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Introduction. Let S be a scheme of finite type over a universally Japanese
ring, f: X—S§ be a smooth, projective, geometrically integral morphism and let
0+(1) be an f-very ample invertible sheaf. In this situation, we constructed a moduli
scheme M ((H) of stable sheaves with Hilbert polynominal H in the preceding
paper [12]". My ;s(H) is locally of finite type and separated over S. And, more-
over, Mys(H) is quasi-projective over S if and only if the family of classes of stable
sheaves with Hilbert polynomial H is bounded. A main aim of this article is, under
an assumption, to find a natural projective scheme over S which contains My, s(H)
as an open subscheme. More precisely, we shall construct a “‘moduli scheme’ of
semi-stable sheaves with Hilbert polynomial H and show that the moduli scheme
is projective if the family of classes of semi-stable sheaves with Hilbert polynomial
H is bounded.

As in the case of stable sheaves, our problem is reduced to making a quotient
of a suitable open subscheme R of a Quot-scheme Q by a linear group scheme G.
For this purpose, we shall use again the projective bundle Z over a finite union of
connected components of the Picard scheme of X/S and the morphism g of Q to Z
which were constructed in §4 of [12]. In the case of stable sheaves, we had only
to show that yt maps the points of R corresponding to stable sheaves to stable points
of Z. But the case of semi-stable sheaves is more difficult than that because semi-
stable points do not have, in general, good functorial properties (see [14] Ch. I,'§ 3).
A way to overcome the difficulty is to show that u(R) is closed in the open subscheme
Zss of semi-stable points in Z. In fact, when dim X/S <2, this was done by C. S.
Seshadri [19] and D. Gieseker [5]. A key result for this was that for a point x of
Q corresponding to a torsion free sheaf F, if u(x)e Z**, then F is semi-stable ([5]
Theorem 0.7 (iii)). Unfortunately, we can not prove the above in higher dimen-
sional casc. We shall adopt, therefore, Seshadri’s idea used in [18]. Thus we
shall study the structure of orbits of Giescker spaces (Definition 2.1) in §2. If onc
reads carefully [18] and [5] and compares products of Grassmann varieties used in

9 In [12], S was assumed to be of finite type over a field. Thanks to the results of Seshadri [20],
our results in [12] hold good for every S which is of finite type over a universally Japanese ring
(see §4 of this article).
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[18] with Gieseker spaces, especially, Proposition 4.3 of [14] with Proposition 2.2
and Proposition 2.3 of [5], he would notice that Gieseker spaces are too big for our
purpose. This is the motive to introduce the notion of an excellent point of a
Gieseker space which is the main idea of this article (Definition 2.9).

§ 1 is devoted to define an equivalence relation among semi-stable sheaves and
introduce a functor XZ¥,; of the category of locally noetherian S-scheme to the
category of sets. In §3, we shall study strictly e-semi-stable sheaves. Combining
the results of §2, §3 and the techniques of [12] §4 and §5, our main theorem of
this article (Theorem 4.11) is proved.

In [8], S. G. Langton proved that if a moduli scheme of u-semi-stable sheaves
(Definition 5.1) exists and if it is of finite type, then it is proper. But his result is
insufficient for our aim because there exists a u-semi-stable sheaf which is not semi-
stable (Example 5.3). The theorem which we need is proved along the same line
as in [8] (Theorem 5.7). Theorem 4.11 and Theorem 5.7 provide us with Corollary
5.9.1 which is the result stated in the first paragraph of this introduction. The re-
sults of Seshadri in [18] and Gieseker in [5] are special cases of our Corollary 5.9.1.
Therefore, this article supplies an alternative proof of their results.

In §6, we shall study some properties of the moduli schemes; a criterion for
smoothness of the moduli schemes, dimensions of the moduli schemes in some very
special cases and a criterion for existence of universal families etc.. As an example,
the moduli schemes of semi-stable sheaves of rank 2 on P2 are studied more closely
in §7. The main result is that the moduli schemes with fixed Chern classes are
irreducible, normal, projective varieties. '

Finally, in Appendix we shall show that there exist many stable, locally free
sheaves on every smooth, projective variety.

Notation and convention. In addition to the notation and the convention
of [12], we shall use the following. For numerical polynomials f,(n) and f,(n),
Fim=< fo(n) (or, f,(n)=<fy(n)) means that f,(n)< fo(n) (or, f,(n)< fy(m), resp.) for
all sufficiently large integers n. Let f: X—S be a smooth, projective, geometrically
integral morphism and let ¢,(1) be an f-ample invertible sheaf. For a field K, a
K-valued point s of S and for a coherent sheaf on the fibre X, with #(E)>0, Pg(n)
denotes the numerical polynomial y(E®0y (n))/r(E). For a cycle C on X, d(C,
Ox(1)) denotes the degree of C with respect to ¢x (1). For a coherent sheaf F on
X,, we shall use the notation d(F, 0x(1)) instead of d(c,(F), 0x(1)) as in [12], where
¢,(F) is the first Chern class of F. If dim X/S=1, then the degree of F is denoted
by d(F).

§1. S-equivalence

In this section we shall introduce an equivalence relation among semi-stable
sheaves and then define a functor of (Sch/S) to (Sets).

Lemma 1.1. Let Y be a non-singular projective variety with a very ample
invertible sheaf 0y(1) and let E, (or, E,) be a stable (or, semi-stable, resp.) sheaf
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on Y. If Py (m)=Pg,(m), then every homomorphism ¢ of E, to E, has one of the
following properties:

1) ¢=0

2) ¢ is injective and E,[¢(E,) is torsion free.

Proof. Assume that ¢ #0 and set F =ker(¢). Since E, is semi-stable, Pyg,,(m)
<Pg,(m)=Pg (m). Thus Pg(m)>Pg(m). Since E, is stable and since F#E,,
we obtain F=0. If E,/¢(E,) has non-trivial torsion, then it is easily seen that
Pyg,y(m)>Pg,(m). This is not the case by our assumption. g.e.d.

A semi-stable sheaf has a Jordan-Holder filtration. In fact,

Proposition 1.2. Let Y be as above and let E be a semi-stable sheaf on Y.
Then

1) there is a filtration 0=E,cE,c---<E,=E by coherent Oy-modules such
that (a) EiJE;_, is stable (1<i<t) and (b) Pg(m)=P(m) (0<i<1),

2) if O=EycE\c---cE.=E is another filtration enjoying the properties
(a) and (b), then t=s and there exists a permutation ¢ of {1, 2,..., t} such that
E|E;_, is isomorphic to E, ;) [E )= (1<i<T).

Proof. 1) Let us prove our assertion by induction on r(E). Assume that (1)
is true for semi-stable sheaves with rank <r(E). If E is stable, there is nothing to
prove. Suppose that E is not stable. Then the set 4={F|F is a proper coherent
subsheaf of E with Pg(m)=Pg(m)} is not empty. Pick a member E, of A with
the smallest rank. Tt is obvious that E, is stable and E/E, is semi-stable. By
our induction assumption, E/E, has a filtration O0=E,/E,cE,/E,c---cEJE,=
EJE, such that (E/E)/(E;-/E,)XE,E;_, is stable and that Pg g (m)=Pg/g (m).
Since Py (m)=Pg(m), we know that Pg(m)=Pg/g (m)=Pg, g (m)=Pg(m). Hence
the filtration 0=E,cE,<E,c---cE,=E has the properties (a) and (b).

2) Our proof is by induction on t. If t=1, then E is stable, whence our
assertion is obvious. Assume that t>1. Let r be the smallest integer such that
E; contains E,, then the natural homomorphism ¢: E,—-E,/E,_, is not zero. By
virtue of Lemma 1.1, ¢ is injective, which implies that E, n E;_,=0. Morcover,
since E,/E,_ is stable and since Py (m)=Pg(m)=P,(m), ¢ should be sur-
jective, that is, E, is isomorphic to E./E._,. Let us consider E=E/E,. Set E;=
E;iy/E, and

[ E/(EinE) 0<i<r—I
i+1/E, r<i<s—1

It is clear that 0=E,cE,<=---cE,_,=E is a filtration with the properties (a) and
(b). On the other hand, E; is isomorphic to E; for 0<i<r—1, E,JE,_,=E.,,/
(E,+E,_\)=E,/E, and E;/E;_,=E},,/JE; for r+2<j<s—1 because E, ;N
E,=0and E,+E,_,=E,. Thus the filtration 0=EycE{cEjc..-cE,_,=E has
the properties (a) and (b). The induction hypothesis implies that t=s and that there

exists a permutation v of {I,2,....t—1} with EJE,_, =E,/E.;_,. Define a
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permutation ¢ of {1, 2,..., t} as follows:
] r if i=1
a(i)={ w(i—1) if I<t(i—-1)<r—1
] w(i—1)+1 if r<t(i—1)<t-—1.

Then o is one of the desired permutations. q.e.d.
For convenience’ sake, we shall introduce the following definition.

Definition 1.3. Let E be a semi-stable sheaf. A filtration 0=E,cE,c-.-c
E,=E enjoying the properties (a) and (b) in Proposition 1.2 is called a Jordan-
Holder filtration of E. For a Jordan-Holder filtration 0=EjcE,c.--cE,=E,

define gr(E) to be e'a E,JE._,. Each E,/E,_, is called a component of gr(E).
i=1

Proposition 1.2 shows that gr(E) is independent of the choice of Jordan-Holder
filtrations.

Lemma 1.4. Assume that
00— F —E—E —0

is an exact sequence of coherent sheaves with Pg.(m)=Pg(m)=Pg(m). E is semi-
stable if and only if E' and E" are semi-stable.

Proof. Assume that E' and E” are semi-stable. It is clear that E is torsion
free. Let F be a coherent subsheaf of E. For F=F|/F n E', Pp(m)=<Pg.(m) because
of the semi-stability of E". Similarly, Pgqg{(m)=<Pg(m). Thus

Pe(m) = y(F(m))/r(F)=y((F n E")(m))/r(F)+ x(F(m))/r(F)
=r(F 0 EYPpqop(m)[r(F)+ r(F)Pp(m)/r(F)
<P (m){r(F nEYr(F)+r(F)/r(F)}=Pgm).

Hence E is semi-stable. Note that if E is semi-stable and if E” is a coherent quo-
tient sheaf of E with P (m)= P..(m), then E" is torsion free. Then the proof of the
converse is similar to the above and easier, and hence we omit it.

Corollary 1.4.1. If E is semi-stable, then so is gr(E).
The following notion is originally due to C. S. Seshadri ([18] and [5]).

Definition 1.5. Seimi-stable sheaves E,, E, on a non-singular projective
variety are said to be S-equivalent if gr(E,) is isomorphic to gr(E,).

Corollary 1.4.1 implies that every semi-stable sheaf is S-equivalent to one which
is isomorphic to a direct sum of stable sheaves.

Remark 1.6. 1) A stable sheaf E, is S-equivalent to E, if and only if E; is
isomorphic to E,.
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2) If one takes the results in [1] and the indecomposability of stable sheaves
into account, he knows that gr(E)= @ E,/E;_, is isomorphic to gr(E')= @E,/E

if and only if t=t" and there exists a permutatlon g of {1, 2,..., t} such that E,/E, .
2E;n/Esi)-1-

Let f: X—S be a smooth, projective, geometrically integral morphism of
noetherian schemes and fix an f-very ample invertible sheaf @,(1). Let (Sch/S) be
the category of locally noetherian schemes over S and let H(m) be a numerical
polynomial. Our main aim of this article is to study the following functor Z¥
of (Sch/S) to the category of sets:

For an object T of (Sch/S),

I, (T)={E|E is a T-flat, coherent 0y, ,-module with the property (1.7.1)}/~,
where ~ is the equivalence relation defined in (1.7.2).

(1.7.1) For every geometric point t of T, E®, k(1) is semi-stable and its
Hilbert polynomial is H(m).

(1.7.2) E~E'"if and only if (1) EXE’'®,,L or (2) there exist filtrations 0= E,
cE,c--cE,=E and O0=EjcE|c---cE,=E" by coherent Oy r-modules such
that for every geometric point t of T, {E;®,, k()} and {E;®,.k(1)} provide us with
Jordan-Holder filtrations of E®Mk(t) and E'®, .k(1), respectively, @E,/E, . I
T-flat and that @E,/E, = (@E/E )®,, L. for some invertible sheaf L onT

The equivalence class of E is denoted by [E].

For a morphism g: T'— T in (Sch/S), if E has the property (1.7.1), then so does
*(E) and, moreover, if E~E’, then g*(E)~g*(E’). Thus we obtain a map g* of
Z§,s(T) to Z§,s(T"). Itis obvious that ZY,s is a contravariant functor of (Sch/S) to
(Sets).
Let s be a geometric point of S. By the definition of Z¥ ¢, we have

(1.7.3)  Z¥,s(Spec(k(s)))={E|E is a semi-stable sheaf on X, whose Hilbert
polynomial is H(m)}/~, where E, ~E, if and only if E, is S-equivalent to E,.

§2. Semi-stable points of Gieseker spaces

Let ¥ and W be a finite dimensional vector space over a field k and let ¢,: V—
V®k[G] be the dual action of G=GL(V) on V. For a positive integer r, &, pro-
vides us with a dual action & of G on Hom, (A V, W)¥. Thus we obtain an action
o of G on P(Hom, (A V, W)¥) and a G-linearized invertible sheaf @(1).

Definition 2.1. The projective space P(Hom,(AV, W)¥) on which G=
GL(V) acts as above?’ and which carries the G-linearized invertible sheaf @(1) is

® The center of GL(V) acts trivially on P(V, r, W). Thus PGL(V)actson P(V,r, W). Though
the ¢(1) may not be PGL(V)-linearized, @(m) carries a PGL(V)-linearization for some positive
integer m.
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called a Gieseker space. We denote it by P(V, r, W) (see [5] §2 and [12] §4).

For an over field K of k, a non-zero element T of Hom, (A V, W)®,K =Homy
(A(V®,K), W®,K) gives rise to a K-rational point of P(V, r, W), which is denoted
by T, too. T is regarded as an alternating multilinear map of V®,K to W®,K.
For x,,..., x, in V®,K, the value of T at x; A--- Ax, is denoted by T(x,,..., x,).
If {e;} is a basis of V, then x; can be written in the form 3 x;e; and a K-valued
point g of G is represented by a square matrix (g;;). For the matrix X =(x;;), we
shall denote T(x,,..., x,) by T(X). Then, a(g, T)(X)=T(X -(g;;)

An injective homomorphism i: W— W’ of finite dimensional vector spaces
yields a surjective homomorphism

Hom, (A V, W) — Hom, (A V, W) — 0

From this, we have a closed immersion i,: P(V, r, W)= P(V, r, W) of Gieseker
spaces. Clearly i, is a G-morphism.

Lemma 2.2. Let G be a reductive algebraic k-group, X and Y be algebraic
k-schemes on which G acts and let j: X—Y be a closed immersion and a G-mor-
phism. Suppose that Y is projective over k and carries a G-linearized ample
invertible sheaf Oy(1). Then Xs(j*(Oy(1)))=j'(Y(0y(1))) and X5(j*(0y(1)))=
J7HY(0x(1))).

Proof. We may assume that the natural map R,=HY, 0y(n))-»R,=HX,
J*(Oy(n))) is surjective for all n>1. Consider the surjective homomorphism ¢: R=
k®(® R,)»R' =k®( @ R,) of graded rings. R and R’ have dual G-actions and

nz1 n21

¢ is a G-homomorphism. Let x be a geometric point of Xss(j*(@y(1))). Then
there exists an element s of R;¢ with some n>0 such that x is a point of X,. By
virtue of Lemma 5.1.B of [16], there exists a positive integer m such that s™ is con-
tained in ¢(RS,), say sm=¢(1). Since X=X, x is contained in j(Y)=Xm.
Thus j(x) is in Y*5(0y(1)), that is, Xs5(j*(0y(1)))< Y*5(0,(1)). The converse and
the assertion on stability are obvious. q.e.d.

Corollary 2.2.1. Let i: W—W’ be an injective homomorphism of finite
dimensional vector spaces. Then, a geometric point T of P(V, r, W) is semi-stable
(or, stable) if and only if i,(T) is semi-stable (or, stable, resp.) in P(V, r, W').

The above corollary means that we can extend W without disturbing the stabili-
ty of a point of P(V, r, W).

Definition 2.3. Let W, W,,..., W, be finite dimensional k-vector spaces. A
map ¢: W@, W,®, - ®,W,—» W is said to be admissible (to extensions) if ¢ is k-
linear and for all over fields K of k and for the map ¢: (W, ®,K)®x - ® x(W,®,K)
- W®,K induced by ¢, ¢px(x,;®:--®x,)=0 implies that one of x;’s is zero. When
¢ is admissible, we denote @Px(x;®:--®x,) by x o---ox,,.

Definition 2.4. Let K be an over field of k and let T and T’ be K-rational
points of Gieseker spaces P(V, r, W) and P(V', r, W’), respectively. T is isomorphic
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to T' if W=W’ and if there exists an isomorphism j: V®,K—V'®,K such that
T=T'- Aj (as points in P(V, r, W)). We shall denote an isomorphism by T=T".

In the case of V=V', T=T’ if and only if there exists a K-rational point g of
GL(V) such that a(g, T')=T.

Our present aim is to define the notion of extensions of points in Gieseker spaces
and study their properties.

Definition 2.5. Let K be an over field of kand let T, T’ and T” be K-rational
points of P(V, r, W), P(V', r', W) and P(V", r", W"), respectively. Let ¢: W’
®,W”"—W be an admissible map. T is said to be a ¢-extension or, simply, an ex-
tension of T” by T if the following conditions are satisfied;

1) r=r'+r",
2) there exists an exact sequence

0—s VKL V@K 2 V'®,K — 0

such that T(f(xq)..... f(x,)s Yiseos ¥p) = AT (X ooy X, )R T (g(y 1), g(y,r))) for
all vectors x,,..., x,, in V'®,K and y,,..., y,» in V®,K, where both side in the
above equality are regarded as points in P(Hom(x V’®,‘X V', W)V).

The exact sequence in (2) is called the underlying exact sequence of the exten-
sion. T’ (or, T") is called a subpoint (or, quotient point, resp.) of T.

The following plays a key role in the proof of Theorem 2.13.

Lemma 2.6. Let V, V' and V" be finite dimensional k-vector spaces with
dim, V =dim, V' +dim, V", r, ¥’ and r" be positive integers with r=r'+r" and let
¢: WRW'—>W be an admissible map. Suppose that Z' (or, Z") is a GL(V')
(or, GL(V"), resp.)-invariant closed subset of P(V', r', W') (or, P(V", r", W"), resp.).
Then there exists a GL(V)-invariant closed subset Z of P(V, r, W) such that for all
algebraically closed fields K containing k, Z(K)={Te P(V, r, W)(K)|T has one
of the properties (2.6.1), (2.6.2)}.

(2.6.1) T is ¢-extension of a T" in Z"(K) by a T’ in Z'(K).
(2.6.2) There exists an injection f: V'®,K—-V®.K such that T(f(x,),...,
f(x); Viseens Ve)=0 for all vectors x,..., x,. in V'®,K and y,,..., y,» in V@, K.

Proof. Let n=dim,V, n'=dim, V' and n"=dim, V". There exists an open
set U’ (or, U”) of Hom(V’, V)=Ap" (or, Hom(V, V")=A}"", resp.) such that for
all algebraically closed fields containing k, U'(K)={fe Hom(V'®,K, V®,K)|f is
injective} (or, U"(K)={ge Hom(V®,K, V"®,K)|g is surjective}, resp.). For
these U’ and U”, we can find a closed subscheme U, of U’ x ,U” such that Uy(K)=
{(f, 9) e U(K)x U(K)|gf =0}. Letus fix a basis e,..., e,.(e;,..., e, Or €7,..., &)
of V' (Vor V", resp.). Using these bases, geometric points (f, g) of Ug, xi,..., X,
of V' and y,,..., y,» of V are represented by matrices (A, B), (x| ,-.s X1p)seer (X1 ¢,
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vons Xpop)@nd (¥ yq,eees Vip)seoos (Wpngseens Vyrn)s TEPECtively, where A (or, B) is a matrix
of n"xn (or, nxn”, resp.). If weset X'=(x;;), Y=(y;;), then T(f(x}),..., f(x}.),
Yiseerr Ypo) is represented by T(X'A4, Y) for a geometric point T of P(V, r, W).
Similarly, for a geometric point T” of P(V", r", W"), T"(g(y,),.... g(y,»)) is repre-
sented by T"(YB).

