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I n  th is  n o te  th e  general e x a c t  sequence m ethod to calculate t h e  based
homotopy s e t  [X , Y ] ,  is presented, including t h e  c a s e  in  w h ich  Y  is not
simple (§ 0). A s a n  a p p lic a tio n , w e shall determ ine th e  based homotopy set
[s2 x  Rp2 , s2 x  Rp2 , o_j a n d  th e  group e(s2xRP2) of self homotopy equivalences,
where S2 a n d  R P ' denote th e  2-sphere an d  th e  real projective plane respectively
(Theorem 1, Lemmas 1. 1 and 1 .4 ).

W hich homotopy c la s s e s  a re  representable by diffeomorphisms (Corollary
2. 1)? T h is  q u e s tio n  le ad s  u s  to  s tu d y  t h e  homotopy smoothings from  the
surgery theoretical point of view . W e shall show  that any homotopy smoothing
o f  S 2 x R P 2 i s  s-cobordant t o  a  homotopy equivalence o f  S2 >< R P ' to itself
(Corollary 2. 2). Sim ilarly , any sm ooth  s-cobordism o f  S 1 X  RP 2 t o  i t s e l f  i s
shown to be s-cobordant to  th e  product cobordism Si x R P 2 x /  re la tiv e  to  the
boundary (Proposition 3 ).  W e refer [11] fo r  th e  topological s-cobordisms.

T h e  author would like to thank Professors H. Toda a n d  G. Nishida for the
conversations which were very useful to perform th e  calculation in  § 1 and § 2.

§ O. Generalities on the based homotopy set [X , Y],

L e t  X  a n d  Y  be connected CW  com plexes w ith  b ased  p o in t .  W e  are
concerned with th e  space M ap o (X , Y )  o f  based p o in t  preserving m aps o f  X
in to  Y  equipped with compact-open topology. I n  o rd er to  stu d y  th e  s e t  o f
based homotopy classes 7 0 (M ap o (X , Y )), or in  a  m ore familiar notation [X , 1 ]0,
we can use two types of filtrations.

T h e  first one comes from the  struc tu re  o f a  CW complex with unique 0-cell
having th e  same homotopy ty p e  a s  X . L et X " denote th e  n-skeleton o f this CW
com plex. Then, w e h av e  the  Puppe cofibering sequence,

S ( f )
S n  1 V - - > --> C f = X n S n V  -.V  S n

and  the  following induced exac t sequence in  th e  category o f  pointed sets.
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S (f )*
(0.1) ---> [SXn - 1 ,  Y ] , - -> [S n  V  V  S n ,  Y] o

j* f*in o[ X n - 1 ,  37 10[ S n - 1  V V Sn - i , Y]o

Here, the group [Sn V ••• V Sn, Y] 0 operates naturally o n  [X n, Y ] o a n d  its orbit
space corresponds bijectively to  the preimage (j* ) - ' (0).

To describe the preim age (j* ) - ' ( [ u ] )  f o r  any  based  point preserving map
u : Y  w hich extends over X ,  i .  e. : u of= 0 ,  w e observe the following
diagram,

ma p o ( s .  v  •  •  v  Sn, Y)=Map,(Sn V ...V Sn, Y)

{DeM aPo(X n ,  Y ) ;  DO j =
1,1} M a P o ( D n  V  " *  V D ,  Y)

I
i * I

 f *Ive ma p o (x n - ' ,  Y ) ; ma p o ( sn - 1 V ••• V Sn - 1 , Y)

in  w hich j :  is  a  fiber space in  the sense of Serre and j *  is  the induced fiber
space by f * .  Since the  right vertical sequence is a  universal loop fibering up to
homotopy type,

i*
(0.2) O E  Ma po (Xn, Y) ; D 0j= u} IvE Ma p o (Xn -  Y )  ;  v— u}

f* map o (sn - ,  v v  Sn - ',  Y)

is  a  hom otopy fibering. From the long exact sequence of the homotopy groups,
w e  g e t  th e  following bijection compatible w ith  t h e  natural group operation
(Cf. Barcus-Barratt [ 1] ) .

(0.3)[ S n  V  • • •  V  S n , Y] o/Im f„  - - -> (j* ) - 1 ( [u ] )

H e r e ,  t h e  homomorphism ri(M aP0(Xn-1, Y), n) [5n V V  S 4 ,  Y ] 0

defined to be the composite of f *  w ith the isomorphisms,

7r1 (Ma p o ( s n - i ••• Y), uof)

r 1 (MaP 0 (5n - ' V ... V S 7 1 - 1 , Y), 0)=Esn vV  sn, Y i .

The dual o f the  CW  complex filtration is given by the Postnikov system of
Y, a system Y , fn, p } w ith the following property :n n,

( i ) T h e  m ap  jen : Y  Y r, induces a n  isomorphism o n  7r, i f  r  n  and
rr(Y n )= 0  if  r>  71,

(ii) is a  fiber space in  the  sense of Serre with an Eilenberg-
MacLane space K (7 n ( Y ), n ) as fiber, and

(iii) pn of n  i s  homotopic to f n , .

is

W e may assume tha t each  Y „  has th e  hom otopy ty p e  o f  a  C W  complex
with based point and each of f n a n d  p n  preserves the based points.
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If  Y i s  n-simple i . e.: t h e  operation of 7r 1 ( Y , *) on 7r (Y, *) is trivial, the
fibering in the condition (ii) is induced up to homotopy type from the universal
loop fibering, K(7r n(Y), n) — ** — > K ( 7c n(Y), n+1), b y  the k-invariant k :
K (r„ (Y ), n + 1 ) .  Thus, we have a fibering sequence,

p r,
Y 1  — ÷  K(74- n(Y), n) Yn Yn - K(rcn(Y), n+1).

Taking the based homotopy se t o f  th e  based point preserving maps o f  X ,  we
get the following exact sequence in  the  category of pointed sets.

D(k)*
(0.4) — >[X,  Q Y n_ i]o [ x ,  K (rn (Y ), n )J0

p *k *
---> [X , Y ]0  —> [X , Yn-io -->  [X , If(rn (Y ), n +1 )] 0

Moreover, [X , K(r.(Y), n)Jo is isomorphic to the cohomology group Hn (X ; r.(Y))
which operates naturally on [X , Y.] 0 and  the  orbit space corresponds bijectively
to (p * )- 1 (0).

