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In this note the general exact sequence method to calculate the based
homotopy set [X, Y], is presented, including the case in which Y is not
simple (§0). As an application, we shall determine the based homotopy set
[S?X RP?, S*X RP*], and the group &(S?*XRP?) of self homotopy equivalences,
where S? and RP? denote the 2-sphere and the real projective plane respectively
(Theorem 1, Lemmas 1.1 and 1.4).

Which homotopy classes are representable by diffeomorphisms (Corollary
2.1)? This question leads us to study the homotopy smoothings from the
surgery theoretical point of view. We shall show that any homotopy smoothing
of S®XRP? is s-cobordant to a homotopy equivalence of S*XRP? to itself
(Corollary 2.2). Similarly, any smooth s-cobordism of S'XRP? to itself is
shown to be s-cobordant to the product cobordism S'XRP2?XI relative to the
boundary (Proposition 3). We refer [11] for the topological s-cobordisms.

The author would like to thank Professors H. Toda and G. Nishida for the
conversations which were very useful to perform the calculation in §1 and §2.

§0. Generalities on the based homotopy set [ X, Y],

Let X and Y be connected CW complexes with based point. We are
concerned with the space Map,(X, V) of based point preserving maps of X
into Y equipped with compact-open topology. In order to study the set of
based homotopy classes m,(Map,(X, Y)), or in a more familiar notation [X, Y],
we can use two types of filtrations.

The first one comes from the structure of a CW complex with unique O-cell
having the same homotopy type as X. Let X" denote the n-skeleton of this CW
complex. Then, we have the Puppe cofibering sequence,

f J SN
Sn-l\/,_,vsn 1~ 5 Xn-l _ 5 Cf:Xn NG Sn \/...\/Sn NG SXn—l —_— .

and the following induced exact sequence in the category of pointed sets.
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S(f*
0.1) -+ —[SX", Y]y—>[S"V .-V S Y],
—[X" Y], — [ X", Y]y —[S"!'V . V5™, Y],
Here, the group [S™V --- vV §*, Y7, operates naturally on [X*, Y], and its orbit
space corresponds bijectively to the preimage (j7*)7'(0).
To describe the preimage (7%)"!([u]) for any based point preserving map

u: X"!'—=Y which extends over X", ie.: uof=~0, we observe the following
diagram,

Map,(S*V -V 8", Y)=Map,(S*V --- vV §*, Y)

{veEMap(X™, Y); 00j=u} —> Map,(D*V -V D", Y)
J* * &

{veEMap (X, V) v=u} —> Mapy(S*'V -V S, Y)

in which j¥ is a fiber space in the sense of Serre and j* is the induced fiber
space by f*. Since the right vertical sequence is a universal loop fibering up to
homotopy type,
j*
0.2) {seMap,(X™, Y); voj=u} —> {veMap,(X ", V); v=u}
£ 3

f
—> Map,(S*" 1V ..V S Y)
is a homotopy fibering. From the long exact sequence of the homotopy groups,
we get the following bijection compatible with the natural group operation
(Cf. Barcus-Barratt [1]).
0.3) [(S*V -V S, Y1o/Im fyy —> (7*)71(Cud)
Here, the homomorphism f, :x;(Map,(X*, Y), u)—>[S*V .-V S?, Y], is
defined to be the composite of f* with the isomorphisms,
7 (Mapy(S™ 1V -V S™1 Y), uof)
=g, (Map,(S™ 1V -V S Y), 0)=[S*V -V S* Y],.

The dual of the CW complex filtration is given by the Postnikov system of

Y, a system {Y,, f., p»} with the following property :

(i) The map f,:Y—Y, induces an isomorphism on =, if »r=n and
. (Y,)=0 if r>n,

(ii) pp:Y,— Y, , is a fiber space in the sense of Serre with an Eilenberg-
MacLane space K(z,(Y), n) as fiber, and

(iii) ppof, is homotopic to f,-,.

We may assume that each Y, has the homotopy type of a CW complex
with based point and each of f, and p, preserves the based points.
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If YV is n-simple i.e.: the operation of =,(Y,*) on z,(Y, %) is trivial, the
fibering in the condition (ii) is induced up to homotopy type from the universal
loop fibering, K(m,(Y), n)— *— K(x,(Y), n+1), by the k-invariant k: Y, ,—
K(z,(Y), n+1). Thus, we have a fibering sequence,

P k
> Yn—l - K(ﬂn(y)’ n) —> Yn I Yn-l — K(TL',,(Y), n+1)°

Taking the based homotopy set of the based point preserving maps of X, we
get the following exact sequence in the category of pointed sets.

2 (k)«
(0.4) - —[X, 2Yo,Jo — [X, K(ma(Y), 1) Jo

b« kx
—[X, Y, Jo —[X, Yoo o — [X, K(7,(Y), n+1)],

Moreover, [ X, K(n,(Y), n)], is isomorphic to the cohomology group H*(X; n,(Y))
which operates naturally on [ X, Y,], and the orbit space corresponds bijectively
to (px)71(0).