Sublemma 2.6.3. There exists a closed subset F of Uyx ,Z' x P(V,r, W)x ,2Z"
such that for all algebraically closed fields K containing k,

F(K)={(A, B, T". T, T")I(1) T(X'A4, Y)=T'(X")-T"(YB)
forall X', Yor 2) T(X'A, Y)=0  forall X' Y}.

Proof. Pick K-valued points (4, B) of Uy, T' of Z', T" of Z" and T of P(V,
r. W). Let L(a, b) be the set of sequences | of integers [,,..., I, with 1</, <---<
ly<a. For | in L(n, r) (I in L(n', ') or I" in L(n", r")), e/(e}” or e}, resp.) de-
notes ef, A ... Ae) (e}, A...Ae}Y, or elY A...AelY ., resp.). where {e)...., er}({ey,
et or {efV..... e,’}, resp.) is the dual basis of {e,..., ¢,}({e},..., e,.} or
{el...., e,-}, resp.). Then, using homogeneous coordinates, we can write

T= Z)u(l)je}’®wj, T'= 3 u'(l);e’@w,

lEL(!l,r "eL(n’,r")
J J

"_ nepry nV ”
= T e e
Y

where {w;} ({w}} or {w}}) is a basis of W (W' or W", resp.). We have, by Laplace’s
expansion theorem,

T(X'4, V)= 2 u){ 3 (=DIIX"HU)YU")}w;

leL(n,r) 1" eL(n,r")
J 1"eL(n,r"”)
=rul”

’

= > uh;{ X (=DtrK

leL(n,r) 1" eL(n,r') k'el(n’,r")

J 1"eL(n,r")
=rvi”

Ak, )XY U) Y w;
= X R T, AXK) YUy

k’eL(n’,r’)

1" €Ln,r")
J
Rk, 1", j, T, A)= (= DIFerriy( g I7y,Ak, 1),
I'eL(n,r’)
o=y

where for a matrix M of ax b and for subsets m, m’ of {l,..., a}{l,..., b} with
#m=#m’', M(m, m') is the minor determinant of M defined by m and m’ and if
#m=a, M(m, m’) is denoted by M(m’), and where for a subset I'={l, <---</;,}
of I={l,<---<1,}, |I, I'| denotes the integer r'(r'+1)/2+i,+---+1i,. On the other
hand, we obtain

T'(X)= % , u'(k");X'(k')w; and

k'eL(n’,r
J
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T'(YB)= ; “)u”(k")j(YB) (k"W

“eL(n”,r
J

= ¥ u"(k”)j{lud; ” B(I", k)Y (I")}wi.

k" el(n”,r")
J

Thus, if ¢(w} @wj-)=2c(j', j", )w; with (', j*, j) € k, we have
J

T(X)T(YB)= ¥ Ok, I j T, T B)X'(k)Y(I")w;,
teLini)
J

where Q(k'. I".j, T, T", B)= Sy c(j', " pu' (k") pu"(k");-BU", k").  Now
k”eL(n”,r") ;
Linsy
T(X'A, Y)=0 for all X" and Y if anclj only if R(K', 1", j, T, A)=0 for all k' e L(n’,
¥, I"e L(n”, ¥") and for all j. Note that T'(X")eT"(YB)#0 for some X' and Y.
Therefore, we see that

P(klh kIZ‘ I’l,’ I"w .ilvj2~ T, Tla T”s Aa B)=
Q(ky, 15,y T', T, B)R(k3, 13, j,, T, A)—
Q(ky, 13, j2. T, T, B)R(KY, 13, jy, T, A)=0

for all k}, kj, 1%, I3, j, and j, if and only if (1) T(X'A, Y)=T'(X")eT"(YB) for all
X" and Yor (2) T(X'A4, Y)=0 for all X' and Y. P(ky, k3, I, 15, j1, jo. T, T', T”,
A, B) is a polynomial of o(l, k', k", j, j'. j")=u(l);u’(k");u"(k");» a;; and b;; over k
and it is homogeneous with respect to o(l, k', k", j, j', j"). Thus if F is the closed
set defined by the ideal generated by {P(ki, k3, 1%, 13, j,,j.. T. T', T", A, B)},
then F is the desired closed set. q.e.d.

Now let us come back to the proof of Lemma 2.6. Let o (¢’ or ¢”) be the ac-
tion of GL(V) (GL(V') or GL(V"), resp.) on P(V, r, W) (P(V', ¥', W’) or P(V", 1",
W"), resp.). Define an action 1’ (or, ") of GL(V') (or, GL(V"), resp.) on U’ (or,
U", resp.) as follows;

for all geometric points g (or, 1) of GL(V') (or, GL(V"), resp.) and for all geo-

metric points 4 (or, B) of U’ (or, U", resp.), 7'(g, A)=gA (or, t"(h, B)=B(h™?),

resp.).
Then, for H=GL(V')x ,GL(V"), we have that U, is H-invariant with respect to the
action 1’ x ;7" and that

T(X'-7(g, A). Y)=T(X'g-A, Y)=T'(X'g)-T"(YB)
=0'(g, T')(X")ea"(h, T")(Y-1"(h, B))
or T(X'-7(g, A), Y)=T(X'g- A, Y)=0

according as T(X'A, Y)=T'(X")eT"(YB) for all X', Yor T(X'A4, Y)=0 for all X",
Y. We see therefore that if (4, B, T', T, T") is a geometric point of F, then so is
(t'(g, A), t"(h, B), a'(g, T'), T, 6"(h, T")) for all geometric points (g, h) of H be-
cause Z' (or Z") is GL(V') (or, GL(V"), resp.) invariant. Let & be the above action
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of H on F. Then, for this &, F is H-invariant and the projection p of F to U, is an
H-morphism. Moreover, the projection g of F to P(V, r, W) is also an H-morphism
with the trivial action of H on P(V, r, W). On the other hand, U, is a principal
fibre bundle with group H over the Grassmann variety Gr(n, n’). Since p is pro-
jective and there exists a p-ample invertible sheaf with an H-linearization, we obtain
a scheme Q which is projective over Gr(n, n') and over which F is a principal fibre
bundle with group H (see [14] Proposition 7.1 and its proof). Thus the following
commutative diagram is obtained;

PWV,r, W)e—2—_F 2 , U,

N

Q ——Gr(n, n)

It is clear that Z=g(F)=4q'(Q) is the desired set. Since Q is projective over Gr(n,
n'), it is projective over k. Thus Z is closed in P(V, r, W). We have only to show
that Z is GL(V)-invariant. To do this, pick K-valued geometric points g of GL(V)
and T of Z. There exist K-valued geometric points T’ of Z', T” of Z" and (A4, B)
of U, such that

(1) T(X'A4, Y)=T'(X)T"(YB) for all K-valued X' and Y
or (2) T(X'A, Y)=0 for all K-valued X’ and Y.
In case (1),
a(g, TY(X'A(g™), Y)=T(X'4, Yg)=T'(X")-T"(YgB)
and we have an exact sequence
(*) 0—VKLLLVR,K L, V'®,K —0

because of Ag~'gB=AB=0. Therefore, a(g, T) is a ¢-extension of T” by T’ with
the underlying exact sequence (*). In case (2),

a(g, T)(X'Ag~1, Y)=T(X'A, Yg)=0,
whence o(g, T) and Ag~! have the property (2). q.e.d.

For the convenience of readers, let us recall some of notions and results in [5]

(cf. [12] §4).

Definition 2.7. Let K be an algebraically closed field containing k and let T
be a non-zero element of Homg (A (V¥ ®,K), W®,K) or a K-rational point of P(V,
r, W). Vectors xq,..., x4 in V®,K are said to be T-independent if there exist vec-
tors X, q5.-.» X, in V®,K such that T(x,,..., x,)#0. A vector x in V®,K is said
to be T-dependent on xq,..., x5 if T(xq,..., X4y X, Vai42,---, ¥,)=0 for all vectors
Va+20e-5 Yo in V®,K. The vector subspace of V®,K formed by vectors which are
T-dependent on x,,..., x, is called the T-span of x,,..., x; and it is denoted by «x,,
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Using these notions we have

Proposition 2.8. Let K be an algebraically closed field containing k.

1) A point Tin P(V, r, W)(K) is properly stable (or semi-stable) with respect
to the action & of PGL(V) if whenever x,,..., x, in V®,K are T-independent, then
dimy «xy,..., x4 ¢ <(d/r)dim, V (or, dimg K x,..., X4 ¢ <(d[r)dim, V, resp.).

2) For a point T in P(V, r, W)(K), assume that there exist a vector subspace
U of V@K and an integer d such that T(Xq,..., X441> Va+2--+» ¥»)=0 whenever
Xiseees Xg4q are in U and that dimgU>(d/r)dim,V (or, dimg U>(d/r)dim, V).
Then the T is not semi-stable (or, not stable, resp.).

Our main idea of this section is the following.

Definition 2.9. Let T be a K-valued geometric point of P(V, r, W). T is said
to be excellent if it enjoys the following two properties:

1) For each vector subspace V' of V®,K and each positive integer s, (a) and
(b) are equivalent to each other;

a) T(Yire-er Voo Zss15---> 2,)=0 for all z;, ..., z, in V®,K whenever y,,..., y,
are contained in V',

b) there exists a set of T-independent vectors x,..., X, in V®,K such that
s>d and «xy,..., X;» 2V,

2) For every subpoint T’ of T, if x is T'-dependent on T’-independent vectors
X1,..., Xy, then f(x) is T-dependent on f(x,),..., f(x,), where f is the injection of the
underlying exact sequence to define the subpoint T’ of T. (Note that f(x,),...,
f(x,) are T-independent.)

Excellent points have nice properties. In the first place,

Proposition 2.10. Suppose that T has the property (1) in Definition 2.9.
Then T is semi-stable (or, stable) if and only if

dimg <Xxy,..., X;» < (d/r)dim, V
(or, dimg < x4,..., X, ¢ <(d/r)dim, V, resp.),
whenever x,..., x, are T-independent.

Proof. “‘If” part is Proposition 2.8, (1). To show ‘‘only if” part assume that
there exist T-independent vectors x;,..., x,; such that dimg «x,,..., x;> > (d/r)dim, V
(or, dimg<«xy,..., x;»>(d/r)dim, V). By the property (1) of Definition 2.9,
T(yysees Yas1> Zgs20---r 2,) =0 for all z4,,,..., z, whenever y,,..., y;4, are in «x,,
..., X4 1. By virtue of Proposition 2.8, (2), we know that T is not semi-stable (or,
stable, resp.). g.e.d.

In the next place,

Proposition 2.11. Let T, T’ and T" be K-valued geometric points of P(V, r,
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W), P(V',r', W) and P(V",r", W"), respectively. Assume that dim, Vjr=dim,V"/r’
=dim, V"[r", T is excellent and that T' (or, T") is a subpoint (or, quotient point,
resp.) of T. If T is semi-stable, then so are both T' and T".

Proof. We may assume that there exists an admissible map ¢: W' ®,W"'—W,
Tis a ¢-extension of T" by T’ and that T is semi-stable and excellent. Let

0 — V/®kK —-f—-) V®kK —-—y—b V”@kK _ 0

be the underlying exact sequence. Pick T"-independent vectors j,=g(y,),..., J4=
g(yy). Since T'#0, we can find vectors x,,..., X,- in V'®, K with T'(x,,..., x,.) #0.
Thus there exists vectors z,,,..., z,» in V®,K such that T(f(x,),..., f(X,), Vis-ees
Vas Zaw1seees Ze)=T'(Xg5eets X0 T " (Fsens Ja» 9(Zai1)se-or 9(2,))#£0.  Thus f(x,),...,
f(x.), ¥15..., ¥4 are T-independent. If g(z) is contained in <« j,..., J;>
then T(f(xy).ees f(X0)s Viseeos Yasr Zo Waaseees W) =T (X 1,00y X,)0 T"(F1yeevs Var 9(2),
IWas2)s.ees gw,))=0 for all wy,,,..., w,» in V®,K. Hence z is an element of
Kf(x1)seees f(X)y Yiseeer Ya» 7. Therefore g~ («y,,..., j4>» ) is a vector sub-
space of «f(xy),.--, f(%X,))s Vis--e» Ya>»> 7. Since T is semi-stable and excellent, we
have, by Proposition 2.10,

dimg < yy,..., Jg»> po=dimgg (K Jyeery Jg>> o) —dim, V'
<dimg < f(X1)yeees f(Xp)y Viserrr Ya» p—dim, V'
<{(d+r)dim,V}/r—(dim,V —dim, V")
={{d+r—r)dim, V"}/r' —(r[r")dim, V" +dim, V"
=(d/[r")dim,V".

Therefore, T” is semi-stable by virtue of Proposition 2.8, (1).
Next we shall prove our assertion on T'. Let x,,..., x; be T’-independent
vectors in V'®,K. By virtue of the property (2) of excellent points, we have the

inclusion «xi,..., X;» . S f~H(<f(xy),..., f(x5)> ). This and the fact that T is
semi-stable and excellent imply the following;

dimg € Xq,..0; X3» 0 <dimg < f(X))seees f(X)> 1
<(d/r)dim, V =(d/r’)dim, V.
Hence T’ is semi-stable by virtue of Proposition 2.8, (1). q.e.d.
A converse of the above proposition holds good.

Proposition 2.12. Let T, T' and T" be K-valued geometric points of P(V, r,
W), P(V', r', W) and P(V", r", W"), respectively, and let ¢: W' W' W be an
admissible map. Assume that dim, V'[r'=dim, V/r=dim, V"[r", all of the T, T’
and T" are excellent and that T is a ¢-extension of T" by T'. If both T' and T”
are semi-stable, then T is semi-stable.

Proof. Let x,..., x; be T-independent vectors in V®,K and let
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0——VK-LSVRK 25 V'®K—0
be the underlying exact sequence of the ¢-extension T of T" by T'. Set
SUKX ey xg» )=V
g(KX sy X4 1)=Vg.

Let {g(y)...., g(y4~)} be a maximal set of T"-independent vectors in Vg and let
{z,,..., zz} be a maximal set of T’-independent vectors in V. Then there exist
vectors zg g 1,..., zp in V'®K and ygiq,.... ¥» in V@K such that T'(z,..., z4,
Zgpisees 2)#0 and TGy )seees 9Wa)s 9Wars1)ses G #0. Since T(f(zy),...,
f@)s Yiveoos ¥e)=T(215e0s 2,0 TGV 1)sees gD #0, f(210),--0s f(24)s Yise-os Yar aTE
T-independent. By the property (1) for T being excellent, we get the inequality
d'+d"<d. On the other hand, if z is in V{, then it is T'-dependent on z,,..., z4.
Thus Vi «z,4,..., 24> 1., and hence

dimgVo<(d'[r')ydim, V'
because T' is semi-stable and excellent. Similarly, we have
dimgVg<(d"/r")dim, V",
Therefore, the following inequality is obtained;
dimg<xy,..., Xy p=dimgVy+dimgVy
<(d'[r)dim, V' +(d"[r")dim, V" ={(d’' +d")dim, V}/r
<(d/r)dim, V.
This implies that T is semi-stable by virtue of Proposition 2.8, (1) g.e.d.
The following is one of goals of this section.

Theorem 2.13. Let ¢;: W,_,®,W;— W, be admissible maps (1<i<t, Wy=k),
0<r,<---<r,=r be a sequence of integers and let F; be a GL(V))-invariant closed
set of P(V, riy W)) (1<i<t). Assume that for every algebraically closed field K
containing k, all the points of F(K) are excellent and thatdim,V,/[r,=---=dim,V,/r,.
Let S; be a stable, excellent point in P(V}, I, W{)(k) which is k-rational, where
li=r;—r;_, and k is the algebraic closure of k. Then, there exists a GL(V,)-
invariant closed set Z,=Z(S,..., S) of Fy=F(0(1)®0g,) such that for every
algebraically closed field K containing k,

Z(K)={Te F(K)|T has the following property (%)} .

(%),:  There exists a K-valued geometric point T, in each F§*=F;(0(1)®0,)
such that T, =S, T; is a ¢extension of S; by T,_; 2<i<t) and T=T,.

Proof. Our proof is by induction on t. When t=1, then T=S; and hence
there exists a K-valued point g of GL(V,) such that a(g, S;)=T. Since S, is stable,
the GL(V,)-orbit Z of S, is closed in F§*. Clearly, Z is the desired closed set.
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Assume that the theorem holds for t—1. Then there exists a GL(V,_)-invariant
closed subset Z,_; of (F,_,)** such that for all algebraically closed fields K con-
taining k, Z,_ (K)={Te F,_,(K)|T has the property (x),_,}. If Z,_, is the closure
of Z,_, in F,_,, then it is a GL(V,_,)-invariant closed subset of F,_,. For the
GL(V)-orbit A of S, in P(V,, I, W}), let A be the closure of A4 in P(V,, 1, W)).
Then A is a GL(V})-invariant closed subset in P(V}, I, W}). By virtue of Lemma
2.6, there exists a GL(V))-invariant closed subset Z, in F, such that Z(K)={Te
F(K)|(1) Tis a ¢extension of a T” in A(K) by a T’ in Z,_,(K) or (2) there exists
a injective linear map f: V,_;®,K—-V,®,K such that T(f(x,),..., f(x,,_), V1,
»)=0 for all x,,..., x,_, and y,,..., y,}. The GL(V)-invariant closed subset Z,=
Z,n Fss is the desired one. In fact, if T is contained in Z,(K) and if T has the prop-
erty (2) above, then there exists a set of T-independent vectors {xi,..., x,} in f(V,_,
®,K) with d<r,_; and «x,..., x,» 2 f(V,_,®;K) because T is excellent. We
have that dimg«x,,..., x;>» r>dimV,_, =(r,_/r)dim,V,>(d[r)dim,V,, which con-
tradicts the fact that T is semi-stable (see Proposition 2.10). Thus, if T is a point
of Z(K), then T is excellent, semi-stable and moreover, a ¢,extension of a T” in
A(K)by a T'in Z,_(K). Since T is excellent and since dim, V,/r,=dim, V,_,/r,_,
=dim, V}/l,, we know that T’ and T" are semi-stable by virtue of Proposition 2.11.
Since AnNPWV,, 1, W)s=A and Z,_,n(F,_)*=2Z,_,, T' (or, T") is an element
of Z,_(K) (or, A(K), resp.). Thus T’ has the property (*),_, and T'=~S,, which
implies that T has the property (x),. Conversely, assume that an element T of F,(K)
has the property (*),. Then T is a ¢,-extension of T” by T’ such that T’ has the
property (x),_, and T"=S,. Since all the T, T’ and T" are excellent and since T’
and T” are semi-stable, T is semi-stable by virtue of Proposition 2.12. Thus T is
contained in Z(K)=Z,(K) n Fs5(K). g.e.d.

Our next task is to find typical closed orbits in P(V, r, W)ss.

Definition 2.14. Let ¢: W'® ,W"—>W be an admissible map and let T, T’
and T” be K-valued geometric points of P(V, r, W), P(V', ¥', W) and P(V", ",
W"), respectively. Assume that T is a ¢-extension of T” by T’ and let

0— V&K L VRLK —4s V'®K — 0

be the underlying exact sequence of the extension. T is said to be a ¢-direct sum
of T' and T" if there exists a linear map i: V'®,K—-V®,K such that g-i=idy.gx
and T((yy),-.., i(Yg)s Wei 15.-., w,)=0 for all wy,,,..., w, in V@, K whenever s>r".

Lemma 2.15. Let a K-valued geometric point T of P(V, r, W) be a ¢-extension
ofaT" in P(V", r", W)(K) by a T' in P(V', ', W)(K) and let

0——V®KIVRK s V'®K — 0

be the underlying exact sequence of the extension. Then T is a ¢-direct sum of
T’ and T" if and only if the following (2.15.1) holds;

(2.15.1) there exists a linear map h of V'®,K to V®,K such that g-h
=a(idy-gx) for some aeK,a#0 and that T(f(x))+h(y,),.... f(x)+h(y,)=
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(= DRFicE*in T (x, oy % )0 T (Vjyeeees Vjow)» Where the sum runs over all in-
dices iy <-+<ip, jy<-++<jpr With {i,ees iy, jieer, o} ={1,..., r} and where R=
r(r' +1)/2.