Let n 2  and i t  b e  an  abelian  group. Before handling the general case, we
study  the fiberings w ith  K(7r, n )  a s  fiber. In the sem i-sim plicial setting, P.
May proved in his book [3, p. 100] that any fibering with the Eilenberg-MacLane
complex K(7r, n) as fiber has a semi-simplicial structural group A (K (r , n )) which
is identified with Aut (70 ><K(7r, n) whose semi-simplicial group operation is defined
on q-simplexes Aut(r) 0 XK(7r, n ),  b y  (f, x )- (g , y)=-.(fg, f (y )+  x ) .  T h is  was
essentially proved by R. T hom  [7] already in 1956. The fiberings are classified
by the homotopy c lass o f  a  m ap  k : X B A (K (7 r , n )) o r  a n  element of the
cohomology group 1-1"- '(X ;  r io c )  in  some local coefficient system . Actually, the
obstruction map,

(0.5)[ X ,  BA(K(7, n ) ) ]0 Hn+i (
, r  lo c ) (disjoint union),

is  a bijection for any connected CW complex with based po in t. T h is  fact does
not seem well-known, but is easily proved because r 1 (BA(K(7r, n)), *)=Aut (7r)
and the induced homomorphism 7r, (X, *) A u t  (7r) determines a local coefficient
system in  which the argum ent of the classical obstruction theory remains power-
ful for the based point preserving homotopies (Cf. P. Olum [4]).

In the general case, a based point preserving map u : X  Y „ ,  is assumed
to  have  a  lif ting  re : X Y7,  s u c h  th a t  p.ort=u, w hich is equivalent to  say
k* u=0 in  H " I (X, Y ).)  w here  7 r.(Y ). is  the local coefficient system deter-
m ined  by  the homomorphism u *  :  (X , *).—' *)=7 r1 (Y ,*). T hen, we
shall prove that

(P.)*
(0.6) I D  Ma p o (X, Y ) ;  poi—u}I v m a p o ( X ,  Yn_i); v=u }

k*
fvEMap o(X, BA(K(r n ( Y), n))); kou}

is a homotopy fibering. In fact, (P ) *  i s  a  fiber space in  the  sense of Serre and
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its fiber is identified with th e  space [ (X ,  Qu )  o f  s e c t io n s  o f  th e  induced fiber
space (=pull-back) Qu  over X  by u from p n ,  o r by kozt from th e  universal fiber
space E  with fiber K(7„(Y), n).

Q — Y n E

„ k
X  --->  Y„, --->  H A (K (7 .( 7 ), n))

Hence, (PO* i n  (O. 6 )  i s  a n  induced fiber space by k  from th e  following fiber
space.

[ (X ,  Q„) ---> IvE Map o (X, E); 71- cm=koul

---> fEEMap(X, BA (K(n„(Y), n))); v=koul

Now, w e observe that th e  to ta l space o f  this fiber space is contractible, because
it is a connected component of Ma p o (X, E) and Trz (Map o (x, Aut(7)).
T h e  last isomorphism comes from the  fact that E  is  an Eilenberg-MacLane space
K (Aut (7), 1). Therefore, the above fiber space is a  universal loop fibering up to
homotopy type  and  hence (O. 6) is a homotopy fibering.

For applications, we should remark the existence of the isomorphism,

(0. 7)7 4 (1vE MaP 0 (X, BA (K(7(Y), n));12=koul):--=-Fin+ 1 - 1 (X ; 7rn (nu),
defined by the  difference cocycles. Then, w e get a bijection,

(0.8)H n  (X ; 7 n (Y )V IIT 1 ku ---> (1),) - 1  ( [ I ] )

where k„ : i ( b )  Ma po (X, u}, u)—> H" (X, 7.( 7 ) )  is  the composite of
k*  w ith  th e  isomorphism of (O. 7 ) .  Here, P , :  [X , Y [- n_10—  - 1 Y n -1 ]0 .

§ 1. Self homotopy equivalence group o f  S 2 x RP'

W e shall determ ine t h e  group e (S 2 x R P ')  fo rm ed by the  free  hom otopy
classes of homotopy equivalences of ,S 2 x R P ' to itself w ith th e  operation induced
by the composition of m ap s. L e t a : S 2 X R P '  Sz X RP 2 b e  th e  map defined by
th e  antipodal o f S2 c ro ss  th e  identity o f R P '. Knowing that [RP 2 , SO (3)]0-=- Z2,
w e define p  to  b e  the  un ique  non-triv ia l SO (3)-bundle automorphism o f the
product bundle Szx R P ' over RP 2 . Choose a n  embedding D 4 c M 4 =S 2 xRP 2 .
If  D 4 is shrunk to a  p o in t , th e  re su lt  is  homeomorphic to  M 4 . Shrink instead
aD 4  to a  p o in t to  g iv e  a  m a p ,  c : 1114 — M4 V S 4 . N ow let 72 2 :  S4 — S2 b e  an
essential map and  s : 5 2  x  R P ' and  t : 5 2 5 2 x RP 2 b e  the composites of

S 2 = S 2 x  =-->  S 2 X RP 2 , S 2 —> RP 2 --=*xRP 2  , S2 x RP'

respectively, where p : s2 R P2 is  th e  natural covering m a p . We define a  and
7  to be the composites of

id  V 722( i d ,  x )
S 2 x R P 2 ---> S 2 x RP' v S 4 - - >  S 2 x R P' V S 2 - - >  S 2 x RP 2

where we take x-- = s to define a  and  x =t to define T.
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Theorem 1. e(S 2 x R P 2 )  is generated by  the four generators induced by  a,
/3 , a- a n d  T. The generators a re  o f  order 2  and m utually  commutative. In
Particular, e(S 2 ><R P 2 )  is isomorphic to Z 2 X Z 2 X Z 2 X 4 .