Let =2 and = be an abelian group. Before handling the general case, we
study the fiberings with K(m, n) as fiber. In the semi-simplicial setting, P.
May proved in his book [3, p. 100] that any fibering with the Eilenberg-MacLane
complex K(x, n) as fiber has a semi-simplicial structural group A(K(x, n)) which
is identified with Aut(z)X K (m, n) whose semi-simplicial group operation is defined
on g¢-simplexes Aut(z),XK(x, n), by (f, x):(g, y)=fg, f(y)+x). This was
essentially proved by R. Thom [7] already in 1956. The fiberings are classified
by the homotopy class of a map k: X— BA(K(x, n)) or an element of the
cohomology group H"*'(X; m,,.) in some local coefficient system. Actually, the
obstruction map,

(0.5) [X, BA(K(x, n))Jo —> \U H™(X; 710 (disjoint union),

is a bijection for any connected CW complex with based point. This fact does
not seem well-known, but is easily proved because =,(BA(K(m, n)), *)=Aut(x)
and the induced homomorphism x,(X, x) — Aut(x) determines a local coefficient
system in which the argument of the classical obstruction theory remains power-
ful for the based point preserving homotopies (Cf. P. Olum [4]).

In the general case, a based point preserving map u : X — Y,., is assumed
to have a lifting #: X— Y, such that p,oZz=u, which is equivalent to say
kyu=0 in H**'(X, n,(Y),) where 7,(Y), is the local coefficient system deter-
mined by the homomorphism wuy : m,(X, *) = 7,(Y,_;, ¥)=m,(Y, ). Then, we
shall prove that

(Px
0.6) {peMapo(X, Y,); paod==u} —p—):{vEMapo(X, Yoo v=u}

k
—> e Mapy(X, BAK (2,(Y), n))); v=kou)

is a homotopy fibering. In fact, (p,)« is a fiber space in the sense of Serre and
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its fiber is identified with the space I'(X, Q,) of sections of the induced fiber

space (=pull-back) @, over X by u from p,, or by kou from the universal fiber
space E with fiber K(z,(Y), n).

Qu—> Y, —E

l u lp"k l”

X —Y,.,— BAK(z,(Y), n))

Hence, (p,)x in (0.6) is an induced fiber space by % from the following fiber
space.

I'(X, Q) — {veMap,(X, E); mov=kou}
—> {veMap(X, BA(K(n,(Y), n)); v=kou}

Now, we observe that the total space of this fiber space is contractible, because
it is a connected component of Map,(X, E) and z; (Ma p,(X, E))=H" (X, Aut(x)).
The last isomorphism comes from the fact that E is an Eilenberg-MacLane space
K(Aut(x), 1). Therefore, the above fiber space is a universal loop fibering up to
homotopy type and hence (0.6) is a homotopy fibering.

For applications, we should remark the existence of the isomorphism,

0.7  z({fueMapy(X, BAKK(z,(Y), n)); v=kou))ZH™"{(X; m,(Y),),

defined by the difference cocycles. Then, we get a bijection,

0. 8) HY (X 0 (V))/Im by —> (pog)™ ([2]),

where b, : m,({veMap,(X, Y,.);v=u}, u)— H* (X, n,(Y),) is the composite of
by with the isomorphism of (0.7). Here, Py« : [ X, Y,1o—[X, Y. i lo

§1. Self homotopy equivalence group of S2X RP?

We shall determine the group &£(S*X RP?) formed by the free homotopy
classes of homotopy equivalences of S*X RP? to itself with the operation induced
by the composition of maps. Let a : S®XRP?— S*X RP? be the map defined by
the antipodal of S? cross the identity of RP: Knowing that [RP2 SO (3)],=Z,,
we define B to be the unique non-trivial SO(3)-bundle automorphism of the
product bundle S?XRP® over RP% Choose an embedding D*C M*=S*XRP*.
If D* is shrunk to a point, the result is homeomorphic to M*. Shrink instead
oD* to a point to give a map, c¢: M*— M Vv S, Now let »*:S*—S® be an
essential map and s : S?— S?X RP? and ¢ : S? — S?X RP? be the composites of

P
S2=82X*x —_, S2XRP? S* — RP*=xXRP*C ., S*XRP*?

respectively, where p : S? — RP? is the natural covering map. We define ¢ and
7 to be the composites of

2

S*XRP? —> S*XRP*V S* —> SEXRP*V S* —> S*XRP?

where we take x=s to define ¢ and x=t to define 7.
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Theorem 1. &(S*XRP?) is generated by the four generators induced by «a,
B, o and 7. The generators are of order 2 and mutually commutative. In
particular, €(SEX RP?) is isomorphic to Z,XZ,XZ,X Z,.

Since £(S'X RP? 1is a quotient group of the unit group &,(S*XRP?) of the
based homotopy set [S?X RP? S?X RP?], for the composition, we study first
[S*X RP?, S?X RP%],.

