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Introduction. Let S  be a  scheme o f  finite type over a  universally Japanese
ring, f: X --4S  be  a  smooth, projective, geometrically integral morphisrn and let
(9,(1) be an f-very ample invertible sheaf. In this situation, we constructed a moduli
scheme M x 1 s (1-!)  of stable sheaves with Hilbert polynom inal H  in  the preceding
paper [12] 1 ) . M x i s (//)  is locally of finite type and separated over S. And. more-
over, M x / s (H) is quasi-projective over S if and only if the family of classes of stable
sheaves with Hilbert polynomial H is hounded. A  main aim of this article is, under
an assumption, to find a  natural projective scheme over S which contains M x / s (H)
as an open subschem e. More precisely, we shall construct a  - moduli scheme" of
semi-stable sheaves with Hilbert polynomial H and show that the moduli scheme
is projective if the family of classes of semi-stable sheaves with Hilbert polynomial
H is bounded.

As in the case of stable sheaves, our problem is reduced to making a  quotient
of a suitable open subscheme R of a  Quot-scheme Q by a  linear group scheme G.
For this purpose, we shall use again the projective bundle Z  over a  finite union of
connected components of the Picard scheme of X /S  and the m orphism  p of Q to  Z
which were constructed in § 4  of [ 1 2 ] .  In the case of stable sheaves, we had only
to show that p maps the points of R corresponding to stable sheaves to stable points
of Z .  But the case of semi-stable sheaves is more difficult than that because semi-
stable points do not have, in general, good functorial properties (see [14] Ch. 1, §5).
A way to overcome the difficulty is to show that p(R) is closed in the open subscheme
Z s ' of semi-stable points in Z .  In  fact, when dim XIS<2, this was done by C. S.
Seshadri [19] and D. G ie se k e r  [5 ]. A key result for this was that for a point x  of
Q corresponding to a torsion free sheaf F, if p(x)e  Z ,  F  is semi-stable ([5]
Theorem 0.7 (iii)). Unfortunately, we can not prove the above in  higher dimen-
sional c a s e . W e shall adopt, therefore. Seshadri's idea used in  [ 1 8 ] .  Thus we
shall study the structure of orbits of Gieseker spaces (Definition 2.1) in §2. If one
reads carefully [18] and [5] and compares products of Grassmann varieties used in

0  I n  [12], S was assumed to be of finite type over a field. T h a n k s  to  the results of Seshadri [20),
our results in [12) hold good for every S which is of finite type over a universally Japanese ring
(see §4 of this article).
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[18] with Gieseker spaces, especially, Proposition 4.3 of [14] with Proposition 2.2
and Proposition 2.3 of [5], he would notice that Gieseker spaces are too big for our
purpose . This is  the motive to introduce the notion of an excellent point of a
Gieseker space which is the main idea of this article (Definition 2.9).

§1 is devoted to define an equivalence relation among semi-stable sheaves and
introduce a  fu n c to r  n i s  o f  th e  category o f  locally noetherian S-scheme to the
category of sets. In §3, we shall study strictly e-semi-stable sheaves. Combining
the results of §2, §3 and the techniques of [12] §4 and §5, o u r main theorem of
this article (Theorem 4.11) is proved.

In [8], S. G. Langton proved that if a moduli scheme of p-semi-stable sheaves
(Definition 5.1) exists and if it is of finite type, then it is p rope r. B u t his result is
insufficient for our aim because there exists a p-semi-stable sheaf which is not semi-
stable (Example 5.3). The theorem which we need is proved along the same line
as in [8] (Theorem 5.7). Theorem 4.11 and Theorem 5.7 provide us with Corollary
5.9.1 which is the result stated in the first paragraph of this introduction. The re-
sults of Seshadri in [18] and Gieseker in [5] are special cases of our Corollary 5.9.1.
Therefore, this article supplies an alternative proof of their results.

In  §6, we shall study some properties of the moduli schemes; a  criterion for
smoothness of the moduli schemes, dimensions of the moduli schemes in some very
special cases and a criterion for existence of universal families etc.. As an example,
the moduli schemes of semi-stable sheaves of rank 2 on P 2 are  studied more closely
in  §7 . T he  m a in  result is that the moduli schemes with fixed Chern classes are
irreducible, normal, projective varieties.

Finally, in  Appendix we shall show that there exist many stable, locally free
sheaves on every smooth, projective variety.

Notation and convention. In  addition  t o  the  no ta tion  and  the  convention
of [12], we shall use the follow ing. For numerical polynomials f (n )  and f 2 (n),
f1(n) -<f2(h) ( o r , f1( 11)"< h (n )) means that f i (n)< f2(n) (or , f 1 ( n )  f 2 (n), resp.) for
all sufficiently large integers n. L e t !: X — >.5 be a smooth, projective, geometrically
integral morphism and le t 6 ,(1) be an f-ample invertible sheaf. For a  field K, a
K-valued point s of S and for a  coherent sheaf on the fibre X , with r(E)>O, PE (n)
denotes the numerical polynomial x(E06„,(n))/1.(E). For a cycle C on X,, d(C,
ex (I ) )  denotes the degree of C  with respect to  e x p ) .  For a  coherent sheaf F on
X s ,  we shall use the notation cl(F, e(1)) instead of d(c,(F), ( x (1)) as in [12], where
c 1 (F ) is the first Chern class of F .  If dim X/S=1, then the degree of F is denoted
by d(F).

§1 . 5-equivalence

In  this section we shall introduce an  equivalence relation among semi-stable
sheaves and then define a functor of (Sch/S) to (Sets).

Lemma 1.1. L et Y  b e  a  non-singular projectiv e v ariety  w ith a  v ery  am ple
inv ertible sheaf  6, (l )  an d  let E, (or, £2 )  be a  stable (or, sem i-stable, resp.) sheaf
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on Y. If  PE ,(m)=P E ,(m), then every 1101110M O rphiS M  (I) of E , to E 2  has one of the
following properties:

1) 0=0
2) (/) is injective and E2 14)(E1 ) is torsion free.

Pro o f . Assume that 4)00 and set F =k er(0 ). Since E 2  is semi-stable, Po ( E 0 (m)
- PE ,(m )=P E i (m). T hus PE(m )› - PE ,(m ) .  Since E ,  is  stable and since FO E ,.
we obtain F = 0 .  I f  E2 /4)(E,) has non-trivial torsion, then it is easily seen that
P4,( E 0 (m)>-PE 2 (m ) . This is not the case by our assumption. q. e. d.

A semi-stable sheaf has a Jordan-Holder filtration. In  fa c t ,

Proposition 1.2. L et Y  be as above and let E  be a sem i-stable sheaf  o n  Y.
Then

1) there is a f iltration 0= E 0 E ,  • • •  E , = E  by coherent r modules such
that (a) E,/E,_ ,  is stable (l < i <t) and (b) PE i (m )=P E(m) (0<  i <t),

2) if  0 = E 'o cE',c ••• c  Es = E  is another ,f iltration enjoy ing th e  properties
(a) and (b), then t=s  and there ex ists a perm utation a  o f  11, 2,..., tl such that
E,/E,_, is isomorphic to E„'

P ro o f . 1) Let us prove our assertion by induction on r(E). Assume that (1)
is true for semi-stable sheaves with rank< r(E). If E is stable, there is nothing to
prove. Suppose that E is not s ta b le . Then the set A -={FIF is a  proper coherent
subsheaf of E w ith PF (m )=P E (m)}  is no t em pty . P ick  a  member E , o f A  with
the sm allest rank. It is obvious that E , is  stable and E IE , is  semi-stable. By
ou r induction assumption, E IE , has a filtration 0= E E 2 IE ,c  •  •  •  c  E ,IE ,=
ElE i  su ch  th a t (E,IE,)1(E1 _,IE,) Ei lE i _ ,  is  stable and tha t P E ./ E 1 ( M )  P= -E / E i km,-
Since P E i ( M ) = P  E ( M ) ,  we know that PE (m )=P E /E i (m )=P E d E i (m )=P E L (m ) . Hence
the filtration 0=E 0 c E ,  E2C  • • • C  Et = E has the properties (a) and (b).

2 )  O ur proof is by  induction on t. I f  t= 1, then E  is  stable, whence our
assertion is  obv ious. Assume tha t t > 1 .  Let r  be the smallest integer such that
E, contains E ,, then the natural homomorphism (1): is not zero. By
virtue o f Lemma 1.1, ct• is injective, which implies that E, n E ,  =0. Moreover,
since Er'I E _ ,  is stable and since Pe r i „;. (m )=P E (m )=P E ,(in), (/) should be sur-
jective, that is, E , is isomorphic to Let us consider E =E /E ,.  Set Ei =
E, +  ,/E, and

n 0 <i<r- 1

I C., 1 1E, r<i<s — 1

It is clear that 0= - -r o c  E,OE • • • OE Ev _ i = E is a filtration with the properties (a) and
(b). On the other h a n d , -C  is isomorphic to E ; for 0< i< r — 1, E;.1E;_,=E 11
(E i  + E',._,)= E,,_ 11E'r  a n d  EWE'f _, = dEri  f o r  r +  j s  — 1 because E',._, n
E 1 =0 and E i + Thus the filtration 0= t o OEE',ŒP2 OE •• • OE E  has
the properties (a) and (b). The induction hypothesis implies that t =s and that there
exists a permutation t  o f  {  I , 2 . . . . . t — I }  w ith  E Define a
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permutation a of {1, 2,..., t}  as follows:

if i =1

a(i)= 1) if 1< t ( i - 1 ) < r - 1

TO— 1)+ 1 if r<z (i--1)<(—  1.

Then a  is one of the desired permutations. q. e. d.
For convenience' sake, we shall introduce the following definition.

Definition 1.3. Let E  be a semi-stable sheaf. A  filtration 0 = E o  cE, c • • • c
Et = E  enjoying the  properties (a) and (b )  in Proposition 1.2 is called  a  Jordan-
H older filtration of E. F o r  a  Jordan-Heilder filtration 0 = E 0  c • • • c E , = E ,

d e fin e  g r(E ) to  b e  S  Ei lE , _ , .  Each E i lE i _ ,  is called a  component of gr(E).

Proposition 1.2 shows that gr(E) is independent of the choice of Jordan-Wilder
filtrations.

Lemma 1.4. Assume that

0 E' E E" 0

is an exact sequence o f coherent sheaves with P E ,(m )=P E (11)=P E -(m ). E  is  sem i-
stable if and only if E ' and E" are semi-stable. •

P ro o f.  Assume th a t  E ' and E" are semi-stable. It is  c lea r tha t E  is  torsion
free. L e t  F be a coherent subsheaf of E .  For F = F IF n E', FF(m) P E (m) because
of the semi-stability of E " .  Similarly, PF ,,E , ( In ) .P E , ( m ) .  Thus

Pr(m)=z(F(rit))/(1F)=X OF A E')(m))Ir(F)+ z(E(m))1r(F)

= r(F  n E )PF  r(111)Ir(F) +r(F)P F (m)Ir(F)

1),(n )Ir(F  n E')/r(F)+r(F)Ir(F)}=PE(m )•

Hence E is semi-stable. Note that if E  is semi-stable and if E" is a  coherent quo-
tient sheaf of E with PE (m )=P,,(m ), then E" is torsion free. Then the proof of the
converse is similar to the above and easier, and hence we omit it.

Corollary 1.4.1. If E  is  semi-stable, then so is gr(E).

The following notion is originally due to  C. S. Seshadri ([18] and [5]).

Definition 1.5. Seim i-stable sheaves E ,, E 2  o n  a  non-singular projective
variety are said to be S-equivalent if gr(E 1) is isomorphic to gr(E 2 ).

Corollary 1.4.1 implies that every semi-stable sheaf is S-equivalent to one which
is isomorphic to a direct sum of stable sheaves.

Remark 1.6. 1) A  stable sheaf E , is S-equivalent to E 2  if and only if  E , is
isomorphic to E2.
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2 )  If one takes the results in [1] and the indecomposability of stable sheaves
into account, he knows that gr(E)= EI/Ei _ ,  is isomorphic to gr(E')=1CDEdE_,

i=i i=t
if and only if t= t ' and there exists a permutation tr of }I, tl such that Ei lE,_,

Let f :  X b e  a  sm ooth, projective, geometrically integral morphism of
noetherian schemes and fix an f-very ample invertible sheaf e x (1). Let (Sch/S) be
the category o f  locally noetherian schemes over S  and le t H(m ) be a  numerical
polynom ial. O ur m ain aim of this article is to  study the  following functor
of (Sch/S) to the category of sets:

For an object T of (Sch/S),

Z s ( T )=  {EX is a T-flat, coherent 0,„ 5 r -module with the property (1.7.1)}/—,
where — is the equivalence relation defined in (1.7.2).

(1 .7 .1 ) F o r  every geometric point t  o f  T ,  E Q k (t )  i s  semi-stable and its
Hilbert polynomial is H(m).

(1 .7 .2 ) E—E' if and only if (I) or (2) there exist filtrations 0= E 0

c E i  • • -c E „ = E  and 0=E'o cE 'l c•••cE ;,=E ' by coherent 0 x x s T -modules such
that for every geometric point t o f T, {E i ® ,,k (t)} and {E ;® ,,k (t)} provide us with

11

Jordan-Holder filtrations o f EO, T k(t) a n d  E '0 ,,k (t), respectively, 0 Ei lE i _ i  ist=1
T-flat and  that C)E i/E,_ pE d E _,)0 ,,TL , fo r  some invertible sheaf L on T.

1=1 1=1
The equivalence class of E is denoted by [E].

For a morphism g:i n  ( S c h / S ) ,  if E has the property (1.7.1), then so does
g*(E) and, moreover, if then g*(E )— g*(E '). Thus we obtain a  map g*  of
n i s (T) to  E Z , (T ') .  It is obvious that EiI i s  is a contravariant functor of (Sch/S) to
(Sets).

Let s be a geometric point of S. By the definition of 4 , ,  we have

( 1 .7 .3 )  n / s (Spec(k(s)))—{EIE is a semi-stable sheaf o n  X s w h o se  Hilbert
polynomial is H(m)}/—, where E,—E 2 if  and only if E, is S-equivalent to E 2 .

§2 . Semi-stable points of Gieseker spaces

Let V and W be a finite dimensional vector space over a field k and let a , :  V—■
V e kk[G ] be the dual action of G=GL(V) on  V. For a positive integer r, 6- 0 pro-
vides us with a  dual action ô- o f  G on Hom k ( A.  V, W )". Thus w e obtain  an action
o-  of G on P(Hom k (;\ V, W )") and a G-linearized invertible sheaf 0(1).

Definition 2.1. The projective space  P (Homk ( A. V , W )")  o n  w hich  G=
GL(V) acts as above 2 ) and which carries the G-linearized invertible sheaf 0(1) is

' )  The center of GL(V) acts trivially on P(V, r, W ) . Thus PGL(V)acts on P(V, r, W ) .  Though
the o(1) may not be PGL(V)-linearized, 0(m) carries a  PGL(V)-linearization for some positive
integer m.
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called a Gieseker space. W e denote it by P(V, r, W) (see [5] §2 and [12] §4).

For an over field K  of k, a non-zero element T of Hom k ( v, w)o k .K=Homi,
(n. (vo,K), wo k .to gives rise to a K-rational point of P(V, r, W), which is denoted
b y  T , to o . T  is regarded as an alternating multilinear map o f  V Q ,K  to W O k K.
For x 1 ,..., x r in  V O k K , the value of T  at x, ••• A X r  is denoted by T(x,,..., x,.).
I f  fe d  is a  basis o f V , then x , can be written in  the  fo rm  E x i i e;  and a K -valued
point g  o f  G is represented by a square matrix (g i i ). For the matrix X we
shall denote T(x,,..., x,.) by T ( X ) .  Then, a(g, T )(X )=T(X  • (g i i ))

An injective homomorphism W - 4 1 / '  o f  finite dimensional vector spaces
yields a surjective homomorphism

Hom k ( n. V , W') --+ H om k ( v, 0
From  this, w e have a  closed immersion i,: P(V, r, W )--+P(V, r, W') of Gieseker
spaces. Clearly i,,, is a G-morphism.

Lemma 2 .2 .  L e t G  be a  reductive algebraic k-group, X  a n d  Y  be algebraic
k-schemes on w hich G  acts and let j :  X - 0 /  be a  closed im m ersion and a G-mor-
p h is m . Suppose th a t  Y  is  pro jective over k  a n d  ca rr ie s  a  G -linea rized  ample
invertib le  sheaf e y (1). T hen  Xs5 ( j* (e y (1)))= j_ 1 (Yss(e y (1 ))) a n d  Xs(j*(0 y (1)))=
/ - 1 (Ys( 9y(1))).

P ro o f . We may assume that the natural m ap R„=H°(Y, O y (n))-4? '„=H °(X ,
j* (6 y (n))) is surjective for all n >  1. C onside r the surjective homomorphism 49: R =
k e (  R „)— ■ R ' = ke ( R '„) of graded rings. R  and  R ' have dual G-actions and
4) is  a G -hom om orphism . Let x be  a  geometric p o in t o f  X ss(j*(0 y (1))). Then
there exists an element s of R G  with some n > 0  such that x is a point of  X .  By
virtue of Lemma 5.1.B of [16], there exists a positive integer m such that sm is con-
tained in  4)(RG„„,), say sm = d)(t). Since X s „,= X s ,  x is contained in j 1 (Y )= X 5 ,,.
Thus j(x )  is in Yss(e y (1)), that is , X ss(j*(0 y (1)))g Y ss(0(1)). The converse and
the assertion on stability are obvious. q .  e .  d .

Corollary 2 .2 .1 . L e t  i: W --->W ' b e  a n  in je c t iv e  homomorphism o f  fin ite
dim ensional vector spaces. Then, a geometric p o in t T o i  P(V, r, W ) is semi-stable
(o r, stable) i f  and o n ly  if  i , (T )  is semi-stable (or, stable, resp.) in  P(V, r, W').

The above corollary means that we can extend W without disturbing the stabili-
ty of a point of P(V, r, W).

