/S) and b%,s: X—B/(X/S), (cf. 1.1.3), we
put X=mx'(s), B(X/S)s=(wncx:$)7(s), B'(X/S)s=(7p x15) '(s) for each s&€S§,
where the morphisms 7y, 7px/s), 7Ta(x/sy are as in (a) of 1.1.1.

Theorem 10.1.1. If X; is a general fibre of nx, then there is a natural
bimeromorphic identification of B(X/S)s with B(X;) such that the restriction
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(bxrs)ixy: Xs—B(X/S)s coincides with by : Xs—B(X,) bimeromorphically. In partic-
ular, B(X)=p(X/S) for general points s of S.

Theorem 10.1.2. If X, is a general fibre of my, then there is a natural
bimeromorphic identification of B’(X/S); with B’(X;) such that the restriction
(b ishxg: Xs— B'(X/S)s coincides with by : X;— B'(X,) bimeromorphically. In
particular, B/ (X,)=pB'(X/S) for general points s of S.

Outline of the proof of 10.1.1. If x (general fibre of wx)=0, then one has
B(X/S)=X together with B(X,)=X,, where s€S is general, and therefore the
assertion is obvious. Thus we may assume that x(general fibre of wx)=—co.
Now in view of Theorem 4.1.1, the following three cases are possible:

Case 1. B (general fibre of nx)=0: Then B(X/S)=0 and if s&€S is general,
B(X,)=0. Hence this case is clear.
Case 2. B (every smooth fibre of wx)=1: Note that, in this case, every smooth
fibre of wx is Moishezon (see the proof of 4.3.1). Then we may take B(X/S)
as the meromorphic image of the relative Albanese map ay,s: X—Alb(X/S),
and by,s is naturally identified with ax,s. Now if s&S is general, by, : X;—
B(X;) is regarded as a;: X;—ayX;), where a,: X;—Alb(X;) is the Albanese
map. The assertion is then straightforward.
Case 3. [ (every smooth fibre of mx)=2: In this case, the assertion follows
from the same arguments as in the proof of 4.3.1, (we don’t go into details).
Q.E.D.

Proof of 10.1.2. In view of 10.1.1 and (i) of 1.3.5, this is an easy con-
sequence of 1.3.7.

Remark 10.2.1. Let X be a 4-dimensional Moishezon manifold, and we con-
jecture the following:
(@) Choose a modification p: X*—X from a compact complex manifold X* so
that bxep: X*—B(X) is a morphism. Then B(general fibre of bx-p)=0.
(b) Choose a modification v: X*¥—X from a compact complex manifold X*¥ so that
byev: X*—>B'(X) is a morphism. Then PB’(general fibre of byev)=0.
By 10.1.1 and 10.1.2 above, one easily sees that these conjectures are true if 1)
of (b) of 1.1.4 is so under the condition dim V=4.
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