Lemma 1.1. There is a bijection,

A w (SHXLS?, S*]yX[RP?, S*], —> [S*X RP*, 5%,

Proof. Let X=S?XRP? and Y=S%. Then, Y,=K(Z,2) and the first
k-invariant of S?%, k, : K(Z, 2) — K(Z, 4) induces the squaring (k3)x=Sq* : H*(X, Z)
— HY(X; Z), i.e.: (ky)x(x)=x? and in particular, (k)«(H*(X; Z))=0. So, in the
following exact sequence,

Dx kx
HY(X; Z)—[X, Y,y —[X, K(Z,2)],— H'(X; Z),

we see that py is a bijection, because H*(X; Z)=0. On the other hand,
X*=S8?V RP? and by cohomological calculation, j*:[X, K(Z, 2)],— [S*V RP?,
K(Z,2)], is an isomorphism. By a trivial reason, p4:[S?V RP? Y],—[S*V
RP?, K(Z, 2)], is an isomorphism. Hence, we get a natural bijection,

[S*V RP%, Y1 (=[S, Y1 XLRP?, Y]o) —> [X, YVil,.

Now, we compare the operations of z,(Y) and H*(X; Z, in the following
commutative diagram in which each sequence is a part of long exact sequence.

T (K(Z,, 4)) = n,(Y) — 0
H'(X; Z)) — [X, Y] — [X, Y]y, —> 0
0 — [X% Y1 —[X? Yl

The operation of H*(X; Z,) on [ X, Y, is identified with the operation of z,(Y)
on [X, Y], defined by g-x=(x, g)oc for gen,(Y) and x[X, Y],.

Choosing some lifting [ X, Y], — [X, Y],, we can define a map, 4, : 7, (Y)X
[S? Y], X[RP? Y],—[X, Y],. To see that A, is a bijection, it suffices to
prove that the image of k,, defined in (0.8), reduces to the zero element of
H*(X; n,(Y),) for each map u:X—Y,. Observe the following commutative
diagram in which the upper horizontal sequence is exact; abbreviating

775;:71'1(]‘40?0()(, K(Z’ 3))} 0): zlzn,({UEMa;Do(X, Ya); U’:u}’ u)
and

ri=r,({veMap,(X, K(Z, 2)); v=pou}, pou),
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(is)* P*
T - T —>
s m

q
H*(X; Z) — H'(X; Z))

where Sq*: H*(X; Z)— H*(X; Z,) is induced by the composition k,oi;: K(Z, 3)

—Y,— K(Z,,5). (We need only the fact that, if k,oi, is essential, then it

induces Sq%.) Then, since n{=H'(X; Z)=0 and S¢*=0, we get k,=0.
g.e.d.

For the even-dimensional real projective space RP?", we define u,(0) by the
composite of

¢ 1AV @id, p)
RP?** —» RP?*"V §*® —» RP?"\V §** —> RP*®*"

where 0 : RP?® — RP?" is the trivial map, k. S?* — S?" is the degree £ map and

p . S — RP?" is the natural covering map. In the same way we define u,(id)

by replacing the trivial map with the identity map of RP*".

Lemma 1.2. [RP2", RP?™], consists of the following mutually non-homotopic
maps: 1) the trivial map, 2) u,(0), 3) the identity map=u,(id) and 4) u,(id)
for k€ Z—{0}. Moreover, u,(id) and u-,-,(id) are homotopic with the based
point moving through the non-trivial element of m,(RP*").

Proof. The trivial map and the identity map are liftings of two elements
0 and id’ respectively of [RP**, K(Z,, 1)],. Since
7 (Map,(RP*", K(Z,, 1)), id")=r,(Map,(RP*", K(Z,, 1)), 0)
= H'(RP* ; Z,)=0,
the operation of H?"(RP?®*"; Z,) is effective for u=id’ or u=0 by (0.8). Remark
that H2"(RP?*", Z,) is isomorphic to Z if u=id’ and to Z, if u=0. So, asjin
the proof of Lemma 1.1 the comparison with the operation of x,,(RP®") gives

the result on [RP?", RP*"],. For the free homotopy classes, we refer the paper
of P. Olum [5; Th. IIb, p. 464] q.e.d.

Lemma 1.3. Unless n=2, RP* is n-simple.

Proof. Since the antipodal map on S* is homotopic to the identity, RP?® is
a simple space. But by using the fibering S'— RP®— RP? we see that the
operation of 7,(RP?) on =m,(RP? is induced from that of x,(RP®) on =,(RP?®)
unless n=2. q.e.d.

We define the subset T of [S?, RP*],X[RP?, RP*], by

T=T,U {0Xu,@Gd); keZ}
and
T.={nx0;neZ}U{nXu,(0); neZ}
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where 5 : S*— RP? is the composite of a degree n map: S?— S? with the
natural covering map: S®— RPZ

Lemma 1.4. There is a bijection,

Ayt w (RP?)XT —> [S*X RP*, RP%],.