Proof. Assume that T is a ¢-direct sum of T' and T”. Then

T(f(x)+i(y o). f(x) +i(yr))
= (= Dt T(f (X)) S5 1Y) ees 85,0,

where the sum runs over all indices i} <---<ig, j; <---<j,—s With {i},..., iy jiseees
Jeesy={l,....r}. If s>r', then T(f(x;),.... f(xi), i(¥;)s--rr i(y;._ N=T'(xi5---
x;,)°T"(0,..., 0, yjuees ¥j,_)=0. If s<r’, then the assumption that T is a ¢-direct
sum of T’ and T” implies that T(f(x;),..., f(xi), i(¥;),--s i(y},_))=0. Thus we
obtain the equality in (2.15.1). Conversely, assume that (2.15.1) holds. Then, for
i=(lja)h, g-i=idy.gx. Hence V®,K=f(V'®K)®h(V"®,K). Thus every vec-
tor in V®,K can be written uniquely in the form f(x)+h(y). By the assumption,
we obtain that if s>r",

T3V 1)seees U(Ys)y Wet15e0es Wy)
=T(h(@ 'y )5y By, f(Xg 1) +A(Yss1)senes S22
+ h(y,))=0.
q.e.d.
A direct sum is independent of the choice of extensions.

Lemma 2.16. Let T' be K-valued geometric points of P(V',r', W) and
P(V", r", W"), respectively, and let ¢: W, W"'—>W be an admissible map. If
T, and T, are ¢-direct sum of T' and T", then T, =T,. Thus a direct sum of T’
and T" can be denoted by T'@T".

Proof. Let

0—V®K2VeK 2 V'®,K—0
«—
Si
be the underlying exact sequence for the extension T; and let s; be the section of v;
which makes T; to be a ¢-direct sum of T’ and T”. Fix a basis ej,..., e, (or, €],
..., en) of V' (or, V", resp.). Set
uge}) if 1<j<n’
al =
sef—n if n'<j<n.
Then {a{",..., al’} forms a basis of V®,K. There exists a K-valued point g of
GL(V) such that a{Vg=a®. For vectors x,,..., x, in V'®.K and yy,..., y, in V"
®,K, we obtain

Ty(uy(x)+5,(Y)heros uy(x)+51(3,)
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=2 (= DR T e X0 T (Ve V3,)

=Ty (uy(x;)+52(3 ) os uy(x,)+55(3,)
=T((uy(x)+5:(y))g,..., (uy(x,)+3,(y.)g)
=o‘(g, TZ)(“](XI)'I'SI(.VI)"'M ul(xr)+sl(yr))»

where the sum in the second line of the above equality runs over all indices i, <«
<y Jy <+ < with {iy,..., iy, ji,eees jop ={1..... r}.  Thus we have T, =a(g, T),
that is, T, =~ T,. q.e.d.

Let ¢;: W,_,®,Wi;—>W, be a sequence of admissible maps (1<i<t, Wy=k).
Then ¢ =¢;- (i, @W)) -+ (p,@W,R---®@ W) defines an admissible map of
Wi® @, W;ito W. Letl,...,I bea sequence of positive integers and let V;
be a k-vector space of dimension m;. Put r,=1,+---+I;, and V;=V|@®---@V}, then

1
dim, V; =j§1 m;=n; and we have a natural exact sequence with a splitting map s;:

(2.17.1) 0 — Vi1 @K Lo Vi@uK L5 Vi@ K — 0

Si

A decomposition I of type [,,..., I; is a sequence of ordered subsets I,,..., I,
of integers with the following properties:
1 Lnli=¢ifk#i,(2)I;U---Ul;={l,...,r;},(3) #I;=1. The set of decompo-
sitions of type Iy,..., [; is denoted by D(l,,..., [;). For a decomposition I={I,...,

I;}, (= 1)! denotes the signature of the permutation( Do Ly ey Lyt 1oy rf),
a”,...,a,,l,...,aj, R aj,j

where {a;; <--<ay} is I. If I={l,,...,I;} is a member of D(l,,..., [;) and if
Xi,..., X,, are vectors, then x, denotes the sequence of vectors x,,,..., X,,. Where
{a,<--<ay}is 1.

Assume that a K-valued point T of P(V, I;, W)) is given for each j. We
shall define a K-valued point T; of P(V,, r;,, W) as follows: Let {x,...., x,} be a
set of vectors in V;®,K, then each x; can be written uniquely in the form x{+...
+x% with x{W e V,®,K. Then
217.2) Tixpe )= % m(—l)'qb“’(T'.(x‘f,’)@T’:(x‘,i')@---®T}(x‘f,’n.

Remark 2.18. (1) The definition of T; is independent of the choice of Wi,...,
W;_,. To define T;, we need only an admissible map ¢: Wi ®, - Q@ Wi W,

(2) A permutation of Vi,..., V; may cause T; to change —T;. However, as a
point of P(V,, r;, W), it has no influence on T..

Lemma 2.19. The T, is a ¢'D-extension of T; by T,_, with the underlying
exact sequence (2.17.1). Moreover, T; is a ¢D-direct sum of T,_, and T..

Proof. Let us compute T,(fi(x{)...., fi(Xe_ )y Yiseenn 1) 1If D'(D4,..., I) is the
set of decompositions of type /i,..., I; such that I,={r;_, +1,..., r;}, then we have
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T(f(xl | rg 1) .}1*"‘* yl,')
= 3 (=DINTH® @ T (x5

®Ti(yiP,..., »i)

where fi(x)=x{"+-.+x§1" with x{ eV, ®K and where yi=yi 4 4y
with y{ e V,®,K. Therefore,

T(fi(X)eeos SlXeiZ Do ¥iaeees V1)
= p (— 1) "THx) @ ®T -y (x51)

leD(l,,..., li-1)
T (¥4, ¥i)}
=¢f{T;_|(X|,..., ,\',,._I)®T}(g;(,l’|),---, g.'(,l’,,))}~

This shows that T; is a ¢‘D-extension of T} by T,_,. By virtue of the definition of
T, it is obvious that Ti(s{y)i.... s{¥), Wiy W, ) =0 for all vectors wy,..., w, _,
in Vi@, K if 1>1. q.e.d.

Let 7 be a permutation of {0, 1,..., f}. Assume that another system of admis-
sible maps ¢;: W’,’,“,_1®kW;,(,,->W,,(,, (1<i<t, Wio,=k) is given. Then, as is
stated before (2.17.2), they define an admissible map ¢V Wi |, @ @ Wirin—
Wi, Since Wi, @@ Wiy Z W ® @ Wi, ¢') provides us with an ad-
missible map " of W ®,---®,W, to Wi, If W, , =W and if ¢! =y, then
Lemma 2.16, Remark 2.18 and Lemma 2.19 yield

Corollary 2.19.1. Let V be a k-vector space of dimension n,. Direct sums
(-((T®THET®)PT,) and (- ((T,,“)@ T, (2))®Tn(3))@ )@Tn(,)) exist
in P(V, r,, W)(K). Moreover, both are isomorphic to T A h), a fortiori, they are
isomorphic to each other over K. where h is a K-isomorphism of V®,K to V,®,K
and where V, is defined in (2.17.2).

The above allows us to employ the following notation.

Definition 2.20. We denote (-~-(T'@TH@T)®--)®T;) by T):®T,®---®
T

Every extension can be specialized to a direct sum up to isomorphism. Pre-
cisely, we have

Lemma 2.21. Let V, V' and V" be k-vector spaces with dim, V=dim, V'+
dim, V". ¢p: W@, W"=>W be an admissible map and let r, ' and r" be positive
integers with r=r'+r". Let T. T' and T" be K-valued geometric points of P(V,
r, W), P(V', r', W) and P(V", ¥, W"), respectively, and let R be a discrete valua-
ation ring over K with residue field K. Assume that T is a ¢-extension of T" by
T'. Then there exists an R-valued point T of P(V.r, W) such that (1) T=~T over
L and (2) Tmodn is a ¢-direct sum of T and T", where L is the quotient field
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of R and where n is a uniformanizing parameter of R.
Proof. Let s be a section of the underlying exact sequence
0 — V&K VK V'®K—0

of the extension T. Put U,=u(V'®K) and U,=s(V"®,K), then VR.K=U,®
U,. Fix a basis {e{",..., e[V, e{?,..., €2’} of V®,K with e{Ve U, and ePeU,.
Then {8V =¢{"®]...., &' =el'®1, &2 =2 ®1,..., 82 =2’ @1} forms a basis of
(V®iK)®kL=V,. Let g be the automorphism of ¥, such that g(x+y)=x+ny
for xe Uy®kL,ye U,®@«L. Set Ty=0(g,T). For z;=x;+y, | <i<r with x;e U,
®xL and y;e U,®L,

Ti(zysuens z)=T(x{+ 7y (..., X, +7Y,)
r . .
= Zo 2= DR T (g o X T T )
5=
r' n
— Z(’) Z(—-])S(‘H’1)/2+"+"'+“‘71"-ST(X,-|...., Xis yj‘““’ yjr—:)
e

bécause T is a ¢-extension of T” by T, where the sums of the second and the third
equalities run over all indices iy <---<iy j; < - <j,_; With {i,.c0, Qs jiyeees joost =
{1,....r}. Thus, as a point of P(V, r, W)(L), T, =T with

T(Zl ..... Zr)=Z(_ I)"("""Vz“"""'“"T(,\‘i‘,.... Xion Voo )"j,.»)
r' =1
+a( X TSI (= DD ST, L X Vippeos Yie s
s=0

where the sum runs over all indices as before. Thus, under the same notation as
in the proof of Sublemma 2.6.3,
T= Z ll(ll, lu)j(é;’”v/\é(l’z')v)®"'j

1'eL(n’,r")
l”eL(r.r".r")
J

r’=1
+ X s s w1 ;P AERPY)@wy,
s=0 1”eL(n’,s)
I”eL(n’:,r—s)

where all the u(l’, I");'s are elements of K. Thus T is an R-valued point of P(V, r,
W) and

T=Tmodr= Y 1");(efPV A ePV)@w;,
1”eL(n’,r")
e A A
J

which implies that for zj= f(x})+s(y}) with x;e V'®,K and y;e V'®,K,
T(Z',,..., z;) — Z( — D2 it T(f(x},),...,
Sxi), (v, s(r50)).

Since T is a ¢-extension of T” by T', we have
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T(Z'l,..., z;) = Z( _ l)r’(r’+1)/2+i,+...+i,,T,(x;l,m’ xi,,)°T”(.VIj,,---7 .ern)’

where the sums in the above two equations run over all indices iy <:- <ip, j;y<--
< o With {iq,eees s Jraeens job={1,0c, 1} q.e.d.

Now we come (o another goal of this section.

Thorem 2.22. Under the same situation as in Theorem 2.18, assume that
Z(S,,.... S)) is not empty, then GL(V))-orbit o(S,,..., S,) of S,®---®S, is a unique
closed orbit in Z(S,,..., S).

Proof. First of all, our assumption implies that every Z(S,,..., S;) is not empty.
Let us prove the theorem by induction on t. If t=1, then Z(S;)=0(S;). Thus we
have nothing to prove. Assume that our assertion holds for t—1. Let o be a closed
orbit in Z(S,,..., S)®,K with K an algebraically closed field K containing k. Since
every point of o(K) is an extension S, by T’ in Z(Sy,..., S,_;)(K), there exists a point
of T of o such that a specialization of T is T'®S, by virtue of Lemma 2.21. Since
F, is proper over k, T'®S, is a point of F,(K), whence it is in the set Z(S,,..., S,
(K). Since o is closed in Z(S,,..., S)®K, T'®S, is a point of o(K), which implies
that T T'@®S,. By the induction hypothesis, we can find a point T in Z(S,,...,
S,,) such that 7'~ T’ and a specialization of T’ is S,®---®S,_;. Since Tx=T"
@S, and since (S,®---®S,_,)®S, is a specialization of T'®S, (see the proof of
Lemma 2.21), we see that TS, ®---®S, by the same argument as above. q.e.d.

§3. Strictly e-semi-stable sheaves

In this section, we shall introduce the notion of strictly e-semi-stable sheaves
and study its property. If the family of the classes of semi-stable sheaves with a
fixed Hilbert polynomial on the fibres of X over S is bounded, the results of this
section are not necessary in the sequal.

From now on, we shall fix the following situation:

(3.1) Let S be a scheme of finite type over a universally Japanese ring = and
let f: X—S be a smooth, projective, geometrically integral morphism such that the
dimension of each fibre of X over S is n. Let 04(1) be an f-very ample invertible
sheaf such that for all points s in S and all integers i>0, H{(X,, 0,(1)®0y,)=0.

As is stated in § 3 of [12], the last condition in (3.1) is only for convenience’ sake.

Definition 3.2. Let e be a non-negative integer and let E be a coherent sheaf
of rank r on a geometric fibre X, of X over S.

1) E is said to be e-stable?’ (or, e-semi-stable) (with respect to Ox(1)) if it is
stable (or, semi-stable, resp.) (with respect to Ox(1)) and if for general non-singular
curves C=D,----- D,_y, Dy,..., D,_; €|0x,(1)], every coherent subsheaf of E®,, .0¢

3 The definition of e-stable (or, e-semi-stable) sheaves differed from this in [12] Definition 3.1.
This definition seems to be better. The results on e-stable (or, e-semi-stable, resp.) sheaves in
[12] hold good under this definition, too.
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of rank 1 (1<t1<r—1) has a degree <t{d(E, Ox(1))/r+e}.
2) E is said to be strictly e-semi-stable if it is e-semi-stable and if every co-
herent quotient sheaf E’ with Pg(m)= Pg(m) is e-semi-stable.

Remark 3.3. If E is e-stable, then it is strictly e-semi-stable.

As an immediate consequence of the definition of e-semi-stability, we have the
following.

Lemma 3.4. For a geometric point s of S, let
00— E —E—E'"—0

be an exact sequence of coherent sheaves on X,. Assume that Pp(m)=Pgm)=
Pg.(m).

1) If E" and E" are e-semi-stable, then so is E.

2) If E is e-semi-stable, then E' is e-semi-stable and E" is r(E)e-semi-stable,
and hence E is strictly r(E)e-senti-stable.

Proof. For semi-stability. our assertions are proved in Lemma 1.4. Choose
a non-singular cirve C=D,-----D,_,, D;€ |04 (1)| so generally that the sequence

O —_— E/®0C . E®0C - E”®0C — 0

is exact and that the condition in Definition 3.2 holds good for E or E', E” accord-
ing as E is e-semi-stable or E' and E” are e-semi-stable.

1) Let F be a coherent subsheaf of rank t (1<t<r(E)—1) of EQ0.. Set
F'=u~'(F)and F'=0(F). Then we have

d(F)=d(F')+d(F"), t=r(F)+r(F")
A(F"Y<r(F)d(E', Ox(1))/r(E)+r(F')e
d(F") < F(F)(E", Ox(1D)/r(E")+ H(Fe.
Combining these, we obtain
d(F)<t{d(E, 0,(1))[r(E)+e}

because d(E')/r(E')=d(E)/r(E)=d(E"){r(E").
2) Let F’ be a coherent subsheaf of rank t' (1 <t'<r(E')—1) of E®0,. Then
we have

d(F')<t{d(E, Ox(1))/(E)+e} =t'{d(E’, Ox(1))/F(E")+e}.

Next let F” be a coherent subsheaf of rank " (1 <t"<rHE")—=1) of E'®0c. Set F=
v (F"). Then

d(F)=d(F")+d(E')
d(FY<(HE') +1") {d(E, 0x(1)/FE)+e} .

Thus we obtain
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d(F"Y<t"d(E", Ox(1))[r(E")+(r(E")+1")e
=1"{d(E", 0x(1))[r(E")+(r(E")+1")e[t"}
<t"{d(E", 04(1))[r(E")+r(E)e} .
g.e.d.
As for strict e-semi-stability, we have the following.

Lemma 3.5. Let E', E and E" be the same as in Lemma 3.4.

1) If E is strictly e-semi-stable, then each component of gr(E) is e-stable.

2) E is strictly e-semi-stable if and only if E' and E" are strictly e-semi-
stable.

Proof. 1) Our proof is by induction on the number a of components of gr(E).
If =1, then we have nothing to prove. Assume that a>1 and take a Jordan-
Holder filtration Oc EjcE,c---cE,=E of E. By virtue of Lemma 3.4, E, is e-
stable. It is easy to see that E= E/E, is strictly e-semi-stable and 0=E,<E,=E,/E,
c---cE,_,=E is a Jordan-Hélder filtration of E. Thus gr(E)=E,®gr(E) and
our induction hypothesis tells us that each component of gr(E) is e-stable. We see
therefore that each component of gr(E) is e-stable.

2) It is easy to see that if E is an extension of a semi-stable sheaf E” by a semi-
stable sheaf E’ and if Pg.(m)=Pg.(m), then E is semi-stable, Pg(m)=Pg(m)= Pg.(m)
and gr(E)=gr(E')®gr(E"). If both E’ and E” are strictly e-semi-stable, then the
above remark and (1) of this lemma imply that each component of gr (E) is e-stable.
Let F be a coherent quotient sheaf of E with Pg(m)=Pg(m). Applying the above
remark to E, F and ker (E—F), we know that gr(F) is direct summand of gr(E). By
induction on the number of the components of gr(F), Lemma 3.4, (1) and by the
above facts, we see that F is e-semi-stable. The proof of the converse is similar to
the above. g.e.d.

Corollary 3.5.1. E is strictly e-semi-stable if and only if so is gr(E).
Now let us show openness of strict e-semi-stability (see Definition 1.4 of [11]).

Lemma 3.6. Let g: Y—T be smooth, projective, geometrically integral mor-
phism of locally noetherian scheme, Ox(1) be a g-very ample invertible sheaf on
Y and let F be a T-flat coherent Oy-module. If H(Y,, 0y(1)®,,k()=0 for all
i>0,teT, then there exists an open set U of T such that for all algebraically
closed fields k,

U(k)={te T(k)|[F®,.k(1) is strictly e-semi-stable with respect to Oy(1)}.

Proof. Since the property that a coherent sheaf is e-semi-stable is open under
the situation in the lemma ([12] Lemma 3.5), we may assume that for all geometric
points t of T, F®, k(t) is e-semi-stable. And, moreover, we may assume that T
is noetherian and connected. Then, for every geometric point t of T, F®,, k(t) has
the same Hilbert polynomial H(m) and rank r. For H(m)=iH(m)[r, 1 <i<r—1, set
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Q;=Quot ¢#}} and F;=(l, x rm)*(F), where m; is the natural morphism of Q; to
T. If E; is the universal quotient sheaf of F;, then there exists a closed set R; of Q;
such that for all algebraically closed fields k, Ri(k)={q € Qi(k)|E;®,, k(q) is not
e-semi-stable}. If F®,, k(t) is not strictly e-semi-stable for some k-valued geomet-
ric point t of T, then there exists a coherent quotient sheaf F’ of F®,, k(t) such that
2(F'(m))=iH(m)/r=H{(m) for some 1<i<r—1 and that F’' is not e-semi-stable.
Thus there exists a k-valued point g of R; whose image by n; is 1. We see therefore
that U=T—\Un(R,) is the required set. Since m; is proper, U is open in T. q.e.d.

§4. Moduli of semi-stable sheaves

Our main aim of this section is to construct a scheme of parametrization of
the functor Z¥§,s defined in the end of §1.

Let T be a locally noetherian S-scheme and let E, and E, be T-flat, coherent
Oy,-modules. Assume that E, ~E, by the equivalence relation defined in (1.7.2)
and assume that E, has the following property;

(4.1.1) for every geometric point t of T, E,®,,.k(?) is strictly e-semi-stable.

Then E, has the same property by virtue of Corollary 3.5.1. Thus (4.1.1) is a
property of a class [E] in 2¥,4(T). When a class [E] enjoys the property (4.1.1),
it is said to be strictly e-semi-stable.

Now let us introduce a subfunctor X¥:¢ of Z¥, for each non-negative in-
teger e.

(4.1.2) For Te(Sch/S), XX/S(T) {[E] e %} ¥,s(T)I[E] is strictly e-semi-stable}.

Z4,% is an open subfunctor of ZY,s by virtue of Lemma 3.6 and Z¥;¢ is an open
subfunctor of Zx,s (see § 5 of [12]).

We may assume that S is connected. Set H()(m)=iH(m)/r for 1 <i<r, where
r=r(E) for an E with [E] eZX,S(Spec(k(s))). Then there exists an integer m(i, e)
such that for all integers m>m(i, e), all geometric points s of S and for all E in

2 <(Spec (K(s))).

(4.1.3) E®U0Oy (m) is generated by its global sections and
h(X,, EQ0Ox(m))=0 if j>0,
(4.1.4) for all coherent subsheaves E’ of E with 0#£E'#E,
ho(X,, E'®0x (m) <r(EVh%(X,, EQOx (m))]i
(see [12] (5.3.1) and (5.3.3)).

