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§0. Introduction

Let G be a compact connected Lie group and 2G the space of loops on G. R.
Bott introduced an idea “‘the generating variety” for 2G and determined the bi-
commutative Hopf algebra H,(£2G) for G=SU(n), Spin(n) and G, ([S]). Recently,
F. Clarke determined the Hopf algebra structure of K, (22G) for G=SU(n), Spin(n)
and G, where K, ( ) is the Z/2Z-graded K-homology theory using the generating
varieties ([8]). But the results for G=Sp(n) is not known. In our recent paper [10],
A. Kono and myself determined the Hopf algebra H,(2Sp(n)) and 4, (2Sp(n))® Z[}]
where h,( )is a complex oriented homology theory. However the method used
there is not applicable for 4, (£2Sp(n)) with h=K or MU.

The purpose of this paper is to determine K, (£2Sp(n)) as a Hopf algebra over Z.

By the result of R. Bott, 2SU and BU are homotopy equivalent as an H-space,
and the Hopf algebra K, (BU)= K(BU)DK,(BU) was determined by J. F. Adams [2].
In particular K,(BU)=0.

As in proved in [10], we may consider K, (2Sp) as a Hopf subalgebra of
K, (2SU) by (£¢c), where c: Sp—SU is the complexification map. Moreover
K, (£2Sp(n)) is a Hopf subalgebra of K, (£2Sp) (cf. Theorem 1.1).

Let R be a commutative ring with unit and f(x)= 5, fix%, g(x)= D50 gX°

¢ Rl[x]l. Define (f(g)x) e (RROR[x]] to be )3,.20(2 fiass f,®gk>xi. Then the

main result of this paper is

Corollary 2.7. K(QSp(n))=2Z[r,, rs -+, o—1r -+ "> Fan_1] aS an algebra and
the diagonal ¢ is given by

)= [ (107X + F O D) +x - (F OF)) ]
1®14 (7, OF)(x)

where F,(x)= Y7, ry 1 X* ' and [} a,x], denotes the coefficient of x? in Y, a.x'.

This paper is organized as follows:
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In § 1, we construct an ‘artificial’ Hopf subalgebra I of K(2SU) and prove
that it agrees with Im (2c), in §2. Thus we can determine K, (£2Sp) and we will
reduce these results to the finite case K,(£2Sp(n)).

Throughout the paper the binomial coefficient (:1) is equal to the coefficient of
x™ in (14 x)" for n>0 and is equal to zero for n<0.

The author would like to express his hearty thanks to Professor H. Toda and
Professor A. Kono for their valuable advices.

§1. Notations and the main theorem

First, recall some notations (see [10]).

Let U(n), Sp(n) be the n-th unitary and symplectic group, and U, Sp the infinite
unitary and symplectic group, respectively.

Let g: U(n)—Sp(r) be a map induced by the natural inclusion CC H where C
(resp. H) is the field of complex (resp. quaternion) numbers.

Let a,; € H and a,;=b,,+jc,, for b,;, c;; € C and define a map c: Sp(n)-->U(2n)
by

Nn 'Nm
c(@n= . |
an "Nnn
where
b, c
u-y )
Y Ciy by,

Let BG be the classifying space of a topological group G and Bf: BG—BH the
map induced by a continuous homorphism f: G—H.

Let 2X be the space of loops on a space X and 2f: 2X —Q7Y the map induced
by a map f: X—7Y.

Let i,: Sp(n)—Sp be the natural inclusion. Let

228U X QSU—-QSU

be the loop product and
4: QSU—QSU X 2SU

the diagonal map. Also let J: QSU—LQSU be the loop inverse of 2SU, that is,
J(p(2))=p(—1¢) for every pe QSU. Define I: U—U by I(A)=A. Then I induecs
a map BI: BU—BU.

Let g: BU—-QSU be the Bott map. For simplicity, we define £: QSU—-QSU
to be goBlog™'.

Put «(x)= —x/(1+x) € Z[[x]].
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Under these notations we can quote the results from our recent paper [10].

Theorem 1.1. (i) K, (RSU)=2Z[B, Bo =+ s * - *]
as an algebra and K(2SU)=0. Moreover

#B)= % BB
ey
where ¢ is the reduced diagonal map defined by 4.
(i) The following diagram commutes:

2 2
4 > 2Sp < >Q2SU

QSU

4 1 ° b
QsU_250sUx 25U X8 osux osu—2>0sU.

Moreover, if we put B(x)= 3.2 fiX’ (Bo=1) and extend J, ¢, or 2(coq), over
K(QSU)([x]] by the natural way, then

JB(x)=1/B(x)
£ p(x) = P(e(x))
and
2(c0q) 4 p(x) = B(x)/ B(c(x))-
(iii) There are z,,_, € K(£2Sp) such that
K(Q2Sp)=Zlz\, 25, - -+, Zog_rs -+ *]

as an algebra and

’QC*ZZk—lEﬁZk—l

modulo the subalgebra generated by B, By, - - -, Pox—. in K(RSU). Thus Qc, is a split
monomorphism.