Proof. Let X=S*!XRP? and Y’=RP% We consider the exact sequence
induced by the cofibering S? % SV RP?— X3,

ok *

J f
(0=) 7y (V) — [X?, Vi1 —> [S*V RP?, Yi], —> =, (Y73).

The fact that f* is the zero map is easily seen, because c,of . S*— S* and
c.of : S®— RP* are zero maps where ¢; is the collapsing of S* or RP? in
S2VvRP? for i=1 or 2 respectively. Hence, j* in the above sequence is a
bijection. On the other hand, by a trivial reason, the natural maps [X, Y.],—
[X3 Y], and [S®VRPZ Y'],—[S*VRP? Y;], are bijections. Therefore, we
have a natural bijection,

£S?, Y1 X[RP?, Y'1o(=[S* VRP?, Y']y) — [X, Yi],.

Now, we consider the following commutative diagram in which the horizon-
tal sequence is exact.

k
O0=)H*(X; Z) —> [X, Yily—> [X, Yil,—> H'(X; Z)
Tu /s¢=o
H (X Z)

Any element of the image of iy, which is exactly the subset T, of [X, Y{],=
[S*Vv RP2 Y], lifts to an element of [X, Yi]l,. The other elements of T,
i.e.: 0Xu,(id), are extended over X if they are considered to be maps of
S22V RP? into Y’=RP?, and hence lift to some elements of [ X, Y%].

We remark that the pi:[X, Y']o—[X, Yil, is a surjection because
H3*(X; Z,)=0. So, if u’: X— Y} can be lifted over Y73, it can be lifted over Y.
This means that the corresponding map u :S*V RP?— RP® can be extended
over X. The covering map & . S*Vv S*— S* in the following diagram may be
extended over S*XSZ

it
S2xS? o Sstv St — S°
|iaxp  |iave, |»
S?xX RP*D S*VRP® — RP*

Here p: S*— RP? is the standard covering map. Any element of [S®V RP? Y’],
outside T has a form u=(n, u,(d)):S*VRP?— RP? with n+#0 and induces
the map i=(n, 2k+1): S?Vv 52— S% So, it cannot be extended over S2xS?
because the Whitehead product [ne¢, (2k+1)¢] does not vanish. This implies that
kx()#0 unless u'eT.
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Therefore, we can define a natural bijection,
4T —[X, Vi

by the inverse of the bijection of [ X, Y;], onto the kernel of k. Since RP? is
4-simple, the definition of A, is the same as that of 4, in the proof of Lemma 1. 1.
By using the homotopy fibering (0.6) as in the proof of Lemma 1.1 we see that
the operation of H*(X; Z,) is effective on the element u of [X?® Y’], which
satisfies f*u=0, if the induced map wux: x;(X®) — 7, (Y’) is trivial. Otherwise,
that is, if wus: 7, (X®) — n,(Y’) is a non-trivial map, we observe the effectivity
of the operation of z,(Y’) from the homotopy fibering (0.2) with the help of a
geometric consideration on the attaching maps of cells. (If u=2(0Xid),
Lemma 2.4 reprove the effectivity of the operation of #,(Y’). The argument
in the proof of Lemma 2.4 is also applicable to the other cases, i.e.: u=
A5(0Xu,@Gid)).) Hence, we see that 4, is a bijection. q.e.d.

Proof of Theorem 1. Let f:S*XRP?*— S*X RP® be a based point preserving
homotopy equivalence of S*X RP? to itself. Since f induces an isomorphism on
7, (S?X RP?), the composition p,of of f with the projection p, on RP?* is con-
tained in A, (w,(RP?)X {0} Xu,(id)). We consider the covering f: S?XxS? — S?X S?
of f and know that f transforms the basis x and y of the 2-dimensional
homology group into ax-+by and cx+(2k+1)y. Then, x*=3y*=(ax+by)’=
(ex+@k+1)y)?=0, xy=yx=1 and (ax+by)(cx+Q2k+1)y)==+1 implies that
a==1, b=c=0 and k=0 or k=—1. Hence,

(1€ A (7, (S X {£1} X[RP?, §7]0) X 2, (z, (RP?) X {0} X {id, u_,(id)}).

Let a, be a based point preserving homotopy equivalence free homotopic to
a and r=0d|S*X(u-,(id)|RP?). The operations of =,(S*) and =,(RP? corre-
spond to the composition with ¢ and z respectively. The homotopy commutativity
of ¢ or r with each of «,, 8 and 7 is easily checked in a geometric way.
Each pair consisting of two among «,, 8 and 7 is also homotopy commutative
because the invariants do not depend on the order of composition in each case.
We remark here the fact that the invariant of 8 is the non-trivial element of
[RP?, S¥],; in fact, the composite of

B p
RP*=xX RP* —_, S*X RP* —> S*X RP* —> S*

is an essential map, because the operation of SO(3) on S? induces an isomor-
phism: [RP? SO(3)],— [RP? S*],. Since all the possible 32 combinations of
invariants are representable by the compositions of o, @,, B, ¢ and 7, we see
that the unit group &,(S?XRP?* of [S*XRP?% S*XRP?*], for the composition is
the commutative group generated by a,, 8, 7, ¢ and <.