Since e(S 2 x R P 2 )  is  a quotient group of the  un it group e 0 (S 2 x R P 2 )  of the
based homotopy s e t  [S 2 x R P 2 , S 2 x R P 2 ]„ fo r the  co m p o sitio n , w e study first

[S 2 ><RP 2 , S 2 x R P 2 ]0•

Lemma 1. 1. T here is a bijection,

21: 74(S 2 ) X [S 2 , S 2 ] O X [R P 2 , Sno [S ' X R P', S 2 10

Pro o f . L e t  X --=S 2 x R P 2 a n d  K--- S2. T h e n ,  Y 2 =K (Z , 2 )  a n d  t h e  first
k-invariant o f S 2 , k , : K (Z , 2) K (Z , 4) induces the squaring (k 3)* =-Sq 2 : H 2 (X , Z )

.114 (X ; Z ) , î. e. : (k 3 )  (x )= x 2 ,  and in particular, (k 3 )* (1-12 (X ; Z ) ) = 0 .  So, in the
following exact sequence,

P* k*
113 (X  ; Z) - - >  [X , Y 3 ] 0 ---> [X , K (Z , 2) ] , ---> H '(X ; Z ) ,

w e  s e e  th a t  p *  i s  a  b ije c t io n , because 113 (X ; Z ) =0 .  O n  t h e  other hand,
X 2 =5 2 V  R P 2 a n d  b y  cohomological calculation, j* : [X , K (Z , 2 )]0 [ S 2  V  RP 2 ,
K ( Z ,2 ) ],  is  an isom orphism . B y  a  tr iv ia l reason, p* : [S 2 v  R P', Y ] o [ S 2  V
RP 2 , K (Z , 2 )], is  an isom orphism . Hence, we get a  natural bijection,

[S2 v  R P 2 , Y ] 0 (L--:[S 2 , Y ]0x [R P", Y]o) --> [X , Y3]0.

N ow , w e  c o m p a re  th e  operations o f  74 ( Y )  a n d  I1 1 (X ; Z 2 ) i n  t h e  following
commutative diagram in  which each sequence is a  p a rt o f  lo n g  ex ac t sequence.

7 4 (K (Z 2 , 4)) =  7r4 (Y )  - - - >  0

; Z 2 ) ---> [X ,  Y], ---> Y,], —>

O - - >  [X 3,1 Y ]
0
 -->  [X 3 , Y3]0

T he  operation of H 4 (X  ; Z 2 )  on [X , Y ],  is identified with th e  operation o f 7c4(Y)
o n  [X , Y ],  defined by g •x =(x , g )o c  fo r gE7r 4 (Y ) and xŒ [X, Y]o.

Choosing some lifting  [X , Y3]0 —* [X , Y ], ,  we can define a  m ap , Ai : 7r4 (Y )X
[S 2 , Y ]0X [R P 2 ,  Y]o —* [X , Y ] o . T o  s e e  th a t  21 i s  a  b ije c tio n , it suffices to
prove that th e  im a g e  o f  k „,  defined i n  (O. 8 ), reduces to the  zero  element of
H 4 (X  ; 74 (Y ) „ )  f o r  each  m ap  u : X —  Y , .  O bserve  the  following commutative
diagram in  which th e  upper horizontal sequence is exact ; abbreviating

71'=71(M aP0(X , K (Z , 3)) , 0) , ( {v Ma p, (X , Y 3 ); v u}, u)
and

7c7=7 1 ( Q E M ap 0 (X , K (Z , 2)); v =p o u l,  p u ) ,
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(i3)* P*
- - >

Sq2k u
I-12 (X ; Z ) -->  H 4 (X ; Z 2)

where So': I-1 2 (X ; Z)— ,  114 (X ; 2 .
2 ) is induced by the com position lzypi, : K (Z, 3)

)1"3K ( 2 .
2 , 5 ) .  (W e need only t h e  fact th at, i f  le4 oi2 i s  essential, then it

induces Sq2 . )  T hen , since r'; H l(X ; Z )= 0  a n d  Sq2 = 0 , w e  g e t k.=0.
q. e. d.

F o r th e  even-dimensional real projective space R P " ,  we define uk (0) by the
composite of

0 V k p)
Rp22 R p 2 2  s z n R p 2 2  s z n Rp22

where O: R P "  R P "  is  the trivial m ap, k : S" S "  is  th e  degree k map and
p :  s2 2 R P z u  is  th e  natural covering m a p . In  th e  same way we define uk (id)
by replacing the  triv ia l map with th e  identity map o f  R P ".

Lemma 1 .2 .  [RP 2 4 , RP 2 2 ] 0 consists of the following mutually non-homotopic
m aps: 1) the trivial map, 2) u 1 ( 0 ) ,  3 )  the identity maP=u o ( id ) and 4 ) uk (id)
f o r  kE Z-101. Moreover, uk (id ) and u_ i _k(id) are homotopic with the based
point moving through the non-trivial element of  i (R P " ).

P ro o f. T he  triv ia l map and  the  identity map a r e  liftings o f  two elements
0 and id ' respectively o f  [R P " ,  K(Z2, M o . S in ce

z i (MaP o (R P ", K (Z 2 , 1)), id ') "=-' ri (MaP o (R P ", K (Z 2 , 1)), 0)
2 (R P " ; Z2)=0,

th e  operation of H 2 2  ( R P " ;  Z . )  is effective for u = id ' o r  u= 0 by (O. 8 ). Remark
that H " (R P " ,  Z . )  is isomorphic to Z  i f  u = id ' a n d  to Z 2  i f  u = 0 . So, aslin
th e  proof o f Lemma 1. 1 th e  comparison with th e  operation o f  a-

2 2 (RP 2 2 )  gives
th e  result o n  [R P " ,  R P " ] o .  F or the  free  homotopy classes, we refer th e  paper
of P . Olum [5 ; T h . IIb, p. 464] q .  e .  d.

Lemma 1 . 3 .  Unless n=2, R P ' is  n-simple.

P ro o f. Since th e  antipodal map on  S ' is homotopic to t h e  identity, RP 3 i s
a sim ple space. B u t  by using  t h e  fibering S' R P '  R P ' ,  w e see th at the
operation o f r i (RP 2 )  o n  r n (RP 2 ) is induced from that o f  A-1 (RP 3 )  on

7unless n=2. q.ne(.R 3 )d.P

We define th e  subset T  o f [S 2 , RP 2 ] o x [R P 2 , RP 2 j 0 by

T = T ,U  {0 xu k (id); kEZ}
and

T 1 ={nX0;neZ}U{nXu1(0); nEZ}



H omotopy equivalences 7

where n : S 2 R P 2 i s  th e  co m p o site  o f  a  degree n  map : S 2 S 2 w ith  the
natural covering map : RP2.

Lemma 1. 4. There is a bijection,

A2 : ir 4 (RP 2 )X T --> [S 2 X R P 2 , R P 9 0 .