Lemma 4.2. If mZmax{m(l, e)}, then for all geometric points s of S and
for all strictly e-semi- stable sheaves E on X, of rank i with y(E(m))=H®(m),

(4.2.1) E®U0y(m) is generated by its global sections and hi(X, EQ x,0(m))=
0if j>0,
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(4.2.2) for all coherent subsheaves E' of E with E'#0, h%(X,, E'®0x(m))
<r(E"h(X,, EQOy (m))]i

and, moreover, the equality holds if and only if Pg(m)=Pg(m)=H(m)/r.

Proof. We shall prove the lemma by induction on the number « of the com-
ponents of gr(E). If =1, we have nothing to prove because of (4.1.3) and (4.1.4).
Assume that a>2 and that our assertion is true for a—1. Pick a Jordan-Holder
filtration 0=E,cE,c---cE,=E of E. Then the induction hypothesis implies that
our lemma holds for E=E/E,. The exact sequence

0 — E,®0x (m) > EQOx (m) —»> EQUx (m) — 0
and (4.2.1) for E, and E provide us with an exact sequence

0

> HO(X(: El ®0X,(’n)) r_("—” HO(X:» E®0,\’,(m)) M’
HO(X,, EQOx (m)) — 0

and hi(X,, EQ0x(m))=0 for j>0. Let a be an element of a stalk of EQ0x(m)
at x. Then there exist a,,..., a, in Ox_, and sy,..., s, in HY(X,, EQ0x (m)) such
that a—Zays; , is an element of u((E,®0x(m)),). Thus we can find b,...., b, in
Ox,. and si,...,sp in F(u)(HYX,, E;®0x(m))) such that a=2Za;s; +2bs] ..
This completes the proof of (4.2.1). For the proof of (4.2.2), let j be the smallest
integer such that E'c E;. If j<a, then E’ is a coherent subsheaf of E,_,. Since
E,_, is strictly e-semi-stable by virtue of Lemma 3.5, the induction hypothesis im-
plies that ho(X,, E'®@0x (m))<r(ENh(X,, E,_ ,®0x (m))/r(E,-,) and the equality
holds if and only if Pp.=Py,_ =P, By virtue of (4.2.1) for E and E,_,, we know
that h°(X,, E,— ® Ox ,(m))[r(E,_) = Pg,_(m) = Pg(m)=h°(X,, EQ® Ox (m))/r(E).
We may assume therefore that j=o«. Set E,_,=E'NE,_,. E'=E'|E,_,. Then E'
is a non-zero subsheaf of F=E/E,_,. If E,_;=0, then h%(X, E'®0x(m))=
ho(X,, E'®0x (m))<r(E')h%X,. F® Oy (m))[r(F)=r(E")h°(X,, E® Oy (m))/r(E) be-
cause of (4.1.3), (4.1.4) for F and (4.2.1) for E. Moreover, the equality holds if
and only if F=E', that is, Pp=P,=Pp =Pg. Assume that E,_,#0. Then,

(X, E®0y (m)<h%X,, E;o ®0y (m)+h%X,, E'®0y (m))
SH(Eq-)h(Xy, Eq 1 @05 (m)[(Eq— )+ H(EV(X,, FROx (m))[r(F)
=r(E"Yh%(X,, EQOx (m))/r(E).

If the equality holds, then Py, =Py _ =Pgand Pp.=P, =P, and hence Py =Pp.
Conversely, if Pg.=Pg, then Pg,_,=Pp.=Pg. Thus the equality holds if h!'(Xj,
E, ,®0x(m))=0. This follows from (4.2.1) and the fact that E,_, is a strictly
e-semi-stable sheaf with Pg: _ =P;. g.e.d.

Let SY,s(e, H) be the family of classes of coherent sheaves on the fibres of X
over S such that E is contained in SY,s(e, H) if and only if E is strictly e-semi-stable
and the Hilbert polynomial of Eis H. Then, for each eand H, SY% (e, H) is bound-
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ed (Lemma 4.2 or [12] Corollary 3.3.1). Thus there exists an integer m'(i, e) such
that for all integers m>m’(i, e), all geometric points s of S and for all ¢, -modules
E contained in &% 5(e, H'),

(4.3.1) if an invertible sheaf L on X has the same Hilbert polynomial as det (E
®0y,(m))=c (E®0x (m)), then hi(X,, L)=0 for all positive integers j.

Take an integer m,> :1;22({111(1‘, e), m'(i, e)}. We may assume that m,>m,
if e>e’. Let H(""”(m)=H“';(;;1+m‘,), then H'-¢)(im) is the Hilbert polynomial of
E®0y (m,) for a coherent sheaf E on X, with Hilbert polynomial H"(m). Set
NG.©=H)(m,), then (4.2.1) implies that N =h%X_ EQOy(m,) for every
Ox,-module contained in S s(e, H").

Now, V;, denotes a free Z-module of rank N'-©) and for a Z-scheme Y, V, (Y)
denotes V; . ® :0y. Let us consider '

0; =QU0l{/',(,i;2‘;( V/X/S
and the universal quotient sheaf ¢¢: V; (X x s0;)—F¢. Then, by virtue of Lemma

3.6, for each integer e’ with 0<e'<e, there exists an open set R¢:¢" in J, such that
a geometric point y of J; is contained in R¢¢ if and only if

(4.3.2) I'(ps@k(y): V, @ :k(y) — HYX,, F{®,45 k(v)) is bijective and
(4.3.3) F,€®@6'k(y) is strictly e’-semi-stable.

For every geometric point s of S and for every coherent sheaf E on X, which is
contained in Sy s(e’, HD)(m,)={FQ0y (m,)|F € Sy s(e’, HV)}, there exists a surjec-
tive homomorphism a: V; (X,)—E such that I'(x): V; ,® zk(s)—>H%X,, E) is bijec-
tive by virtue of (4.2.1). By the universality of (0;, ¢¢, F¢), a corresponds to a
geometric point y of 0, lying over s. Since v is a geometric point of R¢:¢", we ob-
tain a surjective map £¢-¢'(s) for every geometric point s of S;

(4.3.4) &p(s): Ry (k(s) — Zj5" < (m,) (Spec (k(s)))
={[E®0x (m)]I [E]e Z{)s" (Spec(k(s)} .

On the other hand, for a natural action 1 of the Z-group scheme G;=GL(V;,)
on §J, Re* is Gyinvariant and K-valued geometric points y, and y, of R¢° are
in the same orbit of G,(K) if and only if Ff@aélk(y,)gFf(@aéik(yz) ([12] §4 and §5).

Let Q; be the union of the connected components of §; which have a non-
empty intersection with R¢-¢’. Let v; be the morphism Q; to Picy,s defined by
det (F§|xx,o,) and let P; be the union of connected components which intersect
with v(Q,). ([12] §4). Then P; is projective over S. Moreover, by virtue of
(4.3.1), we obtain a G;-morphism y; of Q; to Z; defined in Proposition 4.10 of [12]:

0, -+ Z;
vi

P

pi

i
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p; induces a closed immersion of R{¢" to a Ginvariant open subscheme of Z;.
This and the fact that y; is proper imply that there exists a closed subscheme R; of
Z, such that R; is G-invariant, u(Q;)=R; as sets and that y; induces an open immer-
sion of R¢*¢" to R; (R; is the scheme theoretic image of Q; by y;). Therefore we get
the following commutative diagram:

S

0 —— >R, cZ

pi
Vi

P,

For all K-valued geometric points x of P;, (Z;), is isomorphic to the Gieseker
space P(V, ,®:K, i, W,), where W,=H(X,, (det F)®k(y)) with a K-valued geo-
metric point y of Q; lying over x.

Lemma 4.4. For all K-valued geometric points x of P;, every geometric point
of (R), is excellent in (Z)),=P(V; . ®:K. i, W,).

Proof. Let T be a geometric point of (R;),, We may assume that T is K-
rational. Pick a K-valued point y of ()~ '(T). As a map of A V..®:K to H(X,,
(det F)@k(y))=W,, T is defined by §, (for the definition of §, see [12] p. 114).
For a,,..., a; in V, . ®:K, put s,=I(¢;®@k(y))(a,),..., s;=T(¢$;®k(»))(a;). Then
7,(sy A -+ Asy) coincides with s; A -+ As; on the open set of X, on which F{®k(y)
is locally free. Thus ay,..., a; in V, ,®:K are T-independent if and only if (s,),,...,
(s;). are linearly independent in the vector space (Ff),, where z is the generic point
of X,. And ais T-dependent on a,,..., a; if and only if s, is linearly dependent on
(81)zr--or (5;)z Where s=T(¢$;®k(y))(a). These remarks imply that T has the pro-
perty (1) in Definition 2.9. To show that T enjoys the property (2) in Definition
2.9, assume that T is an extension of T” by T'. Let ¢: W' ®, W"—>W, be the ad-
missible map to define the extension T and let

0V 4, V, @K —25 V' —0

be the underlying exact sequence of the extension. Let E’ be the coherent subsheaf
of Fe®k(y) generated by I'(¢p;®k(y))(V'), E” be the quotient sheaf E/E’ and let
L'=detE’, L"=det E". Since (det F{)®k(y)~L'®L", we have an admissible map
V: H'®H"»W,, where H' =H%X,, L') and H"=H%X,, L"). Pick vectors b,,...,
b,» such that B=T"(v(b,),..., v(b,~))#0. Let U be the non-empty open set on which
E', F¢®k(y) and E" are locally free. Then, for ay,..., a. in V', s; A AS AL A
.. Atw=T(u(a,),..., u(a,), by,..., bp)y=T'(ay,..., a,)eT"(v(b,),..., v(b,-)) on U, where
5;=T(;@k(y))(a;) and t;=I(¢;@k(y))(b;). Since T' is not zero, t; A--- Al
defines a non-zero element o of H”. If s; A .-+ A5, denotes the element of H' which
coincides with s; A -+ As,. on U, then Y((s; A -+ As,)@a)=T(u(a,),..., u(a,), by,...,
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b.)=¢(T'(ay,..., a,)®P). Thus T'(a,,..., a,)=0 if and only if s, A---As,.=0.
Assume that a,,..., a; are T’-independent and that a is T'-dependent on ay,..., a;
then (s,),,..., (s;), are linearly independent in the k(z)-vector space E, and I'(¢;®
k(y))(a), is contained in the vector subspace of E; generated by (s,).,..., (s;),. By
the remark made in the first part of this proof, we see that u(a) is T-dependent on
ay,..., a;. Therefore, T has the property (2) in Definition 2.9. q.e.d.

From now on, we shall fix a p;-ample invertible sheaf L, on Z; which carries a
Gy-linearization. There exist G-invariant open subschemes R{ and R$* of R; such
that for all algebraically closed fields K, R(K)={x e R(K)|x is a properly stable
point of (R;), with respect to the pull back of L; to (R;),, where y=p,(K)(x)} and
R§%(K)={x € R(K)|x is semi-stable point of (R;), with respect to the pull back of
L; to (R;),, where y=p(K)(x)} (see [20] II, §2 and note that R; is a closed sub-
scheme of P(E) for some locally free G;-sheaf E on P; because L; is P-flat). By
virtue of Lemma 2.2 and (4.2.2), the same argument as in Lemma 4.15 of [12]
provides us with the following.

Lemma 4.5. p; induces an open immersion of R¢ ¢ to R{. Moreover, for a
geometric point x of R¢¢', if F¢®k(x) is stable, then p(x) is in R3.

Let x be a k-valued geometric point of R¢¢’. Since E=F¢®k(x) is strictly
¢'-semi-stable, we can fined a Jordan-Holder filtration O=EycE,c---cE,_,cE,=
E. Set r;=r(E;) and l;=r;—r;_,. By virtue of (4.2.1), the following exact com-
mutative diagram is obtained;

0 — HO(X,, E,—;) 2= H(X,, E) *=>» H'(X,, E|E,_;) — 0

T |

Vr._l,e®5k #’ Vr.e®EkL’ Vl,,e®.‘:'k

where ,=I'(¢,®k(x)). Since E,_, (or, E=E/E,_,) is strictly ¢’-semi-stable (Lemma
3.5), an isomorphism #,_, (or, 7, resp.) defines a k-rational point x,_; (or, X,,
resp.) of Re, (or, Rz, tesp).  If T,=p(k)(x), Toey=thr, (k) (x,—1) and T,=
(k) (%), then T,e P(V, .®zk, r, W), T,- € P(V,,_, .®zk, 1q—1, W,—;) and T,e
P(V,, .®:zk, I, W), where W,=H(X,, detE), W,_, =H%X,, detE,_,) and W,=
HO(X,, detE,). The isomorphism det Ex(detE,_,)®(detE,) yields an admissible
map Y,: W,_,&W,»W, For ay,...,a,  inV,  ®zk and for b,,..., b, in
V,.®:zk, put s;=n,_(a;) and t;=n,(b;). Then,

T;z(fa(al)s"-a fa(ar,_l)! bl"'ﬂ b,“)=ua(51)/\ ot /\u,(s,“_l)/\
AR tl,,:‘//a((sl A A sr¢_1)®(va(t1) A A va(tlu)))
=¢a(n—l(al""’ ar¢_|)® Ta(ga(bl)""’ ga(bl,)))

on a non-empty open set of X, on which E,_,, E and E, are locally free. Thus, as

elements of Wav T;z(fa(al)a"" fa(ara_;)’ bl""s bl¢)=wa(n—1(al7"" ar,_1)®Ta(ga(b1)a
.os 9o(by)). Therefore, T, is a y,-extension of T, by T,_,. Let W;=HX,,
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detE;) and let W;=H%(X,, detE)), where E;=E,;/E; ,. We have a sequence of
admissible maps ¢;: W;_,@,W;»W; (Wo=k, 1<j<a). Repeating the similar
argument to the above, we get T; in P(V,, . ®zk, r;, W)) (1<j<e) and T;in P(V,,,
®:zk, 1, W;) (1< j<a) such that

4.6.1) T;=p,(k)(x;) for some x; in Rg¢'(k) and Tj=,u,!(k)(3?j) for some X;
in R§;¢'(k). Moreover, T is in Rj (k).

(4.6.2) T;is a y-extension of T; by T;_, and T, =T,.
Lemma4.7. T;=T;_,@®T, if and only if E;=E; ®E;.

Proof. It is clear that if E;~E;_;®E;, then T;=T;_ @ T;. Assume that T;
~T;_,@T,. Then there exists a linear map h;: V}, @ sk—V,, .® ck such that g;h;
=id and Tj(hy(b,)..... hi(b,),...,)=0if t>1;. Let F; be the coherent subsheaf of
E; generated by n;h(V,, . ®zk). Since E; is generated by its global sections and
since ujn;_(V,,_, . ®:K)@®nh(V,  ®:k)=HA(X,, E)), we see that E;=E; ,+F;
The fact that Ty(hj(b,),..., hj(b,),...)=0 if t>1; implies that r(F;)<I;, whence r(F))
=1;. Thus, at the generic point z of X, (E;),=(E;-,).®(F;),, which asserts that
E;_ynF;is a torsion sheaf. Since E; is torsion free, E;_, n F;=0, and hence E;
is a direct sum of E;_; and F;. The natural projection of E; to E; induces a sur-
jective homomorphism of F; to E;. Since F; is torsion free and since r(F;)=r(E)),
F; is isomorphic to E;. g.e.d.

By virtue of Corollary 3.5.1, gr(E) is strictly e’-semi-stable. Hence gr(E) cor-
responds to a point y in Re-¢'(k).
Corollary 4.7.1. pu(k)()=T,®--- @ T,

Now let us study G,-orbits in Rs* and Rg-¢'.

Porposition 4.8. Let y be a k-valued geometric point of P, and let s be the
image of y by the structure morphism P,—S. Let E,,..., E, be e'-stable sheaves
on X, such that l;=r(E)), y(E{(m))=H"9(m) and 1,+---+1,=r. Then there exists
a G,-invariant closed subset Z(E,...., E,) of (Rg**"),=(v)""(y) N Rg¢" such that

(4.8.1) u(Z(E,,..., Ep) is closed in (R®),,

(4.8.2) for every algebraically closed field K containing k, Z(E,,..., E)(K)
={xe(R¢*) (K)Igr(F:’(@/c(X))%(‘6__9l E)®.K},

(4.8.3) the G,-orbit of x, corresponding to GaB E,; is the unique closed orbit
—_ — i=1
in Z(E,,..., E)).

Proof. Let X; be a k-valued point of R{;¢" such that Fj®k(x)=~E, If
m(k)(X)=T;, then T; is a stable point of (R,);,=P(V,, .®zk, l;,, W;), where j;=
vi(k) (%) and W,=H%(X,, detE). Let W;=H°X,, (detE,)®--®(detE)), then
there is a natural admissible map ¥;: W,_;®,W;» W, For ri=I;+--+1, (R,),, is
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a G, -invariant closed set of P(V, .® ck, r;, W;) whose geometric points are excellent
(Lemma 4.4), where y; is the geometric point of P, which corresponds to (det E,)®
---@(det E;). Applying Theorem 2.13 to the case where F;=(R,),, and S;=T, we
obtain a G,-invariant closed set Z(T\,..., T,) of Rs* such that for all algebraically
closed fields K containing k, Z(T,,..., T,)(K)={TeR,(K)|T enjoys the property
(%), in Theorem 2.13}. Set Z(T,,..., T,)= UZ(Ta(,), . Tswy)» Where S, is the
permutation group of {1,..., a}. By virtue of Theorem 2.22, the G,-orbit o(T,,.
T,) of T,@---@®T, is the unique closed orbit in Z(T,...., T,) (see Corollary 2.19. l)
Since C=R*—p(Re*¢’) is a G,-invariant closed set in Ry, D=CnZ(T,,..., T,)
contains o(Ty,..., T,) if it is non-empty. On the other hand, Corollary 4.7.1 im-
plies that T,@®---@® T, is contained in p,(R&¢’), whence so is o(T,..., T,). Thus
D is empty, that is, Z(T,..., T,) is a closed subset of u,(Re:*’). Set Z(E,...., E,)
=) YZ(T,,..., T,)). Let us show that this Z(E,,..., E,) has the required pro-
perties. (4.8.1) is obvious because u,(Z(E,, ,E)=Z(T,...., T,)). Let x be in
Rg¢'(K) such that gr(Fe®k(x))= 6—) E;®K. Then (4.6.1) and (4.6.2) imply that
u(K)(x) is contained in Z(T,,... a) whence x is in Z(E,,..., E))(K). For a
x' in Rg¢'(K), assume that gr(F‘®k(x N# @ E®.K. If gr(Fe®k(x'))= Q—)E
then a G,-invariant closed subset Z(Tj,. ’1',,) in Rs*x p Spec(K) is obtalned as
above, where T is a K-valued point in a Gleseker space correﬂspondmg to E.. Z(T;,

., Tp) contains the unique closed orbit o(Tj,..., Tp). @E corresponds to a
point x; in Rg¢’(K) and p(K) (xo) and p(K) (xo) are in the same G,-orbit if and
8

only if @ E} is isomorphic to ( @ E)®K. Thus the orbit of u(K)(x,) differs
from that Of 1K) (x0). Since .Ur(K) (x0)=(T®-- @ T)®K and p(K)(xp)=T;®
< @Tp, oTy,..., T)®WK#0(TY...., Tp). Thus Z(Ty,..., T)®K N Z(Ty,..., Tj)
=¢. Since p,(x’) is a K-valued point of Z(Ty,..., Tp), we see that x'&Z(E,,...,
E,) (K), which completes the proof of (4.8.2). Since y, induces an open immersion
of Rg:¢’ to Rss, Z(E,,..., E,) is homeomorphic to Z(T,,..., T,) as topological spaces
with G,-action. (4.8.3) follows from this fact. g.e.d.

By virtue of Theorem 4 of [20], there exists a good quotient n: R¥—Y. For
C=R—p(Re¢), set M, =Y —n(C). Since C is G,-invariant closed set of Rs*,
M, . is an open subscheme of Y. Since Y is a categorical quotient of R and since
7. R.—P, is a G,-morphism with the trivial action of G, on P,, we get a unique
morphism w: Y- P, such that wn=P,:

R 2 (Re®') —— Ry

n

M,,‘“—Y —2 P

Pick a k-valued geometric point x of P,. Let y be a k-valued point of R¢:¢" such that
k) (k) (y)=x and let gr(FE®k(y)) = z@x E;. Then, by virtue of Proposition 4.8,
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we can find a G,-invariant closed subset Z(E,,..., E,) in (Rg:¢"), with the properties
(4.8.1), (4.8.2) and (4.8.3). By (4.8.2), y is a k-valued point of Z(E,,..., E,). (4.8.1),
(4.8.3) and [20] Theorem 4, (iii) imply that z=nu(Z(E,,..., E,)) is a k-valued point
of Y. By (4.8.1), we have that z is contained in M,,. Therefore, n-}(M, )=
u(Re¢). Moreover, (4.8.3) shows that for k-valued points y, and y, of R¢-<,
n(k)u, (k) (v ) = n(k)p,(k) (y,) if and only if gr (Ff®@k(y ) =gr(Ff®k(y,)). Since S
is finite type over a universally Japanese ring =, Y is projective over S, whence M, .
is quasi-projective over S. These and (4.3.4) yields the following.