Definition 2 .3 .  Let W, W1 ,..., Wu be finite dim ensional k-vector spaces. A
map 4): W,0„W2 0 k •••0 kW  is  sa id  to  b e  a d m iss ib le  ( to  extensions) if d) is k-
linear and for all over fields K  of k and for the map ch: (W K)69114 K • •  laWn®

WO k K induced by 0, 4)K (x,0•••0x„)=0 im plies that one of x i 's is z e r o . When
4) is admissible, we denote 4) K (x 1 0•••0x„) by x i o••-ox„.

Definition 2 .4 .  Let K  be an over field of k  and let T  and T ' be K-rational
points of Gieseker spaces P(V, r, W) and P (V ', r, W'), respectively. T is isomorphic
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to  T ' if W = W' a n d  if  there exists an  isomorphism j:  V O k K V 'O k K  such that
T=T' • f\j (as points in P(V, r, W )). We shall denote an isomorphism by T T'.

In the case of V =V ', PL-'T' if and only if there exists a  K-rational point g  of
GL(V) such that o- (g, T ')=  T.

Our present aim is to define the notion of extensions of points in Gieseker spaces
and study their properties.

Definition 2 .5 .  Let K be an over field of k and let T, T' a n d  T " be K-rational
poin ts o f P(V, r, W), P(V', r', W ') a n d  P(V", r", W"), respectively. L e t 4): W'
O k W"—> W be an adm issible m ap. T is said to be a  0-extension or, simply, an ex-
tension of T" by T' if the following conditions are satisfied;

1) r=r'-i-r",

2) there exists an exact sequence

0 V' O k K V O kK V"OkK ---> 0

such  tha t T(f(x,),..., y"..., g(yr„))) for
all vectors X 1 ..... xr , in  V'O k K  and y in  VO k K, where both side in the
above equality are regarded as points in P(Hom( r; \  Ok r;\ V ", W)").

The exact sequence in (2) is called the underlying exact sequence of the exten-
sion. T ' (or, T") is called a subpoint (or, quotient point, resp.) of T.

The following plays a  key role in the proof of Theorem 2.13.

Lemma 2 .6 .  L e t V , V ' and  V " be f inite dim ensional k-vector spaces with
dimk V =dim, V' +dim k V ", r, r' and r" be positive integers w ith r = r '± r "  and let
0: W 'O k W"—+W be an adm issible m ap. S uppose that Z ' (or, Z " ) is  a  GL(V')
(or, GL(V"), resp.)-invariant closed subset of  P(V', r', W ') (or, P(V", r", W"), resp.).
Then there exists a GL(V)-invariant closed subset Z of P(V, r, W) such that f or all
algebraically  closed f ields K  containing k, Z(K)=ITE P(V, r, W )(K)IT has one
of the properties (2.6.1), (2.6.2)1.

(2.6.1) T  is 0-ex tension of  a T" in Z"(K ) by  a T ' in Z'(K).

(2.6.2) T here ex ists an injection f: V 'O,K— >V0 k K  su ch  th at T(f(x,),...,

f(x,.,), y 1 ,..., y e ,) =0 f or all vectors x,,..., x,., in  V'0,1( and y,,..., ye , in  VO k K.

P ro o f . L et n=dim k V, n' =dim k V ' and  n"=dim k V". There exists an open
set U' (or, U") o f  Horn (V ', V)=Azn" (or, Hom(V, V")=Azn", resp.) such that for
all algebraically closed fields containing k , U '(K )= {feH om ,(V 'O k K, VO k K )If is
injective} ( o r ,  U"(K)=-{g e HomK (VO kK, V"O k K)1g i s  surjective}, resp.). For
these U' and U", we can find a closed subscheme U0  o f  U' x ,IT" such that Uo (K )=
{(f, g) e U'(K)x U"(K)ig f = 01. Let us fix a  basis e',,..., e,,,(e l ,..., e„ or
of V ' (V o r V", resp.). Using these bases, geometric points ( j, g ) o f  U0 ,
of V ' and y, ...... yr„ of V are represented by matrices (A , B), (x',..,,
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and (Y11,•.•, yr"„), repectively, where A (or, B) is a  matrix
o f  n' x n (or, n x n", resp.). If  we set X ' =(x 'u ), Y  =(y i i ) ,  then  T (f (x D,..., f (x ',..),
Y i

..... y,., , ) is represented by T (X 'A , Y ) fo r  a  geometric po in t T  o f  P(V , r, W).
Similarly, for a  geometric point T "  of P(V ", r", W "), g ( y r ” ) )  is repre-
sented by T"(YB).

S u b le m m a  2 .6 .3 . There exists a closed subset F of  U, x ,Z ' x , P( V, r, W) x
such that for all algebraically  closed f ields K  containing k ,

F(K )={ (A , B , T ', T , T")1(1) T(X 'A , Y )=T'(X ').T"(Y B )

f or all X ', Y  or (2) T(X 'A , Y )=0 f o r  a l l  X ', Y}.

P ro o f  Pick K -valued points (A , B) o f U0 ,  T ' of Z ',  T " of Z " and T  of P(V,
r,  W ) . Let L (a, b) be the set of sequences /  of integers lb  with l <  I, < •••<
11,5 a .  F o r 1 in  L (n, r) (I' in L (n', r') o r  1" in  L(n", r")), eA eY  or e'Y  , resp.) de-
notes e , A ... (e',Y, A . . .  A  eY r ,  or e A ... resp.), where {eï .....  e}  ({ e7,

e'„Y} o r  {e', , ....  e " 1 ,  r e s p . )  is  th e  dua l basis ofe 1 ,  e,,} ({e'1 , .•• ,  e,. } o r
resp.). Then, using homogeneous coordinates, we can write

T = E  u(l) i eï Ow ] , T '=E  u'(/') ; e Y  W
le L (n ,r ) l 'e L (n ', r ' )

T" = E u"(1")j e',',Y v
1 " e L (n ",r " )

where {w1 } ({w'i } o r {14, }) is a  basis of W (W ' or W ", re sp .) . We have, by Laplace's
expansion theorem,

T(X ' A , Y  ) = E  u(1) •{ ( — 1 ) 1' I(X  ' A )(1')Y (I")}w •
le L (n ,r ) e L (n ,r ' )

I"  e L (n ,r " )
I=I'U 1"

=  E E — 1)1" 1 ( E
le L (n ,r ) e L (n ,r ' I k' e ,r '

EL (n ,r" )
1=1' U I"

A (k', 1')X '(lc'))Y (1")}4v ;

E R (k ', I", j, T , A )X '(k ')Y (1")it,
J ;

k 'e L (n ', r ' )
V e L (n , r " )

R(k', 1", j, '1', A)=- E (— 1)11' u1" , c u 1"); A(k', 1'),
l 'e L (n  r ' )

where fo r  a  matrix M  o f a x b  and for subsets in, o f  {1 ,..., a} ( 1 ,..., b ) with
#  m =  #  m ', M(m, m ')  is the minor determinant of M  defined by m  and m ' and if
# m =- a, M (m , m ') is denoted by M (m'), and where fo r a  subset /' = { / i , < •• • < /4 ,4
of / = { / i  < •• • < VI denotes the integer r'( r' +1 ) /2 + + -• • + On the other
hand, we obtain

T '(X ')= E u'(k) j x 'u o w ; and
k' eL(n ' ,r' )
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T"(Y  B)= u"(k")3(YB)(k")14,";

= E u"(k"),{ E B(1", k")Y(1")}w'j.
1".1.(, 0 •")

Thus, if 0(vv"r Ovv";-)= j", /Ivy;  with c(j', j", j) e k , we have

T '(X ').T"(Y B )= E Q(k', I", j, T ', T", B )X '(k lY (1")w i ,
k 'E L ( 1 1 ',r ' )
I" e L (  n , r" )

1

w here  Q(k ', I", j, T ', T", B )-= E j", pu'(V ) i •u"(k") . r • B(1", k"). Now
k " e L ( n " ,r" )

T(X 'A , Y)=0 for all X ' and  Y if and only if R(k', 1", j, T, A)=0 for a ll k'E L(n',
r'), 1"E L(n", r") and for all j. Note tha t T '(X ').T "(Y  8)00 fo r  some X ' a n d  Y.
Therefore, we see that

P(k',. k , 17, 1,, j 2 , T , T ', T ", A , B)=

Q(k ',, 17, j,, T ', T", B )R(k , 12 , T, A)—

Q(k , T', T", B)R(Iel , j i , T , A)=0

for all k'1 , k , 17, 1, j ,  and 12 if  an d  only if  (I)  T (X 'A , Y )=T '(X ').T "(Y B ) for all
X ' and Y or (2) T (X 'A , Y)=0 for a ll X ' and Y. P(k',, k , 17, 1 , j i , j 2 , T , T ', T",
A , B) is a  polynomial of v(I, k', k", j, j', j")=-4i(1) ; u'(k ) ; •ti"(k") . r , au  an d  bu over k
and it is homogeneous with respect to  v(I, k ', k", j, j', j"). Thus if F is the closed
se t defined by th e  idea l gene ra ted  by  {P(k',, k'2 , 17, j,, 1 2 , T , T ', T ", A, B)},
then F is the desired closed set. q. e. d.

Now let us come back to the proof of Lemma 2.6. Let a (a' or a") be the ac-
tion of GL(V ) (GL(V ') o r GL(V "), resp.) on P(V , r, W ) (P(V ', r', W') o r P(V ", r",
W"), resp.). Define an action T' (or, T") of GL(V ') (or, GL(V "), resp.) o n  U ' (or,
U", resp.) as follows;

for all geometric points g (or, h) of GL(V ') (or, GL(V "), resp.) and for all geo-
metric points A (or, B) of U' (or, U", resp.), T'(g, A )=gA  (or, T"(h, B)=B(h - i),
resp.).

Then, for H  =G L (F)x  k GL(V "), we have that U, is H-invariant with respect to the
action T' X kt" and that

T(X ' • T'(g, A ), Y )=T(X 'g • A , Y )-= T'(X 'g).T"(Y B)

= a'(g, T ')(X ').o - "(11, T")(Y • T"(h, B))

or T(X' • -r- '(g, A ), Y )=T(X 'g • A, Y )= 0

according as T (X 'A , Y )=T '(X )0T "(Y B ) for all X ', Y  o r T (X 'A , Y )=0  for all X ',
Y. We see therefore that if (A , B , T ', T , T") is a  geometric point of F, then so is
(f (g , A), -c"(h, B), o- '(g, T '), T , a"(h, T")) for all geometric points (g , h) of H  be-
cause Z' (or Z") is GL(V ') (or, GL(Y"), resp.) invariant. Let be the above action
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of H on F .  Then, for this er", F is H-invariant and the projection p of F to  U0  is an
H-morphism. Moreover, the projection g of F to P(V, r, W) is also an H-morphism
with the trivial action of H on P(V, r, W ). On the other hand, U0 is  a principal
fibre bundle with group H  over the Grassmann variety G r(n , n '). Since p is pro-
jective and there exists a p-ample invertible sheaf with an H-linearization, we obtain
a  scheme Q which is projective over Gr(n, n') and over which F is a principal fibre
.bundle with group H (see [14] Proposition 7.1 and its proof). Thus the following
commutative diagram is obtained;

P(V, r, W ) F

Q Gr(n, n')

It is clear that Z=g (F )=g '(Q ) is the desired set. Since Q is projective over Gr(n,
n'), it is projective over k. Thus Z is closed in P(V, r, W ). We have only to show
that Z is GL(V)-invariant. To do this, pick K-valued geometric points g of GL(V)
and T of Z . There exist K-valued geometric points T' of Z', T" of Z" and (A, B)
of U0  such that

(1) T (X 'A , Y )= T '(X ').T "(Y B ) fo r  a ll K-valued X ' and Y

o r  (2) T(X 'A, Y )=0 for all K-valued X ' and Y.

In case (1),

o-(g, T)(X 'A(g - 1 ), Y )=T(X 'A , Yg)=T '(X ').T"(YgB )

and we have an exact sequence

( 30 O - 4  r O k K V O k K t". 1 r e k K

because of Ag - 'gB=AB =O. Therefore, o-(g, T) is a 0-extension o f  T" by T ' with
the underlying exact sequence (*). In case (2),

o-(g, T)(X'Ag - 1 , Y)=T(X 'A, Yg)=0,

whence o-(g, T) and Ag - i have the property (2). q. e. d.

For the convenience of readers, let us recall some of notions and results in  [5]
(cf. [12] §4).

Definition 2 .7 .  Let K  be an algebraically closed field containing k  and  le t T
be a non-zero element of HomK ( (V C4K ), WOk K) or a  K-rational point of P(V,
r , W ). Vectors x 1 ,..., x d  in  VØkK are said to be T-independent if there exist vec-
tors xd 4 . 1 ,..., x , in  V e4K  such that T(x i ,..., x r) 0 0 .  A vector x in  V® k K  is said
to  b e  T-dependent o n  x 1 ,..., x d  i f  T(x,,..., x d , x, yd + 2 ,..., y r )= 0  fo r all vectors
Yd+2"." Y r in  V C:4K . The vector subspace o f  V e4K  formed by vectors which are
T-dependent on x 1 ..... X, is called the T-span of x 1 ,..., x d  and it is denoted by «x1 ,
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• • •, X d
»

 T•

Using these notions we have

Proposition 2.8. L et K  be an  algebraically  closed f ield containing k .
1) A  point T in P(V , r, W )(K ) is properly  stable (or semi-stable) w ith respect

to the action a of  PGL(V ) if  whenever x 1 ..... x 4 in  V O k K  are T-independent, then
dim , «x 1 ,..., x d »,•<(d/r)dim ,V  (or, dim ,«x i ,..., x d » T <(d/r)dim ,V , resp.).

2) For a point T  in P(V , r, W )(K ), assum e that there ex ist a vector subspace
U  of V  O k K  an d  an  integer d  such that T (x l ,..., x d + 1 , v d + 2 , • • • ,  Y r ) =  0  whenever
x 1 ,..., x d + ,  a re  in  U  and that dim ,U >(d1r)dim k V  (o r, d im ,U (d /r)d im k V).
Then the T is not semi-stable (or, not stable, resp.).

Our main idea of this section is the following.

Definition 2.9. Let T  be a K-valued geometric point of P(V , r, W ). T  is said
to be excellent if it enjoys the following two properties:

1) For each vector subspace V' of VO k K  and each positive integer s, (a) and
(b) are equivalent to each other;

a) T(Y1,•••, zs+1,•••, Z r ) = 0  for all in V O ,K  whenever y 1 ,...,
are contained in V',

b) there exists a set of T-independent vectors x 1 ,..., x , in  V O k K  such that
s>d  and « x 1 ,..., xd » T P_ V'.

2 )  For every subpoint T ' of T, if x is T'-dependent on T'-independent vectors
x ,,..., x d , then f (x ) is T-dependent on f (x ,),..., f (x d ), where f  is the injection of the
underlying exact sequence to define the  subpoin t T ' o f T. (Note that f(x ,),...,
f(x a ) are T-independent.)

Excellent points have nice properties. In the first place,

Proposition 2.10. Suppose th at  T  h as  th e  property  (1) i n  Definition 2.9.
Then T is semi-stable (or, stable) if  and only  if

d im ,« x ,,..., X d » (d/r)dim k V

(or, dim ,«x,, .... x d »  <  (d/r)dim, V, resp.),

whenever x 1 ,..., x d  are T-independent.

P ro o f . "If" part is Proposition 2.8, (1). To show "only if" part assume that
there exist T-independent vectors x 1 ,..., x d  such that dim, «x 1 ,..., x d »  (d/r)dim k V
(o r , d im ,« x i ,..., X d » T > ( d / r ) d i m k  V ) .  B y  th e  p roperty  (1 ) o f  Definition 2.9,
T ( Y 1 , • • • ,  Yd+ 1

,
 Z d +2

,
•••

,
 Z r)  -=-  0 for all z d + 2 ,..., z r  whenever y 1 ,..., y a + k  a re  in  « x ,,

x d » T . By virtue of Proposition 2.8, (2), we know that T is not semi-stable (or,
stable, resp.). q. e. d.

In the next place,

Proposition 2.11. L et T , T ' and T " be K-valued geometric points of  P(V , r,
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W ), P(V ',r',W ') and P(V ", r", W "), respectiv ely . A ssume that dim k V Ir=dim ,V 'Ir'
=dim k V "Ir", T  is excellent and that T ' (or, T ") is a subpoint (or, quotient point,
resp.) of  T . If  T  is semi-stable, then so are both T ' and T".

P ro o f . We may assume that there exists an admissible map 0 :  W'O k W"-4 W,
T is a  0-extension of T " by T ' and that T is semi-stable and excellent. Let

0 V 'OkK VOkK V"ØkK —+ 0

be the underlying exact sequence. Pick T"-independent vectors y,=g(y,),..., y d =
g(y d ). Since T '0  0, we can find vectors x 1 ,..., in  V 'O k K  with T'(x,,..., x,..)0 O.
Thus there exists vectors z d , , , . . . , in  VO k K  such that T (f (x i ),..., f(x,.,),
Yd ,  Z d+1,••• ,X e ) ° T " 0 7 1 , ' • ,  • P c b g (z r„))0 0 . Thus f (x i ),...,
f (x ,,), y d  are T-independent. I f  g ( z )  is conta ined  i n  « yd»T„,
then  T(f(x ,),..., f (x ,.,), y 1 ,..., y d , z , W T '(x i,..., x ,..).T "07 1,•••, Yd, g ( Z ) ,

g(wd+2) , .- , g(w r ) )=0  for all w d + 2 ,..., iv e .  in  V O k K .  H ence z  is a n  element of
«f (x ,),..., f (x ,.,), y d »  T . Therefore y » . )  is a  vector sub-
space o f  «f  (x ,),..., f (x ,,), y e ,..., y d » T . Since T is semi-stable and excellent, we
have, by Proposition 2.10,

dimK « y ,, . . . ,  yid »  T„ =d im K g — ' ( « yd»To— dimkr

f (x ,),..., f (x ,.,), y i ,..., y » T — dim, V'

{ (d+r')dim ,V } Ir— (dim ,y— dim k V")

={ (d+r—  r") dim, V"}/r" — dimk V" +dim k V"

=(dIr")dim k V".