Proo f . L e t  X=S 2 x RP 2 a n d  Y'=RP 2 . We consider th e  e x a c t  sequence
induced by the  cofibering S 2  *I"-,  S 2 V RP 2 —› X ',

j * f *
(0= ) 73 ( EX3, Y00 [S2 V R P', Y]2 ---> (ii) •

T h e  fac t th a t f *  i s  th e  ze ro  map is easily seen, because c i o f  : S 2 —. S2 a n d
c2of : R P2 a re  z e ro  maps where c ,  i s  th e  collapsing o f  52 o r  RP 2 i n
S2 V RP 2 f o r  i= 1  o r  2  respectively. Hence, j *  in  t h e  above sequence is a
bijection. On the other hand, by a trivial reason, th e  natural maps [X , Y ] 0
[X ', Y ] ,  a n d  [S 2 V RP 2 ,  Yfl o [ S 2 V RP 2 ,  Y ] 0 a r e  b ije c t io n s . Therefore, we
have a natural bijection,

[S 2 , Y'] 0 X [RP 2 ,  Y']0 ( [S 2 V RP% Y'] 0) --> Yno•

Now, we consider the  following commutative diagram in  which th e  horizon-
tal sequence is exact.

k*
(0-=)H 3 (X  ; Z) --> [X , Yno —> EX, Yn o --> H' (X ; Z)

i * S q 2 = 0
H 2 (X ; Z)

Any element of the im age of i * ,  which is exactly the  subset T ,  of  EX , Yno="
[S 2 V R P', r ] o , lif ts  to  a n  element o f  [X , r ] o. T h e  other elements o f  T,
i. e.: 0 x u k (id), a re  extended over X  i f  they a r e  considered to be maps of
52 V RP 2 into Y'= RP 2 ,  and hence lift to some elements of [X , r ] .

W e rem ark  th a t t h e  p*  : [X, 37 '] 0 E X ,  Y2 0 i s  a  s u r je c t io n  because
115 (X ; Z2)= 0 .  So, if u' : X can be lifted over r ,  it can be lifted over Y'.
T h is  m eans that th e  corresponding map u : 5 2 VRP ' —> RP2 can be extended
over X .  T h e  covering map tit : 5 2  V S 2 5 2 i n  t h e  following diagram may be
extended over S2 x S2 .

S2 X S2 D  S 2 V S25 2
lid xp l id v p  u

S2 x R P' D  S 2 V RP 2R P 2

Here p : 5 2 R P 2 is  the standard covering map. Any element of ES2 VRP ', P I
outside T  h as a  form u-= (n , uk (id )): S 2 V R P' RP 2 w ith  n *0 and induces
th e  m ap ii =(n, 2k+1) : 5 2 V 5 2 5 2 . S o, it cannot be extended over S2 X S2

because the Whitehead product [nt, (2k+1)c] does not vanish. This implies that
(u ') 0  unless u'e T.
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Therefore, we can define a  natural bijection,

T [X , Y ' ] 0

by the inverse of the bijection of [X , Y ] 0 onto th e  kernel o f k* . Since RP 2 i s
4-simple, the definition of 22  is  the same as that o f 2, in  th e  proof of Lemma 1. 1.
By using th e  homotopy fibering (O. 6) a s  in  th e  proof o f Lemma 1. 1 we see that
t h e  operation o f  H 4 (X ; Z , )  is  effective on the elem ent u  o f [X ',  Y a , which
satisfies f*u=0, if  th e  induced map u*  : r 1 (X 3 ) —> 71 ( r )  i s  t r iv ia l.  Otherwise,
that i s ,  i f  u*  : r i (X ') 7r1 ( Y ')  i s  a  non-trivial m a p , we observe the  effectivity
o f th e  operation o f  ar.,( Y ')  from th e  homotopy fibering (0 .2) w ith  th e  help of a
geometric consideration o n  t h e  a ttach in g  m ap s o f  c e lls . (If u =2(0 X id),
Lemma 2. 4 reprove th e  effectivity o f  t h e  operation of r 4 ( Y '). T h e  a rg u m e n t
in  t h e  proof o f  Lemma 2. 4 is  a lso  applicable to  t h e  other cases, i. e. :
2(0x u k (id)). )  Hence, we see that 22 i s  a bijection. q. e. d.

Proof  o f Theorem  1. Let f :  S' X RP 2 S ' X  R P ' be a  based point preserving
homotopy equivalence o f  S2 x R P ' to  itself. S ince f  induces a n  isomorphism on
rci  (S2 X RP 2 ) ,  the composition pz o f o f  f  with the  pro jec tion  p , o n  R P ' is con-
tained in  22  ( 7 r 4 ( R P 2 ) X  101 X U k ( id )) . We consider the  covering f :  S2 x S2 S 2  x  S 2
o f  f  a n d  know  that f  transforms t h e  b as is  x  a n d  y  o f  t h e  2-dimensional
hom ology group into a x+b y  a n d  c x ± (2 k + 1 )y . T h e n , x 2 =y 2 =(ax+by) 2 =
(cx±(2k+1) y) 2 =-0, xy= y x=1 a n d  (a x+ by)(cx+(2k+1) y )= + 1  im plies that
a=+1, b-=c=0 and  k=0 o r  k= —1. Hence,

[f]E 2,(7r,(S 2 ) X {-1-1} x [RP ', S 2 ] 0 ) x2 2 (7u4 (RP 2 ) x {0} x {id, u_ i (id )}).

L e t a ,  be a  based point preserving homotopy equivalence free  homotopic to
a  a n d  r  (idIS 2 ) x(u _,(id)IRP 2 ). T h e  operations of 2 r  4 (S 2 )  a n d  rc, (R P ')  corre-
spond to the composition with a  and r  respectively. The homotopy commutativity
o f  u  o r  7  w ith  each  o f  a o , p  a n d  r  is easily checked in  a  geometric way.
Each pair consisting o f two among a „ , p  a n d  r  is also homotopy commutative
because the invariants do not depend o n  th e  order of com position in each case.
We remark here th e  fact that th e  in v a r ia n t  o f  p  i s  the non-trivial element of
[Rp2, S 2 ]0; in fact, the com posite of

Pi
RP 2 =*X R P '  S' X R P' S'x R P'

is  a n  essential map, because th e  operation of S O (3) o n  S2 in d u ces an isomor-
phism: [R P 2 , (3)]0 [R P ', S2] 0 . S in ce  a ll the  possib le  32 combinations of
invariants are representable by the com positions of u , a o , P ,  r  and y , w e  see
that the  un it group e„ (S 2 x RP 2 )  o f  [S 2 xRP 2 , S 2 x RP 2 ] ,  for the com position is
the commutative group generated by a o , P, y, a and  r.