Porposition 4.9. R ¢ has a good quotient (M,,, ) with the following
properties;

(4.9.1) M, is quasi-projective over S,

(4.9.2) for each geometric point s of S, there exists a natural bijection {, .(s):
Z%8 (m,) (Spec (k(s))— M. o (k(s)).

From the viewpoint of moduli, we have
Proposition 4.10. M, . has the following properties:

(4.10.1) For each geometric point s of S, there exists a natural bijection
0.0 T%& (Spec (k() =M, o (k(s)).

(4.10.2) For Te(Sch/S) and a T-flat coherent sheaf E on X xsT with the
property (1.7.1) and (4.1.1), there exists a morphism fg¢ of T to M, such that
fee' ()=0,[E®, k(D] for all points t in T(k(s)). Moreover, for a morphism
g: T'>Tin (Sch/S),

Tee 9 =F&xsarm
(4.10.3) If M'e(Sch/S) and maps 8;: Z¥;¢ (Spec(k(s)))—M'(k(s)) have the
above property (4.10.2), then there exists a unique S-morphism § of M, to M’

such that Y(k(s))-0,=0, and  -f&¢ =f5 for all geometric points s of S and for
all E, where f, is the morphism given by the property (4.10.2) for M’ and 0.

Proof. If one uses (4.9.2) and the fact that M, . is a categorical quotient of
R¢-¢’, the proof is completely the same as in the proof of [12] Proposition 35.5.

Since both M,, .. and M,, . have the properties (4.10.1), (4.10.2) and (4.10.3),
there exists a unique isomorphism ¢¢ ..: M,, .—~M,,. such that J¢ ,,-fere'=
fere'. Since M, is an open subscheme of M, ,, M, .- can be regarded as an open
subscheme of M., Thus My,(H)=lim M, is an S-scheme locally of finite type
over S. Since each M, is quasi-pro‘}ective over S, My,s is separated over S. It
is obvious that My,s(H) contains My s(H) in [12] as open subscheme. Moreover,
by the construction of M, there exists a natural morphism A,: M, ,—Picys such
that for all geometric points t of M, ., 4.(t)=c(0;(f)), where s is the image of ¢ by
the structure morphism of M, to S and ¢, denotes the first Chern class. More-
over, it is easy to see that Z,-j, ..=4, for the open immersion j,, of M, to M,,.
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Thus we obtain a natural morphism A: My (H)—Picy,s. We have therefore the
following theorem whose proof is completely the same as that of Theorem 5.6 of [12].

Theorem 4.11. In the situation of (3.1), there exists an S-scheme My s(H)
with the following properties:

1) My s(H) is locally of finite type and separated over S

2) A coarse moduli scheme My,s(H) of stable sheaves with Hilbert polynomial
H is contained in IWX/S(H) as an open subscheme.

3) For each geometric point s of S, there exists a natural bijection 8;: T}
(Spec (k(s)))— M y;s(H) (k(s)).

4) For Te(Sch/S) and for a T-flat coherent sheaf E on X x T with the pro-
perty (1.7.1), there exists a morphism fg of T to My,s(H) such that fe(t)=0(EQ®,,
k(t)]) for all points t in T(k(s)). Moreover, for all morphism g: T'—T in (Sch/S),

fa'g=f(1xxsg)*(s)-

5) If M'e(Sch/S) and maps 0;: Z¥s(Spec(k(s)))—M'(k(s)) have the above
property (4), then there exists a unique S-morphism  of My;s(H) to M' such that
Y(k(s))-0,=0, and § -fz=f for all s and E, where f is the morphism given by
(4) for M’ and ..

6) There exists a natural morphism A: My (H)—Picy,s such that for all
geometric points t of My, (H), A1)=c,(0;'(1)), where s is the image of t by the
structure morphism of Mys(H) to S.

By the property (5), My,s(H) with the properties (3), (4) and (5) is unique up to
isomorphism.

Remerk 4.12. If T is reduced and if E, ~E, in the sense of (1.7.2), then fg, =
Je,. Thus, My(H),., is a coarse moduli scheme of the functor Z¥,s of (Sch/S),,,
to (Sets).

§5. Langton’s result and its application

Let us begin with a definition.

Definition 5.1. Let E be a coherent sheaf of rand r on a geometric fibre X
of X. E is said to be u-stable (or, u-semi-stable) (with respect to @4(1)) if it is tor-
sion free and if for all coherent subsheaves F of E of rank ¢t (1<t<r—1),

d(F, 0x(1))/t<d(E, Ox(1)/r (or, <, resp.).

In [21], a p-stable (or, u-semi-stable) sheaf is said to be H-stable (or, H-semi-
stable, resp.) and in [8] and [10], a u-stable (or, u-semi-stable) sheaf is employed
for the notion of a stable (or, semi-stable, resp.) sheaf. In [8], S.G. Langton
proved the following theorem for u-semi-stable sheaves.

Theorem 5.2. Let R be a discrete valuation ring over S, K be the quosient
field of R and let k be the residue field of R. Assume that a p-semi-stable sheaf
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E on Xy is given. Then there exists an R-flat coherent sheaf E on Xg=Xxg
Spec(R) such that EQ xRK=E and E®gk is p-semi-stable.

It easy to see that if E is u-stable, then it is stable and that if E is semi-stable,
then it is pu-semi-stable.

u-stable = stable

I !

u-semi-stable <= semi-stable

The semi-stability differs from the p-semi-stability. In fact,

Example 5.3. Fix a non-singular curve C of degree 2n in P2 and pick two
non-zero elements s, s, in H(C, 0c(n)) such that {xe Cls;(x)=0} n {y € Clsy(y)=
0}=¢. Then, s, and s, define a regular vector bundle E of rank 2 on P2 with ¢,(E)
=2n and c,(E)=2n? (see [9] Principle 2.6). E(—n) is the kernel of the surjective
homomorphism 0$#—0(n) defined by s, and s,. It is easy to see that E is p-
semi-stable and there exists the following exact sequence;

0 — Opr(n) —> E—> L —0

where L is torsion free and rank 1. Since L is a proper subsheaf of 0p2(n), for all
sufficiently large integers m, ho(P2, L(m))<h°(P?, Op:(n+m)). Thus we see that
7(0p2(n) (M) > x(E(m))/2, which implies that E is not semi-stable. In the category
of torsion free sheaves, we have much simpler examples. Let X be a non-singular
projective variety with Picard number one. If M is an invertible sheaf on X and
if L is a coherent subsheaf of M with Supp(M/L)# ¢ and codim Supp(M/L)>2,
then M@L is u-semi-stable but not semi-stable.

If E is not semi-stable, then for sufficiently large integers m, E(m) defines a point
x of a Quot-scheme which has the property (4.3.2), but the point is never mapped
to a semi-stable point of Gieseker spaces. Thus the above example shows that
Theorem 5.2 is not enough, at least, from the viewpoint of moduli. We shall
modify Theorem 5.2 so as to fit our aim.

When F is a coherent subsheaf of a torsion free coherent sheaf E on a non-
singular variety Y, &(F) denotes the smallest coherent subsheaf of E such that &(F)
O F and E/e(F) is torsion free. Then there exists a non-empty open set U of Y such
that &(F)|, = F|, as subsheaves of E|.

Fix a coherent torsion free sheaf E on X, where s is a K-valued point of S for

some field K. For a field L containing K and a coherent sheaf F on X, =X ®L,
set

B(F, m)=r(E)y(F(m))— r(F)y(E(m)).

B(F, m) is a numerical polynomial of degree n with respect to m. B(F, m) has the
following properties:

(5.4.1) B(F, m)=<f(&(F), m) and the equality holds if and only if &(F)=F.
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(5.4.2) For coherent subsheaf F and G of EQL, B(F, m)+ B(G, m)=B(F +G,
m)+ B(F n G, m), whence B(F, m)+ B(G, m) = B(e(F +G), m)+ B(e(F n G), m).

(5.4.3) If 05F—G—H—0 is an exact sequence of coherent sheaves on X,
then B(G, m)=B(F. m)+ B(H, m).

(5.4.4) B(E, m)=0and (0, m)=0.

(5.4.5) For an algebraically closed field L containing K, E® (L is semistable
if and only if f(F, m)=<0 for all coherent subsheaves F of E®L.

Now let us assume that E=E®L is not semi-stable for some algebraically
closed field L containing K. Consider proper subsheaves F of E enjoying the fol-
lowing property:

(A) F is coherent, E/F is torsion free and if G is a coherent subsheaf of F
with G#F, then f(G, m)<f(F, m).

If one uses the polynomials f§ and the order < instead of the integers f and <
in [8]. the same argument as in p 96 of [8] implies that there exists a unique maxi-
mal subsheaf B of E having the property (A4).

Definition 5.5. The above unique maximal subsheaf having the property
(A) is called the f-subsheaf of E.

Since B(0, m)=0, (4) provides us with B(B, m)>0.

Proposition 5.6. B is defined over K, that is. there exists a coherent sub-
sheaf B of E such that B® cL= B.

Proof. By using B instead of B in the argument in p 96 of [8], we know that
Hom,, (B, E/B)=0. Then the argument in the proof of Proposition 3 of [8] is
applicable to our case without any change.

Corollary 5.6.1. The property that a coherent sheaf is semi-stable is inde-
pendent of the choice of the base field. More precisely, for a coherent sheaf E on
X x sSpec(K), EQK is semi-stable if and only if E is torsion free and for all
coherent subsheaf F of E with F#0, Pe(m)<Pgm), where K is the algebraic
closure of K. And, for every over field L of K, EQL is semi-stable if and only
if sois E.

Proof. If one notes that X=X x ¢Spec(K) is geometrically integral, then it
is easy to see that E is torsion frec if and only if so is EQ gL for an over field L of
K. Since f(G, m)=f(GRL, m), our assertion follows from Proposition 5.6.

qg.e.d.

By virtue of the above corollary, we can use the notion of semi-stable sheaves
without assuming that the base field is algebraically closed.
Now, the theorem which we need is the following.
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Theorem 5.7. Let R be a discrete valuation ring over S, K be the quotient
field of R and let k be the residue field of R. For a semi-stable sheaf E on X =
X x sSpec(K), there exists an R-flat cohercnt sheaf E on X z=X x ¢Spec(R) such
that E®RK‘;E and E@Rk is semi-stable.

First of all, note that for every coherent sheaf F on the fibres of X over S,
n!B(F, m) is a polynomial with integer coefficients. Thus, if {F,};», is an infinite
sequence of coherent sheaves on X, with B(F,, m)> B(F,, m)>--->0, then there
exists an integer i, such that for all i, j>i,, B(F;, m)= f(F;, m). Taking this into
account and using f and B-subsheaf instead of f and f-subbundle in the argument
in §4 and §5 of [8], we see that all we need are the following (notation is the
same as in §5, Lemma 2 of [8])

Lemma 5.8. Assume that the discrete valuation ring R is complete. Let R
be an infinite path in the Bruhat-Tits complex S with vertices [Es], [E;], [E¥],....
Let Im(E™ DS Emy=Fm (F'=F). Assume that the canonical homomorphism
Etmh Eom maps Fort) 1o Fom isomorphically.  Then y(F(1)) < r(F)y(E(1))/r(E).

The proof of this lemma is similar to that of Lemma 2 in §5 of [8] and easier
than that.

As an application of the above theorem. we have

Theorem 5.9. Let R, K and k be as in Theorem 5.7. Then the map n: Homg
(Spec(R), My,s(H))—»Homg(Spec(K). Mys(K)) induced by the injection R—K is
bijective. : -

Proof. Since My s(H) is separated and locally of finite type over the noetherian
scheme S, the injectivity of 5 follows from E. G. A. Ch. I1, 7.2.3.  Assume that an
S-morphism g: Spec(K)— My s(H) is given. Let K be the algebraic closure of K.
If the geometric point §: Spec(K)—Spec(K)—2-» My 4(H) is contained in M, , then
there exists a finite extension K’ of K and a K’'-valued point x of Rg¢ such that n(x)
is the K’-valued point g': Spec(K')—Spec(K)—2>M,,. Let R’ be an extension of
R whose quotient field is K'. For E=F:®k(x), EQ,.K is e-semi-stable and hence
E is semi-stable on X x (Spec(K’) (see Corollary 5.6.1). By the natural morphism
Spec(R")—Spec(R)—S, Spec(R’) is regarded as an S-scheme. Then, Theorem 5.7
shows that there exists an R’-flat coherent sheal E on X x (Spec(R’) such that E
®pK'=E and E® .k’ is semi-stable, where k' is the residue field of R’. The pro-
perty (4) in Theorem 4.11 gives rise to a morphism §: Spec(R')—My,(H). By the
construction of g, we know that the morphism Spec(K')—Spec(R')—2— M s(H)
is just g’:

Spec(K') —— Spec(R’') —L— My, s(S)

9 s

Spec(K) —— Spec(R)
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Since R'n K=R, § and g yield a morphism / of Spec(R) to My,(H) which extends
g. q.e.d.

Let ©y,s(H) be the family of classes of coherent sheaves on the fibres of X over
S such that E is contained in Sy/5(H) if and only if E is semi-stable and the Hilbert
polynomial of E is H.

Corollary 5.9.1. If Sy /s(H) is bounded, then My, {(H) is projective over S.

Proof. If Sys(H) is bounded, My, (H)=M,, for some positive integer e.
Thus My s(H) is quasi-projective over S. Then, Theorem 5.9 and E. G. A. Ch. I,
7.3.8 imply our assertion. g.e.d.

§6. Some properties of the moduli

To study local properties of My, we shall investigate the action of PGL(V, )
on Rg-<',

Lemma 6.1. Let A be an artin local ring with maximal ideal m and residue
field k and let E be an A-flat coherent sheaf on X ;=X x ¢Spec(A). Assume that
E,=EQ k is torsion free and the natural injection k—~Hom,, (E,, E\) is an
isomorphism. Then the natural homomorphism A—Hom,, (E, E) is an isomor-
phism.

Proof. We shall prove this by induction on I(A)=Ilength(4). If I(4)=1, then
A=k, and hence there is nothing to prove. Assume that our assertion is true if
I(A)<l. 1If I(A)=1, then there exists a principal ideal ¢4 such that eA~k as A4-
modules. Since for A=A/eA, I(A)=1I(A)— 1, our assumption says that Hom,, . (E,
E)=A4, where E=E®4A. Pick an element ¢ of Hom,, (E, E). If ¢ is the mem-
ber of Hom(yu(E, E) induced by ¢, then ¢ is the multiplication of an element a of
A. Lift the a to an element a of 4 and set y=¢ —a-idg. Then Y(E) is contained
in eEE=E® eA. If x is contained in mE=E® ,in, then y(x)=0 because em=0.
Thus ¥ induces a homomorphism : E,=E/mE—-E® 6A~E,. By the assump-
tion on E,, we can find a b in k such that y =b-idg,. Lift btoabin A. The defi-
nition of  shows that  =(eb)id,. Thus we obtain that ¢=(a+eb)id;. Pick a
non-zero element ¢ in 4. The image of ¢-idg is cE. Since E is flat over A, cE=
cA® E#0. Therefore, A»Hom,, (E, E)is an isomorphism. g.e.d.

The following is a general remark (cf. [14] Lemma 0.5).

Lemm 6.2. Let S he a scheme of finite type over a universally Japanese
ring, X be a flat, projective scheme over S, t be an action of G, s=Spec(Os[T,
T-'1) on X and let L be a G, s-linearized invertible sheaf which is ample over S.
If U is a G, s-invariant subscheme of XS(L), then the action t on U is proper.

Proof. We have to prove that ®=(z, p,): G, sxsU->UxsU is proper.
First of all, note that the image of ® is closed because U has a geometric quotient
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by G, s which is separated over S (see [20]). Let R be a discrete valuation ring
over S and let K (k or n) be the quotient field (residue field or uniformanizing para-
meter, resp.) of R. We may assume that k is algebraically closed. Suppose that
(x, y) is an R-valued point of UxgU and (g, y) is a K-valued point such that
&(K)(g, y)=(1(g. y), y)=(x, y). For X=xmodn and y=ymodn, we can find
a k-valued point i of G, ¢ such that X=1(k)(h, y) because of the above remark.
It is clear that h can be lifted to an R-valued point h of G, . By replacing g by
h='g, we may assume that x=7j. Since L is ample and G, s-linearized and since
X is flat over S, there exist an R-free module V of finite rank, closed immersion
¢: Xg=X x sSpec(R)—>P(V) and a representation p: G, x=G,, s x s;Spec(R)—~>GL(V)
such that 7 is induced by the action of GL(V) on P(V). Moreover, there exists a
basis {e;} of V such that the dual action e;—~e;®T?: defines the action of p(G,, g).
Then, for an affine open set X,=P(V)— a hyper-plane and a suitable system of
coordinates x...., X,, @(R)(y) is contained in Xo(R) and the action of p(G,, ) is
defined by x;—arix;. If a(g, y); and y; is the i-th coordinate of ¢(K)t(K)(g, »)
and y, respectively, then o(g, y);=pB"'y;, where B is the image of T by the map
R[T, T-1]-K corresponding to the K-valued point g of G, z. p=pen" for a
unit B, in R. Since r;#0 for some i, a(g, y);=psnsy; or Byrinsa(g, y);=y; with
s=rr;>0or s=—rr;>0. Since (g, y); and y; are elements of R with o(g, y);=y;
mod n, we see that r=0, whence f is a unit of R. g.e.d.

Let U be Re¢°nRs. Then U is a PGL(N, S)-invariant subscheme of Z,,
where N=N-e),

Lemma 6.3. The action & of G=PGL(N, S) on U is free. that is, ®=(&, p;):
GxsU-UxU is a closed immersion.

Proof. 1In the first place, we shall show that @ is proper. Since the projection
of U to P, is G-morphism with the trivial action of G on P,, we have the following
commutative diagram:

GxsU—2 5 UxsU

|| I

(GxsP)x pU-¥s Ux,p U

Since P, is separated over S, j is a closed immersion. Thus we have only to show
that  is proper. Let R, K, k and n be the same as in the proof of Lemma 6.2.
Let (x, y) be an R-valued point of Ux p U and let (g, y) be a K-valued point of
(G x sP,)x p,U such that Yy(K)(g, y)=(x, y). Since R is a discrete valuation ring,
there exists R-valued point g, and g, of G such that g =g,(b;;)g,, where (b;;) is a
diagonal matrix with by=n?. Let i: G, p =Spec(0p [T, T~'])>GL(N, P,)=
Spec(0p,[T;;, det(T;;)~']) be the homomorphism defined by the @p -algebra homo-
morphism T;;—6;;T, where J;; is Kronecker’s delta. Let 1 be the composition
G, p.—GL(N, P,)—PGL(N, P,) and let ¢t be the K-valued point of G,,  defined
by T-n.  Then G(X(1), G(g2, ¥)=3(97'993", 3(g2. ¥)=d(g7", 5(g. ¥)) and &(g,, y)
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are R-valued points of U. It is clear that U is contained in the open set of stable
points of Z, with respect to the action &(A(x), *) of G, p. Since Z, is flat and
projective over P, Lemma 6.2 can be applied to this case. Hence there exists an
R-valued point 1’ of G,, p_such that G(A(t'), 6(g,, ¥))=3a(A(t), 6(g,. ¥)). Then,

x=a(g,U0g,. ¥)=6(g,. GA1). 6(g2, ¥)))
=6(gy, 6(A(t"), 6(g, V) =0(g,X1)g2, ).

Therefore (x, y) is the image of the R-valued point (g,4(¢)g,, y). which completes
the proof of properness of .

Let A be an artin local ring over S with residue field k.  Assume that k is alge-
braically closed. We claim

(6.3.1) ®(A): G(A)x g4,U(A) —> U(A) x 5,,U(A4) is injective.

In fact, if @(A)g,, x)=®(A)g,., x) for some A-valued points (g,, x) and (g,. x)
of GxgU, then ®(A)(e, x)=D(A)(g7'g,. x). Thus we have only to show that
if x=6(A4)(g, x). then g=e¢. To give a point x in U(A4) is just to do an exact se-
quence V, ®:0y,—2E—0 on X ,=X x sSpec(A) such that E is A-flat, E® ,k is
stable and I'(¢): V, . ®:A—H°X ,. E) is bijective. Let h be an A-valued point
of G=GL(N, S) whose image by the natural homomorphism G—G is g. x=d(g, x)
means that there exists an isomorphism f of E which makes the following diagram
commutative; ' ' '

V, ®:0y, 2> E

| I

V., ®:0x, 2~ E

Since Hom,, (E® 4k, E® 4k)=k (see Lemma I.I and [17] Proposition 4.3), f is
the multiplication of a unit a of A by virtue of Lemma 6.1. Then h is the multipli-
cation of a because I'(¢) is bijective. We see, therefore, that g =e.