(v) (Ri,)y: K(2Sp(n))—K(L2Sp) is a split monomorphism and Im (2i,), is
generated by z,,z,, - - -, z,,_, as a subalgebra of K,({2Sp).

For the proofs of (i) and (ii), see § I, § 2, and § 6 of [10]. (iii) and (iv) are
obtained easily from § 6 of [10] and the naturality of the Atiyah-Hirzebruch spectral
sequence.

Let R be a commutative ring with unit, and R[[x]] the formal power series ring
over R. If f: R—S is a ring homomorphism, we define 1 R[[x]]—S[[x]] by

J(r)x)= §0 f(r)x* where r(x)= Zo rx' e R[[x]].

Put
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bypy= 3 (”7‘);92"_,4 ¢ K(QSU)

120

and

by =3 (” B l)pu_i e K(QSU)

20

for n>0.

We define also b,4(x) and b,(x) e K(2SU)[[x]] to be 3,500, ,x* ' and
14 37450 byyx®, respectively.

Then clearly b.,(x) is a unit in K(QSU)[[x]]. Put r(x)= 35 Fa_X*"
=b,q(x)/b.,(x). Let I be a subalgebra of K(£2SU) generated by r,,_, (k=1,2, ---).

Now we can state our main result.
Theorem 1.2. Im (Qc), =1 so that K(2Sp)=1I.

This result will be proved in § 2. The rest of this section is devoted to calcula-
ting ¢(r,,-,). We must first calculate the diagonal formulas of b,,_, and b,,. We
need some algebraic notations concerning formal power series.

Let R be a commutative ring with unit and f(x)= 3,5, fix’, g(x)= 5, g X" €
R[[x]). Define (f[Jg)(x) € (R®R)[x]] to be Zigo(ZﬂgL@gk)xi-

If R is a commutative Hopf algebra, then the diagonal ¢: R—>R®R is a ring
homomorphism. Thus we can obtain a ring homomorphism ¢: R[[x]]—>(RQR)[[x]].

Proposition 1.3.
(1) ($be)(x)= (e, o) (X) +(boa[Iboa)(x)

and
() (Pbo)(X)=(bey[0660)(X) +(boa b)) (X) +x - (boa OIboa)(x).
Proof. These statements are equivalent to
(i), a(bm)z Zl: bi®b2n—1‘
and
(ii)l Sz(bzn-l)z ; bi®b2n-1-i+ JZ: b2j—l®b2(n—j)—1’

where b,;=0 for ;<0 and the summations run through all non-zero terms. In the
case (i) we have

36 =3(2 ("7 1)) =2 (") (T @) =5 ()L oS

7 st \2n—s—t

and
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% 5i®bun-i= T (bui®bunsut by @b -ae.r)
-3 (5 (7 e (3 ("7 )
(2 (7 Do) (5 (75 onesns)
50z, (G007 Lz, (500 ))eer

(n—-i)—k= 2n—-1)—j+1=t

So we must prove that, for s, >1,

n—1 )= <i— 1><n—i—l) (i—l (n——i)
<2n—s—t 2(n3ii)_z-{;;i; j k + 2i_jZ—:1=s j ) k

2(n-1)—k+1=t
= [( 2l;ls)<2(’:t:lz)——lt)+(2zl——ll—s )(2(n—’;)_4f1—t)]'

In the case (ii) we have only to prove the following equarion
n—1 >= [(1’—1)( n—i—1 ) ( t—1 )( n—i—l)
(Zn——l—s—t ; 2i—s/\2(n—i)—1—t + 2i—1—s/\2(n—i)—t
i—1 )( n—i—1 )]
+(2i—1—s 2n—i)—1—t¢

obtained by the same manner as in the case (i). But the right hand of this equation
equals to

S 1G )6 ) G NGa =5 2 ) G 2 )
- ; [( ;i_—ls >(2(n n—:)i—— 11— t ) + (21’ 1—_1 l—s) (2(n ’17)[— t )]

(see Lemma A.l in Appendix.). Thus the case (ii) also reduces to (1.4). It is easy
but tedious to show (1.4). So we defer this to the appendix.

We need some technical lemmas to determine ¢r.

Lemma 1.5. Let R be a commutative ring with unit. Let d(x), e(x), f(x) and
g(x) e R[[x]l. Then (dOe)(x)(f O &)(x)=(df Teg)(x) in (ROR)[x]].