Therefore, T " is semi-stable by virtue of Proposition 2.8, (1).
Next we shall prove our assertion on T'. Let x„,..., x d be T'-independent

vectors in  V 'O kK .  By virtue of the property (2) of excellent points, we have the
inclusion « x 1 ,..., xd » r g f - 1 (« f (x,),..., f (x d ) »  T ). This and the fact that T  is
semi-stable and excellent imply the following;

dimK « x l ,..., f (x d ) »  T

. (d1r) dim, V = (d1r)dim k V '.

Hence T ' is semi-stable by virtue of Proposition 2.8, (1). q. e. d.

A converse of the above proposition holds good.

Proposition 2 .1 2 .  L et T , T ' and T " be K-valued geometric points of  P(V , r,
W ), P(V ', r', W ') and P(V ", r", W "), respectively, and let 0: W 'O ,W "-+W  be an
adm issible m ap. A ssum e that dim, V'ir'=dim k V/r=dim k T /"Ir", all of  the T , T '
and T" are excellent and that T  is a 0-extension of  T " b y  T '.  If  both T ' and T"
are semi-stable, then T is semi-stable.

Pro o f . Let x 1 ,..., x d be T-independent vectors in  V O k K  and let
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0 V'C),K VO,K V"0„K 0

be the underlying exact sequence of the 0-extension T of T" by T ' .  Set

f - 1 ( « x 1 ,..., x,,» T )=1P0

g(<<x xd »,-)=V ;.

Let {g(y,),..., g(y d „)} be a maximal set of T"-independent vectors in  11  and  le t
zd ,} be a  maximal set of T'-independent vectors in V . T h e n  th e re  e x is t

vectors ..... Zr
, i n  V 'O ,K  and y,.„ in V(D,,K such that T'(z,,..., z d ,,

zd, +,,•••, Zr') 0 0  and  T"(g(y,),..., g(y d „), g(yr„))0 O. Since T(f(z,),...,
f(z,.'), y 1 ,..., g(yr„))0 0, f(z,),..., yi,..., y d „ are
T-independent. By the  property (1) fo r  T  being excellent, we get the inequality
d ' d "  < d . On the other hand, if z is in  Fo , then it is T'-dependent on z 1 ,...,
Thus Fo g_ «z 1,..., zd ,»  r , and hence

dim„V;<(d'Ir')dim, V'

because T' is semi-stable and excellent. Similarly, we have

dim K  V < (d"/r") dim„ V .

Therefore, the following inequality is obtained;

dim K « x i ,..., x d » T -=dinl K VO +dimK VO

. (d'Ir')dim,‘  V ' +(d"Ir")dim,, V"={(d'+d")dim„ V}Ir

_<_(dIr)dim, V.

This implies that T is semi-stable by virtue of Proposition 2.8, (1) q. e. d.

The following is one of goals of this section.

Theorem 2 .1 3 . Let 0,: W,_,C),1 ,1/-+W, be admissible m aps (1 Wo=k),
0<r 1 <•••<r i = r  be a sequence of integers and let F. be a GL(V,)-invariant closed
set of  P(V,, r 1, W ) (1 < i < t). A ssume that f o r every  algebraically  closed f ield K
containing k, all the points of F,(K) are excellent and that dimk Var = • • • =dimk V,Ir,.
Let S . b e  a stable, excellent point in  P(V, 1,, W )(k) w hich is k-rational, where
1i =r 1 —r1 _ ,  an d  k  is  the algebraic closure o f  k. T hen, there ex ists a  GL(V,)-
invariant closed se t Z,=Z(S,,..., S ,) o f  F r= F r(0 (1 )0 0 , t )  such that f o r every
algebraically closed field K containing k,

Z,(K)={Te F,(K)1T has the following property (*),} .

(*),: There exists a K-valued geometric point T, in  each F r= F r(6 2 (1 )0 ,)
such that T1 =.3 1 , Ti is  a  0 1-extension of S, by T ( 2 < i t )  and T=T,.

Pro o f . O ur proof is by induction on t. W hen t=1, then T = S ,  and hence
there exists a K-valued point g of GL(V1 ) such that ct(g, S O= T. Since S , is stable,
the GL(V1)-o rb it Z  o f S , is closed in  Fs,'. Clearly, Z is the desired closed set.
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Assume that the theorem holds for t — 1. Then there exists a  GL(V,_,)-invariant
closed subset z 1o f  (F1_,)ss such that for all algebraically closed fields K  con-
taining k, Z r _ r (K)= {TOE Fr _ i (K)1T has the property (*),_ 1 1. If is the closure
of in  F1_ 1,  then  it is a  GL(V,_ ,)-invariant closed subset of Ff _ r . For the
GL(V1)-orbit A  of S r in  P(V 1, l„ W ), let ;e1- b e  the closure o f  A  in  P(V „ l„ W 'r).
Then A  is a  GL(V;)-invariant closed subset in P(V1, i,, W ;) .  By virtue o f  Lemma
2.6, there exists a  GL(V)-invariant closed subset Z, in  Fr su c h  th a t 2,(K)={Te
F,(K)1(1) T is a  0 1-extension of a T" in .71(K) by a  T' in Z ,_,(K ) or (2) there exists
a injective linear map f:  V , C ) k K  such that T (f (x  f l x  v1,,•••, r t_  1 , , 1 ,  • • •,

y ,,)=0 for all x 1 ,..., X r t i and y r j .  The GL(V) -invariant closed subset Zt =
n Fr is the desired one. In fact, if T  is contained in Z r(K) and if T  has the prop-

erty (2) above, then there exists a set of T-independent vectors {x,,..., x d } in f(V ,_ 1

C)k K ) with d <rr _ ,  a n d  « x , , . . . ,  x d »  T f (1 7 ,_ ,O k K ) because T  is excellent. We
have that dim K « x , , . . . ,  x d » T >dillI k Vt _  =(r r _,/r r)dim ,yr >(d/rt )dim k V„ which con-
tradicts the fact that T is semi-stable (see Proposition 2 .1 0 ) . Thus, if  T  is a point
of Z r(K ), then T is excellent, semi-stable and moreover, a  0,-extension o f  a  T " in
A(K) by a  T ' in Z r _ 1( K ) .  Since T  is excellent and since dimk Vdri =dim k 171_ 1 11.1_,
=dim k V;11„ we know that T ' and T" are semi-stable by virtue of Proposition 2.11.
Since A n P(I/r, l„ W ;)ss= A  a n d  Z,_ 1 n (Fr _ i )ss = T '  (or, T ") is  a n  element
of Z _ 1 (K ) (or, A (K ), re sp .) . Thus T ' has the property (*),_ 1 a n d  T' S „ which
implies that T  has the property (*),. Conversely, assume that an element T of Fr(K)
has the property (*),. Then T  is a  0 1-extension of T " by T ' such that T ' has the
property (*),_ , and Sr. Since all the T , T ' and T " are excellent and since T'
and T " are semi-stable, T  is semi-stable by virtue of Proposition 2 .1 2 . Thus T  is
contained in Z r(K )=Z r(K) n Fr(K ). q. e. d.

Our next task is to find typical closed orbits in P(V, r, W)ss.

Definition 2 .1 4 .  L e t 0: 11PC),W"—*W b e  an admissible m ap  a n d  le t T, T'
a n d  T " b e  K-valued geometric points of P(V , r, W ), P(V ', r', W ') a n d  P(V ", r",
W"), respectively. Assume that T is a  0-extension of T" by T ' and let

0 V 'C),K VC),K V"OkK 0

be the underlying exact sequence of the extension. T  is said to be a  0-direct sum
of T ' and T" if there exists a  linear map i: V "C) kK-- V O kK  such that g • i = idv-gk
and T(01),..., i(Ys), ws+1,..., w r) =0 for all w, + 1 ,..., in  VC) k K  whenever s> r".

Lemma 2 .1 5 . Let a K-valued geometric point T  of P(V , r, W ) be a 0-extension
of  a T" in P(V ", r", W ")(K ) by  a T ' in P(V ', r', W ')(K ) and let

0 V 'OkK VOkK V"OkK 0

be the underly ing exact sequence of  the ex tension. T hen T  is a  0-direct sum  of
T ' and  T " if  and only  if  the following (2.15.1) holds;

(2.15.1) there ex ists a  linear m ap h  o f  V "O kK  to  V O ,K  such  that g  • h
=a(id r .o K )  f o r  som e a E K , a 0 0  a n d  th at T (f (x ,)+h (y ,) ,..., f (x r)+ h(yr))=
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E( yir„), where the su m  ru n s  o ve r a ll in -
dices i, <•••<i,,, j,<•••< j r ,  w ith  {i,,..., j,,..., r}  and where R=

r'(r' +1)/2.

P ro o f.  Assume that T  is a 0-direct sum of T ' and T " .  Then

T(f (x 1) + i(Y 1),• • • f(x,)+ i(y,))
=__ _ os (s+ 0 /2 + i , + •••i

T(f(xf,),•••• f ( x i) ,

where the sum runs over all indices i l <•••< is, ii< ••• <i r _s  w ith  {i 1 ,...,
I f  s >  r ',  then T(f(x i i ),..., f(x,  ),

x 1r ,).T"(0,..., 0, ) = 0 .  If s< r', then the assumption that T  is a 0-direct
sum of T ' and T " implies that T(f(x,,),..., f(x,  ), i(y i ,),..., i(y i ,_s) ) = 0 .  Thus we
obtain the equality in (2 .15 .1 ). Conversely, assume that (2.15.1) h o ld s . Then, for
i—(11a)11, g • Hence V Q ,K =f (V 'O k K)Pli(V "O k K ) .  Thus every vec-
tor in VO k K  can be written uniquely in the form f (x )+h (y ) . By the assumption,
we obtain that if s> r",

T(i(Y1),•••, i(Ys), ws+1,•••, wr)

= T(h(cc Y h ( c c 1  Y s ) ,  f(xs+ h(Y s+1),..., f (x0

+ h(Yr ))=O•

q. e. d.

A direct sum is independent of the choice of extensions.

Lemma 2 .1 6 .  L e t  T '  b e  K-valued geometric points of P(V ', r ', W ') and

P(V", r", W"), respectively, and let 0: W' C) k W"—YV be an admissible map. If

T, and T2 are 0-direct sum of T ' and T", then T 1 T 2 .  T h u s  a direct sum of T '

and T" can be denoted by T 'O T " .

P ro o f.  Let

0 V'OkK VO„K V"OkK 0

be the underlying exact sequence for the extension Ti and let si b e  the section of vi

which makes Ti to  b e  a 0-direct sum of T ' and T " .  Fix a basis e;,, (or, e7,
e'4,) of V ' (or, V", resp.). Set

si(e_„.) if n '< j< n .

Then an  f o r m s  a basis of VO k K .  There exists a K-valued point g  of
GL(V) such that a (Pg = a? ) . For vectors x 1 ,..., x r in V'O k K and y,. in
Ok K, we obtain

T,(u,(x,)+s,(y,),..., u,(x,.)+s,(yr))

)

1 u i (e'i ) if l < j<n '
4 =  
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= E (— T'(x,,,..., yfr„)

= T204 2 ( x 1 )) SAY 1 1 2 (0  ± S2(Yr))

= T 2 (0 4 1 ( X 1 )  S l ( ) ) 1 ))g ,. • (LI 1(X .) ± si(h))9)

=5 (g, T2 )(u 1 (x 1)+,s 1 (y 1 ) , . . . ,  u l (x,.)+s,(y r )),

where the sum in the second line of the above equality runs over all indices i, <•••
< < -• with { i,, . . . , Thus we have T,= o-(g, T2 ),
that is, T, T2. q. e. d.

Let (/),: VV,_ 1 0,14P,--÷W; b e  a sequence of admissible m aps (1 < i < t, Wo = k).
Then Ow = Oi • ((f)  , 011')• ••• • (0 1 0  W 0 • • • 0  WO defines an admissible m ap of
W ',0 ,• - • 0 ,W  t o  W .  Let 1,,..., 1, be a sequence of positive integers and let 1P,
be a k-vector space of dimension m1. Put r ; =/, +••• +1 ; and 1' i ---IP1 0 • • • 0 -1P,, then
dim, V; -= Em i =n, and we have a natural exact sequence with a splitting map s i :

J=1

(2.17.1)O —  17
; _, 0,K --114 17

; 0 ,K 1 1 0 ,K  ---- . 0

A decomposition / of type 1 is a sequence of ordered subsets I .............. ,
of integers with the following properties:
( 1 )  Ik nl i =0 if k0 1, (2) / 1 u ••• u r il, (3 ) # / ,=  I,. The set of decompo-
sitions of type / ,,..., I is denoted by D(1 1 ,..., l i ). For a decomposition /={/,,...,

I i } ,  ( -1 ) 1 denotes the signature of the permutation (  1 ''••  /1  ,••-, / J--1+ ri
J'a u ,..., a,,,,..., ai l , • . • ,  a p j

where fa i , < •••<a„ i l  is  /,. I f  /={/,,..., I i }  is  a member o f D(1 1 ,..., 1 f )  and if
X1 . . . . . Xr j  are vectors, then  x , k  denotes the sequence of vectors x a , , . . . , x a ik ,  where
{a, <•••<a lk } is I l .

Assume that a K -valued point T  of P( P»  l ,  W'i )  is given for each j. We
shall define a K -valued point T, of P(V,, r 1, W1)  as fo llow s: Let {x,   x , , , }  be a
set of vectors in V; 0 ,K ,  then each x i  can be written uniquely in the form x (

i
1 ) +••-

+ x (P  with X(i u ) E  r „ O k K .  Then

(2.17.2) T ,(x ,,..., x rd = E ( _ 1) ,00) ( 7 -, ( x ) 0 7 -2( 422)) 0 ... o r i ( x y,1) ) .
I I I . .  . 1 , )

Remark 2 .1 8 . (I) The definition of' T, is independent of the choice o f W1 , . . . ,
14/ 1 . To define T, we need only an admissible map OM:

( 2 )  A permutation of V; may cause T to change — T .  However, as a
point of P(V,, r i , Wt ). it has no influence on T.

Lemma 2 .1 9 .  T he T is  a  Om-extension o f  T ; b y  T w i t h  th e  underlying
ex act sequence (2 .1 7 .1 ) .  Moreover, T  is a  Om-direct sum o f  T1_, and  T .

P ro o f . Let us compute 'T,(f,(x A ) .  I f  UO 1 ,...,10 is the
set of decompositions of type 1,,..., 1, such that J ,= , + 1 ,..., ri b  then we have
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Tt(ft(xi)•••• , .fi(xr, ) ,

( - 1 ) 1 0( 1 )( r i (X11,)) 0 -0 T r i-1 (X (Iii -_1, ) )
1ED' ( I I  ............ I , )

T i (y l i )  ,•• .1 Y (I i» ) )

where f i (x j ).--- 4 1 )  +  •  •  •  +  x (
i i- "  w ith  x (

i " ) e V,,® k K  a n d  where y i  = + • • • +
with y ) e 1/;,(D,K. Therefore,

/ED( !, ..... 1,_,) 
( -1 )/ (p il(p li-1 )(T jx ,; ) )0 .-o r i_ , (x ; i i-1 )) )

tX 7-
1 ( A i ) , • • • y ; ! ) )1

This shows that 7; is a  0")-extension o f  T ; by Ti _,. By virtue of the definition of
it is obvious that 7;(s1(y 1 ) , wri_0,--0 for all vectors wi  

.......
-

in Vi O ,K  if t >t i . q. e. d.

Let it be a permutation of {0, 1,..., Assume that another system of admis-
sible m aps 4 : W (0)-=k ) is given. Then, as is
stated before (2.17.2), they define an admissible map (Yu ) :  W ( 0 0 k •••® k W'„ ( ,) --
IV;40 . Since W ', ) ® k •••O k W,,,':'—'W'1 0 k .•.® k w;, o'( , )  provides us with a n  ad-
missible map ;0 " of W', O k • •  •  O k W ; to  1,17 , 1 11 . I f  W , ) -- W, and  if 0 0 )=/ ( t), then
Lemma 2.16, Remark 2.18 and Lemma 2.19 yield

Corollary 2 .1 9 .1 . L e t  V  be a  k-vector space of  dim ension n,. Direct sums
(...(( r i () Tr2 )0 T 3 )(i) • • .)e ) T ,) a n d  (...((T ( 1 ) (1) Tri,( 2 1 )e T ,, ( 3 ) )e) • • .) ,EDT'„( , ) ) exist

in P(V , rt , W r ) ( K ) .  M oreov er, both are  isom orphic to 7;( h), a fortiori, they  are
isom orphic to each other over K , w here h is a K -isom orphism  of  V O k K  to V ,O,K
and where V , is defined in (2.17.2).

The above allows us to employ the following notation.

Definition 2 .2 0 .  W e denote (-4 (7 -
10  r2 )(D T D O --)0 T ;) b y  r,s7-2 0•••c)

T,.

Every extension can be specialized to a direct sum up to isomorphism. Pre-
cisely, we have

Lemma 2 .2 1 .  L et V , V ' and  V " be k -v ector spaces w ith  cl ini k V  =dim k V '+
dimk V ", 0 :  W'O k W"--4 W  be  an  adm issible m ap and  le t r,  r ' and  r"  be positive
in te g e rs  w ith  r=r'+r" . Let T .  T ' and T " be K -v alued geom etric points of  RV,
r, W ), P(V ', r', W ') and P(V ", r", W "), respectiv ely , and let R  be a discrete valua-
ation ring ov er K  w ith residue f ield K .  A ssum e that T  is a 0-ex tension of  T " by
T '. T h e n  th e re  e x is ts  an  R -valued point o f  P(V , r, W )  su c h  th at (1) T;-z- T over
L  and (2) T mod it i s  a 0 -d irec t su m  o f  T ' and T " , w here L  is the quotient .f ield
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o f  R and where tt is a uniformanizing parameter of R.