Applying (6.3.1) to the case where A is an algebraically closed field, one sees
that & is radical. Combining (6.3.1), E. G. A. Ch. IV, 17.4.1, 17.7.1 and 17.14.2,
we have that @ is unramified. Thus we know that ¢ is finite, radicial and unrami-
fied, which implies that @ is a closed immersion (see the proof of [12] Proposition
4.9). q.e.d.

Let M. be the coarse moduli scheme of e-stable sheaves with Hilbert polynomial
H. Then M, is a gecometric quotient of R,=R{* N R:.

Proposition 6.4. The natural map n: R,>M, is a principal fibre bundle
with group G (see [14] Definition 0.10).

Proof. If one notes that G is a smooth group scheme over S, then he can prove
the above, by using Lemma 6.3, in the same way as Proposition 0.9 of [14].

From the above, we have
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Corollary 6.4.1. If S’ is an S-scheme, then for X'=X xS, My, s(H)=
My,;s(H) x ¢S’

Proof. This follows directly from a general fact: If an S-scheme morphism
f: Z—Yis a principal fibre bundle with S-group scheme G, then for every S-scheme
S, f'=fx¢S: ZxS' Y xS is a principal fibre bundle with S’-group scheme
GxgS'.

Corollary 6.4.2. My (H) is smooth over S if and only if so is R, for all
e>0.

Proof. By virtue of E. G. A. Ch. 1V, 17.3.3 and 17.7.10, we have the above
immediately from Proposition 6.4. q.e.d.

Our next aim is to give a sufficient condition for smoothness of My s(H).

Lemma 6.5. Let A be a noetherian local ring, B be a noetherian A-algebra
and let 1 be an ideal of A such that IB is contained in the Jacobson radical of B.
Assume that an exact sequence of finite B-modules

M M 25 M —0

enjoys the following properties;

1) M is A-flat and M"® 4A/l is A[l-flat,

2) the mapu®,1: M'® A/l >M® 4A|l is injective.
Then, M" is A-flat and u is injective.

Proof. Let M’ be the image of u. The property (2) implies that the map
M'->M—->M® ,4A/I induces a homomorphism M'>M'® ,A/I, whence a: M'® ,A/l
-M'® 4 A/l. 1t is easy to see that o is bijective. Thus we have the following
exact commutative diagram:

Tor{ (M, A/I) —> Tor{(M", A/l)

l 1

M®,— M, —— M'® J— 0

l |

’ i vM v R M// 70

l l

LA 8L M® (Al — M"® AT — 0

| |

0 0

0— M

C— @ — Z|—

By the fact that #® 41 is injective and the snake lemma, we have Tor #(M”, 4/I)=0.
Since M"® ,A/l is A/l-flat, we see that M" is A-flat (E. G. A. Ch. 0, 10.2.2).
Since both M and M” are A-flat, so is M’. Hence, for the kernel K of M'—M’,
we have the exact sequence
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0— K/IK —s M'/IM' -2, M'[IM' — 0.

Thus K=1K because a is an isomorphism. By virtue of Nakayama’s lemma, K=0.
Therefore, u is injective. g.e.d.

As a corollary to the above, we obtain

Lemma 6.6. Let A be a noetherian local ring over S with residue field k and
let I be a nilpotent ideal of A. Let T=Spec(A) and let Ty=Spec(A/l). Suppose
that there exist a Ty-flat coherent Oy, -module Eq and an exact sequence

(6.6.1) 0— Ey — 09 — Eg— 0.

If for E=Eo® 4k and for all point x of X, = X x sSpec(k), depth E,>min{dim(0y, ),
n—1}, then (6.6.1) is locally liftable to X, that is, there exists an open covering
{U} of Xy, a T-flat coherent sheaf E; on U; and an exact sequence

0— Ej —s 08" — E; — 0,

whose inverse image by the natural closed immersion U;x To—U; is isomorphic
to the restriction of (6.6.1) to U;x +T,.

Proof. Since depth E,>min {dim(0y, ,), n—1} for all points x of X,, E'=
Eo® 4,k is locally free on X, (see [12] p 115). Thus E; is locally free on X,
because E, is flat over T, (see [11] Lemma 1.3). We can find an affine open cover-
ing {U;} of X such that E4|y,«,1, is a free module. Let U;=Spec(B) and let
B,=B/IB. The sequence (6.6.1) provides us with the following exact sequence

0 — BY" 2o, BN o0, My— 0

where M, is A/I-flat. We have only to lift the above sequence to an exact sequence
of A-flat B-modules. Let «: B®*—B®r and f: B®¥—B$N be the natural homo-
morphisms. Then we can lift u, to u: B&—-B®N yoa=pu. If one sets M=
coker (u), then he obtains

M® A/l =coker(u)® 4A/l =coker (uy) = M,.

Lemma 6.5 can be applied to this case and we see that M ia A-flat and u is injective.
q.e.d.

Proposition 6.7. Let E be a stable sheaf on a geometric fibre X, of X with
Hilbert polynomial H. If depthE,>min{dim(0y,,), n—1} for all points x of
X, and if Ext2, (E, E)=0, then My (H) is smooth over S at the point correspond-
ing to E. In particular, if dim X/S=1, then My (H) is smooth over S. If dim
X|S=2, then ExtZ, (E, E)=0 is sufficient for smoothness of My,(H) at the point
corresponding to E.

Proof. Assume that E is e-stable. Since Ext}, (E(m), E(m))=Ext?, (E, E),
we may assume that h/(X,, E)=0 for j>0 and that there exist a principal fibre bundle
R,— M, with group G=PGL(N, S) and the universal quotient sheaf on X x 4R,
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0— F — 0% g, — F— 0

such that for some k(s)-valued point x of R,, F®k(x)=E. We have only to show
that R, is smooth over S at x (see Corollary 6.4.2). To do this, take an artin local
ring A over 0g . and an ideal I of A, where s, is the scheme point of S which is the
image of s: Spec(k(s))—S. For A,=A/l, suppose that the following commutative
diagram is given

R,
/ ‘[

4

To=Spec(A,) —— T=Spec(4) — S

where x,=n,(Ty) for the scheme point x, of R, which is the image of x: Spec(k(s))
—R,. What we have to show is to find an S-morphism n: T—R, with ni=n,.
Using induction on the length of I, we can reduce the problem to the case where
I=¢A and the length of I is one. The T,-valued point 5, gives us an exact sequence
of T,-flat, coherent Oy, -modules;

6.7.1) 0— Ey — 03Y — Eg— 0,

where Eq=F®,, 0, and Eo=F'Q®,, Or,. Note that E,®,, k(s)=E and E'=
Eo®or k()= F @y, k(s). By virtue of Lemma 6.6, the sequence (6.7.1) is locally
liftable to X ;. Then, a class of obstraction for global lifting of (6.7.1) to X is in

HY X, #omoy (E', E)) (see [6] Corollary 5.2). On the other hand, from the exact
sequence

O——»E'—»(D?f—»E———»O
we obtain the following exact sequence:
Ext}, (0%, E) — Ext}, (E', E) — Ext2, (E, E).

Since Ext}gx'(@?,", E)=H'(X,, E®¥)=0, our assumption that Ext?, (E, E)=0 shows
that Ext;, (E', E)=0. Since E’ is locally free, we have H'(X,, Homgy (E', E))=
Extc‘,xs(E', E)=0. Thus the sequence (6.7.1) is globally liftable to X;;

(6.7.2) 0—*5’—»0%?—»5—»0

This sequence gives rise to a T-valued point n of R,. Since the inverse image of
(6.7.2) by the closed immersion of X, to X is (6.7.1), ni is equal to 7. g.e.d.

As a special case of the above proposition, we have

Corollary 6.7.3. Suppose that dimX/S=2. If d(/2\ Qx., 0x(1))<0 for a
geometric point s of S, then My (H) is smooth at every point of My,(H)x sSpec
(k(s)). Moreover, if S=Spec(k) for a field k, My, {(H) is normal.

Proof. As in the proof of the preceding proposition, we may assume that
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hi(X,, E)=0 for j>0 and there exists an open subscheme R of a Quot-scheme and
the universal quotient sheaf 0?,’2’5R—>F such that My (H) is a categorical quotient
of R by the group scheme PGL(G, S), n~'(My,s(H))—»My,(H) is a principal fibre
bundle with group PGL(N, S) and F parametrizes all the semi-stable sheaves with
Hilbert polynomial H, where m: R—My(H) is the morphism of quotient (note
that in this case, Sy;5(H) in Corollary 5.9.1 is bounded). We have only to show
that R is smooth over S. For this, it is enough to prove that Ext7, (E, E)=0 for
every semi-stable sheaf E (in the proof of Proposition 6.7, we did not use the stabili-
ty of E to show smoothness of R,). Let E be a semi-stable sheaf on a geometric
fibre X, and let {x,,.... x,} be the set of pinch points of E (i.e. x; is a point where

E is not locally free). For the open immersion i: U=X,—{x,,.... x,}»X,. E=
i«i*(E) is a locally free @y -module and G=E/E is a torsion sheaf with support
{X14ee x,}. We have the following exact sequence

Ext?, (G, E) — Ext?, (E, E) — Ext}, (E, E) — 0.

(Note that for all coherent @y -module H with dim Supp(H)=0 and for all i>2,
Ext}, (H, E)=0 because X, is a non-singular projective surface.) Moreover, since
E is locally free, Ext}, (E, G)=H{(X, EY®G)=0 for i=1,2. Thus ExtZ, (E, E)
is isomorphic to Extg;s(E. E)=H*X,, EY®E) which is a dual space of Hom,,
(E, E® /Z\Qx’)). On the other hand, since E is semi-stable, it is u-semi-stable, and
then E is u-semi-stable, too. Thus, if neHom,, (E, E® /Z\Qx,)) is not zero, then
d(E, 0x()/H(E) < d(E), 0x(V))/r(n(E) < d(E®(A Qy). 04(1)/r(E). Our assum-
ption implies that d(E®( /Z\st), Ox(1))=d(E, (9X(l))+r(E‘)d(/2\Qx,. 04(1))<d(E,
Ox(1)). This is a contradiction. Therefore, we see that Hom,, (E, E®(’2\Qx,))
=0. Then the above argument shows that Ext%,xs(E', E)=0, whence Ext},xs(E, E)
=0. q.e.d.

Example 6.8. If X is P2 or a rational ruled surface over a field k, then Cor-
ollary 6.7.3 says that every My (H) is smooth, quasi-projective over k and every
My ,s(H) is normal, projective over k. It is easy to see that for a ruled surface X,
there exists a very ample invertible sheaf @,(1) on X such that d( A Qum O0x(1))<0.
If one fixes this Ox(1), then every My (H) (or, My (H)) with respect to the @x(1)
is smooth, quasi-projective (or, normal, projective, resp.) over k.

As for the dimension of My s(H), we have

Propositoin 6.9. Suppose that dim X/S=2. Let E be a stable sheaf on a
geometric fibre X with Hilbert polynomial H and let x be the geometric point of
My s(H) which corresponds to E. If ExtZ  (E, E)=0, then the relative dimension
of My s(H) over S at x is

(I =r(E))cy(E)* +2r(E)ca(E) — r(E)*x(0x,) + 1,
where ¢,(E) is the i-th Chern class of E.

Proof. Both the assumption and the conclusion are independent of twisting
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E by 0y (m). Thus we may assume that H/(X,, E)=0 for j>0 and that we have
a principal fibre bundle q: R— My s(H) with group PGL(N, S) (N=h%X,, E)) and
the universal quoteint sheaf on X X gR;

O—*F’-—»(P?ﬁsk———»F—)O.

There exists a point y in R(k(s)) such that F®, . k(y)=E. Set E0=0§?’f and E, =
F'®4,k(y). From the above exact sequence we get

(6.9.1) 0 — E, —> Eq—> E —> 0.

Note that E, and E, are locally free. (6.9.1) provides us with the following exact
sequence

0 — Hom,, (E, E) — Hom,, (E,, E) — Hom,, (E,, E)
— Ext}, (E. E) — Ext}, (E,, E).

Since Hom,, (E, E)=End,, (E)= k(s), dim,, Hom,, (Eo, E) =h%(X,, E®N) = N2
and since Ext}, (Eo, EY2H'(X,, #omo, (Eo, E))= H'(X,, E®N)=0, dim,,Ext},
(E, E)y=dimy, Hom,, (E,, E)=N?+1. On the other hand, Hom,, (E,, E) is
the tangent space of R, at y (see [6] Corollary 5.3) and My s(H) is smooth over S
at x by the assumption and Proposition 6.7. We see therefore that dim My, s(H),
=dimy, Ext}, (E, E). By virtue of the spectral sequence Ef'=HP(X,, &4, (E,
E))=Er+i=Extft?(E. E), the following exact sequence is obtained;

0 — HN(X,, #ompy (E, E)) —> Ext}, (E, E) —
HO(X,, 62¢by (E, E)) —> HX(X,, #omyy (E. E)) —> Ext}, (E, E)=0.

Since E is locally free outside the set of pinch points of E, &=¢;, (E, E) is a sky-
scraper sheaf. Hence we have

(6.9.2) dimy, Exty, (E, E)=x(&2¢5, (E, E))— y(Homey (E, E))+1.
Now, from the exact sequence (6.9.1), we have an exact complex
0 — Homgy (E, E) — Homg, (Eo, E) —> Homo, (E,, E)
Since €244, (E, EYX H omq, (E,, E)/im(d), we have
(6.9.3) W E=t5y (E, E))—y(Homoy (E, E))=x(Homq, (Ey, E))
—X(Homqy (Eo, E)).
Using the fact that s#em,, (Eo, E)~ E®N, Homg, (E\, E)Y2EQEY, we obtain
¢1(H emo, (Egs E))=Ney(E)
cx(Homgy (Eg. E))=Ncy(E)+N(N—1)cy(E)[2
c1(#amg, (Ey, E))=Nc,y(E)
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¢x(#omqy (Ey, E))=(N?—N+2r—2)c,(E)/2+ (N = 2r)cy(E).
These, (6.9.2), (6.9.3) and Riemann-Roch theorem imply our assertion. q.e.d.

Our next topic is on universal families. Let My, (H, e) be a moduli scheme
of e-stable sheaves with Hilbert polynomial H which was constructed in [12] Pro-
position 5.5.

Definition 6.10. A universal family of My (H, e¢) is a coherent sheaf F on
X x sMys(H, e) with the following properties:

1) Fis flat over My 5(H, e).

2) For each geometric point s of S and for all te My, s(H, e)(k(s)), FQk(t)=
07'(t), where 6, is the map of X%;&(Spec(k(s)) to My,(H, e)(k(s)) defined in
[12] Proposition 5.5, (i).

A universal family is not necessarily unique. For instance, if F is a universal

family of My s(H, e), then so is F® p3(L) for every invertible sheaf L on My (H, e).
m+i

As is well-known, H(m) can be written in the form i a,~< ;
i=0

) for some in-

tegers ao,..., a,. Set
d(H)=G. C. D.{a,,..., a,}.
Theorem 6.11. If 6(H)=1, then My,s(H, e) has a universal family.

Proof. One finds an idea to prove this theorem in [15]. Our proof proceeds
along the line. There exist a principal fibre bundle g: R—>M =My (H, ¢) with
group PGL(N, S) and the universal quotient sheaf F on X xg4R. F parametrizes
all the e-stable sheaves with Hilbert polynomial H, (m)=H(m+ m,) for some m,.
We may assume that for all m>m, and for all e-stable sheaves E with Hilbert poly-
nomial H, hi(E(m))=0 if j>0. For an invertible sheaf L on R, if one can descend
F®p¥(L) to a coherent sheaf F' on X x ¢M, then F'®p¥(Ox(—my)) is a universal
family of My s(H, e). Since j=1xxg5q: X x gR—X x gM is a principal fibre bundle
with group G=PGL(N, S), descent data for F® p§(L) is nothing but a G-lineariza-
tion of F®p¥(L). On the other hand, F carries a G=GL(N, S)-linearization ([12]
§4). Thus our task is to find an invertible sheaf L on R and a G-linearization y on
L such that p3() cancels the action of the center C=G,, s of G on F.

Now, it is easy to see that for the my,

O(H)=G. C.D. {H(m)im>=m,}.

By our assumption on 6(H), we can find integers m,,..., m, such that m;>m, and
Z“, a;H(m;)= —1 for some integers a,,..., a,. By virtue of the choice of mg, p,4(F
lélp’{‘(@,‘((m,-—mo)))=E,~ is a locally free @g-module of rank H(m;). Since each
FRp¥(Ox(m;—m,)) is G-linearized, so is E; by virtue of the base change theorem.
And, moreover, the action of C on E; is the multiplication of constants. Thus the
invertible sheaf L,-=H(/'{”)Ei carries a G-linearization and the action of C on L; is
the multiplication of H(m;)-th power of constants. Then, for L=LP*®---®
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L®s«, the action of C on L is the multiplication of the inverse of constants. There-
fore, F®p*(L) is G-linearized and the action of C on it is canceled. Hence we
get a G-linearization on F® p3(L). g.e.d.

Corollary 6.11.1. If Sy (H) is bounded and if 6(H)=1, then My s(H) has
a universal family.

Remark 6.12. 1) If S=Spec(k) for a field k, then My (H, e) is a disjoint
union of My(cy,..., ¢, r, €), where My(cy,..., ¢,, 1> €) is a moduli scheme of e-
stable sheaves of rank r on X with Chern classes c,,..., ¢, (numerical equivalence).
For an e-stable sheaf E of rank r with Chern classes c,..., ¢, and for an invertible
sheaf L on X, set

H (m)=3(E®,,L)(m)).

H,(m) is independent of the choice of E. For A(H)=G. C. D. {6(H,)|Le Pic(X)},
if A(H)=1, then My(c,,..., ¢,, 7, e) has a universal family.

2) Let L be an invertible sheaf on X such that L®2~0,(1) for some positive
integer . Set H'(m)=y(E®,, L®™ for an e-stable sheaf on X, with Hilbert
polynomial H. Then H'(am)=H(m). If 6(H')=1, then My, (H, e) has a universal
family.

3) If My,s(H, e) has a universal family, then My (H, e) represents the sheafi-
fication in Zariski topology of the functor Z%¢.

§7 An example

As an example, let us investigate more closely the moduli schemes of stable
sheaves in the case where the base space is P? and the rank is 2.

Until Theorem 7.17, X denotes PZ and 0,(1) denotes the invertible sheaf cor-
responding to lines in X. For i=0 or 1, let M,(n) (or, M(n)) be a moduli scheme
of stable (or, semi-stable, resp.) sheaves of rank 2 on X with the first Chern class i
and the second Chern class n. Since for a torsion free coherent sheaf E of rank 2
on X, ¢,(E®,, 0x(m))=0 or | for a suitable m, every moduli scheme of stable (or,
semi-stable) sheaves of rank 2 is isomorphic to one of My(n) (or, Myn), resp.).
Let M(n), denote the open subscheme of M (n) whose points correspond to locally
free sheaves.

Lemma 7.1. 1) M ,(n)=M(n). If nis odd, then My(n)=M(n).

2) M,(n)#¢ if and only if n>0. My(n)=¢ unless n>0.

3) Mn) is smooth and dim, M(n)=4n—3—i at every point x of My(n).

4) If a semi-stable sheaf E of rank 2 on X is locally free and not p-stable,
then E=0x(m)®? for some integer m.

Proof. 1) If the degree and the rank of a semi-stable sheaf E are coprime,
then E is u-stable, a fortiori, stable. Hence M,(n)=M,(n). If n is odd, then the
constant term of the Hilbert polynomial of My(n) is odd. Thus My(n)=M(n) if
n is odd.
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2) If d(E, 0x(1))=1, r(E)=2 and E is stable, then E is u-stable. Thus E=
(EY)Y is also p-stable and locally free. Then E is simple, and hence c,(E)>0 (see
[9] Theorem 4.6). Since c,(E)=c,(E)—c,(E/E)>c,(E)>0, we know that M,(n)
=¢ unless n>0. Conversely, there exists a simple vector bundle of rank 2 on X
with Chern classes ¢, =1 and ¢, =n for all positive integer n (see [9] Theorem 4.6).
Since every simple vector bundle of rank 2 on X is stable ([10] Appendix Proposi-
tion A.1), the first assertion of (2) is proved. If d(E, 0x(1))=0, r(E)=2 and E is
semi-stable, then E=(E")" is u-semi-stable. If E is stable, then c,(E)>0, whence
c,(E)>0 as above. If E is not stable, then E contains 0y so that E/@, is torsion
free. Then c,(E/0x)>0. Thus c,(E)>c,(E)=c,(E/0y)>0.