T h e  s e lf  homotopy equivalence group e(S 2 x RP 2 ) i s  a  q u o tie n t  group of
eo (S2 x RP 2 ). T he e (.52 x RP 2 )  modulo the operation o f  n-4 (S 2 X R P ')  consists of
id , a , 48  a n d  a o p  because th e  fa c to r  a  is distinguished by th e  induced auto-
morphism o n  1/2 (S2 X R P' ; Z )  a n d  th e  f a c to r  43  is d istinguished by th e  map
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R P '  S '  obtained by composing th e  in c lu s io n  o f  R P ' from  the le f t  a n d  th e
p ro jec tion  on  S 2 f ro m  t h e  r igh t. W e observe moreover that t h e  operation of
74(S 2 X R P') is  still e ffec tive . In  fac t, if  p . ô  i s  homotopic to 3  w ith the  based
point moving through the non-trivial element o f  7r1 (S 2 x R P 2 )  fo r  p (.52x RP 2 )
and d e e 0 (S 2 X R P 2 ) ,  then p .5  is based homotopic to  5 0 r .  B u t th is is impossible
because p • 5  a n d  aor induce t h e  different elements i n  [X ', S 2 X R P 2 ] 0 .

q. e. d.

§2. H om otopy sm oothings o f  S 2 X R P'

A homotopy smoothing o f  a  P o in c a ré  complex M  is by definition a simple
hom otopy equivalence f :  Q  M  su ch  th a t Q  i s  a  closed smooth manifold.
T h e  n o rm a l in v a ria n t 77(f ) is  defined  by th e  c la ss  o f  t h e  following induced
normal map with th e  natural trivialization o f v (Q)({ )r(Q),

(Q) ---> (P )* (0=2 ,

V
Q M  M

w here v (Q )  is  the stable norm al bundle a n d  r( Q )  is  the  tangen t bundle. Two
normal maps (suffixed by 1 and  2 ) a re  o f the  same class i f  there exists a  bundle
equivalence sb : v, v 2 su ch  th a t ( f 1 ,  0 )  an d  (h, »2) a re  normally cobordant.
I f  M  i s  a  closed smooth m anifold, w e consider that 72(f ) i s  a n  element of
[M , G I G ]  b y  th e  Sullivan's a rg u m e n t [1 3 ] . T h e  smooth norm al invariant 77(f)
induces th e  topological n o rm al in va rian t 72T o p ( f )  b y  t h e  natura l m ap  GIO —
G IT O P . T he  norm al invarian t 72(f ) depends only on the hom otopy class o f  f .
In  the  case  th a t  M =5 2 X R P 2 ,  th e re  is  no difference between homotopy equiva-
lences and simple homotopy equivalences, because Wh (Z 2 )=0.

Proposition 2. Let M-= S 2 x R P 2 .

(i)7)(aaol3boo-'0z-t). --- --- 0  if and only i f  s==t_=--=0 (mod 2).

Moreover, )7(a), ri(r) and ri ( or) are all distinct.

( i i )  riT o p(aaoy ousor t )= 0  if and only i f  s==.0 (mod 2).

Corollary 2 .  1 .  Only  the four hom otopy  classes id, a, 43  and a3J3  a r e  re-
presentable by diffeomorphisms.

R em ark. W e do not know whether r  is representable by a homeomorphism
or not.

Corollary 2.2. F o r  any  hom otopy  sm oothing f : Q 1 S 2 x  R P', there ex ists
a smooth s-cobordism between Q4 and S 2 X R P 2 .

Proof  of Corollaries assuming Proposition 2. Corollary 2. 1 is immediate from
Theorem 1  and  P roposition  2 , because th e  f o u r  c la s s e s  a r e  representable by
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diffeomorphisms and any class represented by a diffeomorphism must have the
trivial normal invariant.

F o r Corollary 2. 2, w e observe the Sullivan-Wall sequence associated to the
surgery theory,

(0 =) ( Z - ) --> S  (S 2 x RP') [S2 x RP 2 , G IG ] - - -> (Z i) ( Z2)

where S (S 2 X RP 2 )  is  the degree 1 homotopy smoothing classes modulo s-cobordism
(Cf. [15 ; § 16]). T h e  sequence m ay not be e x a c t a t  [S 2 x R P 2 ,  G 1 0 ], but
L 5 (Z ) = 0  im plies that 77 : S (S2 x RP 2 ) [S 2 x RP 2 , G 1 0 ] i s  a  one-to-one map
into th e  kernel o f  0. T h e  Wall group L 4 (Z )  is isomorphic to Z 2  and the
obstruction map 0  i s  a surjection because 0  is given by the Kervaire-Arf in-
variant c(g)=k 2 (g)w 2 (S 2 x R P 2 )+k 2 (g) 2 f o r  g  : S 2 X RP 2 G I G ,  w h ere  k2 i s  a
characteristic class defined by th e  generator o f  H 2 (G10 ; Z 2 ) [15 ; T h . 13B. 5] .
W e remember that for th e  5 - th  s ta g e s  o f  th e  P o stn ik o v  decompositions of
G1TOP and GIG,

(G1TOP)5= K (Z 2 , 2) x K (Z , 4),
and

K (Z , 4) --> (G10) ; K ( Z „  2)

is a fibering with ôSq2 e1-1 5 (K (Z2 , 2) ; Z ) as k-invariant [10] [13] . So, we have
another sequence of groups which is exact,

[S (S 2 x R13 2 ), G1TOP] ---> 1-1 2 (S 2 x RP 2 ; Z 2 ) — > [S 2 x RP 2 , GIG]
— > [S 2 x RP', G1TOP] ---> I-1 4 (S 2 X RP 2 ; Z2),

where [S 2 x RP 2 , G 1T O P] can be identified w ith  H 2 (S 2 x RP 2 ; Z2) e H 4(s2x
R pz ; Z ) and the last homomorphism is a surjection because (x , y )  is mapped to
x 2 - y  mod 2. In  the same way the first homomorphism is a  null-map and hence
the  second one is injective. S o ,  [S 2 x RP 2 , GIG] h a s  8  elements and ker
consists of 4 elements, which m ust be 0 ,  72 ( a ) ,  72 (r) a n d  72 ((for). Therefore,
the Sullivan-Wall sequence above is actually exact and the natural map,

If  E e(S2 X RP 2 ) ; deg f=11 S (S2 x RP 2 )

is a surjection. Since a  is represented by a  degree —1 diffeomorphism h  of
S 2 x R P ' to itself, any degree —1 homotopy smoothing is representable by the
composite of some degree 1 homotopy smoothing with h .  This suffices to prove
Corollary 2. 2. q .  e .  d.