Proof. Put d(x)=73 5, dx', e(x)=3 3, x" f(X)= 2.z fix* and g(x)=
> iz0 &X', Then

dOe)x)(fOg)x)
=(5 (3, 4®e))(2( £, 128)x)

+J
i,j20 $,t20

VI
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2((, 5, 4oem)

i+j+s+t=m

1,418,620
-5 (5,005 0))
:(dfgeé)_(x). -

Corollary 1.6. Let f(x) and g(x) be multiplicative units in R[[x]]. Then (f 0g)(x)
is also a unit in (ROR)[[x]l. In fact, 1/(fOg)=>1/HT(1/g).

Proof. (fOg)1/fO1/g)=1&1.
Theorem 1.7.
(¢r)(x)= (rODC)+AOrx)+x-(r Or)(x) .
1®14(r Or)(x)
Proofi ¢r=¢(bod/bev)=¢bod/¢bev' By (13)’

(¢l‘)(x) = (bev a b"d)(x) + (bad D bev)(x) +x- (bod D bod)(x)
(Bes[be,)(X) + (boa[bog)(x)

Since b,, is a unit, (1.6) asserts b,,[1b,, is also a unit. Then

($r)()= ((Bes Tb0a)(x) 4 (boa A be0)(X) + X  (boa [ b0) X)(1/(e, 0., )(x))
(5o Obeo)(x) +(boa 006a)(X))(1/(be, [0 be)(x))
_ rODE)+AORNE) +x-(rOr(x)
1®1+(r Or)(x) '

Corollary 1.8. Let I'=2Z[r,,ry, - -+, Iy_y, -+ -] Then I' is a Hopf subalgebra
of K(2SU).

Proof. If f(x) € R[[x]] is unit in R[[x]], the coefficients of (1/f)(x) is written by
the polynomial of the coefficients of f(x). Thus the coefficients of ¢r is in I'®I".

§2. K(£2Sp) and K, (2Sp(n))

We must prove I'CIm (fc¢), to prove (1.2). We calculate first 2(coq),r(x).
For this, we must calculate J,r(x) and £,r(x) as in (1.1).

Proposition 2.1. J,r(x)=—r(x)/(14+x-r(x)).
Proof. Since
4 1xJ 2
ASU—2SUXRSU——S0SUXQSU—QSU
is null-homotopic, we have easily the following equation:

H1®T,)(gr)(x)=0
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where p: (K(2SU)YRK(2SUNI[x]]—K(£2SU)[[x]] is the ring homomorphism induced
from the product

1 K(RSUYRK(LSU)—-K(L2SU).
Thus, by (1.7) and the fact that px(f[Jg)=f"-g, we have

_ r)+ I r(x)+x-r(x)-Jyr(x)
I4r(x)-Jor(x) '

So Jr(x)-(14x-r(x))+r(x)=0, and we have proved our proposition.

Proposition 2.2.
( i ) g*bod(x) = bod(x)

and
() £ybeo(X) =boy(x)+ x - bog(X).

Proof. Define [f(x)], to be the coefficient of x™ in f(x) € R[[x]]. Since
O
=T (— 114
SR(CRIVED) (’+ Iy

120

=5, o( (7))

we se€
L=l = (=1 5 (" )8
iz0\ j

Then

b= (5 ("7 )Ben-i)

z
=z [(” ; )(_.1)2n—‘-.~j§ <2n—ej—1—i)‘82"-e_i_j]
=sgo [i+j s(_l)z"' _i<n:1)(2}1—5].—1—1')]‘32"_‘_8

where e=0 or 1. Since <’;) (n— 1) < ) (n, s>0), we have only to show that

(—1) (n—s (— 1)+ l(n—l)(2n-—1—e—z)
l+] =s i Jj
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Since

2, 1)2n-.-i(n - 1)(2n_ Ij_e— l.)
g o))

— g (" o]

i20 8

. n-s n—1 n-1-iyi
=(—1) [(1+x) ,é,(‘”( l. )(1+x) x|
= (— DY+ 20" (4 x)—x)* ],

—(= DA+ L= (= 1("F),

s

the proposition is proved.

Corollary 2.3. £,r(x)=—r(x)/(1+x-r(x)).

Proof. By the definition,

041 (X)="£4(boa(X)[bey(x))
= g*bod(x)/g*bev(x)-
Applying (2.2), we obtain
L4 (X)= —boa(X)/(Deo(X)+ X - byy(X))

_ bou(x) [ bey(x)+x - boa(X)

bey(x) beo(x)
=—r(x)/(1+x-r(x)).

Now we can easily calculate 2(cecq),r(x).

Proposition 2.4,

Qcoq)ur()= 2’(’1‘)++(f x )f)’)(j‘))z .