The self homotopy equivalence group &£(S*XRP?) is a quotient group of
&y (S2X RP?). The &€(S*X RP?) modulo the operation of =,(S?XRP?) consists of
id, @, B and aof because the factor a is distinguished by the induced auto-
morphism on H,(S*XRP%*; Z) and the factor B is distinguished by the map
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RP?— S? obtained by composing the inclusion of RP? from the left and the
projection on S? from the right. We observe moreover that the operation of
7w, (SEX RP?) is still effective. In fact, if p-6 is homotopic to d with the based
point moving through the non-trivial element of z,(S*XRP%) for pex,(S*X RP?)
and 0€&,(S*X RP?), then p-0 is based homotopic to doy. But this is impossible
because p-0 and doy induce the different elements in [X3, S*XRP?%],.
g.e.d.

§2. Homotopy smoothings of SEXRP?

A homotopy smoothing of a Poincaré complex M is by definition a simple
homotopy equivalence f:@Q — M such that Q is a closed smooth manifold.
The normal invariant »(f) is defined by the class of the following induced
normal map with the natural trivialization of v(Q)PD r(Q),

f
v(Q) — (/v (Q)=v

v
Q — M =M

where v(Q) is the stable normal bundle and 7(Q) is the tangent bundle. Two
normal maps (suffixed by 1 and 2) are of the same class if there exists a bundle
equivalence ¢ : v, —y, such that (f;, ¢v,) and (f,, v,) are normally cobordant.
If M is a closed smooth manifold, we consider that »(f) is an element of
[M, G/O] by the Sullivan’s argument [13]. The smooth normal invariant 7(f)
induces the topological normal invariant #rop(f) by the natural map G/O0 —
G/TOP. The normal invariant 7(f) depends only on the homotopy class of f.
In the case that M=S%*X RP?, there is no difference between homotopy equiva-
lences and simple homotopy equivalences, because Wh(Z,)=0.

Proposition 2. Let M=S*XRP"*.

(i) mp(a®BPogtort)=0 if and only if s=t=0 (mod2).
Moreover, y(a), n(z) and n(oot) are all distinct.

(i) prop(a®oBlogior’)=0 if and only if s=0 (mod?2).

Corollary 2.1. Only the four homotopy classes id, a, B and a°f8 are re-
presentable by diffeomorphisms.

Remark. We do not know whether z is representable by a homeomorphism
or not.

Corollary 2.2. For any homotopy smoothing f:Q*'— S*XRP? there exists
a smooth s-cobordism between Q* and S*X RP:.

Proof of Corollaries assuming Proposition 2. Corollary 2.1 is immediate from
Theorem 1 and Proposition 2, because the four classes are representable by
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diffeomorphisms and any class represented by a diffeomorphism must have the
trivial normal invariant.

For Corollary 2.2, we observe the Sullivan-Wall sequence associated to the
surgery theory, :

0
(0=)Ls(Z3) — S(S*X RP?) —7)—> [S*XRP? G/0] —> L(Z3)(=Z)

where S(S*X RP?) is the degree 1 homotopy smoothing classes modulo s-cobordism
(Cf. [15; §16]). The sequence may not be exact at [S?!XRP? G/O], but
L(Z3)=0 implies that 7 :S(S*XRP? —[S*XRP? G/O] is a one-to-one map
into the kernel of . The Wall group L,(Z3) is isomorphic to Z, and the
obstruction map # is a surjection because # is given by the Kervaire-Arf in-
variant c¢(g)=k,(g) w,(S?X RP*+k,(g)* for g:S*XRP?— G/0O, where k, is a
characteristic class defined by the generator of H*(G/O; Z, [15; Th. 13B. 5].
We remember that for the 5-th stages of the Postnikov decompositions of
G/TOP and G/O,

(G/TOP)y=K(Z,, 2)XK(Z, 4),
and
K(Z,4)—> (G/0); — K(Z,, 2)

is a fibering with 6Sqg*e H*(K(Z,, 2); Z) as k-invariant [10] [13]. So, we have
another sequence of groups which is exact,
[S(S*X RP?), G/TOP] —> H*(S*XRP?; Z,) —> [S*xX RP?, G/0O]
—> [S*XRP?, G/TOP] — H*(S*XRP?*; Z,),

where [S*XRP2% G/TOP] can be identified with H2(S*XRP?; Z,) H*(S*X
RP?; Z) and the last homomorphism is a surjection because (x, y) is mapped to
x?*4+ymod2. In the same way the first homomorphism is a null-map and hence
the second one is injective. So, [S!XRP? G/O] has 8 elements and kerd
consists of 4 elements, which must be 0, 5(¢), 7(r) and 5(gor). Therefore,
the Sullivan-Wall sequence above is actually exact and the natural map,

{fe€E(S*X RP?); deg f=1} —> S(S*XRP?

is a surjection. Since a is represented by a degree —1 diffeomorphism # of
S?X RP? to itself, any degree —1 homotopy smoothing is representable by the
composite of some degree 1 homotopy smoothing with 4. This suffices to prove
Corollary 2. 2. q.e.d.