The proof of Proposition 2 is carried out by the following four lemmas.

Lemma 2. 1. L e t  f , : S 2 x RP 2 — S 2 X RP2 be  hom otopy  equ iv alence  fo r
i= 0, 1.

(i) f o)=0, then y2 ( f o o f i )=77

(ii) If 72rop(.1`0)=0 , then 77yop(foofi)=)7rop(fi).
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Pro o f . I f  77 (f 0)= 0 ,  there exists a normal cobordism connecting f o an d  id .
Hence, composing with f „  w e get a normal cobordism between foo l', and f 1 .
In particular, ry (fo of 0 =  ( f i ) . The same proof applies for ri r op as well.

q. e. d.

Lemma 2.2. r i (a )-=  (p )-=0 .

Pro o f . Since a  a n d  p  are represented by diffeomorphisms, ( a ) = - 72 (13)=0
by the definition of 72. q. e. d.

Lemma 2.3. 77rop(a )*O.

Pro o f . W e rem ark  that th e  Sullivan's theory o f  characteristic variety
remains valid in this case [13], [13 ']. Actually, c i  is detected by the character-
istic variety *X R P ' of S2 X R P ' .  In fact, a ' (* x R P ')  may be assumed to be
W U *X RP 2 w ith  W  framed, where W  is  the preimage of one point under the
generator 722 :  S' S 2 o f  74 T h e  splitting invariant is  the A rf invariant
of the framed W, which is equal to one,q .  e .  d.

Lemma 2.4.  7 7T O P (v)=0 a n d  72 (r)#0.

Pro o f . To see that  ' O p ( V ) — O , w e  have only to calculate th e  splitting
invariants along th e  characteristic varieties S2 x  *  an d  *X R P ' o f  S2 x RP',
because 77 Top ( r )  belongs to the im age of the natural map [S 2 x RP 2 , G/0]
[S 2 XRP 2 ,  G IT O P ] which corresponds to  th e  subgroup H 2 (S 2 x RP 2 ; Z 2 ) of
H 2 (S2 X RP 2 ; Z2 )(1) H' (S 2 x RP 2 ;  Z ) .  (If one does not like this reasoning for
)2 Top (z)=0 , one can take another argument which will be explained in Remark
succeeding the proof of this Lemma. )

On the other hand, we shall u se  the S-theory to  verify  th a t 72 (r)# O. At
first, we observe that the Thom space Tv (S 2 X RP 2 )  of the stable normal bundle
of S2 x RP 2 has the homotopy type of

Sn (S2 x RP 3 I*X RP 3 ) -= Sn+ 2 RP 2 V Sn R13 3 = Sn+2 RP 2 V S n + 5  V S n RP 2 Sn+3.

(The suspension SRP 3 i s  th e  mapping cone of the suspension of the natural
2-covering map S2 R P 2 and has the homotopy type of SRP 2 V S3 because the
Steenrod operation S e  is trivial. )  The possible normal invariants are the degree
±1 m aps o f S 4 +2 into Tv (S 2 X RP 2 ) . We have the S-duality given by a  map
u : ( S 2 X R P') A Sra (S2 X R P . )  S i " + " 5 . B y th is m ap  [5 n + 5 , S n  (S 2 X R13 3 1*X
RP 3 ) ] 0 corresponds bijectively to the cohomotopy set ES" n  + 5  (S 2 X R13  Sin.+n + 5 1 •
Moreover, since m + n  is sufficiently large, the subset consisting o f degree 1
maps corresponds to  the classes [S 2 X R P', G ]  of the stab le fiber homotopy
trivializations (Cf. [16; Th. 3. 5]). Because the restriction of the S-duality map
u : (Sn+ 2 R/3 3  V Sn R P') A Sm (S 2 X RP2 ) —> Sni+n+5 on Sn+2 RP 3 A Sm (RP) gives the
S-duality map for R P ,  th e  subset [R P', G ] corresponds to the maps,

g  V id
5n+6 ----> Sn+ 2 12P2 V Sn+ 5 T v  (S 2 X RP 2 ),

with g rn+6 (S n  + 2 RP 2) ( 4 )  •  (The calculation of the order of 7 . + 4  (S 4 +2 RP 2)  is
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eas ily  red u ced  to  th a t o f s tab le  h om oto py  groups o f  spheres by the  exac t
2

sequence of homotopy groups associated to the cofibering S"+ 3 —> S 3 —> I-  2 RP 2 in
the suspension category [1 2 ] . )  T he  group [S 2 x RP 2 , G ] h a s  1 6  elements and
th e  other generators correspond to the  following two maps,

7)2 V id
: S n + 5 S n r "  V  S " 5  E (S 2 X RP 2 )

and
to V id

r 0 : S a + ' — >  S R P 2 V  S 4 + 3  E  Tv(S 2 x RP')

w here 772 i s  t h e  generator o f  7„+ ,(S 4 +3 ) - a n d  t, is t h e  generator of
7r72+2 (SnR/3 2 )r-= Z2.

The homotopy equivalence r : 5 2 x RP' —> S2 X R P ' can be coverd by a  vector
bundle homomorphism a s  follows ;  th e  maps in  th e  upper line o f  t h e  following
diagram restrict linear on each fiber o f  th e  induced norm al vector bundles and
their composite covers the com posite of the maps in  th e  lower line.

c id V S t? ( id , p)
s' x  RP' —> S 2 X RP 3 V  S ' — >  S 2 x RP' V S 3 - - >  S 2 x RP 3

U U Uc id V 772 U ( id , p)
S 2  x R P2  ---> S 2 x RP 2 v  S 4 - - - ›  S 2  x R P2  v  s ' — > S 2  x RP'

Here, p  denotes either th e  natural covering S3 —> R P '  o r  S 2 R P ' .  Therefore,
th e  induced map o f  Tv(S 2 X RP 2 )  to itself determines th e  class o f th e  map

S h V id
r, : Sn+' — >  S n  RP' V Sn+ 2 C T1, (S 2 X R P')

to which 72(r) belongs m odulo the im age of [S 2 X R P ', 0 ] , where

p
h= p • S722 : S 5S '  — >  RP'.