P r o o f .  Let s  be a section of the underlying exact sequence

0 V'C)kK VC)kK V"C)kK 0

of the extension T. Put U , =u(V 'O k K ) and U 2 = s ( re k K ) ,  then VC) k K = U I CD
U2 . Fix a basis fe ) ) ,..., eV}  o f VC),K with ell ) e U , and e? ) e U 2 .
Then fé (i ' ) = e;' ) 0  1   é - L1)=eL1 ) 0 I, J',2 ) = I ,..., -44,) = e ,(3 ) 01} forms a basis of
( VC)kK)C),L= VL . Let g  be the automorphism o f VL  su c h  th a t g(x + y)=x + try
for x e U i ® K L, y e  U 2 O K L .  Set T,=o -(g, T). For z i = x i + y i ,  I < i < r with x i e U,
C) K L and y i e U2 OKL,

T,(z, ...... zr)=T(x, + ny,,..., x r + ny,.)

= _  r s + 1 )/2-16+•••+is 7Ty1,

r ,=  E  E ( )s(s+1)/2 , -ii+...+ivrcr—sT(x i„ .. . ,  x i s , y1 ,-•.,

because T  is a 0-extension o f T " by T ', where the sums of the second and the third
equalities run over all indices i l <•••< is, fi < ••• < L . ,  with is, j r - - 5 } =
f l,. . . , r}. T h u s ,  as a point of P(V, r, W)(L), T, =7 with

r (z , .....  z r)= E( — Yjr„)

r'-1
+ 7 (  E  ire - 5- 1(1( — 1) s ( s + 1 ) + i l+ . . . + i sT (X i i , y1 „...,

s=0

where the sum runs over all indices as before. T h u s , u n d e r  the same notation as
in the proof of Sublemma 2.6.3,

T = u ( t ,  n i ( éj)" A  éj3) v  ) 0 i f i
re / (/co.')
1" eL(n",r")

r'-1
E  n r'-s-1 E u ( l ,  r ) ( e » V  A él2/V) o w

Js=0 l 'e L (n ',  )
r e L (n " , r – s)

where all the u(/', n i s  are elements of K .  Thus T is an R-valued point of P(V, r,
W) and

T = T  mod Tr = 1 " )1 (e P )V  A  e»") ® w 1 ,
e L (n ',r ')

which implies that for z =  (x )+ s (y )  with x;. e V 'O k K  and y e  V "O k K,

f r ) = E ( -  ry'fr'.+ 11 /2 +it + -
+ir'T (f (x ;,)•••••

s(.1":;,.„)).

Since T  is a 0-extension o f T " by T', we have
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-  r ' ( r ' + 1 ) / 2 + i i + • " + i ,
 r ( X ; 0 • • • 9  x i„ )0 7

— (Y;,,•••,

where the sums in the above two equations run over all indices

<Jr' q. e. d.

Now we come to another goal of this section.

Thorem 2.22. U nder the  sam e situation a s  i n  Theorem 2.18, assum e that
Z(S,,..., S t ) is not em pty , then  G L (V ) -orbit o(S ,,..., S t ) o f  S,$•••CIS, is a unique
closed orbit in Z(S,,..., S t ).

P ro o f . First of all, our assumption implies that every Z(S ,,..., S i) is not empty.
Let us prove the theorem by induction on t. If t =1, then Z(S 1)= o (S 1 ). Thus we
have nothing to prove. Assume that our assertion holds for t — 1. Let o be a closed
orbit in Z(S,,..., St )S,,K with K an algebraically closed field K  containing k. Since
every point of o(K ) is an extension S, by T' in Z(S,,..., 5 1_ 1 ) (K ),  there exists a point
of T of o such that a specialization of r is  'vast  by virtue of Lemma 2.21. Since
F, is proper over k, T'(:), S, is a point of F,(K ), whence it is in the set Z(S,,..., S t )
( K ) .  Since o is closed in Z(S,,..., S,)S,„K, T'SS, is a point of o (K ), which implies
that T By the induction hypothesis, we can find a point T in Z(S,,...,
S1_ 1)  such that 7 "  T ' and a specialization o f T ' is S, 0  •  •  •  EDS,_,. Since T.r2--'- r '
OS , and since (S,S•••EDS,_ 1 )10S , is a specialization o f r'os, (see the proof of
Lemma 2.21), we see that T S 1 ED•••SS1 by the same argument as a b o v e . q.e. d.

§ 3 .  Strictly e-semi-stable sheaves

In this section, we shall introduce the notion of strictly e-semi-stable sheaves
and study its property. If the family of the classes of semi-stable sheaves with a
fixed Hilbert polynomial on the fibres of X  over S is bounded, the results of this
section are not necessary in the sequal.

From now on, we shall fix the following situation:

(3 .1 ) Let S  be a scheme of finite type over a universally Japanese ring E and
let f: X—+S be a smooth, projective, geometrically integral morphism such that the
dimension of each fibre of X  over S is n. Let 0,(1 ) be an f-very ample invertible
sheaf such that for all points s in S and all integers i > 0, f/ i(X , 0 , ( l )0 0 )= 0 .

As is stated in §3 of [12], the last condition in (3.1) is only for convenience' sake.

Definition 3.2. Let e  be a non-negative integer and let E  be a coherent sheaf
of rank r on a geometric fibre X , of X  over S.

1) E  is said to be e-stable3 ) (or, e-semi-stable) (with respect to  e x (1 )) if it is
stable (or, semi-stable, resp.) (with respect to 0,(1)) and if for general non-singular
curves C = D ,  D„_,, D 1 ,..., D„_, el0,.(1)1, every coherent subsheaf of ES, x S c

3 ) The definition of e-stable (or, e-semi-stable) sheaves differed from this in [12] Definition 3.1.
This definition seems to be better. The results on e-stable (or, e-semi-stable, resp.) sheaves in
[12] hold good under this definition, too.
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of rank 1 (1 <t< r —1) has a degree <t{ d(E, ex (1))1r+el.
2 )  E is said to be strictly e-semi-stable if it is e-semi-stable and if every co-

herent quotient sheaf E' with Pr (m )=P E(m) is e-semi-stable.

Remark 3.3. If E is e-stable, then it is strictly e-semi-stable.

As an immediate consequence of the definition of e-semi-stability, we have the
following.

Lemma 3 .4 .  For a geom etric point s of S, let

0 E' E E" 0

be  an  ex act sequence o f  coherent sheaves on X s . A s s u m e  th a t  P ,(m )= P E(m)=
PE-0 1).

1) If  E' and E" are  e-semi-stable, then so is E.
2) I f  E is e-semi-stable, then E' is e-semi-stable an d  E" is  r(E)e-semi-stable,

an d  hence E is strictly  r(E)e-semi-stable.

P ro o f .  For semi-stability, our assertions are proved in Lemma 1.4. Choose
a non-singular cirve C=D i ........... Dn_,, Di elO xp)1 so generally that the sequence

0 E'® EOCc E"C)Cc 0

is exact and that the condition in Definition 3.2 holds good for E or E' . E" accord-
ing as E is e-semi-stable or E' and E" are e-semi-stable.

1) Let F  be a coherent subsheaf of rank t (I <t<r(E) 7  I) o f  EOC c . Set
F' =II - 1 (F) and F "= v (F ). Then we have

d(F)==d(F')+d(F"), t = r(F')+ r(F")

d(F')..r(F')d(E', e x (I))1r(E')+r(F')e

d(F")<r(F")d(E", e x (I))1r(E")+r(F")e.

Combining these, we obtain

d(F)< t{d(E, x (I))1r(E)+

because d(E')Ir(E)=--cl(E)Ir(E)=d(E")1r(E").
2) Let F' be a coherent subsheaf of rank t' (1 < t '< r (E ') -1 ) of E '® .  T h e n

we have

cl(F')_<_1'{d(E, e x (1))1r(E)+ = t'{d(E', e x (1))1r(E)+ .

Next let F" be a coherent subsheaf of rank t" (1  <t"<r(E ")-1 ) of E"00 c . Set F
Then

d(F)-----d(F")+d(E')

d(F)_<_(r(E')+t"){d(E, x(1))/*(E)+ .

Thus we obtain
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d(F") t"d(E", 9 x (1))1r(E")+(r(E')+ne

=t"{ d(E", ex (1))14E")+(r(E')+nelt"}

t"{d(E", O x (1))1r(E")+r(E)e} .

q. e. d.

As for strict e-semi-stability, we have the following.

Lemma 3 .5 .  L et E', E and E" be the same as in Lemma 3.4.
1) If  E is strictly  e-sem i-stable, then each com ponent of  g r(E ) is e-stable.
2) E  is strictly  e-sem i-stable if  and only  if  E ' and  E " are  strictly  e-semi-

stable.

P ro o f  1) Our proof is by induction on the number a of components of gr (E).
If a = 1 , then we have nothing to prove. Assume tha t a>  I and take a  Jordan-
Holder filtration 0 c Ec, c  E, c • • • c E,= E of E .  By virtue o f  Lemma 3.4, E, is e-
stable. It is easy to see that E=E/E 1 is strictly e-semi-stable and 0 =  'Eo -E, ==E2 /E
c • • •c E „_ ,=E  is  a  Jordan-I-Wider filtration o f  E. Thus gr (E)= E, e g r  (E) and
our induction hypothesis tells us that each component of gr (E) is e -s ta b le . We see
therefore that each component of gr (E) is e-stable.

2 )  It is easy to see that if E is an extension of a semi-stable sheaf E" by a  semi-
stable sheaf E' and if PE ,(m )=P E ”(m), then E is semi-stable, PE (rn)= PE ,(m)= P E „(m)
and gr(E )=gr (E ')egr (E"). If both E ' and E" are strictly e-semi-stable, then the
above remark and (1) of this lemma imply that each component of gr (E) is e-stable.
Let F be a  coherent quotient sheaf of E with PE (m )=P F (m ) . Applying the above
remark to E, F and ker(E--4F), we know that gr(F) is direct summand of g r ( E ) .  By
induction on the number of the components of gr(F ), Lemma 3.4, (1) and by the
above facts, we see that F is e-sem i-stable. The proof of the converse is similar to
the above. q. e. d.

Corollary 3 .5 .1 .  E is strictly  e-sem i-stable if  and only  if so is gr(E).

Now let us show openness of strict e-semi-stability (see Definition 1.4 o f [11]).

Lemma 3 .6 .  Let g: be smooth, projective, geom etrically  integral m or-
phism  of  locally  noetherian schem e, ex (1 ) be a g-very  am ple invertible sheaf  on
Y an d  le t F be a T -f lat coherent C y -m o d u le . If  Hi(Y r, C y (1 )() ,,k (t))=0  f o r all
i>0, t e T , then there ex ists an  open se t U  o f  T  such that f o r all algebraically
closed fields k,

U(k)= {t e T(k)1FO G r k(t) is strictly e-semi-stable with respect to C y (1)}.

P ro o f . Since the property that a coherent sheaf is e-semi-stable is open under
the situation in the lemma ([12] Lemma 3.5), we may assume that for all geometric
points t  o f T , FO,,,k (t) is e-sem i-stable. And, moreover, we may assume th a t  T
is noetherian and connected. Then, for every geometric point t o f T , FO,,,k (t) has
the same Hilbert polynomial H(m) and rank r. For H i(m )=iH(m )1r, I <  r— 1, set
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Qi =-Quot i
i
i,;"»,, and F 1=(1, x T ni)*(F), where n i is  the natural morphism of Q .  to

T  If Ei is the universal quotient sheaf of F i , then there exists a closed set R i o f  Q,
such that for all algebraically closed fields k, R 1(k)={q e Q 1(k)1E1e ) , Q 1 k (g )  is not
e-semi-stable}. I f  F O k ( t )  is not strictly e-semi-stable for some k-valued geomet-
ric point t of T, then there exists a coherent quotient sheaf F' of F ® ,,k (t) such that
x(F'(n))= iH (m)Ir=H i(m )  for some 1 <i <r— I and tha t F ' is not e-semi-stable.
Thus there exists a k-valued point g of R i whose image by 1r1 is t. We see therefore
that U= T— Un i(R i ) is the required set. Since n i is proper, U is open in T. q. e. d.

§ 4 .  Moduli of semi-stable sheaves

Our main aim of this section is to construct a  scheme o f  parametrization of
the functor rz, defined in the end of §1.

Let T be a  locally noetherian S-scheme and let E l a n d  E2 be T-flat, coherent
Ox r -modules. Assume that E, —E2 b y  the equivalence relation defined in (1.7.2)
and assume that E, has the following property;

(4.1.1) for every geometric point t of T, E i C)„,k(t) is strictly e-semi-stable.

Then E2 has the same property by virtue of Corollary 3.5.1. Thus (4.1.1) is a
property o f a  class [E] in L t s (T). When a class [E] enjoys the property (4.1.1),
it is said to be strictly e-semi-stable.

Now let us introduce a subfunctor o f  Elk s  f o r  each non-negative in-
teger e.

(4 .1 .2 ) For Te (Sch/S), TY ,
/§(T)={[E] e i l l s (T)I[E] is strictly e-semi-stable).

Ell ,/§ is an open subfunctor of ! L s  by virtue of Lemma 3.6 and Eip,§ is an open
subfunctor of ! j  (see(see §5 of [12]).

We may assume that S is connected. Set H(i ) (m)-= iH(m)Ir for 1 < i< r, where
r =r(E) fo r an  E  with [E] e I'll i s (Spec(k(s))). Then there  exists an integer m (i, e)
such that for all integers in> tn (i, e), all geometric points s  of S  and for a ll E in

e(Spec(k(s))),

(4 .1 .3 ) E 0(9,.(m ) is generated by its global sections and

Iii(X s , E 0 0 , s (m ))=0 i f  j>  0,

(4 .1 .4 )  for all coherent subsheaves E' of E w ith  0 0 E ' E,

h°(X s , E '00,.(m ))< r(E ')V (X „ E 06 x ,(tn))li

(see [12] (5.3.1) and (5.3.3)).

Lemma 4 .2 .  I f  m>max{m(i, e)} , then f o r all geom etric points s  of  S  and
f or all strictly  e-sem i- stable E  on X s of  rank  i w ith x(E(m))=H ( 0 (m),

(4 .2 .1) EQ(Dx .(m ) is generated by its global sections and hi(X s , E® x s e(m ))=
0 if j>  0,
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(4.2.2) f or all coherent subsheaves E' of E  with E' 00, h°(X,, E'00 .0m ))
-_r(E')11°(X s , E®e x (in))1i

and, moreover, the equality  holds if  and only  if  P e (m )=P E (m)=H(m)Ir.

P ro o f . We shall prove the lemma by induction on the number a of the com-
ponents of g r (E ). If a =1, we have nothing to prove because of (4.1.3) and (4.1.4).
Assume that a >2  and that our assertion is true for a — I. P i c k  a  Jordan-Holder
filtration 0 c • • E OE= E of E .  Then the induction hypothesis implies that
our lemma holds for E=E/E 1 . The exact sequence

0 E, (De x (m) E CC x (nt) FOOxs(m) 0

and (4.2.1) for E, and E provide us with an exact sequence

0  H°(X„ E 1
0 e 0 m )) ro o  H o (x s , E o c x , ( 17 ))

H°(X,, F,Oe x (m)) 0

and hi(X s , E0e x s (m ))=0  for j > 0 .  Let a  be an element o f a  stalk of E ® & (m )
at x .  Then there exist a, in  Ox s ,  and s, in  H°(X,, E0O x s (m )) such
that a— fa isi,x  i s  an element o f  ux ((E 1 00 x s (m))OE). Thus we can find b,...., be  in
Ox s ,a a n d  s'e in  F(u)(H°(X s , E,,(De x jm ) ) )  su c h  th a t  a =Za isi,x + Ib i s .
This completes the proof of (4.2.1). For the proof of (4.2.2), let j  be the smallest
integer such that E 'c E .  I f  j <a, then E ' is a  coherent subsheaf o f EŒ_ , .  Since
E„_ 1 is strictly e-semi-stable by virtue of Lemma 3.5, the induction hypothesis im-
plies that h9(Xs , E'®e x s (m ))<r(E ')h°(X, E OE_ 1 06 x s (m))1r(E„_,) and  the  equality
holds if and only if PE .= PE , , _ i = PE . By virtue of (4.2.1) for E and E„_ ,, we know
th a t  h°(X s, Ea _, ex.(m))11-(E2_1)= P - i(M ) = PE(ln) = h°(X s , E e x (m))1r(E).
We may assume therefore that j = a. S e t  fl E„_ Then E'
is  a  non-zero subsheaf o f  F=E/EŒ_,. I f  E _, =0 , th e n  h°(X,, E'06 x s (m ))=
h°(X s , E'C)e x »n))_r(E')11°(X „ F®  x (m))1r(F)= r(E')h°(X„ E 9 (m))/r(E) be-
cause of (4.1.3), (4.1.4) for F  and (4.2.1) for E .  Moreover, the equality holds if
and only if F = E ', that is, PE = Pr = PE, = P E ,  Assume that E_, 0 0 .  Then,

h °(X „ E '06 x (tri))__Ii°(X , E'„,00,,, s(m))+11°(X s , E' 0(9“m))

<_r(E'„,)11°(X s , E„_ 1 0(. x (m))1r(E„_,)+r(E')11°(X s, F®e x (m))1r(F)

=r(E )h°(X s , E®e x .(m))1r(E).

If the equality holds, then _, = PE P E  and P .  = PE =P E , and hence P E .= PE.
Conversely, if  PE ,=P E ,  then P E', , =PE , = P E .  Thus the equality holds i f  h'(X s ,
E'OE_ 1 00 x . (m ))= 0 . This follows from (4.2.1) and the fact that is a  strictly
e-semi-stable sheaf with PE• i = P E . q. e. d.