3) s a special case of Corollary 6.7.1 and Proposition 6.9.

4) Since E is not u-stable, d(E, 0x(1)) is even. Thus we may assume that
d(E, 04(1))=0. Then our assumption says that E contains 0y so that E/Oy is
torsion free. Since c¢,(E/0x)=0, E/0Ox can be regarded as an ideal sheaf of 0.
Hence h°((E/0x)(m)) < h%(@x(m)) and the equality holds if and only if E/0y=0.
Therefore, E is an extension of Oy by 0y because E is semi-stable. Hence E=~@,%2.

q.e.d.

Let T be a reduced, locally noetherian scheme and let I be a coherent ideal on
Y=P%. Assume that ¢y/I is T-flat and dim Supp (Gy/I®,,.k(t))=0 for all points
t of T. 0y(1) denotes an invertible sheaf on Y such that 0y(1)@k()= 0z , (1) for
all points t of T. For a=min {h!(Y,, I(m)®k(t))lte T}, set U={te T|h'(Y, I(m)
®k(t))=a}, where I(m)=1®,,0y(m). Then U is a non-empty open set of T and it
is easy to see that ho(Y,, I(m)®k(t)) and h3(Y,, I(m)®k(t)) are independent of te U.
Thus Rip,(I(m))|y is locally free for all i because T is locally noetherian and reduced,
where p is the projection of Y to T. Moreover, for all morphism g: T'-U,
g*R'p4(I(m)=R'(px 117):(I(M)®,,07). Set E=R'p,(I(m)), V=V(E)=Spec(S(E))
and E=E®,,0y. Then there exists a universal homomorphism {: E—-0,.

Let W =Spec(A) be an affine open subscheme of U and let g be a morphism of
W’=Spec(A’) to W. We obtain the following commutative diagram;

Extd,, (I(m)®,, 0w, A Qy,w)®.A' <844 Hom,,, (R'py(I(m)) | w. On)® 44

i ]
Ext}, . (I(m)®o,0p', ARy, ,w)———>Hom,, (R'px(I(m)®,,0w), Oy:)

where p'=px rly., o and f§ are canonical functorial homomorphisms and where ¢
and & are the canonical isomorphisms defined by the duality morphisms ([7] Ch.
III, Corollary 5.2). Since f is an isomorphism, so is . Applying these to W’'=
V x yW, we know that { provides us with an element {y. of Ext}, (I(M)®,,. 0,
/Z\QYW,,W,). For a point t of W, EQ, k(t)=H(Y,, I(m)®,,.k(t)) which is a dual
space of Ext}, (I(m)®,.k(1), /Z\Qytlk(,)). Thus the set of k(¢)-valued points of W,
is Extg, (I(m)®,,k(), /Z\Q,,‘/k(,,). Moreover, for each point s in W (k(?)), {w-
®Kk(s) is just the element of Ext;, (I(m)®,.k(1), /2\.QY‘/,‘(,))=Ext},YW,(I(m)®,T0W,,
A Qy,,..,w)® 4k(s) which corresponds to s.
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On the other hand, {y . defines an extension ([3] p 292)
(7.2) 0— AQy,.w — Fy, — I(m) ®,, 00, —0.

The above observation shows that for each point s of W', {,,.®k(s) is an element
of Ext;, (I(m)®,.k(s), @ A y./k(s)) defined by the extension

(1.2)Qk(s) 0 — ARy, jusy — Fiw: ®gyy k() — I(m) @4, k(s) — 0.

Therefore, we obtain a W’'-flat coherent sheaf F,. on Y),. which parametrizes all the
extensions of I(m)®, k(t) by A Qy k) for all te W.

Lemma 7.3. Let E be a stable, locally free sheaf of rank 2 on Xy, where K
is a field containing k. If ¢,(E)=i=0 (or, 1) and c,(E)=c,, then there exist an
integer | and an exact sequence

0— A Qy x — E(—3) —> J(2[=3+i) — 0
with the following properties;

a) (Jac,+1=1)2>1>0 (or. \Jc; =1 =1=0, resp.),
b) Jis a coherent ideal of Oy, such that dim Supp(@x,/J)=0,
c) hX,, JQ2I-3+1i)=0.

~ Proof. Let us prove the case where ¢, =1. The proof of another case is simi-
lar to that. By Riemann-Roch theorem,

Y(E(m)=m2+4m+4—c,.

Thus if m>\/?; —2, then y(E(m))>0. Since E is stable, \/c, —2> —1 by Lemma
7.1, and hence h?(E(m))=h%E(—m—4))=0 if m>./c, —2. Thus, for the integer
my with \Je; —1>m,; > \/—07—2, ho(E(m,))>m?+4m,+4—c,>0. For a non-zero
element a of H(X, E(m,)), we obtain the following exact sequence

0 —> 0y, 2% E(m) —*» L — 0.

For the torsion part T of L, u~'(T) is locally free and rank | because L/T =
E/u~Y(T) is torsion free and rank I. Thus we have an exact sequence

(7.3.1) 0 — O, (¢) — E(m)) — M — 0

for some e with m;>e>0 and for some torsion free coherent sheaf M of rank 1.
Let e, is the maximum among the integers e such that @y, (e) is a subsheaf with
E(m)/0y (e) torsion free. Then I=m,—e, and the exact sequence obtained by
tensoring A0 xx/k(—€;) to the above sequence with e=e,

0 — A Qy x — EU—=3)— M, — 0

meet our requirement. In fact, (a) is obvious. For J=M,(—2l+2), the natural
injection J—(JY)V =04, makes J an ideal of @y, such that dim Supp (04, /J)=0 be-
cause ¢,;(J)=0 and J is torsion free. If hO(J(21—2))=h"(M )50, then h°(E(l—3))
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2 ..
#0 because h'(A Qy,,x)=0. Thus, by a similar argument to the above, we
have an exact sequence

0—>0XK(32)—’E(1_3)_’M2——’0

for some e,>0 and some torsion free coherent sheaf M,. After tensoring 0y, (e,
+3) to the above, we get an exact sequence of type (7.3.1) with e greater than e,.
This contradicts the maximality of e,. q.e.d.

Let E be as in the above lemma. Then we have [ and J. The Hilbert poly-
nomial of Oy, /J is a(l)=1?+il+c,. Thus, by the exact sequence

0— JQ2I=3+i) — 04,21 =3+1) — 04, /] — 0
and by the fact that h°(J(2] -3 +1))=h'(0x,(2]—3+i))=0, we have
MJQI=-3+D)=a()—QI-1+)(2]-2+1)/2
=—P4+@-Dl+i—1+c,.

We denote the right hand side of the above equality by B(I). Then, B()>0 if I
satisfies the inequality in (a) of Lemma 7.3. Let T,;=Hilb§{” and let I,; be the
universal family of ideals on X x,T;;. For a general point t of T,;, ho((I,;®k(t))
(21-3+1i))=max{—p(I), 0} =0, and hence h'((I,;®@k(1)(2]-3+i)=0()—h%(Oy,
I=3+0)=p(D. Thus, U,;={te T h'((,;@kt)(2I-3+i)=p(D)} is a non-
empty open set of 7,; and for all te U, h°((I,;®k(t)(21—3+i))=0. By the defi-
nition of U,;, J=I,;®k(f) as ideals of @y, for some K-valued point t of U,;. Tt
is known that T,;, a fortiori, U,; is a smooth and rational variety ([4] and [13]).
By virtue of the results before Lemma 7.3, for an affine open covering {W;} of U, .
there exists a family of coherent sheaves {Fy;}, where W;=V(G;) x y, W; for G;;
=R'p,4(I} )y, . Each Fy; is Wi-flat and it parametrizes all the extensions of
I, ®k((t) (21 -3+1) by /Z\Qx‘/k(,) for every te W;. Thus there exists a K-valued
point x of a W) such that ExXFy;®k(x). Moreover, Fy;ly;,w; is isomorphic to
Fwilwyow;. Let V,; be the open subscheme of V(G,;) such that for all algebrai-
cally closed field L,

V.(L)={xeV(G,;)(L)|Fw;®k(x) is stable and locally free, where x e W(L)} .

Then, Fy;(—1+3)=Fy;,®0x(— |+ 3) defines a morphism f{/) of W} n V,; to M(c,),.
It is clear that f{)=f? on W;n W;nV,;. Thus we obtain a morphism f of V;
to M(c,)o. Since V,; does not intersect with the zero section of V(G;;) and since
forteU,;, xe(V,)), and a € G,, ). ax is contained in V,; and f; (x)= f} (ax), f}.;
induces a morphism f;; of P,; to M(c,),, where P,; is the open subscheme V,;/G,,
of P(G,;). By the construction of P,;, dimP,;=20(D+p()—1=2+C+i)l+i+
3¢, —2.
Combining the above results and Lemma 7.3, the following is obtained.

Lemma 7.4. Foreach integer | with (\/4c,+1—1)/2>1>0(or, \Jc, —1>1>0),
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there exist a non-singular rational variety P o (or, P, resp.) of dimension 1>+
31+3¢c,—2 (or, 1244143c¢,—1, resp.) and a morphism f, o (or, fi 1, resp.) of Po
(or, Py 4, resp.) to My(cy)o (or, M(cy)o, resp.). Moreover, \IJf,'i(P,'i)=Mi(c2)0.

From this lemma, we have

Proposition 7.5. All the M(c,), are geometrically integral and non-singular.
Moreover, they are unirational over k.

Proof. M(c,), (or, M (c;)o) is smooth and pure dimension 4c,—3 (or, 4¢, —
4, resp.). It is easy to see that [243143c,—2<4c,—3 (or, ?+4l+3c,—1<4c,—
4, resp.) unless [=I, (or, I;, resp.) with ((/4c,+1 —1)2>1,>(\J4c,+1 —3)/2 (or,
Je—1>1> \/72—2, resp.). If a connected component C of Mc,), does not
contain f, (P, ), then C is covered by some of f, (P,;)'s with [#]; because every
P, is connected. Then dim C <max {dim P, ;} <4c,—3—i, which contradict to the

1#1
fact dimC=4c¢,—3—i. Thus everS/ connected component of M{c,), contains
f1,4(Py,.0). that is, M(c;)o®,K is connected for all over fields K of k. Thus M(cy)o
is geometrically integral. Since P,,; is rational, M(c,), is unirational. g.e.d.

As a corollary to the above, we have

Corrollary 7.5.1. If c,=a%*—1 for an integer a. then M,(c,;), is a rational
variety. If c,=a?+3a+1 for some integer a. then My(c,), is a rational variety.

Proof. H(m)=2<’"§f3>+ cl(”';r l>+c,(c,+1)/2-c2 is the Hilbert polyno-
mial of a coherent sheaf of rank 2 with Chern classes ¢, ¢, on P2, Thus §(H)=1
if c,=1orif ¢,=0and ¢, is odd. Since a2+3a+1 is odd, Mc,) has a universal
family E; in both case by virtue of Corollary 6.11.1. We shall prove our assertion
in the case of i=0 because another case can be proved similarly. Let x be the
generic point of M(c,), and let r be the integer I, in the proof of Proposition 7.5.
Set E=E,®k(x). Then E is a stable sheaf on X,. Let y be the generic point of
P,,. Then f,o(y)=x. Let z be a point of V,, lying over y. Since for a non-
empty open set W’ of W', Fy, |y is the pull back of E, by the morphism W’'—
P,'OMM o(€2)o, We have an exact sequence

(1.5.2) 0 — Oy, — (EQyx)k(2)) (r) — J(2r) — 0,

where J is a coherent ideal of @y, with dim Supp(0x, [J)=0 and h%(0Oy [J)=0o(r).
Since the image of z to T, , is the generic point of it,

hoJ2r) =h%0y (2r))—h(0x )
=I'2+3r+l —Cs.

If c;=a?+3a+1, then r=a and h°J(2r))=0. Thus dim,,, H%(X,, E(r))=dim,,,
HO(X,, (E®yxk(z))(r))=1. Hence, for a non-zero element s of H°(X,, E(r)), the
following exact sequence on X, is obtained;
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(7.5.3) 0— 0y, — E(r) — 1(2r) — 0,

where I is a coherent ideal of Oy  with dim Supp(0x /)=0 and h%0y_/I)=oay(r).
Therefore, there exists a morphism g: Spec(k(x))—T,, such that I=(1yx ,g)*(I, )
and, moreover, the extension (7.5.3) defines a non-zero element y of

Homy ) (9*(Rpax(1,,0(2r —3))), k(x))=
Hom,,,(H!(X,, I2r—3)), k(x)) = Extg, (I(2r—3), A Qy ki) -

1 gives rise to a morphism h of Spec (k(x)) to V(G,,). It is clear that h(Spec(k(x)))
€ V.0, and hence h induces a morphism h of Spec(k(x)) to P,o. Since h%AE®;,
k(z))=1, al=n for some xeG,(k(z)), where ¢ is the extension class of (7.5.2).
Thus h(Spec(k(x)))=y. Now, since (f,o-h)*(Eo)=E, f,o-h is just the natural
morphism of Spec (k(x)) to M(c,), (see Remark 6.12,(3)). This means that k(x)=
k(y). On the other hand, k() is the function field of P, , which is a rational func-
tion field over k ([13]). Thus the function field k(x) of M(c,), is also rational.
g.e.d.

Corollary 7.5.4. If E is a stable sheaf of rank 2 on X =P% with Chern classes
¢y, €3, then E contains a coherent subsheaf L of rank 1 such that d(E, 04x(1))/2—
d(L, 0x(1))<ly or (21;+1)/2 according as c, is even or odd, where |, (or, 1,) is the
integer with (\J4c,—ci+1—1)2>1,>(\/4c; —ci+1 =3)2 (or, (\J4c;—3+1 —2)/
221,>(J4c,—cF+1 +4))2, resp.). Moreover, there exists a stable locally free
sheaf of rank 2 such that for all coherent subsheaves L of rank 1. d(E, 0x(1))/2—
d(L, 0x(1))=> 1, or (21, + 1)/2.

Proof. We may assume that ¢, =0 or 1. The first assertion can be proved by
a similar way to Lemma 7.3. If the second assertion is not true, then f,; is gener-
ically surjective for some /<I;. This is not the case as was shown in the proof of
Proposition 7.5. g.e.d.

Our present aim is to show that M (n) and M(n) are connected. For an alge-
braic closure k of k, M,(n)®.k=Mp:(1, n) and My(n)®,k is homeomorphic to
Mp:(0, n). Thus, to prove the connectedness of M (n) and My(n), we may assume
that k is algebraically closed.

Lemma 7.6. If E is au coherent, torsion free sheaf on a non-singular surface
Y over k and if E is not locally free, then for a pinch point y of E, there exists an
exact sequence

00— E— E' — k(y) — 0,
where E’ is coherent and torsion free.

Proof. Since Y is a non-singular surface. E=(E")" is locally free and Supp (E/
E) is the set of pinch points of E. Hence, G=(E/E), is an artinian 0y ,module.
Let G' be a submodule of G which is isomorphic to k(y). Then u='(G’) is the de-
sired sheaf, where u is the natural homomorphism of E to G. q.e.d.
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Let T be a k-scheme and let F be a quasi-coherent sheaf on X x,T. For Z=
P(F) and the projection q: Z— X x T, we obtain a natural homomorphism v: g*(F)
—0,(1). Let p, (or, p,) be the projection of Z to X (or, T, resp.). The morphism
p19: Z— X defines a closed immersion I', ,;: Z—X x,Z. It is easy to see that for
g=lyxp.q: X< Z-Xx,T,g-T', ,=q. For W=I, (Z)and F =g*(F), we have
a natural homomorphism

Py

5: F— FR0, — (I'p,)«(0,(1)=L.

For a geometric point z of Z, ®k(z) is a homomorphism of F®k(y) to k(x), where
x=p.q(z) and y=p,q(z). By the universality of the couple (Z, v) (E. G. A. Ch. I,
4.2.3), (Z. D) parametrizes all the surjective homomorphisms F®Kk(t)—k(x) for
geometric points t of T and k(f)-valued points x of X,.

On the other hand, there exists an étale covering T(n—1) of M(n—1) and a
T{(n—1)-flat coherent sheaf F on X x,T(n—1) which parametrizes all the stable
sheaves of rank 2 with Chern classes i, n— | (see the proof of Theorem 6.11 and
E. G. A. Ch. 1V, 17.16.3). Applying the above observation to T=T(n—1), we have
an exact sequence of coherent sheaves on X x P(F);

0—s F — S F 12, _—0.
Since both L and F are flat over P(F), so is F'.

Proposition 7.7. Let My(n), be the open subscheme of Mqg(n) whose points
correspond to yi-stable sheaves.  Then My(n), and M (n) are connected.

Proof. lLet M,(n), be the open subscheme of M, (n) whose points correspond
to u-stable sheaves. Then M,(n),=M,(n). Thus we have only to show that
Myn), is connected for each i, n. Let Z=h"'(M{n—1),) and let T(n—1),=
g~ ' (My(n—1),), where h (or, g) is the natural morphism of P(F) (or, T:(n—1), resp.)
to M(n—1) for the above T(n—1) and P(F). Lemma 7.6 and the property of i
stated above imply that F'|y,, , parametrizes all the p-stable sheaves of rank 2
with Chern class i, n which are not locally free. Hence we have a morphism { of
Z to M(n), such that {(Z)=My(n—1), —M(n),.

Let us prove our assertion on M,(n), by induction on n. We know that i=1,
n>1ori=0, n>2 (see Lemma 7.1). Thus, M(n), —M{n),#¢ if and only if i=1,
n>2or i=0, n>3 because ¢,((EY)V)=c,(E)+ h%(EY)"/E) and because E is u-stable
if and only if so is (EY)Y. Therefore, if Mn),—Myn)y#¢, then M n—1),# ¢.
This and Proposition 7.5 imply that our assertion is true for i=1, n=1 or i=0,
n=2. Assume that i=1,n>1 or i=0,n>2 and that M(n—1), is connected.
Then, Zy=h"Y(M(n—1)o)# ¢ and, moreover, Zy(k)=1{ze€ Z(k)| for E=F ®k(z),
ho((EV)V/E)=1}. By this property of Z,, no points of {(Z,) are specializations of
points of {(Z—Z,). '

Lemma 7.8. Let Y be a noetherian, reduced, irreducible scheme and let F be
a coherent Oy-module. Assume that for the generic point y of Y, F,#0. Then
P(F) is connected.
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Proof. Let p be the projection of P(F) to Y and let Y, be the the largest open
set of Y over which F is locally free. By our assumption, Y, is not empty and P(F)y,
is irreducible. If W is the closure of P(F)y, in P(F), then p(W) is closed in Y and
contains the generic point y. Thus p(W)=Y. For a point z of Y, P(F), is con-
nected because P(F),=P(F®, k(z)) is a finite dimensional projective space. The
fact that p(W)=Y implies that ¢# W.<P(F),. Since W is irreducible, P(F) is
connected. q.e.d.

Now, let us come back to the proof of Proposition 7.7. For a connected com-
ponent T of Tyn—1),, Z; is connected and (Z,)4 is irreducible by the above lemma
because Ty(n—1), is smooth. Since M(n—1), is irreducible and T is flat over
M(n—1),, the image of T to M(n— 1), contains a non-empty open set of M(n—1),.
Therefore, (Zy)r is not empty. These and the results before Lemma 7.8 show
that the closure of (((Zy)y) in My(n), is an irreducible component of M (n),—
M(n)o. Let C be the connected component of M,(n), which contains {(Z;). Since
dim(Zy)r=1+dimX+dimT=3+4(n—1)-3—i=4n—-3—i—1<4n—-3—i=dimC,
CnM(n)y#¢. By virtue of Proposition 7.5, M(n), is connected. Therefore,
M(n), is connected. g.e.d.

Our next step is to show that My(n) is connected. Let T,=Hilb%, and let
I, be the universal family of ideals on X x,T,. Then. as in the proof of Lemma
7.4, we can construct a universal family of extensions

(7‘9) 0 —_— 0“‘",, —_> E"iy' e d Id®0u/0u" —_— O

on W =V(R!'py(I(—3))w, where Wis an affine open of T, and p is the projection
of Xx,T,t0 T,.
The following is proved in the same way as Lemma 2.5 of [4].