It is easy to see that the composite of

Sh ci
S' —> SRP 3 -->  S R P 2 V  S ' -->  S '

is  homotopic to the trivial m ap, where c , is  th e  collapsing o f SRP 2 . W e observe
the  hom otopy  com m uta tiv ity  o f the  following diagram from th e  fact that the
mapping cone o f  S p  i s  SRP 4 a n d  Sq2 : 11 3 (SRP 4 ; Z 2 ) —> 1-15 (SRP 4 ; Z o ) is non-
trivial

SpC 2
SRP 3 -->  S R P 2 V  S' —> S RP'

Sd
S' S3

H ere Sp  i s  the suspension of the natural covering m a p , c ,  is  th e  collapsing of
S', Sd is  the suspension of the collapsing o f th e  subset R P '  o f  R P ' a n d  >7 is
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th e  su sp e n s io n  o f  th e  H op f m a p . L e t  t,=S n -  c,oS n h : S n +2 S n  R P 2 . Then,
Sd 0 c2 0 Sp= 77 implies SThd ot 1 , w hich  m eans that t, i s  t h e  generator of
rc„,(Sn RP 2 ). I n  f a c t ,  in  t h e  following lo n g  e x a c t sequence associated to the

2
cofibering S " 1 —> Sn+1 S n R P 2  in  th e  s u s p e n s io n  category, a is induced by
S n 'd  an d  )73 i s  th e  12 times o f th e  generator o f 7c.+5 (Sn + 2 ) 7=-  Z 2 (C f . [14]).

x 2
( 0 = ) „.. + 5 ( s n+i)7 r . + 5 ( s n R p 2 ) n + 5 ( s n + 2 ) r n + 5 ( s n + 2 )

Hence, ti = t o G 7rn + ,(S nR P 2 )  and in particular, r i = vo •
W e consider now  t h e  following com m utative diagram  w hose horizontal

sequences are exact.

z , z2— > 0

î
[R P 2 ,  0 ] [R P 2 ,  G ] - - - >  [R P 2 ,  G /0 ]

2 - -

[S 2  x R P', 0 ] - -> [S 2 x RP 2 , G] [S2 X RP 2 , GIG]

{ f  7 , , , ( T v  ( S 2  x  RP 2 )) ; deg f= 1 }

Then, in  th e  diagram above induces an injection,

Coker ( [R P 2 , G] ----> [S 2 x  RP 2 , G ])

Coker ŒRP 2 , GIG] ---> [S 2 X R P 2 , G 10]),

which turns o u t to be a bijection because [S 2 x  RP 2 ,  G ] consists o f 16 elements
a n d  [S 2 x  RP 2 , G I G ]  o f  8  elements. In  p a r tic u la r , te (r„)* O. B u t  p (r o ) is
identified with )7 (r) because the norm al map induced by r  is shown to represent
t i  ( 7 2 ) q. e. d.

R em ark . W e can  verify  that 6 (p (a)))# 0 , i f  w e  u se  th e  fo rm u la  fo r  th e
Kervaire-Arf in v a r ia n t a n d  th e  p ro je c tio n  S2 x R P 2 S 2 . Hence, the image of
ker O by th e  natural m ap [..S2 x R P', G I G ]  [ S 2 x  RP% G 1 T O P] consists o f two
distinct elements 77r o p (a )  and  0 . Then, since )7Toe (r ) is not detected by * X R P 2 ,

1)TO P ( 7 )  m ust be equal to 0.

T h e  proof of Proposition 2  is immediate from Lemmas 2. 1-2. 4. In  fac t,
77 W O  /35 0  a 2 a r t ) = 7 ) (6 3 07 1 )  a n d  7?rop(a 2 o132 0 cr8 or t )—?2rop(o 8 ) • And 77r 0p(e70r)*0
im plies )7 (o- 0  r )*  O. A l s o ,  77 ( a ) *  ( r )  a n d  )7 (o- o-c)#77 ( r )  because 7yrop(0- 0 7)=
7)Top(a)# )7Top ( 7 ) .  Since th e  operation o f  Hs (S 2 x  R P 2  ; Z 2 ) o n  [S 2 ><R13 2 , G IG ]
i s  e ffec tive  an d  moreover identified with the  com position  w ith  7 , 7 7 (0 - C 7 )#

72 (a ).
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§ 3. Smooth s-cobordism o f Si x RP 2 to itself

W e shall study th e  homotopy smoothings o f  S 'x R P 'x I  relative to  the
boundary. A s a  result we shall get the following proposition.

Proposition 3. A ny sm ooth s-cobordism  o f  S iX R P 2 to  itse lf  is  sm oo th ly
s-cobordant to the product cobordism S 1 X RP 2 X I relativ e to the boundary.

Let T-' and a" be the following composite of

(id, t)
T '  S 'x R P 2 x 1 S ix R P2x I V  S 4S ' x R P 2 x I

and
(id, s')

a" : R P 2 x I R P2x I v  S ' R P2x I

where t  is  the generator o f  7z.4 (RP 2)." Z2 a n d  s '  is a  generator o f  r 8 (R13 2 )7--  Z.
We define a  map a' : Si x RP 2 x / Si x RP 2 x / by a'= (iclIS 1) X a ". Since a ' and
T '  induce the identity on the homotopy groups, they a re  homotopy equivalences.
Moreover, since a '  a n d  y '  induce th e  identity on  the  homology group of the
universal covering, they are simple homotopy equivalences which restrict to the
identity on the boundary. I n  other words, they a r e  homotopy smoothings of
Si x R/3 2 x  I  relative to the boundary.

The following Sullivan-Wall sequence is fundamental in  our argument.

o
[S1 ><RP 2 x I xi la, G10]---› L,(Z S (S lx R P 'x I , a)

O
— >  [S ix RP 2 xi' G10]--› L,(ZEB

W e consider at first th e  collapsing j  o f  th e  complement o f  th e  embedding
Si x RP 2 x I  c S 2 x R P 2 a n d  th e  following induced commutative diagram.

s(six Rp2 x  a) [six RP 2 x I la, GIO]

s(S2 x
1

RP
.