Let S'x i ,s (e, H) be the family of classes of coherent sheaves on the fibres of X
over S such that E is contained in S 'x 1 5 (e, H) if and only if E is strictly e-semi-stable
and the Hilbert polynomial of E is H .  Then, for each e and H, S 'x15(e, H) is bound-
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ed (Lemma 4.2 or [12] Corollary 3.3.1). Thus there exists an integer m '(i, e) such
that for all integers m > m'(i, e), all geometric points s of S and for all Oxs -modules
E contained in S x' 15(e, Hifi),

(4.3.1) if an invertible sheaf L on X , has the same Hilbert polynomial as det(E
C)(9x .(m ))=c,(E0O x s (m)), then hj(X„ L )=0 for all positive integers j.

Take a n  integer m e > max Im(i, e), m'(i, e)1. W e m ay assume that m e > m e .l5i5r
if e e'. Let Ho.e )(m )= H'o(m + m e ) , then H " , e)(m) is the Hilbert polynomial of
E09 x s (me)  fo r a  coherent sheaf E  on X .  w ith  Hilbert polynomial Hifi(m). Set
N ( i •e ) =11 1 0 (m 9 ), then (4.2.1) im plies that N " , ") =17°(X s ,  E 0 0 ( m ,,) )  fo r  every

J module contained in S,'‘ v s (e, Hifi).
Now, V a free E-module of rank N ".°) and for a E-scheme Y, 1/,(Y)

denotes 17,.,,(8).-e y . Let us consider

=QuotV,` i ' ( x) , i x i s

and the universal quotient sheaf 4)f: x 5 0",)--, F1'. Then, by virtue of Lemma
3.6, for each integer e ' with 0<e' <e , there exists an open set Ri , e' in Of such that
a geometric point y of t, is contained in R ?" '' if and only if

(4 .3 .2 ) r(440k(y)): H°(Xy, Fr (:) k(y)) is bijective and

(4 .3 .3 ) Ff(L) k(y) is strictly e'-semi-stable.

For every geometric point s of S  and for every coherent sheaf E  on  X , which is
contained in S 'x i s (e', H" ) )(m e ) =IFOOx s(m e)IF E H(0)1, there exists a surjec-
tive homomorphism a :  1/,, (X ,)— E such that r(cx): V ,,,O.,k(s)-41°(X s , E) is bijec-
tive by virtue of (4.2.1). By the universality o f  ( a ,  Of, F i), /  corresponds to  a
geometric point y of 0, lying over s. Since y is a geometric point of R f ' e . ,  we ob-
tain a surjective m a p  e '(s) for every geometric point s of S;

(4.3.4) f , e'(s): Ry. e'(k(s)) EV 'e '(1 1 1 ,)  (Spec (k(s)))

= {[E00 ,(m e )]1 [E ]e  Ey e' (Spec (k(s)))1 .

On the other hand, for a natural action r of the .E-group scheme Gi =GL(V i . e )
on R f 'e ' is G.-invariant and K-valued geometric points y ,  and y 2 o f  Rf.e" are
in the same orbit of G,(K) if and only if F f ® k ( y 1) FIO , e2. k(y 2 ) ([12] §4 and §5).

Let Q, be the union of the connected components o f  0 ,  which have a non-
empty intersection w ith  R r e ' .  Let vi b e  the morphism Q, to Pic x i s  defined by
det(Ffl,„„2 , )  and let P .  b e  the union of connected components which intersect
with v,(Q I). ( [ 1 2 ]  § 4 ) .  T h e n  P , is projective over S. Moreover, by virtue of
(4.3.1), we obtain a G r morphism Ili of  Q .  to Z. defined in Proposition 4.10 of [12]:
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it, induces a  closed immersion of Ry•e 1 t o  a G 1-invariant o p e n  subscheme o f  Z i .
This and the fact that p i is proper imply that there exists a closed subscheme R i of
Z i such that R i is Gr invariant, tti (Q1) =R 1 as sets and that p i induces an open immer-
sion of Rf' e ' to  R i (R i is the scheme theoretic image of Q. by yi ). Therefore we get
the following commutative diagram:

For all K-valued geometric points x  of P i ,  (Z i )x  is isomorphic to the Gieseker
space P(Vi,e0=K• i• W.0, where W = 1

-
1°(X ,  (det F7)0k(y)) with a  K-valued geo-

metric point y of Q. lying over x.

Lemma 4.4. For all K-valued geom etric points x of P i , every  geom etric point
of (R i )„ is excellent in 14Ç).

P ro o f .  L et T be a  geometric point of (R i)x . W e may assume th a t T  is K-
rational. Pick a K-valued point y of G 1) - 1 ( T ) .  As a map o f  A v e 0 K  to  H°(X y ,
(det F )O k (y ))=  W , T is  defined  by  3, (for the definition of 7 ,  s e e  [12] p. 114).
F o r  a,,..., a i in  K , p u t s, =F(4Rk(y))(a,),..., s 1 =T(4) i 0k(y))(a 1). Then
yy(s, A ••• A si)  coincides with s, A • •• A si on the open set of X ,  on  which FyOk(y)
is locally free. Thus a1 ,..., d i in  1/,,,® K  are T-independent if and only if (s1) z ,...,
(s.i)z  are linearly independent in the vector space (F )z , where z  is the generic point
of X y . And a is T-dependent on a1 ,..., a j  if and only if sz is linearly dependent on
(s 1) , . . . ,  (y z , where s= E(0 i 0 k (y ))(a ). These remarks imply that T  has the pro-
perty (1) in  Definition 2 .9 .  T o show that T  enjoys the property (2) in  Definition
2.9, assume that T is an extension of T" by T ' .  Let 0 :  W'O k W"--4 Wx  be  the ad-
missible map to define the extension T and let

0 V' Vi,e0K —(= V" 0

be the underlying exact sequence of the extension. Let E' be the coherent subsheaf
of Fy0k(y) generated by F(0 10 k (y ))(r ),  E "  be the quotient sheaf EIE' and let
L' = det E', L" = det E" . Since (det Ff)(Dk(y):

-
-f L' L " , we have an admissible map

i/l: f r  J r  Wx ,  where H' =H°(X y , L ') and H"=H°(X y , L"). Pick vectors b1 ,...,
be such that fl = T"(v(b,),..., v(b e ))0  O. Let U be the non-empty open set on which
E', FfOk(y) and E" are locally free. Then, for ae in  V ', s, A ••• A sr . A t,
... A te = b 1 , . . . ,  b r „)=T'(a,,..., a e ).T"(v(b,),..., v(b,,.)) on U, where
sj =/"(0,0k(y))(a ; )  a n d  ti =1

-
(0 10k(y))(b .i ). Since T ' is  n o t  zero , t, A ••• A te .

defines a non-zero element a of H " .  If s, A ••• s e  denotes the element of H ' which
coincides with s, A • • • A s s,  on  U, then k(s, A  • • • A sr ,)0a)=- u(a,.,), b1,...,
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be )=4)(T '(a„..., a r ) 0 / 3 ) .  T h u s T '( a , , . . . ,  a ,) =0  if  a n d  on ly  i f  s, A • • A sr . = O.
Assume that a l ,..., a i  a re  T'-independent and that a is T'-dependent o n  a„,... ,a i

then (s,),,..., (s i )z  a re  linearly independent in the k(z)-vector space E z  a n d  F(4),®
k(y))(a) z  is contained in the vector subspace of generated by (s1 )z ,..., (si ) z . By
the remark made in the first part of this proof, we see that u(a) is T-dependent on

aj . Therefore, T  has the property (2) in Definition 2.9. q. e. d.

From now on, we shall fix a  pr ample invertible sheaf L. on Z. which carries a
G.-linearization. There exist Gr invariant open subschemes RI and  Rsi s o f  R , such
that for all algebraically closed fields K , R I(K )= { x  E R i(K )IX  i s  a  properly stable
point of (R,) y  with respect to  the pull back of L , to  (R 1)y ,  where y  = p,(K )(x )}  and
R r(K )={ x  e R i (K )Ix  is semi-stable point o f  (R 1)y  w ith  respect to  the pull back of
L. t o  (R 1)y ,  where y =p,(K )(x )}  (see [20] II, §2 and note that R. i s  a  closed sub-
scheme of P(E) for some locally free G,-sheaf E  on P , because L. is  P i -flat). B y
virtue o f  Lemma 2.2 and (4.2.2), the  same argum ent as in Lemma 4.15 o f  [12]
provides us with the following.

Lemma 4.5. y , induces an open immersion of  R e '  t o  R Si5  . Moreover, f or a
geometric point x  of if  Fr(8)k(x) is stable, then pi (x ) is in RI.

Let x be a  k-valued geometric point of Rf , e'. Since E =F,C )k (x ) is strictly
e'-semi-stable, we can fined a Jordan-Holder filtration 0=E o  • • • c  E OE_ Ea =
E .  Set ri =r(E ,) and 1 i = r 1 —r1 _ , .  By virtue of (4.2.1), the following exact com-
mutative diagram is obtained;

0 H°(XOE, EOE-1) 11°(X , H°(XOE, 0

q-1?
Vr ,e 0 . 4 - 9-°—̀ 17 ,„, e 0 , 7 k

where IL =1- ((14010)). Since EOE_  (or, E =E IE OE_ i ) is strictly e'-semi-stable (Lemma
3.5), an  isomorphism 11.-1 (or, 11„, resp.) defines a  k-rational point x5 _ 1 ( o r ,  ila,
resp.) o f  R : ,  (or, resp.). I f  TOE= Pr(k )(x ), TOE- 1= 11,,OE_,(k )(x „_,) a n d  T OE =
tt1 . (k )(5 ) , th en  TOE E P(V,., e (D OEk, r, WOE), TOE_  E rŒ-1, WŒ- 1 )  a n d  TOE E

P(V i.,e0 W ), where WOE=H°(X x , det E), =H°(XOE, detEOE_ , )  a n d  W .=
1-1°(X , det EOE). The isomorphism det EOE_ i )0(det EŒ) yields an admissible
m ap OOE:  WOE_ , O k if ce-4 WOE. F o r a 1 ,..., a,• ,  in .7k  a n d  fo r  b 1 , . . . ,  b ,.  in
V ,,Ø put s1 =g OE_ 1 (a 1) and t = 5 ( b ) .  Then,

T,r(L(a 1),..., f.(a r a, b 1 ,..., b 1 .)=t4 5 (.91 ) A  • • • A Ua (S,.._ I ) A

t / A • • • A t,. = 4 (s 1 A • • • A 5,„_ 1 )0 (v 5 (t 1 ) A • • • A va (t,.)))

= a ,_ ,)0 gOE(b,„)))

on a non-empty open set of X OE on which E 5 _ 1 , E and EOE are locally free. Thus, as
elements o f  WOE, TOEU5(a1),•••, b1,•••, 1)0 = TOE(ga(b,),

gOE(b,“))). Therefore, 7 OE i s  a  tfrOE-extension o f  T OE b y  TOE_,. Let 1'V3=1-1°(Xx,
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det Ej )  and let W i =H°(X „, det Ei ), where Ei =E i lEi _ , .  W e have a sequence of
admissible maps ( 4/0=k, j cx). Repeating th e  similar
argument to the above, we get Ti in  P(Vr i ,,C) k, ri , W)  (1 j  ce) and Ti  in P(1/,,,e

(1< j<Œ) such that

(4.6.1) Ti =p r j (k)(x j )  for some x i  in  R '( k )  and T i =it i j (k)(5ci )  for some )7i

in 12 e. (k). Moreover, T i  is in Rt(k),

(4.6.2) T a t/i -extension o f Ti  by Ti _ i  and T1 L- T,.

L e m m a  4 .7 . 7  T i _ 1 6) Ti  if  and only  if  Ei L'Ei _ 1 (:)Ei .

Pro o f . It is clear that if E  E  _ ,C )E i , then 1 CI T i . Assume tha t Ti

Ti _ ,e  Tj . Then there exists a linear map hi : k - ± V,..b e s u c h  t h a t  gi hi

=id  and Ti (hi (b,),..., h i (b,),..., )=O  if  t> l i . Let Fi  b e  the coherent subsheaf of
Ej  generated by iii hi (Vi i ,e ® .,k ) . Since E. is generated by its global sections and
since E) ,  w e see  tha t Ei =E 1 _ ,+
The fact that Ti (hi (b 1),..., h 0 if t > I. implies that r(F i ) <l i , whence r(F i )
=1»  T h u s , a t  the generic point z  of X ,  (E i ), = (E ,),C )(F i ),, which asserts that
E1 _ 1 n Fi  is  a torsion sheaf. Since E. is  torsion free, Ei _  n F=O , and hence E.
is a direct sum of Ej _ , and Fi . The natural projection of E . to  E  a sur-
jective homomorphism of Fi  to  E .  S in c e  Fi  is  torsion free and since r(Fi )=r( -Ei ),
Fi  is isomorphic to q. e. d.

By virtue of Corollary 3.5.1, gr(E) is strictly e'-semi-stable. Hence gr(E) cor-
responds to a point y in Rpe'(k).

Corollary 4.7.1. pr(k)(Y)= T1C)• • •

Now let us study Gr-orbits in R,s! and R .

Porposition 4.8. L e t y  be a  k-valued geom etric point of  P, and let s be the
im age of  y  by  the structure morphism  P„— S. L et E1 ,..., E„ be e'-stable sheaves
on X , such that li =r(E,), x(E,(m))=H ( 'i ) (m) and 11 + ••• +1„=r. Then there exists
a G,-invariant closed subset Z(E,,..., E,) of (.1-4 , e),,=(v„) - 1 (y) n Rr..e . such that

(4.8.1) pr (Z(E,,..., E„)) is closed in (M l y ,

(4.8.2) f o r every algebraically  closed f ield K  containing k, Z(E 1 ,..., E„)(K)
={x  E (Rp e  . )(101gr(F,Ok(x))L-'( i6 1 E,)(8) K) ,

_
(4.8.3) the G,-orbit o f  x ,  corresponding to e E , is  the unique closed orbit

in

P ro o f . Let 5  b e  a  k-valued point of R V ' s u c h  th a t  FT,C)10,) Ei . If
pi1(k) (g ,)= T,, th e n  T, is a stable point of (R 11) 1 c P(Vi i ,e ( )  W ,), where j7,—
v,,(10(i) a n d  171,-,=H 0 (x s, detE,). L e t  Wi =1/ 0 (X s , (det E1 )0•••0(detE,)), then
there is a natural admissible map tki :  W,_ 1 0 k W ,— W ,. For ri =1 1 +•••+l i ,(R,,),,1 is
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a G r r invariant closed set of P(Vr i ,e 0 k ,  ri , IV) whose geometric points are excellent
(Lemma 4.4), where y i  is the geometric point of Pr , which corresponds to (det EDO
•••0(det Ei). Applying Theorem 2.13 to the case where F,=(R,.,),,, and Si =  T,, we
obtain a G r -invariant closed se t Z (T ,,..., TOE) o f  Ms such that for all algebraically
closed fields K  containing k , Z (T 1 ,..., T OE)(K)= {Te Rr (K )IT  enjoys the property
(*)„ in  Theorem 2.131. Set where SOE i s  the
permutation group of {1,..., u}. By virtue of Theorem 2.22, the Gr .-orbit o(T ,,...,
TOE) of T i  0••• ED TOE is the unique closed orbit in 2(T 1 ,..., TOE) (see Corollary 2.19.1).
Since i s  a  G r -invariant closed se t  in  Ms, D=C n 2( Ti,..•, T.)
contains o(T„,..., T OE)  if it is non-em pty. O n the other hand, Corollary 4.7.1 im-
plies that T, e•••C) TOE is contained in ti,.(R e"), whence so is o(T ,,..., T OE) . Thus
D  is empty, that is, 2( T h . . . ,  T OE)  is a  closed subset of pr (M " ) .  Set Z(E,,..., E OE)
= (ar) - 1 ( TOE)). Let us show that this Z(E,,..., EOE)  h a s  the required pro-
perties. (4.8.1) is obvious because ,u r(Z(E,,..., EOE) )= 2 ( r , . . . ,  TOE). L e t x  be in
Rpe"(K) such that gr(FrOk(x)).-_' Ei o k K . Then (4.6.1) and (4.6.2) imply thati=1
ttr(K )()) is contained in  2( T 1 ,..., TOE), w hence x  is in EOE)(K). For a

OE _f i
x '  in  RPe"(K), assume tha t g r(F rO k(x '))*  0  E ,0 ,, K .  I f  g r (F ® k (x ) ) .  0  4i=1 1=1
then a G r -invariant closed subset 2- ( T; , . . . , 7- '13)  in R,s.s x S p ec (K ) is obtained as
above, where T; is a K-valued point in a Gieseker space corresponding to 2 ( r ,
..., TO contains the  unique closed orbit o( T O .  0  ..E; corresponds t o  a

i=1
point xi; in  M'e . (K ) and it,(K )(4 ) and iir(K )(4) are in the same G r -orbit if and

fi _ _
only i f  $  E i is isom orphic to ( Ei )C) k K .  Thus the orbit o f u r(K )(4 )  differs/=1 1=1
from that of ,ur (K) (4 ) .  Since Pr(K)(x0) .= (T •• 0  TŒ)OkK a n d  y r (K )(4 )=  T ,0
...e r p , o(T ,,..., T OE)O k K 0 o (r,,. . . ,  T O . T h u s  2(T 1 ,..., T OE)O k K n TI;)
= 0 .  Since ,ur (x )  is  a K-valued point of 2( TO, w e see that x 'eZ(E i ,...,
EOE)(K ), which completes the proof of (4 .8 .2). Since 11

r
 induces an open immersion

of M. , e ' to RS , Z(E i ,..., EOE) is homeomorphic to 2( T,,..., TOE) as topological spaces
with Gr -action. (4.8.3) follows from this fact, q .  e .  d.