The proof of Proposition 2 is carried out by the following four lemmas.

Lemma 2.1. Let f;:S*XRP*— S*XRP* be homotopy -equivalence for
i=0, 1.

(1) If p(f9)=0, then n(foof)=n1(f1).

(ii)  If prop(fo)=0, then nrop(foof1)=nror(f1).
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Proof. 1f 7(f,)=0, there exists a normal cobordism connecting f, and id.
Hence, composing with f;, we get a normal cobordism between f,of; and f,.

In particular, »(foof)=7(f1). The same proof applies for 7ropr as well.
g.e.d.

Lemma 2.2. %(a)=7(B)=0.

Proof. Since a« and j are represented by diffeomorphisms, 7(a)=7%(8)=0
by the definition of 7. g.e. d.

Lemma 2.3. %rop(a)#0.

Proof. We remark that the Sullivan’s theory of characteristic variety
remains valid in this case [13], [13’]. Actually, ¢ is detected by the character-
istic variety *X RP? of S*!XRP2% In fact, ¢ '(*X RP®) may be assumed to be
W\ xx RP* with W framed, where W is the preimage of one point under the
generator %®: S*— S* of x,(S*)=Z,. The splitting invariant is the Arf invariant
of the framed W, which is equal to one. q.e.d.

Lemma 2.4. 770p(z)=0 and 5 (z)#0.

Proof. To see that %rop(r)=0, we have only to calculate the splitting
invariants along the characteristic varieties S?Xx* and *XRP? of S*XRP?
because %rop(z) belongs to the image of the natural map [S*XRPZ? G/O0]—
[S*X RP2, G/TOP] which corresponds to the subgroup H2(S!XRP?;Z, of
H*(S*xXRP?; Z,)p H*(S! X RP?; Z). (If one does not like this reasoning for
nrop(r)=0, one can take another argument which will be explained in Remark
succeeding the proof of this Lemma.)

On the other hand, we shall use the S-theory to verify that 7(r)#0. At
first, we observe that the Thom space Tv(S?*X RP?) of the stable normal bundle
of S®X RP*? has the homotopy type of

S™(S*X RP*/xX RP?)=S™2RP*\/ S"RP?=S"*RP*\/ S™**\/ STRP*\ S+,

(The suspension SRP® is the mapping cone of the suspension of the natural
2-covering map S?— RP? and has the homotopy type of SRP?V S*® because the
Steenrod operation Sg? is trivial.) The possible normal invariants are the degree
+1 maps of S™*% into Tv(S*X RP?. We have the S-duality given by a map
u: Tv(S*XRP) A S™(S?X RP2) — S™+n+5, By this map [S"*%, S*"(S?XRP*/*X
RP®)7, corresponds bijectively to the cohomotopy set [S™**+5(S2X RP3), S™*"*%],.
Moreover, since m-+n is sufficiently large, the subset consisting of degree 1
maps corresponds to the classes [S?XRP? GJ] of the stable fiber homotopy
trivializations (Cf. [16; Th. 3.5]). Because the restriction of the S-duality map
u: (S"?RP3*V S"RP®* A S™(S?*X RP})— S™*"*5 on S"**RP* A S™(RP3%) gives the
S-duality map for RP%, the subset [RP? G] corresponds to the maps,

gVvid
Sr+s s Sn2RPEN S C Ty (SEXRP?),
with g€ m,,;(S"*2RP?(=Z,). (The calculation of the order of z,.;(S***RP?) is



12 Takao Matumoto
easily reduced to that of stable homotopy groups of spheres by the exact

2
sequence of homotopy groups associated to the cofibering S*+® — S"*3 — S*+2RpP?2 ip
the suspension category [12].) The group [S?X RP? G] has 16 elements and
the other generators correspond to the following two maps,
7 Vid
S — S S C Tu(SEX RP?)
and

tyVid
70 SPY — SPRP®V S™ C Tu(S*X RP?)

where 7? is the generator of m,.(S"**)=Z, and {, is the generator of
Tnss (STRPH=Z,.

The homotopy equivalence 7 : S2X RP*— S*X RP? can be coverd by a vector
bundle homomorphism as follows; the maps in the upper line of the following
diagram restrict linear on each fiber of the induced normal vector bundles and
their composite covers the composite of the maps in the lower line.

¢ idV Sp* Gid, p)
S*XRP* —> S*XRP*\V §° —>  S'XRP*\ §* —> Stx RP®
v Y idV g Voo e, p Y

S*XRP* — S*XRP*Vv S* —> S®XRP*V S? — S?XRP?