2 ) [S2 x R  G/0]

T hen , since j* (the class of 71 )-= the class of 7 , j* (7) (-1-1 ))=- .)2 (7) . Hence, 77 (7)#0
implies 2 ( r ' )* O . T o  see  th at 7)(01#0, w e  u se  th e  same method a s  in  th e
proof o f  t h e  f a c t  th a t  )7 (7 )*O . W e consider t h e  homotopy equivalence
a" U (idIR P'x  I) : R P 2 x S ' R P 2 x .S ' which is covered by the normal vector
bundle homomorphism in  the  following diagram.

c id V S22 (id, p)
RP 3xS 1 ---> RP 3 x S ' v  S 4 - - ›  RP 3x .5' v S ' - - -> R P 3 x S '

U Uc id v 72 U (id, p) U
RP 2 x Si ---> RP 2 x S 1 V  S ' ---> R P' x  S i V  S ' ---> R P2x S '
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The normal invariant 72 (a" U (id1RP 2 X I)) comes from the element corresponding
to the map,

s" V  id
a i : Sn+5S n +1 R P 2  V  S n + 5 C T v (R P 2 x S')

where n is sufficiently la rge  and  s"=c2 0 S " i (P0.377), c2 denoting the  collapsing
of the subset Sn+4 o f  S " 2 RP 2 V  Sn+4 -: Sn+1 RP 3 . Whence, s" is  the  element of
7r ,(Sn+'RP 1) such  th at Sn+2 do s"=.722 i n  rn+6(S' ÷ 3 ) ,  w here d  denotes the
collapsing o f  th e  subset R P ' o f  R P '.  We observe the following commutative
diagram,

s"e ,( S " 'R 1 3 2 ) - -> [RP' X  la, G] ---> [RP 2 X GIO]

=
712 E c.+5(S n  + 3 ) [S2, G] - -> [5 2 , G/0]

where th e  first horizontal isomorphisms a r e  th e  S-dualities associated to the
spaces S2 an d  SRP 2 and the second horizontal maps are induced by the natural
map G  G 1 O .  T h e  commutativity o f  th e  first square follows because the  in-
clusion 5 2 =SRP 1 S R P 2 i s  the  S-dual of the collapsing of the  subset S R P ' of
SRP 2 . W e see easily that [R P 2 x//a, Z2 and its generator is the image
of s". In particular, 72 (a" U (id I RP 2 X 1 ))=(..12)*  7 2 (0') for J :  RP 2 X S' RP' X I la,
a n d  (a ") is  the generator of [R P 2 XI18, 0 1 0 ] .  S o , 72 ( a ') # 0  because the map
[RP 2 X118, 0 10] , [S 'X  RP 2 x I la, G IO ] induced by crossing w ith S ' is in-
jective.

T h e  natural m ap  [R P 2 x .118, G10]— [R P 2 X I18, G 1T O P] i s  a bijection
because the both sides o f  th e  map a r e  naturally isomorphic to H 2 (SRP 2 Z2 ).
Hence, VTOP(f7 1 )*0 a s  w e ll. O n  th e  other hand, it is not difficult to see that
)7rop(r')=0, i f  w e  u s e  th e  fac t th a t j* 72Top(r1 )-=vrop (7 )=0 . Therefore, as in
the proof of Proposition 2, the four elements 0 , 72 (a') , ( r ' )  a n d  72 ( u 'o r ' )  are
all distinct.

The W all group L 4 (Z  El) Z -
2

- )  is isomorphic to Z 2 and the surgery obstruction
map 0 : [S' X  RP' X118, G/0] 1 , 4 (Z ED Z 3 )  is  g iv en  b y  t h e  Kervaire-Arf in-
variant c (Si X RP 2 Kr, a ;  g).=k2(g)w2(51 X RP 2 X I)d - k2(g) 2 where g : S 'X R P 2 X I/8
— .G10 and k , is a  characteristic class defined by the generator of H 2 (G/0 ; Z 2 ).
By a simple calculation, 0  is  a surjection and [S 'X R P 2 X I19, G IO ] consists of
8 elements. Hence ker O consists o f  4  elements which m u st coincide with 0,
7( a 9 ,  (z- ' )  and 72 (0-'079. Similarly, th e  surgery obstruction map fo r  [RP 2 x /
x 118, G IO ] i s  a  surjec tion  onto /,4 (Z Z 2 . B y  th e  following commutative
diagram

[RP2 X I  1 8 ,  G I O ]  - - >  L4 (Z)

2 ,-
[S 'x  R P 2 x I x G10]---> L ,(Z  Z )

where the vertical maps are induced by taking d irec t product with S 1 and  the
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induced map L 4 (Z )  1 , 5 (Z  6 ) Z ) i s  an  isom orph ism , the  surgery obstruction
m a p  fo r  [S 1 x R P 2 x I x I la ,G 1 0 ] i s  a  s u r je c t io n  on to  L, (Z as w ell.
S ince t h e  Sullivan-W all sequence is e x a c t  a t  L, ( Z  Z -i ) ,  t h e  operation of
L,(ZED o n  S  (Si x R/3 2 x .r,a)  i s  trivial. T herefore, w e h a v e  proved the
following proposition.

Proposition 3.1. S  (Si X RP 2 ><I, a) consists of  the f our distinct classes re-
presented by the simple homotopy equivalences id , a', 1-1 an d  a 'o r l  o f  S1 x R P 2 x I
to itself  w hich restrict to the identity  on the boundary.

Proof  of  Proposition 3. I f  Q  is  a  smooth s-cobordism o f  Si x R P ' to itself,
w e have some simple homotopy equivalence

f : Q S ix  RP 2 X I

which restricts to a diffeomorphism on the boundary. Then, by Proposition 3. 1
the hom otopy smoothing f  is  o f th e  same class in  s(S 'x R P 2 xI , a) as a sim ple
homotopy equivalence o f  ,,S1 X R13 2 ><I to itself which restricts to the  identity on
th e  boundary. T h is  im plies that there exists a  smooth s-cobordism between Q
and Si x RP 2 x I  which restricts to (Si x R P' x a n x i  on theIboundary, where the
boundary o f  Q is identified with S' x R P' X a /  by flaQ . q. e. d.
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