By virtue of Theorem 4 of [20], there exists a  good quotient n: Ms—) Y. For
C=Ms—p r (RPe"), set M e ,e = Y — n (C ). Since C  is G r -invariant closed se t o f Ms,
AieOE is an open subscheme of Y. S in c e  Y is a categorical quotient of R S  and sincePr: 

/Zr q ) ,.—  i s  a G,.-morphism with
, ,  

the trivial action of Gr  o n  Pr , we get a unique
morphism such that ant= Pr :

Rpe' i i r ( R e ' )  C- - )  M.s

MOE,e , (--- 4  Y

Pick a k-valued geometric point x of Pr . Let y be a k-valued point of Rf ,
 e ' such that

p r (k)y r (k)(y)= x  and let gr (F k ( y ) ) a .' E,. Then, by virtue of Proposition 4.8,
i=
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we can find a  Gr -invariant closed subset Z(E i ,..•, E Œ) in  (R Pe l. with the properties
(4.8.1), (4.8.2) and (4.8.3). By (4.8.2), y is a k-valued point of Z(E 1 ,..., E Œ). (4 .8 .1 ) ,
(4.8.3) and [20] Theorem 4, (iii) imply that z=ntir(Z(Ei , ••• , E .)) is a  k-valued point
o f  Y. B y  (4.8.1), we have th a t z  is contained in M ..  T h e r e f o r e ,  1r -11 (1T4- e . e .) =
lir(RP e "). Moreover, (4.8.3) shows that fo r k-valued points y i a n d  y 2 o f  fq.e",
n(k)g,.(k) (y1)= n ( k ) P r ( k )  (Y2) i f  and only if gr (F k(y 1)) gr (Fro/4), D). Since S
is finite type over a  universally Japanese ring Y is projective over S , whence Fl e ,r ,
is quasi-projective over S .  These and (4.3.4) yields the following.

Porposition 4.9. RPe" h as  a  good quotient w ith  the  following
properties;

(4 .9 .1) M r . e , is quasi-projective over S,

(4 .9 .2 ) f or each geometric point s of  S , there exists a natural bijection e ,e (s):
Ell,f(m r )(Spec (k(s)))-->File ,,,(k(s)).

From the viewpoint of moduli, we have

Proposition 4.10. M . has the f ollow ing properties:

(4 .10 .1 ) For each geom etric point s  o f  S , there ex ists a  natural bijection
05 : Ifkg"(Spec(k(s)))-+M e ,,,(k(s)).

(4 .10 .2 ) Fo r Te (Sch/S) an d  a T -f iat coherent sheaf  E o n  X  x s T  w ith the
property  (1.7.1) and (4.1.1), there ex ists a  morphism f r '  of  T  to 1-17e ,e . such that
h .e"(t)=0 ,([E (:),k (t)]) f or all points t  in  T (k (s)) . M oreover, f o r a  morphisrn
g: T '-+T  in (Sch/S),

= Lec .ex' s o . (E )

(4 .10 .3 ) If  M ' E(S chIS ) and m aps O 's : Z br(S pec(k (s)))-04'(k (s)) hav e the
above property  (4.10.2), then there ex ists a unique S-morphism o f  M e ,e , to M '
such that tji(k(s))-0 2 =0's a n d  ..f eee'=f ', f o r all geom etric points s  o f  S  and for
all E, where f ' ,  is the morphism given by the property  (4.10.2) f or M ' and O's .

P ro o f . If one uses (4.9.2) and the fact that M e w  i s  a  categorical quotient of
1.?;:.'", the proof is completely the same as in the proof o f [12] Proposition 5.5.

Since both M e t e ' an d  M e2 ,,, have the properties (4.10.1), (4.10.2) and (4.10.3),
there exists a unique isomorphism M et,e iVÏe2,e such  tha t  e. =
f eE 2'e'. Since Me . ,, is an open subscheme of M e ,,, M e ., e . can be regarded as an open
subscheme o f  A4,,, Thus M x i s (H)=Iin) M  is  a n  S-scheme locally o f  finite type
over S .  Since each 114,,, is quasi-projective over S, M x 1 5  is separated over S .  It
is obvious that M 15(H) contains M 15(H) in  [12] as open subschem e. Moreover,
by the construction of M e c , there exists a  natural morphism M e ,e -> P ic x is  such
that for all geometric points t of M e ,,, ;.,(t)=c i (ON t)) , where s is the image of t  by
the structure morphism of M e ,r  to  S  and c , denotes the first Chern class. More-
over, it is easy to see that • je,e' =  for the open immersion j e ,e , of to Mr.,.
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Thus we obtain a  natural morphism M xis (H )— > P icx/ s . W e  have therefore the
following theorem whose proof is completely the same as that of Theorem 5.6 of [12].

Theorem 4.11. In the situation of  (3.1), there ex ists an S -schem e M 15(H)
with the following properties:

1) M , 5(H) is locally of f inite type and separated over S
2) A  coarse moduli scheme M 15(H) of stable sheaves with Hilbert polynomial

H  is contained in M 15(H) as an open subscheme.
3) For each geometric point s of  S , there exists a natural bijection 0 5 : I t s

(Spec (k(s)))— M "(H)(k (s)).
4) For Te (Sch/S) and for a T -f iat coherent sheaf E on X  x s T with the pro-

perty  (1.7.1), there exists a morphism f ,  of T to M 15(H) such that fE(t)=OX [E®,,
k(t)]) for all points t in T (k (s)). Moreover, f or all morphism  g: in (Sch/S),

1E ' g xx sg)*(E).

5) If  T/I' (Sch/S) an d  maps O's : ilk s (Spec(k(s)))— TIT(k(s)) have the above
property  (4), then there exists a unique S-morphism o f  M x / s (H) to M ' such that

(k(s))•0„--0', and f or all s and E, w here J  i s  the morphism  given by
(4) f or M ' and Os'.

6) T here ex ists a  natural morphism /1: 117I x / s (H).—  Pic" such that f o r all
geometric points t of M xis( 11 ), 4 0 = c i( 0 ; 1(0), w here s is the  im age o f  t by  the
structure morphism  of F i x i s ( l )  to  S.

By the property (5), M 15(H) with the properties (3), (4) and (5) is unique up to
isomorphism.

Remerk 4.12. If  T is reduced and if E,—  E2 in the sense of (1.7.2), then f E ,=
fE 2 . T hus, M  (H),red is a  coarse moduli scheme of the functor I t s o f  (Sch/S),

e d
to (Sets).

§ 5 .  Langton's result and its application

Let us begin with a definition.

Definition 5.1. Let E  be a coherent sheaf of rand  r  on a  geometric fibre X ,
of X .  E  is said to be y-stable (or, y-semi-stable) (with respect to Os (1)) if it is tor-
sion free and if for all coherent subsheaves F of E of rank t (1<t <r —  1),

d(F, 0 x (1))It<d(E, 0,(1))/r (or, , resp.).

In  [21], a y-stable (or, y-semi-stable) sheaf is said to be if-stable (or, H-semi-
stable, resp.) and in [8 ] and [10], a  y-stable (or, y-semi-stable) sheaf is employed
for the  notion of a  stable  (or, semi-stable, resp.) sheaf. I n  [8 ] , S. G. Langton
proved the following theorem for y-semi-stable sheaves.

Theorem 5 .2 .  L e t R  be a  discrete valuation ring ov er S , K  be the quosient
f ield of  R  and let k  be the residue field of  R .  A ssume that a a-sem i-stable sheaf
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E  on X K  is giv en. T hen there ex ists an  R -f lat coherent sheaf  E on X R =X  x  s

Spec (R) such that EO R K E  and FO R k  is 1.i-semi-stable.

It easy to see that if E is ii-stable, then it is stable and that if E is semi-stable,
then it is ii-semi-stable.

p-stable   stable

ii-semi-stable K   semi-stable

The semi-stability differs from the p-semi-stability. In fact,
Example 5.3. Fix a  non-singular curve C o f  degree 2n in  P 2  a n d  pick two

non-zero elements si , s2 in  II°(C, (9u (n)) such that {x E Cls,(x)=0} n {y E C152 (y )=
0} =4). Then, st and s2 define a regular vector bundle E of rank 2011 P 2  with c i (E)
=2n and c2 (E)=2n 2 (see [9 ] Principle 2.6). E(— n) is the kernel of the surjective
homomorphism 9 —>&c (n) defined by s ,  and s2 . It is easy to  see that E  is  p-
semi-stable and there exists the following exact sequence;

0 ---> 0,2(n) E L  — > 0

where L is torsion free and rank  I. S ince  L  is a  proper subsheaf of 0,2(n), for all
sufficiently large integers n i, h°(P 2 , L(m))< 0 2 ( n +  m ) ) .  Thus we see that
x(0 p2(n)(m))> z(E(m))/2, which implies that E is not sem i-stable. In the category
of torsion free sheaves, we have much simpler examples. Let X  be a  non-singular
projective variety with Picard number o n e . I f  M  is an  invertible sheaf on X  and
if L  is a  coherent subsheaf o f M  with Supp(M /L)4  a n d  codim Supp(M/L)> 2,
then M S L  is p-semi-stable but not semi-stable.

If E is not semi-stable, then for sufficiently large integers m, E(m) defines a point
x of a Quot-scheme which has the property (4.3.2), but the point is never mapped
to  a semi-stable point of Gieseker spaces. Thus the above example shows that
Theorem 5.2 is not enough, at least, from  the  viewpoint o f  m o d u li. We shall
modify Theorem 5.2 so as to fit our aim.

When F  is a  coherent subsheaf of a torsion free coherent sheaf E  on  a  non-
singular variety Y, e(F) denotes the smallest coherent subsheaf of E  such that e(F)

and Ele(F) is torsion free. Then there exists a non-empty open set U of Y such
that e(F)I u =Fl u  as subsheaves of El u .

Fix a coherent torsion free sheaf E on X s , where s is a  K-valued point of S for
some field K .  For a field L  containing K  and a coherent sheaf F  on X L = X s ® K L,
set

13(F, ni)=r(E)x(F(m))— r(F)x(E(m)).

[3(F, in) is  a  numerical polynomial of degree n with respect to ni. f l(F , m )  has the
following properties:

(5.4.1) /3(F, m)-_<_#(e(F), ni) and the equality holds if and only if c(F)=F.
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(5 .4 .2 ) For coherent subsheaf F and G of EC) K L, I3(F, tn)+ /3- (G, in)= r3(F+G,
m)+ fl(F n G, m), whence fl(F, ni)+ fi(G, fi(e(F + G), in)+ 11(e(F n G), m).

(5 .4 .3 ) If 0 - 4 . -4G—■H-03 is an exact sequence o f coherent sheaves o n  X L ,
then P(G, in)= fl(F, ni)+ 13(H, ni).

(5 .4 .4 ) fi(E, m)= 0 and fi(0, m)=0.

(5 .4 .5 ) For an algebraically closed field L  containing K, EO K L  is semistable
if and only if /3(F, m)-<0 for all coherent subsheaves F of EO KL.

Now let us assume tha t E  E ®  K L  is not semi-stable fo r  some algebraically
closed field L  containing K .  Consider proper subsheaves F o f E enjoying the fol-
lowing property:

( 2 )  F  is coherent, EIF is torsion free and if G is a  coherent subsheaf o f  F
with GOF, then fi(G, ni)-<11(F, in).

If one uses the polynomials j and the order < instead of the integers )3 and <
in [8 ]. the  same argument as in p 96 of [8] implies that there exists a unique maxi-
m al subsheaf of E  having the property (;1- ).

Definition 5 .5 .  T he above  unique maximal subsheaf having th e  property
(j) is called the fi-subsheaf of E.

Since fi(0, in)= 0, (A) provides us with AR, m)>-0.

Proposition 5.6. F3 is def ined over K , that is ,  there ex ists a coherent sub-
sheaf B of E such that BO K L =

P ro o f . By using /I instead of /3 in the argument in p 96 of [8], we know that
E / ) = 0 .  T h e n  the argument in the proof of Proposition 3 of [8] is

applicable to our case without any change.

Corollary 5.6.1. T he property  that a  coherent sheaf  is sem i-stable is inde-
pendent of  the choice of  the base f ield . M ore precisely , for a coherent sheaf E on

x s Spec(K), EØ K K  is sem i-stable if  and  only  if  E  is torsion f ree and f o r all
coherent subsheaf  F o f  E  w ith  FO ,  P F (m) - <P E(m ), w here k  is th e  algebraic
closure of  K .  And, f o r every over field L  of  K , EQ,1- is sem i-stable if  and only
if so is E.

P ro o f . If one notes that X K =-X x s Spec(K) is geometrically integral, then it
is easy to see that E is torsion free if and only if so is EO K L  for an over field L of
K .  Since fi(G, 111)=13(GO K L, ni), our assertion follows from Proposition 5.6.

q. e. d.

By virtue of the above corollary, we can use the notion of semi-stable sheaves
without assuming that the base field is algebraically closed.

Now, the theorem which we need is the following.
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Theorem 5 .7 .  L e t R  be a  discrete valuation ring ov er S , K  be the quotient
f ield of  R  and let k  be the residue f i e l d  o f  R .  For a sem i-stable sheaf  E on X K =
X x s Spec(K), there ex ists an R -f lat coherent sheaf E on X 1 = X  x s Spec(R) such
that EO R K E  and EO R k  is semi-stable.

First of all, note that for every coherent sheaf F  on the fibres of X  over S,
n!/(F, m ) is a  polynomial with integer coefficients. Thus, if is an infinite
sequence of coherent sheaves on X ,, w ith  f i(F,, m )>- ,6(F2 , then there
exists an integer i o such that for a ll i, 13(F,, m)=13(Fi , m). Taking this into
account and using # and fi-subsheaf instead of # and fi-subbundle in the argument
in  § 4  an d  § 5  o f  [8 ], we see that all we need are the following (notation is the
same as in  §5, Lemma 2 of [8])

Lemma 5 .8 .  A ssume that the discrete v aluation ring R  is com plete. Let R
be an inf inite path in the B ruhat-T its com plex  S  w ith v ertices [E], [E],
L et lm (D"r")—>E(" )) = F("0  (F '=F) . A ssu m e  th at the canonical homomorphism

"k' ' E '") m aps F'" 1 )10 Pm ) isom orphically . Then z (F(0)<r(F)x(E(t))1r(E).

The proof of this lemma is similar to that of Lemma 2 in §5 of [8] and easier
than that.

As an application of the above theorem, we have

Theorem 5 .9 .  Let R, K  and k  be as in T heorem  5.7. T hen the m ap q: Horn s

(Spec(R), M x is (H))—*Homs (Spec(K), M x 1 5 (K )) induced by  the injection R— *K is
bijective.

Pro o f . Since M x i5 (11) is separated and locally of finite type over the noetherian
scheme S , the injectivity of q follows from E. G. A. Ch. II, 7.2.3. A ssu m e  that an
S-morphism g: Spec(K )— M 15 (H) is  g iven . Let K be the algebraic closure of K.
If the geometric point Fj: Spec(K)—>Spec(K)--L,M x is (H) is contained in M e e , then
there exists a finite extension K ' of K  and a K'-valued point x of R e such that n(x)
is the K'-valued point g ': Spec(K')--6pec(K) M „ .  L e t  R' be an extension of
R  whose quotient field is K '.  For E =FO k (x ), E O K .K. is e-semi-stable and hence
E is semi-stable on X x ,Spec (K') (see Corollary 5.6.1). B y the natural morphism
Spec(R')-6pec(R)—>S, Spec(R') is regarded as an S-scheme. T hen, Theorem 5.7
shows that there exists a n  R'-llat coherent sheaf E on X x ,Spec (R) such that
0„,./< E and E(:),,,,kr is semi-stable, where k ' is the residue field of R'. The pro-
perty (4) in Theorem 4.11 gives rise to a  m orph ism  : Spec(R')—, Mx i s ( H ) .  By the
construction of # ,  we know that the morphism Spec(K')-->Spec(K) Mx i s (H)
is just g':
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Since R ' n K =R ,"g' and g yield a morphism h of Spec (R) to M 13(H) which extends
g. q. e. d.

Let S, 15(H) be the family of classes of coherent sheaves on the fibres of X  over
S  such that E is contained in a x i s (H) if and only if E  is semi-stable and the Hilbert
polynomial of E is H.

Corollary 5.9.1. I f  x 15(11) is bounded, then M 15(H) is projective over S.

P ro o f . I f  S  (H ) is bounded, M xis(1 1 ) =  M  fo r  some positive integer e.
Thus M 1 1 5 (H) is quasi-projective over S. T h e n ,  Theorem 5.9 and  E. G. A. Ch. II,
7.3.8 imply our assertion. q. e. d.

§ 6 .  Some properties of the moduli

To study local properties of 114,7 s , we shall investigate the action of PGL(1/,.,,,)
on

Lemma 6 .1 .  L et A  be an artin local ring with m ax im al ideal in an d  residue
f ield k  and let E  be an A -flat coherent sheaf on X A  =X  x s Spec ( A ) .  A ssume that
Ek =E 0 A k  i s  torsion f re e  an d  the  n atu ral injection k— >flom, x , (Ek , Ek)  i s  an
isom orphism . Then the natural homomorphism  E )  i s  an  isomor-
phism.

Pro o f : We shall prove this by induction on 1(A) = length (A). If 1(A).-- 1, then
A =k , and hence there is nothing to prove. Assum e that our assertion is true if
1(A )<1. If  1(A )= 1, then there exists a principal ideal EA such that cA k  as A-
modules. Since for = AleA, 1(A)=1(A)— I, our assumption says that Hom, x , i  (E,
E)= A , where E =E 0 A

.A .  Pick an element 0 of Hom,,, A  (E , E ) . If is the mem-
ber of Hom, x 4 (E, E) induced by 0, then i s  the multiplication of an element d  of
A. L if t  th e  a  to  an element a of A  and set 0=0— a • id E . Then tli(E) is contained
in  EE=EQ A E A . If  x is contained in  mE=E0 A m, then kfr(x)=0 because em= O.
Thus i n d u c e s  a  homomorphism Ek =E /InE --E 0 ,4821-'Ek . By the  assump-
tion on Ek, we can find a  5 in k  such that t1;= b. idE k . Lift 5 to a b in A .  The defi-
nition of s h o w s  that tP=(E b )id ,. Thus we obtain that 0=(a+cb)id E . Pick a
non-zero element c in A .  The image of c- idE  is  c E .  Since E is flat over A , cE=
cA O A E 0 0 .  Therefore, A -0 -iom ,„A (E, E) is an isomorphism. q. e. d.