Lemma 7.10. Let E be a locally free sheaf of rank 2 on a non-singular sur-
face Y. If E' is a coherent subsheaf with dim Supp (E/E")=0, then dim Hom, (E’,
E/E")<4h%(E/E").

By virtue of Corollary 5.3 of [6] and the above. dim y(Q’,',;f’)gdim W' +4n—

4d=4n—d at every point y of the open subscheme Qy¢ of Quot},¢ x,,. w- such

that x is a point of Q¢ if and only if it lies over a point z of W’ with E,.®k(z)

locally free. For the universal subsheaf Ej¢ on X x,Q%¢, we can find an open

subscheme U%¢ of Qi¢ such that for all algebraically closed fields K,

Unf(K)={ye Q%! (K)| E!®k(y) is stable}

For every ve Uyi(K), ¢ (ER!®@k(N=0, c(ER!®@k(y))=n and ER!®Kk(y) is not
p-stable. Therefore, Ej? defines a morphism gj¢ of Uid to My(n) such that
gl (U is contained in My(n)— My(n),.

Lemma 7.11. If d>2, then dimgi4(Uls® <dim My(n).
Proof. It is casy to see that dim Aut(E, - ®k(z))=dim End(Ey:®k(z))>2 for
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all ze W’. On the other hand, Aut(E%*®k(y))=G,, for all geometric points y of
U%4. Hence, for all K-valued geometric points y of U, {xe (UyMH(K)EwR!
®k(x)=E!®k(y)} is the set of K-valued points of a subscheme with positive
dimension in (U%?),, where z is the image of y in W’. Moreover, for the natural
action g of G, on W', Ep.®k(w)=E, - ®k(o(x, w)). Therefore, for every point x
of U, dim (g9 ' (gi(x))>2, and hence dimgf(Upf)<dn—d—2<4n-3=
dim My(n). q.e.d.

There exists a reduced closed subscheme S, of T, x,T, (e>1) with the follow-
ing properties:

(7.12.1) For the projections p: S,—T, and q: S,»T,, J,=(1xxp)*(I,) con-
tains J,=(1x x,q)*(I,) as ideal sheaves of 0Oy, .

(7.12.2) g is a finite surjective morphism.

(7.12.3) For geometric points t, of T, and t, of T,, there exists a geometric
point s of S, lying over (1,, t,) if and only if I, ®k(t,) contains I,®k(t,) as subsheaves
Of 0/\'” =@sz'

Let us consider the following exact commutative diagram;

0 J, =25 Ogus, —> M, — 0

-

0 J,— ' s J 3 s My — 0

For a point s of S,, since a®Kk(s) is injective, so is y®k(s). This and Lemma 6.5
imply that M, is flat over S,. On the other hand, for an affine open set W of T,
we get an affine scheme W’ and a universal family of extensions

0 — 0Oy, — Ely 5 1,®,,,0p — 0

as in (7.9). Since W(k(1))=Ext; (I,®k(1), /Z\Qx',k(,,)gHO(X,. Eaty, (1 QK (),
A Qy ey) = k(t) for all te W, E},.®k(y) is locally free for all ye W"= W’ ~0-section.
Set Vi=W"xyS, Eye=E} ®,, .0y and 5=0®0",,0V'e. Then we have a sur-
jective homomorphism

Ui Eve —2 s 1@, Ope=J, @y Oy 20y My® 4, Ope.

Set Fye=ker(y). Since Eye and M,®,, 0y« are flat over V', so is Fye.

Applying the same argument as above to the case where S,=T,, W’'=Spec (k).
Jy=0xx,r, and E},. =0%2, we obtain a V§-flat coherent sheaf Fye on X x,V§,
where V§=T,.

The set of couples (V¢, Fy¢) parametrizes all the coherent, torsion free sheaf
E of rank 2 on X with the following exact commutative diagram;
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0—0y— E — L —0

o

0— 0y —E' —> L' — 0,

where L and L’ are torsion free sheaf of rank | with ¢,(L)=c¢,(L")=0, c,(L)=e and
c,(L)=i and where E'=(EV)".

Let V4-¢ be the open subscheme of Q',&:»=Quot”‘e,,-vf,xvf/y: such that for all
algebraically closed fields K,

Virea(K)={y e Q}«(K)|G;®k(y) is stable and dim~'n(y)<3n—2e}, where G;
is the universal subsheaf on X x,Qye and n: Qpe— V¢ is the structure morphism.
Let Fy».« be the universal subsheaf on X x,V'#-¢. Note that Fyu.« is flat over V-
and dim V¢ <3n—2e+dim V{=3n+i.

Let Z,=( 1 Ul 1L Vee)yd( U Ve and let F, be the

(n/2]>d>2 vi [n/2])>e=0
[n/2]=ec1

coherent sheaf on X x,Z, such that F,|y., ome=Epdly. e and Fuly < yme=Fyioe.
Then F, is flat over Z,.

Lemma 7.13. Let K be an algebraically closed field containing k and let E
be a coherent sheaf of rank 2 on Xy with ¢,(E)=0 and c,(E)=n. If E is stable
but not p-stable, then there exists a K-valued geometric point y of Z, such that
F,®k(y)=E. ' '

Proof. Since E is stable but not u-stable, the following exact sequence is ob-
tained;

0—’L1—'E—)L2_‘>Ow

where L, and L, are coherent ideal sheaves of 0y, with dim Supp(@x,/L;)=0 and
cy(Ly)>cy(L,). Since (LV)V=0y,. this gives rise to an exact sequence

0— Oy, — E — L; —0,

where E'=(EVY)Y and c,(L,)>c,(Ly)=d. If d>2, then the above exact sequence
provides us with a K-valued point x of W’ such that E%, ®k(x)~E’. By the defini-
tion of Q%¢, E corresponds to a K-valued point y of Q¢ lying over x because
ho(E'JE)=c,(E)—cy(E')=n—d. Since E is stable, y is contained in Ujp¥K), and
hence F,®k(y)=E. Now assume that d=i=0 or |. For the natural homomor-
phism A: E'—E'[E, set E"=A""(0x,/L,). Then the following exact commutative
diagrams are obtained:

0— Oy, — E' —> L, —0

(7.13.1) \ 1 ]

l

00— 0y, — E' —> L; —0
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0—> L, — E —> L, —0

(7.13.2) j 1 “

0—’0XK_—"E”_’L2—"O

Lo

wXK/LI:Co.\'K/LI

L

0 0

If e=c,(L,), then(7.13.1) yields a K-valued point x of V¢ such that F,«®k(x)=E".
Since h%(Ox,/L,)=c,(L;)=n—e, (7.13.2) defines a K-valued point y of Qp.. On
the other hand, dimyHom, (L, Oy, /L,)<2(n—e) and dimy Hom,  (L,, O,/
L)<(n—e)+e=n by the same argument as in the proof of Lemma 2.5 of [4].
Thus dimg Hom,,, (E, 0y, /L,) <dimg Hom,, (L, Oy, /L,)+dimg Hom,  (L,,
Ox./Ly)<3n—2e. Since Hom,, (E, 0y, [L,) isthe Zariski tangent space of n~'n(y)
at y, dim,n~'n(y)<3n—2e. This and the fact that E is stable imply that y is a K-
valued point of V¢ with F,®k(y)=~E. q.e.d.

Proposition 7.14. M (n) is connected.

Proof. F, defines a morphism g, of Z, to My(n). By the construction of
Z,, 9(Z,)S My(n)—My(n),. Lemma 7.13 means that g,(Z,)=My(n)—My(n),. By
a similar argument to the proof of Lemma 7.11, we see that dimg,(V!¢)<3n—3+
2i<4n—3=dim My(n) because dimV}-¢=3n+i, dimAut(E}, ®k(t))=>2 for all
te W', dimAut(09?)=4 and because n>i+1. This and Lemma 7.11 show that
dimg,(Z,)<dim My(n). Then, by the same argument as in the proof of Proposition
7.7, we know that M(n) is connected. g.e.d.

Finally let us show that My(n) is connected.

Lemma 7.15. Let K be an algebraically closed field containing k and let E
be a coherent sheaf of rank 2 on Xy with ¢, (E)=0 and ¢,(E)=n. If E is semi-
stable but not stable, then n is a non-negative even integer and gr(E)=L,®L,,
where L; is an ideal sheaf of Oy, with ¢,(L;)=0 and c,(L;})=n/2.

The proof is easy and we omit it.

Let n=2m, T,,=Hilby,, and let I,, be the universal family of ideal sheaves on
X xT,. Then, on X x,T,x,T, we have a coherent sheaf F=(lyx,p,)*(,)®
(1x X p2)*(1,) which is flat over T, x,T,. F defines a morphism f,: T, x,T,—
My(n). Lemma 7.15 implies that f,(T,,x,T,)=Mq(n)—My(n), whence My(n)—
M(n) is connected. Assume that A(n)=M(n)—My(n) is a connected component
of My(n). Then, there exist a subscheme R of a Quot-scheme and a morphism
h: R—A(n). (A(n), h) is a good quotient by PGL(N), R is smooth and dimR=
4n—3+ N2—1 (cf. proofs of Corollary 6.7.3 and Proposition 6.9). Let L, and L,

be ideals of @y, such that Oy, /L,= éﬁ k(x;) and Oy, /L, = E'é k(y;) with x,..., x,,
i=1 Jj=1



610 Masaki Maruyama

\1, , ¥w mutually distinct. Since Hom,, (Lp, L)=L, and &z2¢j, (Ly, L))
6—) k(y) for the spectral sequence ES1=HP(Xy, &2¢], (L,, L,))=E®*4=Extf;4

Oxk
(Lz, L,), E3°=0,dimgE}°=m—1 and dimgE}*=m. Thus dimgExt;, (L,, L
=2m—1. For a K-algebra B, using the spectral sequence and the fact that
HNX g, #omgy (Ly. L)®kBEH'(X 3, Homgy (L, @B, Li®kB)), H(X, St
(L, L)®kB=HUX g, 8¢}, (L, @B, L, ®B)), we see that the natural homomor-
phism Ext;, (Lj, L)®xB—Ext; (L,®kB, L,®kB) is an isomorphism. Thus,
on V=V(Ext;, (Lj, L;)¥), a universal element { of Ext;, (L,®x0y, L, ®0y)
is given. We can construct, therefore, a universal family of extensions

0— L, @0y — Ey — L,®x0, — 0

on X x,V. E, is flat over Vand dim V=2m— 1.
Similarly we have a universal family of extensions

0— L,®x0y, — Ey, — L, @0y, — 0.

Let W=V 1LV’ and let Ey, be the coherent sheaf on X such that Ey|y, =E,
and Eyly,.=E,.. By the universality of R, there exist an open covering {U;} of
W and morphisms g; of U; to R such that Ey|y, . is the pull back of the universal
quotient sheaf on X xR by g;. Let g be the morphism

g: (ILU;) x ,PGL(N) —2e2x! _, R x , PGL(N) —%— R,

where & is the action of PGL(N) on R. If y is the point of A(n) which corresponds
to semi-stable sheaves E with gr(E)=L,®L,, then the image of g is just h='(y).
By a similar argument as before, we see that dim(img)<2m—-2+N2—1=n-2+
N2—1. These results show that there exists a non-empty open set W of A(n) such
that for all points y of W, dimh~'(y)<n—2+N2—1. We have therefore that
dim A(n)>3n—1. On the other hand, dim(T,,x,T,)=2n. This is a contradiction
if n>0, whence My(n)—M(n) is not a connected component of My(n). This and
Proposition 7.14 imply that My(n) is connected if n>0. If n=0, every semi-stable
sheaf is isomorphic to 0%2 by Lemma 7.15 and the fact that My(0)=¢. Thus we
obtain

Proposition 7.16 M y(n) is connected.
Summarizing the above results, we have

Theorem 7.17. Let M(c,, ¢;) (or, M(c,, ¢;)) be the moduli scheme of stable
(or, semi-stable, resp.) sheaves of rank 2 on P? with Chern classes c,, c,.

1) M(c,, ¢,) is a non-singular, irreducible, unirational variety over k and
dim M(c,, ¢;)=4c, —c?-3.

2) M(c,, ¢;) is a normal, irreducible, projective variety over k which con-
tains M(c,, ¢,) as an open subscheme.

3) M(c,, c,)# ¢ if and only if 4c;—c3>0, #4. M(cy, c;)#¢ if and only if
4c,—c3>0, #4. If 4cy—c3=0, then M(c,, c;)=Spec (k).
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4) M(c,, c;)#M(c,, c;) if and only if 4c, —c3=0mod 8.

5) M(c,, ¢;) has a universal family if 4c, —c?#0mod 8.

6) If ca=(c2—1)/4+a*—1 or c}[4+a*+3a+1 for an integer a, then M(c,,
¢,) is rational.

Let us close this section with the following questions.
Question 7.18. Is every Gy 4(H) bounded or every My s(H) projective?
Question 7.19. What is the closure of My s(H) in My (H)?

Question 7.20. Let S=Spec(k) for a field k and let Mg (cy,..., c,; r) be the
moduli scheme of semi-stable sheaves of rank r on X with Chern classes c;,..., ¢,
(algebraic equivalence). When is MY s(cy,.... ¢,: r) connected?

Question 7.21. Under the notation of Theorem 7.17, is M(c, c;) rational?
By virtue of Barth’s results in [2], M(c,, ;) is rational if ¢, is even.

Appendix.

To show that our results are not trivial on every smooth, projective variety,
we shall prove the following.

Proposition A.1. Let X be a smooth, projective variety over an algebrai-
cally closed field k with very ample invertible sheaf Ox(1), let D be a divisor on
X and let r be an integer with r>dim X. Assume that dim X >0 and X £P].
Then, for every integer s, there exists a locally free y-stable sheaf E on X with
respect to Ox(1) (see Definition 5.1) such that r(E)=r, ¢;(E)=D (rational equiva-
lence) and d(c,(E), Ox(1))>s if dim X=>2.

First of all, let us prove the following lemma.

Lemma A.2. Let Y be a smooth projective variety over k with ample in-
vertible sheaf 0y(1), let E be a locally free coherent sheaf on Y with r(E)>dimY
and let B be a bounded family of coherent subsheaves of E such that for all
GeB, r(G)<r(E). Then there exists an integer ny such that for all integers
n>ng, E contains O0y(—n) as a subsheaf with the following properties;

1) E|Oy(—n) is locally free,
2) 0/(—n)nG=0 for all GeB.

Proof. Since B is bounded, the set {d(G, 0y(1))|Ge B} is bounded. Thus,
the set {d(e(G), 04(1))|G € B} is bounded below, where & G) is the coherent subsheaf
of E such that &(G)=2G, r(e(G))=r(G) and E/e(G) is torsion free. By virtue of Cor-
ollary 1.2.1 of [11], B={&(G)|G € B} is a bounded family. We have only to show
the lemma for B instead of B. Therefore, replacing B by B, we may assume that
E|G is torsion free for all Ge B. Suppose that we can find a subsheaf @y(—n) of
E which enjoys the property (1) and (2") 0y(—n)& G for all GeB. If I=0y(—n)
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N G+#0, then r(I)=1 because [ is a subsheaf of the torsion free sheaf E. Hence
the subsheaf @y(—n)/I of E/G is a torsion sheaf, which contradicts the fact that
E/G is torsion free. Thus we have only to find n, for the properties (1) and (2').

Since B is bounded, there exists a k-scheme of finite type T and a coherent sub-
sheaf F of E'=E®,0, with the following three properties; (a) E'/F is flat over T,
(b) (F®Kk(s))<r(E) for all se T and (c) for all G e B, we can find a k-valued point
t of T such that FA(t)=G us subsheaves of E. By the property (b) and the fact
that T is finite type, there exists an integer n, such that for all n>n, and all 1€ T,
(F®Kk(1))(n) is generated by its global sections, hi((F®k(t))(n))=0 for all i>0 and
ho(E(n))> ho((F ®k(t)) (n))+dim T. These and (a) imply that for every n>n,, F=
px(F(n)) is a locally free, coherent subsheaf of E=p,(E'(n)=H(Y, E(n)®,0+,
where p is the projection of X x, T to T, F(n)=F®,0y(n) and E'(n)=E'®,0y(n)=
E(M)®,0;. For Z=P(HO(Y, E(n))¥), P(FV)is a closed subsheme of Z x ,T=P(EY).
By virtue of the choice of n,. dimP(FY)<dimZ. Thus, for the projection g of
Zx,Tto Z, the closure Z, of g(P(FV)) in Z is a proper closed subset of Z. Then,
for a k-valued point z of V=Z—Z,, s, is not contained in U HO(Y, G(n)) by virtue
of (c¢) and so 5,0y¢ G(n) for all G e B, where s, is an elem(’eenBt of HO(Y, E(n)) such
that ks, corresponds to z. On the other hand, there exists a non-empty open set
U of Z such that for all k-valued points u of U, E(n)/s,0y is locally free because
r(E)>dim Y and E(n) is generated by its global sections. Now, for a k-valued point
x of U nV, the subsheaf s,0,&0,(—n) of E meets our requirement. g.e.d.

The following is well-known and proved easily.

Lemma A.3. Let X be a smooth projective variety over k, let Y be an irredu-
cible subvariety of codimension | and let G be a coherent Oy-module of rank r.
Then rY is the first Chern class of G as an 0y-module.

Now we can prove our proposition.

Proof of Proposition A.1. 1f dim X =1, our assertion is well-known. Thus
we assume that dim X >2. Replacing D by D+rH, with an H, € |0x(m)|, m>0,
we may assume that |D| contains a smooth irreducible member. Pick a smooth,
irreducible, k-rational member Y of |D|. Let F=¢%" and let B, be the set of tor-
sion free, coherent, quotient sheaves G of F with d(G, 04x(1))<r(G)d(Y, O4(1))/r.
By virtue of Corollary 1.2.1 of [11], By is a bounded family. For a coherent quo-
tient sheaf G of F. set k(G)=ker(F®ROy,—>G®0Oy). Then, B={xk(G)|G € B,} is
bounded. For an @y-module H, r(H) denotes the rank of H as an @y-module.
Since every member G of By is torsion free and Y is an irreducible divisor, r(x(G))
=r—r(G). Applying Lemma A.2 to the situation that Y=Y, E=F®0y, B=B and
0y(1)=04x(1)®0y, we obtain the integer ny,. Fix an integer n such that n>n,
and d(T, 04(1))>s for a Te|Oy(n)|. Oy(—n) is contained in F®0Oy so that the
properties (1) and (2) of Lemma A.2 are enjoyed. Set Fy=(F®0y)/0y(—n) and
E=ker(FROx(Y)=»F,®04Y)). Let us show that E has the required properties.
First of all, E is a regular vector bundle defined by some members u,..., u, of HO(Y.
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0y(n)) ([9] p 112). Thus E is locally free, r(E)=r, ¢,(E)=Y and c,(E)=T for a
Te |0y(n)], whence ¢,(E)=D and d(c,(E), Ox(1))>s (see [9] Ch. II). Let K be a
coherent subsheaf of E such that 0<r(K)<r and E/K=G is torsion free. Then
we can find a torsion free, coherent, quotient sheaf G’ of F such that K is contained
in K'=ker(FQO(Y)>G ®04(Y)) and r(K)=r(K’). Since G is torsion free, the
natural homomorphism o of G to G'®0,(Y) is injective. Set H=coker(x) and
1=(k(G)/K(G') n Oy(—n))®0Ox(Y), then we have the following exact commutative
diagram:

0 0 0
I I |
0 — G -2, G'Q0Ox(Y) , H 0

o T

00— E— FRO4(Y) —> Fo®0,(Y) — 0

Y S AN
Coh

Assume that x(G')n @y(—n)#0, that is, r(I)=r—r(G’)—1. Since r(Fy)=r—1,
r(H)y=r(G'). By Lemma A.3, ¢,(G)=¢,(G")+rG)Y—-r(G)Y=c,(G'). By the pro-
perty (2) for ngy, G'&Bg, whence d(G, Ox(1))=d(G’, 0x(1))>r(G")d(Y, Ox(1))/r=
r(G)A(E, 04(1))/r. Next assume that k(G') N Oy(—n)=0. Then r(I)=r—r(G’) and
so (H)=r(G')—1. By Lemma A.3 again, ¢,(G)=¢,(G')+Y which implies that
d(G, 0x(1)=d(G', 0x(1))+d(Y, 0x(1)). Since F is semi-stable, d(G’, 04(1))>0.
We see therefore that d(G, 0x(1))>d(Y, Ox(1)>r(G)d(Y, 0x(1))/r=r(G)d(E, Ox(1))/r.
Thus E is p-stable. q.e.d.

Remark A4. If dim X =3, then Proposition A.1 holds for r=2.
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