Here, p denotes either the natural covering S®*— RP*® or S?— RP2. Therefore,
the induced map of Twy(S*X RP?) to itself determines the class of the map

n

7, S* —  S"RP3\Vv S"C Tu(S*X RP?)
to which »(z) belongs modulo the image of [S*X RP? 0], where

2

U] b
h=p-Sy*: S* —> S* —> RPS.

It is easy to see that the composite of

~

Sh = ¢y
S¢ —> SRP®* — SRP*Vv S* —> S*

is homotopic to the trivial map, where ¢, is the collapsing of SRP2 We observe
the homotopy commutativity of the following diagram from the fact that the
mapping cone of Sp is SRP* and Sq¢*: H*(SRP*;Z,)— H*(SRP*; Z,) is non-
trivial :
Sp = [
S* —> SRP® —> SRP®*V S* —s SRP?
I . | sa

5 —_— s°

Here Sp is the suspension of the natural covering map, ¢, is the collapsing of
S*, Sd is the suspension of the collapsing of the subset RP! of RP? and 7 is
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the suspension of the Hopf map. Let #,=S""'c¢,0S™h :S"** — S"RP®? Then,

Sdocy,0Sp=7n implies S™dot,=7%? which means that ?, is the generator of

a5 (S"RP?. In fact, in the following long exact sequence associated to the
2

cofibering S™"*!— S™*!' — S®"RP? in the suspension category, ¢ is induced by
S*d and %*® is the 12 times of the generator of z,.;(S*"*®)=Z,, (Cf. [14]).

X2
(0=) 7 045(S™") —> Tp15(S"RP?) —> 7,15 (S™+?) —> 1,45(S™?)

Hence, 1,=t,E 7,45 (S"RP? and in particular, z,~7,.
We consider now the following commutative diagram whose horizontal
sequences are exact.

0 —> Z, —_— Z, —— Z, —> 0

~ ~ ~

[RP? 0] — [RP:,G] — [RP? G/0O]

~

[SEXRP?, 0] — [S*XRP?, G] —‘u—> [S*XRP?, G/0O]

{fE€muts(Tv(SPXRP?)); deg f=1}
Then, g in the diagram above induces an injection,

Coker ([RP?, G] —> [S*X RP?, G])
—> Coker ([RP?, G/0] —> [S*X RP?, G/0]),

which turns out to be a bijection because [S*X RP?, G] consists of 16 elements
and [S*XRP% G/O] of 8 elements. In particular, pu(zy)#0. But pu(c,) is
identified with 7 (r) because the normal map induced by z is shown to represent
2 (7). q.e. d.

Remark. We can verify that 0(u(w))#0, if we use the formula for the
Kervaire-Arf invariant and the projection S?X RP?— S®. Hence, the image of
ker # by the natural map [S?XRP? G/0]— [S*XRP?, G/TOP] consists of two
distinct elements 770p(0) and 0. Then, since 9rop(z) is not detected by =X RP?,
nrop(r) must be equal to 0.

The proof of Proposition 2 is immediate from Lemmas 2.1-2.4. In fact,
p(a%oBlogort)=y(c*oz") and prop(a®opflos’or)=75rop(c*). And nrop(sor)#0
implies 7 (oo7)#0. Also, n(o)#7(z) and %n(cozr)#7(r) because 7rop(cor)=
yror(0)#Nrop(r). Since the operation of H®*(S*XRP?; Z,) on [S*XRP? G/O]
is effective and moreover identified with the composition with =z, 7(coz)#
7 (o).



14 Takao Matumoto

§3. Smooth s-cobordism of S'X RP? to itself

We shall study the homotopy smoothings of S!X RP2XI relative to the
boundary. As a result we shall get the following proposition.

Proposition 3. Any smooth s-cobordism of S'XRP? to itself is smoothly
s-cobordant to the product cobordism S*XRP*XI relative to the boundary.

Let 7/ and ¢” be the following composite of

c @id, )
7/ I S'XRP?*X] —> S'XRP*XIV S* —> S'XRP*XI

and
c (id, s")
6" . RP:*X] —> RP*XIV §* —> RP*XI

where 1 is the generator of =,(RP*=Z, and s’ is a generator of #,(RP®)=Z.
We define a map ¢’ : S'XRP*XI — S'XRP*XI by ¢'=(1d|S*)X¢”. Since ¢’ and
7/ induce the identity on the homotopy groups, they are homotopy equivalences.
Moreover, since ¢’ and ¢’ induce the identity on the homology group of the
universal covering, they are simple homotopy equivalences which restrict to the
identity on the boundary. In other words, they are homotopy smoothings of
S'X RP*X I relative to the boundary.

The following Sullivan-Wall sequence is fundamental in our argument.

Vi
[S'XRP*xIXI1/0, G/O] —> L (ZD Z35) —> S(S'X RP*X]I, 0)
7 4
s [S'XRP*x1/0, G/O]—> L(Z®D Z3)

We consider at first the collapsing j of the complement of the embedding
S'X RP*XI C S*X RP* and the following induced commutative diagram.