The following is a general remark (cf. [14] Lemma 0.5).

L em m  6.2. L e t S  be a  scheme of  .f inite ty pe  over a  universally  Japanese
ring , X  be  a .f lat, projective scheme over S , T  be an action of Gm,s= Spec (Cs [T,
T - 1 ]) on X  and let L  be a G,,, 5 -linearized invertible sheaf which is am ple over S.
If  U  is a G ,, 5 -invariant subscheme of X s(L), then the action T  on U  is proper.

P ro o f  W e have  to  p r o v e  th a t  0= (T, p2): G„ s  x x s U  i s  proper.
First of all, note that the image of 0 is closed because U has a  geometric quotient
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by G„,,s  which is separated over S (see [20]). Let R  be a  discrete valuation ring
over S and let K (k or Tr) be the quotient field (residue field or uniformanizing para-
meter, resp.) of R .  We may assume that k is algebraically closed. Suppose that
(x, y ) is an R-valued point of U x s u  a n d  (g, y )  is  a K -valued point such that
0(K)(g, y)=(-r(g, y), y )= (x , y). F o r mod rr a n d  p = y mod n, we can find
a k-valued point h o f  G„,,s  such that )7 -=-r(k)(h, )7) because o f the  above remark.
It is clear that h can be lifted to an R-valued point h  of G„,,s . By replacing g  by
11- 'g , we may assume that 5i= Since L  is ample and G„ 0 -linearized and since
X  is flat over S, there exist an R-free module V of finite rank, closed immersion
0: X  R= X  x ,Spec(R)-÷P(V) and a representation p: x ,Spec(R)-GL(V)
such that T  is induced by the action of G L(V ) o n  P ( V ) .  Moreover, there exists a
basis fei l  o f V such that the dual action er -*e,®Tb. defines the action of p(G„,,,).
Then, for an affine open set X 0 = P ( V ) -  a hyper-plane and a  suitable system of
coordinates x 1 ,..., x„, 0 (R )(y ) is contained in X 0 (R ) and the action of p(G„,, R )  is
defined by x,-*ocrix,. If  o-(g, y) ; a n d  y , is the  i-th  coordinate o f  4)(K)T(K)(g, y)
and  y , respectively, then o-(g, y) i = firiy i ,  where 13 is the  im age  o f T  by the map
R [ T, T - 1 ] - K  corresponding to the K-valued point g  o f G„ R . 13=130 7r for a
unit 80  in  R .  Since r,0 0  fo r  som e i, o-(g, y) i = itirsy i o r  136rirrso-(g, y) i =y i w ith
s=rr,>0 or s = - r r i > 0 .  Since a(g, y) 1 and y ,  are elements of R with o-(g,
mod it, we see that r = 0, whence ,8 is a unit of R. q. e. d.

L e t U  be Rr. , e' n R .  T h e n  U  is a  PGL(N, S)-invariant subscheme of Zr ,
where N = N ( r'e).

Lemma 6.3. The action a o f  6=PG L (N , S ) on U  is f ree, that is, (P=(6, p 2 ):
G x s U .0  x  s U is a closed immersion.

Pro o f . In the first place, we shall show that (1) is p ro p e r . Since the projection
of U to P,. is G-morphism with the trivial action of G on P r ,  we have the following
commutative diagram:

G x s U Ux s U

(G x s Pr ) X p ,U  X p r

Since P r is separated over S, j is a  closed im m ersion. Thus we have only to show
that 0  is  p roper. L e t R, K, k and it  b e  the same as in the proof o f  Lemma 6.2.
Let (x, y) be an R-valued point of U x p „ LI and let (g, y) be a K-valued point of
(G x s P,.) X pr U  such that 0 (K )(g , y )= (x , y). Since R  is a  discrete valuation ring,
there exists R-valued point g 1 a n d  g 2 o f  G such that g= g 1 (b i1 )g 2 , where (k J )  is a
diagonal m atrix  w ith  bi i =rra , . Let G„,,pr= Spec (O J T , T - ']).-+GL(N, P r ) =-
Spec(Op r [T i i , det(T0 - 9) be  the homomorphism defined by the Op„-algebra homo-
morphism where (5" is Kronecker's d e l t a .  L e t  ;  be the composition

P r ) —>PGL(N, P r ) and let t  be the K-valued point of IG„,,p, defined
by 77-47r. Then 6- (;(t), (7(g 2 , y))=5-(g .Vgg -

2
-1 , ã(g 2 , v ))= 6- ( g ' ,  6.-(g, y)) and d(g 2 , y)



592 Masaki Maruyama

are R-valued points of U .  It is clear that U is contained in the open set of stable
points of Z,. with respect to  the action 6- (A(*), *) of G p , .  Since Z r i s  flat and
projective over Pr ,  Lemma 6.2 can be applied to this case. Hence there exists an
R-valued point t' of G p , such that ii(A(e), ã(g 2 , y))= 6--(A(t), ã(g 2 , y )). T hen ,

x=  6-(g ,A(t)g 2 , y)= c7(g 1 , 6-(A(t). ( g 2 , y)))

=6(g ,, 6(2(0, ã(g 2 , y)))= 5-(g ,A(e)g 2 , y).

Therefore (x, y ) is the image of the R-valued point (g ,(e )g 2 , y ), which completes
the proof of properness of

Let A  be an artin local ring over S with residue field k. Assume that k is alge-
braically closed. We claim

(6 .3 .1 ) (P(A): C(A)x s( A ) U(A) U(A)x s ( A ) U(A) is injective.

In fact, if 0(A)(g 1 , x)= (P(A)(g 2 , x) for some A-valued points ( g  x) and (g 2 . x)
o f G x s U , then  .1)(A)(e, x)=0(A)(gVg 2 , x). Thus we have o n ly  to  show that

if x=ã (A )q , x ), then g = e .  To give a point x  in  U(A) is just to do an exact se-
quence 1/,,,(:),..(9 s A L  E -0  o n  X, = X x s Spec(A) such that E is A-flat. EO A k is
stable and r(0 ): Vr ,r 0=A-4H°(X A , E ) is bijective. L e t  h  be a n  A-valued point
o f G=GL(N, S) whose image by the natural homomorphism G--).6 is g .  x  x)
means that there exists an isomorphism f  o f E  which makes the following diagram
commutative;

rexA E

17,,, x A E

Since Hom, x , (E 0 A k, E0 A k)=k (see Lemma 1.1 and [17] Proposition 4.3), f  is
the multiplication of a unit a of A  by virtue of Lemma 6.1. Then h  is the multipli-
cation of a because r (0) is bijective. We see, therefore, that g =e.

Applying (6.3.1) to the case where A  is an algebraically closed field, one sees
that 0  is rad ica l. Combining (6.3.1), E. G. A. Ch. IV, 17.4.1, 17.7.1 and 17.14.2,
we have that 0 is unramified. Thus we know that 0 is finite, radicial and unrami-
fied, which implies that 0 is a  closed immersion (see the proof of [12] Proposition
4.9). q .  e .  d .

Let M r  be the coarse moduli scheme of e-stable sheaves with Hilbert polynomial
H .  Then M c,  is a geometric quotient of R e = n

Proposition 6.4. T h e  n atu ral m ap  n: i s  a princ ipal f ibre bundle
w ith group C (see [14] Definition 0.10).

P ro o f .  If one notes that C. is a smooth group scheme over S, then he can prove
the above, by using Lemma 6.3, in the same way as Proposition 0.9 of [14].

From the above, we have
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Corollary 6.4.1. I f  S '  i s  an S -schem e, then f o r  X ' = X  x s S ', M x 7 5 .(H)=
M x i s (H) x s S'.

Pro o f . This follows directly from a  general fact: If an  S-scheme morphism
f :Y  is a principal fibre bundle with S-group scheme G, then for every S-scheme
S ', f ' = f  x  s S' : Z x s S' x s S ' is a  principal fibre bundle with S'-group scheme
G x s S'.

Corollary 6.4.2. M 1 (H ) is sm ooth ov er S  i f  and  on ly  i f  so is R e f o r  all
e>0.

P ro o f . By virtue o f  E. G. A. Ch. IV, 17.3.3 a n d  17.7.10, we have the above
immediately from Proposition 6.4. q.e.d.

Our next aim is to give a sufficient condition for smoothness o f  M x i s (H).

L em m a 6.5. L et A  be a noetherian local ring, B  be a noetherian A -algebra
and let I be an  ideal of  A  such that IB  is contained in the Jacobson radical of  B.
Assume that an exact sequence of finite B-modules

M' M M" 0

enjoys the following properties;
1) M  is A -flat and M "O A A ll is A ll-flat,
2) the map uC) A l: M 'Q A AII—>MO A A II is injective.

Then, M" is A -flat and u is injective.

P ro o f . Let M ' be the im age of u. The property (2 ) im plies that the map
1171'--04--+M O A A // induces a  homomorphism M '-->M 'O A A //, whence a: M 'O A A //
—>M'O A A / / .  It is  easy  to  see  tha t a  is  bijective. Thus w e have the following
exact commutative diagram:

Tor14 (M, A //) Tor1,1(M", A //)

M C A / M" 0 4 / > 0

o M a   M "

A II M OA A 11---, M "O A A ll 0

0O 0

By the fact that El 0 A 1 is injective and the snake lemma, we have Tor (M ", A II)=0.
Since M "O A A / /  is  A//-flat, w e see that M "  is A-flat (E. G. A. Ch. 0, H ,  10.2.2).
Since both M  and M " are A-flat, so is M '.  Hence, for the kernel K  of
we have the exact sequence
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KIIK M'/IM' O.

Thus K = IK  because a is an isomorphism. By virtue of Nakayama's lemma, K =0.
Therefore, u is injective. q. e. d.

As a corollary to the above, we obtain

Lemma 6.6. L et A  be a noetherian local ring over S with residue field k and
let I be a nilpotent ideal o f  A . L e t T=Spec(A ) and let To = Spec (AII). Suppose
that there ex ist a T o -f lat coherent Ox T o -moclule E 0  and an exact sequence

(6.6.1) 0 E ; Ec, O.

Iffor E=E o ® A l i k and for all point x of X k = X x s Spec(k), depth Ex > min (dim (e,,, x ),
n –11, then (6.6.1) is locally  lif table to X T , that is, there ex ists an  open covering
{U,} of X T , a  T-fiat coherent sheaf E1 on  U 1 and an exact sequence

O - - 4  E  — 4. or E i -- .  0 ,

whose inverse im age by  the natural closed im m ersion U i x TT0 --+U1 is isomorphic
to the restriction of (6.6.1) to U i x T To .

P ro o f . Since depth Ex > min {dim n -1 } f o r  a ll p o in ts  x  o f  X,, E'=
G a w k is locally free on X k (see [12] p 115). Thus E o' is  locally  free on XT.
because 4 is flat over To (see [11] Lemma 1.3). We can find an affine open cover-
ing {U i} o f  X T  such that EPI u i . , T , is  a  free  m o d u le . Let U i =Spec(B) and let
130 = B l I B .  The sequence (6.6.1) provides us with the following exact sequence

B r_ _ ,Lc_, , Afo _ ,

where M o is Afi-flat. W e  have only to lift the above sequence to an exact sequence
o f A-flat B-modules. Let a :  B er-43P  and /3: BeN_+Br i  be the  natural homo-
m orphism s. Then w e can lif t t t , t o  u : !O r–  B(131", uo a = f l u .  If  one  se ts  M =
coker(u), then he obtains

M O A AII= coker (u)O A A /3 - coker (140 ) M o .

Lemma 6.5 can be applied to this case and we see that M  ia A-flat and u is injective.
q. e. d.

Proposition 6.7. L et E be a stable sheaf on a geom etric f ibre X , o f  X  with
Hilbert poly nom ial H .  I f  depth m in  { d im  (O x . ), n -1 }  f o r all  points x  of
X , and if ExtL, (E , E )=0, then M 15 (H ) is smooth over S  at the point correspond-
ing to E . In  ;articu lar, if  dim X/S = 1 , then M i ( H )  is sm ooth over S. I f  dim
X IS=2 , then E x q ( E ,  E )= 0  is sufficient f o r smoothness of  M i (H ) at the point
corresponding to E.

Pro o f . Assume that E  is e-stable . S ince E xtL  (E(m), E(m))=Exti x  (E, E),
we may assume that hi(X„, E)= 0 for j>  0 and that there exist a principal fibre bundle
Re .-+M e  with group G = PGL(N, S) and the universal quotient sheaf o n  X x sRe



Moduli of stable sheaves 595

0 F' 01)„" F 0

such that for some k(s)-valued point x of R e , FOk(x)= E. We have only to show
that R e is smooth over S at x (see Corollary 6.4.2). To do this, take an artin local
ring A  over 0,, 0 and an ideal I  of A , where s o is  the scheme point of S which is the
image of s: Spec(k(s))—■S. For A 0 =i111, suppose that the following commutative
diagram is given

To =Spec(A 0 ) T=Spec(A) S

where xo =ri o (To ) for the scheme point xo o f Re which is the image of x: Spec(k(s))
-4R,,. W hat we have to  show is to  find a n  S-morphism T--).Re with
Using induction on the length of I , we can reduce the problem to the case where
I =sA and the length of I is o n e . T h e  To -valued point rio  gives us an exact sequence
of To -flat, coherent 0 ,, o-modules;

(6.7.1) 0 CV" Eo --■ 0,•• T o

where E0 ---FO, R C r o  a n d  E = F '0 , , ,  CT ° . Note that E 0 0 , T o k (s )=E  and E '=
E O c r o k(s)L--'F' d , , ,k (s ) .  By virtue o f Lemma 6.6, the sequence (6.7.1) is locally
liftable to X , .  Then, a class of obstraction for global lifting of (6.7.1) to X T is in
W (X s, E)) (see [6] Corollary 5.2). On the other hand, from the exact
sequence

0 E' 1 ." --+  E 0

we obtain the following exact sequence:

Ext,tx  J e t " ,  E) E xtL (E ', E) ExtLs(E, E ).

Since Exth . (0 ,r, E )=H i(X s, E (" )= 0 ,  our assumption that ExtL(E, E)=0 shows
that Exth . (E ', E )=0 . Since E ' is locally free, w e have IP (X s, E))=

E )= 0 . Thus the sequence (6.7.1) is globally liftable to X T ;

(6.7.2) 0 E' --. 0

This sequence gives rise to a  T-valued point ri of R e . Since the inverse image of
(6.7.2) by the closed immersion of X T . to X T is (6.7.1), ji is equal to no . q. e. d.

As a special case of the above proposition, we have

Corollary 6.7.3. S uppose  that dim X /S = 2 .  If  d (  A. Ox s , &x (1 ))< 0  f o r  a
geometric point s of  S, then M s / s (H ) is sm ooth at every  point of  M s / s (H)x s Spec
(k(s)). Moreover, if  S=Spec(k) f or a f ield k, M 15(H ) is normal.

P ro o f . A s in  the  proof o f the  preceding proposition, w e m ay assume that
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hj(X s, E)=0 for j > 0  and there exists an open subscheme R of a  Quot-scheme and
the universal quotient sheaf CEAP„N „R -4F  such that M x i s (H )  is a  categorical quotient
of R by the group scheme PGL(G, S), 7r - '( M x1 5 (H))—■Mx 1 s (H ) is a principal fibre
bundle with group PGL(N, S) and F parametrizes all the semi-stable sheaves with
Hilbert polynomial H , where 7r: R - 4 A4  xis(H) is the  m orphism  o f  quotient (note
that in this case, S x15 (H) in Corollary 5.9.1 is bounded). W e have only to show
that R is smooth over S. For this, it is enough to prove that E x tL (E , E )= 0  for
every semi-stable sheaf E (in the proof of Proposition 6.7, we did not use the stabili-
ty of E to  show smoothness of R,). Let E be a  semi-stable sheaf on a  geometric
fibre X .  and let tx ,,.... x 11 be the set of pinch points of E (i.e. x i is  a point where
E is not locally free). For the open im m ersion i: U =X ,— {x 1 ,..., x1}—x s .
i,i* (E ) is a  locally free e x. -module and G= FIE  is a  torsion sheaf with support

,   x r}. We have the following exact sequence

E) E x t k ( E ,  E )  E x tL ,(E , E) 0.

(Note that for all coherent Ox  J module H  with dim S u p p(H )= 0  and for all 1 >2,
Ex4 x . (H, E )= 0  because X „ is a  non-singular projective surface.) Moreover, since
E is locally free, (E, G)=Fli(X ., E v (DG)=0 for i = 1, 2. Thus E x tL  (E, E)
is isomorphic to Ext (Ê , E)=H 2 (X „ E'OE) which is a  dual space o f  Hom,, x

(E, E® A On the other hand, since E is semi-stable, it is p-semi-stable, and
then Ê is p-semi-stable, to o . T h u s, if ij E Hom, x s (E , E® i\ 52x ) )  is not zero, then
d(E, Ox (1))/(*(E)_< d(n(E), ex( 1 ))/r(1(f))_<d(Fo( A Q x ) ,  ex(i))/r(E). O ur assum-
p tio n  im p lie s  th a t d(E0( /2\ Qx s ), Ox (1))=d(E, 9 x (1))+r(E)d(/■ Q x s , e x (1))<d(E,
e x (1)). This is  a  contradiction. Therefore, we see that Hom, x . (E, 'E.- EX/2\ 5 4 s ) )

= 0 .  Then the above argument shows th a t Ext (E , E)= 0 , whence Exq, x (E, E)
=0. q. e. d.

Example 6.8. If X  is P 2 o r  a  rational ruled surface over a field k, then Cor-
ollary 6.7.3 says that e v e r y M x i s ( H )  is sm ooth, quasi-projective over k  and every
M115(H) is normal, projective over k. It is easy to see that for a  ruled surface X,
there exists a very ample invertible sheaf e x(I) on X  such that d ( Q x  x ( 1 ) ) <  O.
If one fixes this Ox (1), then every Mx is (H) (or, Mx is (H)) with respect to  the e x (I)
is smooth, quasi-projective (or, normal, projective, resp.) over k.