Proof. Since £,r(x)=J,r(x), we obtain

Jol o r () =J Jor(x)=(JoJ), r(x)=r(x),
So by (1.7),
2(coq)yr (x)=p(1&J £, )(gr)(x)

_ T+ Ty by r () +x-r(x) - Jy byr(x)
14r(x)-Jo by r(x)
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_ 2r()+x-(r(x)"
1+ (r(x)*

As a corollary, we obtain the follwoing
Corollary 2.5. ['CIm (£c¢),.

Proof. We prove this by induction. (iii) of (1.1) implies (2¢),z,=p,. By the
definition, r,=,. So r,eIm(Q2c),. Assume that r,r, ---,ry_, € Im(Q2c),.
Note that

[FOExCer]
+C@) '

modulo I'y where I',=Z[r,, ry, - - -, 1y _,]. Since I',CIm (£2c), by the assumption,
we have 2r,,,, € Im (2¢), by (2.4). But, by (iii) of (1.1), Im (2¢), is a split sub-
module of Ky(2SU). Thus ry,,, € Im (2¢),.

We can now prove,

Theorem 1.2, Im (Qc), =1

Proof of (1.2). Since

Foeor=Pox-y mod  Z[B, By, - - -, Pax-als
(iii) of (1.1) and (2.5) assert the following equation:
Po o1 =(02¢)4 (2o 1)
mod Z[(2¢),(z,), (2¢)4(z,), - - -, (2¢), (221 _3)]. So
Zry 1y, - - s =Z1(2)4(21), (2€)4(25), + - -, (2¢) (22 0]

can be obtained by an easy induction. If we put k= o, we have

Z[rlxrs: PR PR ]

=Z[(Qc)4(z), (Rc)4(2y), - - -, (2¢)4(Z2n-1), - - °]
=Im (2c),.

Corollary 2.6. K,(Q2Sp)=2Z[r,ts -, ye_1s =+ -]
as an algebra and the diagonal is given by

_ (10nN®+ODE) +x-(rOr)x)
(¢r)(x)= 1R+ a0 .

From the proof of (2.5), we also obtain

Zlr,r, - - -,rz,,_,]z(.Qc)*(Z[z,,za, c e Zogg))
Then (iv) of (1.1) reduces (2.6) to the finite case:
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Corollary 2.7. K(Q2Sp(n))=Z[r,,rs, -, Fo_1, "+, Fan_1] as an algebra and the
diagonal is given by

¢(’. )=[ (1Dfn)(x)+(;n|:|1)(x)+x'(FnDFn)(x) ]
1®1 + (7, 07,)(x)

where F (x)= Y7, r,,_,x*"! and the other notations are as in § 1.
n i=17"21-1

Proof. The first half of (2.7) is clear. The second half follows from

(72 ()] -1 = [r (X)]ei -

and
[ 107+ (F O D) +x - (7, OF,)(x) ]
1®1 4 (7, OF)(x) 2%-1
_ [ (1OnE)+ODE)+x - (r Or)(x) ]
I®1+(rOr)(x) 2k -1
for k<n.
Appendix.
Put

fGs. )= ; {( ;,:Z)(zzln__ll;_lt)-l-( 2ii—_11—s>(2(n—’;)i|-il—t )}

for s,t=1. Then the purpose of this appendix is to show

n—1
2n—s—t

(1.4) ( ): 165, 0).

First recall that
Lemma A.1. If (a, b)#(0,0), then
a\_(a—1 <a—1>
(b) ( b >+ b—1/)
Let d(s,t)=f(s,t)—f(s—1,¢+1) for s=2. Then we have

Lemma A.2. d(s, t)=0.

Proof.
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16.0=2{( ) Gon ) G0 ) aa -l
2L )G n ) GG - )
=L (2; s){(2(:lz—li)—1t>—<2(ni:)i—t )}
e L R N e
Since (n—i, 2(1—i)— 1)+(0, 0) we have
dls. )=~ Z(Zz s)(Z(n—lz.')_—ll z>+2( » 1 )(2(;1—’;):14)
- (211 sil)(z(ni:)i—:q)
= {(21 s>+(2ii_s-l|—1 )}(2(ni:)i——_tl—l )
+Z( . 1 )(2(n—?):ui1—z>'
Also since (i, 2i—s-+1)= (0, 0), we have
e D=—% (2; s+1 )(2(;:7)1.__:1_1 )“? <2ii—_11—s>(2(n—’:)—+il—t)
=_Z<21 s+1)<2(nzl_')i—_t1—1)

+2 (2(1'—;)-—15'-{-1 ><2(n’—1—_(i(i_1)1))—— tl—l )
=0 Q.E.D.

Proof of (1.4). By Lemma A.2, we have

f(s, )=f(1,t+s—1).
But

S, s+1-1)

T {<;7—11 )(2(n—ni)_—i;—lt+1 )+(2ii_—12 )(Z(n—i):l_—is—t+l )}
2(2nn_sl t)’

since (2 11) =0 for any i and (2 2) 0 for is~1. So the result follows.
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