S(S*X RP*XI, 0) —> [S'X RP?*XI/d, G/O]
| ,.*
S(S?X RP?) —>  [S’XRP?, G/O]

Then, since j*(the class of ¢/)=the class of z, j*(5(z’))=7x(r). Hence, 7(z)#0
implies % (z/)#0. To see that %(¢’)#0, we use the same method as in the
proof of the fact that %(¢)+#0. We consider the homotopy equivalence
o” U (d|RP?*XI): RP*XS'— RP*xXS* which is covered by the normal vector
bundle homomorphism in the following diagram.

¢ id v Sy (id, p)
RP*XS'—> RPIXS'V S —> RP*XS'V §* —> RPIXS!
vooe Y idvy Mo Gdp Y
RP*XS'—> RP*XS'V §* —> RP*XS'V §* —> RP*XS!
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The normal invariant 7 (a” \U (id|RP?*XI)) comes from the element corresponding
to the map,

s"Vid
g, 8" — S"HRPTV S™C Ty(RP*XSY)

where n is sufficiently large and s”=c,0S"*!(poSy), ¢, denoting the collapsing
of the subset S"** of S"*'RP?V S**=~S"+1RP3, Whence, s” is the element of
Tass(S"RP?) such that S™*?dos”=y? in 7,.,(S"**), where d denotes the
collapsing of the subset RP! of RP2. We observe the following commutative
diagram,

$"E T s (S RP?) = [RP*xI/d, G] — [RP*x1/d, G/O]

€T (™) — [S, G — [$%,G/0]

where the first horizontal isomorphisms are the S-dualities associated to the
spaces S® and SRP? and the second horizontal maps are induced by the natural
map G — G/O. The commutativity of the first square follows because the in-
clusion S*=SRP!— SRP? is the S-dual of the collapsing of the subset SRP!' of
SRP?. We see easily that [RP?*XI/d, G/O]=Z, and its generator is the image
of s”. In particular, »(¢” \U (id|RP2XI))=(j,)* 7 (¢”) for j, : RP*XS'— RP*x1I/0,
and 7 (¢”) is the generator of [RP*XI/d, G/O]. So, 5(a’)#0 because the map
[RP*xI/d, G/O] —[S*}XRP*x1/d, G/O] induced by crossing with S! is in-
jective.

The natural map [RP2?XI/0, G/O]— [RP*XI/o, G/TOP] is a bijection
because the both sides of the map are naturally isomorphic to H?*(SRP%; Z,).
Hence, 77rop(c’)#0 as well. On the other hand, it is not difficult to see that
nrop(z’)=0, if we use the fact that j*7rop(c)=7%rop(r)=0. Therefore, as in
the proof of Proposition 2, the four elements 0, »(¢’), 7(z’) and 7n(s’oz’) are
all distinct.

The Wall group L, (Z@ Z3) is isomorphic to Z, and the surgery obstruction
map 6 :[S'XRP*xI/o, G/O]— L(Z® Z3) is given by the Kervaire-Arf in-
variant ¢(S'XRP*XI, 0; g)=k,(g) w,(S'XRP*XI)+k,(g)* where g : S'XRP*XI/0
— G/O and k, is a characteristic class defined by the generator of H%(G/O ; Z,).
By a simple calculation, # is a surjection and [S'XRP?*XI/0, G/O] consists of
8 elements. Hence ker@# consists of 4 elements which must coincide with 0,
7(a’), 7(z’) and n(¢’0z’). Similarly, the surgery obstruction map for [RP*XI
x1/0, G/O] is a surjection onto L,(Z3)=Z,. By the following commutative
diagram

[RP:XIXI/d, G/O] —> L(Z3)

~

[S'XRP*XIXI/3, G/O] — L (Z B Z3)

where the vertical maps are induced by taking direct product with S!' and the
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induced map L,(Z3)— L,(Z@® Z3) is an isomorphism, the surgery obstruction
map for [S'XRP2xIxI/d, G/O] is a surjection onto L (Z&P Z;) as well
Since the Sullivan-Wall sequence is exact at L;(Z& Zj3), the operation of
L{(Z® Z3;) on S(S'}xRP*xI,0) is trivial. Therefore, we have proved the
following proposition.

Proposition 3.1. S(S'XRP2XI, d) consists of the four distinct classes re-
presented by the simple homotopy equivalences id, o', t/ and o’ot’ of S'XRP*XI
to itself which restrict to the identity on the boundary.

Proof of Proposition 3. If Q is a smooth s-cobordism of S'XRP*® to itself,
we have some simple homotopy equivalence

f:Q—>S'XRPXI

which restricts to a diffeomorphism on the boundary. Then, by Proposition 3.1
the homotopy smoothing f is of the same class in S(S*'XRP®XI, d) as a simple
homotopy equivalence of S'XRP2?XI to itself which restricts to the identity on
the boundary. This implies that there exists a smooth s-cobordism between @
and S!'X RP2xI which restricts to (S'X RP2X9l)XI on the*boundary, where the
boundary of Q is identified with S'X RP?Xal by f|0Q. q.e.d.
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