As for the dimension of Mx is (H), we have

Propositoin 6.9. Suppose that dim X IS = 2 . L et E  be  a  stable sheaf  on a
geom etric f ibre X , w ith Hilbert polynom ial H and let x  be the geometric point of
Mxis(H) which corresponds to E. I f  E x tL (E , E)=0, then the relative dimension
of  M15(H) over S at x is

(1 — r(E))c 1(E) 2 +2r(E)c 2 (E)— r(E) 2x(0 x .) + 1,

where c1(E) is the i-th Chern class of E.

P ro o f . Both the assumption and the conclusion are independent of twisting
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E  by (9 (m ). Thus we may assume tha t Hi(X s , E)=0 for j> 0  and that we have
a  principal fibre bundle q: R— , M x i s (H) with group PGL (N , S ) (N  = h°(X s , E)) and
the universal quoteint sheaf on X  x s R;

0 F" OTxlvsR — ' F O.

There exists a  point y in R(k(s)) such that F®,,k(y)'_'—' E .  Set E0 = e r ,  and
F '0 , , , k ( y ) .  From the above exact sequence we get

(6.9.1) E, E O.

Note that E , and E , are locally free. (6.9.1) provides us with the following exact
sequence

O  H o r n ,  ( E, E) Hom,x, (E0 , E) flona„, (E 1 , E)

ExtL (E, E) Ext; ( E0 , E).

Since H o m , x  ( E ,  E )  End k ( s ) ,  dimk ( o Hom, x  (E 0 , E)= h°(X s , EeN ) = N 2

a n d  s in c e  ixtL, (Eo , (E0, E))L-• 111 (X  „ E")=-O, dim k ( „Ex q x

(E, E)--elimk (s ) Horn. '( E , ,  E ) —  N 2 +1. O n  t h e  o th e r  hand , Hom, x  (E ,, E )  i s
the tangent space of !Zs a t  y  (see [6] Corollary 5.3) and M x / s (H ) is smooth over S
at x by the assumption and Proposition 6.7. We see therefore that dim M  (11)x
=dimk (s ) ExtL,(E, E). By virtue of the spectral sequence EP=H P(X s ,
E)) E1H- q— Ex try :(E , E ), the following exact sequence is obtained;

X „ dre..„ x (E , E)) Ext4(E, E )

H°( X ,, E)) /j2( ,E ) )  — +  Exti x . (E, E) =O.

Since E  is locally free outside the set of pinch points of E , S a4 x . (E , E) is a  sky-
scraper sheaf. Hence we have

(6.9.2) dimk(s) ExtL .  (E, E))— }{Greom„,,,(E, E))+1.

Now, from the exact sequence (6.9.1), we have an exact complex

0 —4 .ye x (E , E) .Y e°,•m„x(E0, E) E)

Since g e l ,S E , E)/im(d), we have

(6.9.3) x (6°`s(E, E))— )c(reom s x .(E , E))= X ( Yeiam x ,(E i, E ))

— 7„(Yeamo „.,(E0, E)).

Using the fact that Yep..., x s (E0 , E).'EG)", E )-E 0E 1', we obtain

E ))=N c i (E)

c2 (dr.m ,,,(E 0 , E))= Nc 2 (E)+ N(N — 1)c,(E) 2 12

E))=N c,(E)
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E))-= (N 2  —N +2r — 2)c ,(E) 2 12 + (N — 2r)c2 (E).

These, (6.9.2), (6.9.3) and Riemann-Roch theorem imply our assertion , q. e. d.

O ur next topic is on  universal families. Let M x i s (H, e) be a  moduli scheme
of e-stable sheaves with Hilbert polynomial H  which was constructed in  [12] Pro-
position 5.5.

Definition 6 .1 0 . A  universal family o f M x i s (H , e) is  a  coherent sheaf F  on
X x s M x i s (H, e) with the following properties:

1) F is flat over M x / s (H, e).
2) For each geometric point s of S and for all t c Mx i s (H, e)(k(s)), FOk(0=

0 ;'(t), where Bs i s  th e  m ap of Z"§(Spec(k(s))) t o  M x i s (H, e)(k(s)) defined in
[12] Proposition 5.5, (i).

A universal family is not necessarily unique. For instance, if F  is a  universal
family of M x i s (H, e), then so is FOpl(L) for every invertible sheaf L on M x / s (H, e).

As is well-known, H(m) can be written in th e  fo rm  ±  ci,( 1 .+ i )  for some in-
tegers a0 ,..., an . Set

S(H)=G. C. D. a,,}.

Theorem 6 .1 1 . 1f 5(H)=1, then M x i s (H, e) has a universal family.

P ro o f . One finds an idea to prove this theorem in [I.5]. O u r  proof proceeds
along th e  lin e . There exist a principal fibre bundle q: R—+M = M x i s (H , e) with
group PGL(N, S) and the universal quotient sheaf F  on  X x s R .  F  parametrizes
all the e-stable sheaves with Hilbert polynomial H„,a(m)= H(m+ m o )  for some m 0 .
We may assume that for a l l  m  fli c , and for all e-stable sheaves E with Hilbert poly-
nomial H , hi(E(m))= 0  if  j> 0 . F o r  a n  invertible sheaf L on R, if one can descend
FO pt(L ) to  a  coherent sheaf F ' on X x  0 4 , then F 'O pf(e x ( — m0 )) is a  universal
family of M s i s (H , e ). Since 4 x  s i :  X x 5 1?—>X x s M  is a principal fibre bundle
with group G=PGL(N, S), descent data for F ® p l(L ) is nothing but a  G-lineariza-
tion of F O A (L ) .  On the other hand, F carries a  G=GL(N, S)-linearization ([12]
§ 4 ) .  Thus our task is to find an invertible sheaf L on R and a G-linearization 1// on
L such that pAtli) cancels the action of the center of G on F.

Now, it is easy to see that for the mo ,

ö(H)=G. C. D. {H(m)im mo } .

By our assumption on S(H), we can find integers m 1 ,..., m, such that mn> m0  and
a,H(m i)= —1 for some integers a1 ,..., a,. By virtue of the choice o f mo , p2 ,(F

O p f ( (m i —mo) ) )= E , is  a  locally free OR -module o f  rank  H (m ,). Since each
F O pf(0 ,(m ,—  m0 )) is G-linearized, so is E. by virtue of the base change theorem.
And, moreover, the action of C on E, is the multiplication of constants. Thus the
invertible sheaf L i = i i (g i ) E, carries a  G-linearization and the action of C  o n  L , is
the m ultiplication of H(m 1) - t h  pow er o f constan ts . T hen , fo r L = L ra l® . ••0
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1_,Pa ', the action of C on L is the multiplication of the inverse of constants. There-
fore, FO pl(L ) is G-linearized and the action of C  o n  it is canceled. H en ce  w e
get a  G-linearization on F® pK(L). q. e. d.

Corollary 6.11.1. If ex15(H)  is bounded and if  S (H)= 1, then M 15(H) has
a universal family.

Remark 6.12. 1) I f  S=Spec(k) for a field k , then M x i s (H , e) is a disjoint
union of M x / s (c i ,..., c„, r, e), where Mx / s (c,,..., c„, r, e) is a  moduli scheme of e-
stable sheaves of rank r on X  with Chern classes c 1 ,..., c„ (numerical equivalence).
For an e-stable sheaf E of rank r with Chern classes c1 ,..., c„ and for an invertible
sheaf L on X , set

111,(m)---Z0E06„.0(m)).

11,(m) is independent of the choice of E. For A(H)= G. C. D. 16(11,)IL e Pic(X)},
if d(H)= 1, then M x / s (c,,..., c„, r, e) has a universal family.

2) Let L be an invertible sheaf on X  such that L 0 1 - (9x (1) for some positive
integer a. S e t H '(m )=x (E 0,,, Lom) fo r  a n  e-stable sheaf o n  X s w ith  Hilbert
polynomial H .  Then H '(am )=i1(m ). If S (H')=1, then M x i s (H, e) has a universal
family.

3) If Mx1s(11, e) has a  universal family, then M x i s (H, e) represents the sheafi-
fication in Zariski topology of the functor

§ 7  An example

A s an example, le t us investigate more closely the moduli schemes of stable
sheaves in the case where the base space is Pi and the rank is 2.

Until Theorem 7.17, X  denotes Pi and 6,(1) denotes the invertible sheaf cor-
responding to lines in X . F o r  i =0 o r 1, let M i(n) (or, M i(n)) be a moduli scheme
of stable (or, semi-stable, resp.) sheaves of rank 2 on X  with the first Chern class i
and the second Chern class n. Since for a torsion free coherent sheaf E  of rank 2
on X , c i (E®, x (9x (m ))=0 o r  1 for a suitable m, every moduli scheme of stable (or,
semi-stable) sheaves o f  rank 2  is isomorphic to one of M i(n) (o r, M i(n), resp.).
Let M i(n), denote the open subscheme of M i(n) whose points correspond to locally
free sheaves.

Lemma 7.1. 1 )  M i (n)=M i (n). If  n  is  odd , then  M o (n)=M o (n).
2) M 1(n)0 4) if  and only  if  n > 0 .  M 0 (n)=4) unless n
3) M i(n) is smooth and dim, M i(n)= 4n — 3 — i at every  point x  of  M i(n).
4 )  If  a sem i-stable sheaf  E of  rank  2 on X  is locally  f ree and not g-stable,

then E=e x (m) ( 9 2  f or some integer m.

P ro o f : 1) If the degree and the rank of a semi-stable sheaf E  are coprime,
then E is kt-stable, a fortiori, stable. Hence M i (n)= M i (n). If  n is odd, then the
constant term of the Hilbert polynomial of Mo (n) is  odd . T hus M o (n)=M o (n) if
n is odd.
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2) If d(E, Ox (1))=1, r(E)=2 and  E  is stable, then E  is ti-stable. Thus É=
(Ev)v is also tt-stable and locally free. Then É is simple, and hence c2 (E)>0 (see
[9 ] Theorem 4.6). Since c2 (E)=c 2 (E)—c 2 (E/E) c2 (E)> 0, we know that  M 1(n)
= 0  unless n >O. Conversely, there exists a simple vector bundle o f  rank 2 on X
with Chern classes c, =1 and c, = n for all positive integer n (see [9 ] Theorem 4.6).
Since every simple vector bundle of rank 2 on X  is stable ([10] Appendix Proposi-
tion A.1), the first assertion of (2) is  p ro v e d . If d(E, e x (1))=0, r(E)=2 and E  is
semi-stable, then L- =(E`1)`' is It-semi-stable. If E is stable, then c2 (E)> 0,  whence
c2 (E)>0 as a b o v e . If E is not stable, then E contains ex  so that E/C, is torsion
f re e . Then c2 (E/Ox ) .  O. T h u s  c2 (E ) c 2 (E)= c2 (E/ex )._ O.

3) is a special case of Corollary 6.7.1 and Proposition 6.9.
4 )  Since E is  no t tt-stable, d ( E , x (1)) is  even . T hus w e m ay  assume that

d(E, e x (1 ))= 0 . Then our assumption says that E contains e x  so that E / LO is
torsion  free . Since c i (Ele x ) =0, E le x  can be regarded a s  an  ideal sheaf o f  0 ,.
Hence h°((E10x )(m)) h°(0 x (m )) and the equality holds if and only if  EIC9x L-2 x .
Therefore, E is an extension of ex by Ox  because E  is semi-stable. H e n c e  Ea-.2  x e 2 .

q. e. d.

Let T  be a reduced, locally noetherian scheme and let I  be a coherent ideal on
Y = 1 ) .  Assume that e y // is  T-flat and dim Supp(e y //0„,,,k(t))=0 for a ll points
t of T. (9 (1) denotes an invertible sheaf on Y such that Cy (1)0k(t) (9 0 (1) for
all points t  o f T. F o r  a =min fhl(Z, /(m)Ok(t))it e T1, se t U= ft e Tittl(Y„ 1(m)
Ok(t))= a}, where 1(m)=/0„,0 y (m ). Then U is a non-empty open set of T  and it
is easy to see that h°(Y„ /(m)(:)k(t)) and h2 (Y1, /(m)Ok(t)) are independent o f  t e U.
Thus Rjp,(1(m))1 u  is locally free for all i because T is locally noetherian and reduced,
where p  is  the projection of Y  t o  T. Moreover, fo r  all morphism g : T'
g*Rip * (I(m ))=R '(p x 7-1 r ) * (/(m)0, 2197.,). Set E= R 1 p* (I(m)), V =V (E)= Spec(S(E))
and E = E 0 e y . Then there exists a  universal homomorphism C: E-+Ov .

Let W= Spec (A) be an affine open subscheme o f U and let g be a morphism of
W' = Spec (A ') to  W . We obtain the following commutative diagram;

Ext4., y (n )0 , T a s „ A 2 ,,, ,o 0 A A , Hom (1V P*(1(112))1w , O P A A'

.1
Ext11, , ,  (/(m)0„ T e w ',  3\ 52y , ,

 

Hom,,,,,,(R 1/4(Arn)00, 0 w.), OW.)

 

where p' =p x a and fi a re  canonical functorial homomorphisms and where
and a r e  t h e  canonical isomorphisms defined by the duality morphisms ([7] Ch.
III, Corollary 5.2). Since fl is an isomorphism, so is Œ. Applying these to W'=
V x W ,  w e know  that provides us with an element C yr , o f Ext (1(m)0,,,O w „
2 For a  po in t t  o f  W , E® k (t)=11 1(Y „ 1(m )0,,k (t)) which is a  dual

space o f  Ext4 , (/(m)10,,,,k(t), /2\ fly d , . Thus the set of k(t)-valued points of W;
i s  Ext4 , (/(m)0,,,k(t), A 0 " ( 0 ). Moreover, fo r  each point s  i n  W(k(t)), C w ,

k(s) is just the element of Exq y ,  (I(m )0 „k (t), A Ext ‘
1,-y , ,(/(m)0,,,e w „

2 Oy w , 0 0 0 A ,k(s) which corresponds to s.
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On the other hand, 4 ,  defines an extension ([3] p 292)

(7.2) - - 0  SZy w w , Fw, - - 0  1(m) 0 6 , 0 w , — * O .
2  „

The above observation shows that for each point s  o f  W', Cw ,® k (s) is an  element
of ExtL, (I(m)®„k(s), 52A  yoo s )  defined by the extension

(7 .2 )0k(s) 0 Oysik(s) F w , 0 , , ,k (S ) /( n) Tk(S ) 0.

Therefore, we obtain a  W'-flat coherent sheaf F w , on Y w  which parametrizes all the
extensions of /(m)0,,k(t) by 3 S2,,,,„( ,) for all te  W.

Lemma 7.3. L et E  be a stable, locally  free sheaf  of  rank  2 on X K , where K
is a f ield con tain ing  k . If  c 1(E )=i=0  (or, 1) and c 2 (E)=c 2 ,  then there ex ist an
integer 1 and an exact sequence

0 g 2 x 0 K  - - - - >  E(l - 3)J ( 2 1 - 3 + 0  — + 0

with the following properties;

a) ( \ /4c2 +1 -1)/2_1>0 (or, f c-
2
-  - 1 resp.),

b) J  is a coherent ideal of such that dim Supp(Ox .dJ)=0,
c )  h°(X  J(21-3+ i))= 0.

P ro o f . Let us prove the case where c t = 1 .  The proof of another case is simi-
lar to that. B y  Riemann-Roch theorem,

x(E(m))=m 2 +4m +4 - c 2 .

Thus if m>Vc 2 -2 , then z(E(m))> O. S in c e  E  is stable, ,/c2 - 2  - 1  by Lemma
7.1, and hence h2 (E(m ))=-0(E(-ni - 4))= 0 if m>.\/ .  - 2 .  Thus, for the integer

with \ /c 2 -1 >  in ,>,/c 2 -2, h°(E(iii i ))> tiii +4m, + 4- c2 > 0 .  For a non-zero
element a o f 1113(X ,, E(In i )), we obtain the following exact sequence

ri E ( m 1 ) - - 1 1 - *  L 0.

For the torsion part T  o f  L, tt - '(T )  is locally free and rank  1 because L IT =
Elti - 1 (T) is torsion free and rank 1. Thus we have an exact sequence

(7.3.1) 0 ----+ Cx x (e) - - +  E(n),) M - - 4  0

for some e with m, > e >0  and for some torsion free coherent sheaf M  of rank 1.
Let e l  i s  the maximum among the integers e  such that O x ( e )  i s  a  subsheaf with
E(m i )/Ox i ,(e) to rsion  free . Then 1= m , - e ,  and the exact sequence obtained by
tensoring A f2x 0 , ( - e 1) to the above sequence with e=e,

20 A  yri c fic E (I-  3) ---) M , —4. 0

meet our requirement. In fact, (a) is obvious. For J -M ,(-2 /+2 ), the natural
injection J--4,Iv)v =0 K .  makes J  an ideal of ex K  such that dim Supp (i9x ,dJ)= 0 be-
cause c ,(J)=0  and J  is torsion free. I f  h°(J(21- 2)) = h°(M 1) 0 0, then h°(E(/ - 3))
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0 0  because h' Qx / ,).= 0. T hus, by  a  sim ilar argum ent to th e  above, we
have an exact sequence

0 xx(e2) E(1— 3) M2 0

for some e2 >0 and some torsion free coherent sheaf M 2 . After tensoring Ox .(e,
+3) to  the above, we get an exact sequence of type (7.3.1) with e greater than e1 .
This contradicts the maximality of e,. q. e. d.

Let E  be as in the above lemma. Then we have I  and J .  The Hilbert poly-
nomial of Ox .IJ  is 040= /2 + ii + c , .  Thus, by the exact sequence

0 — * J(21-3+ Cx.(21+3+ Cx./J

and by the fact that h°(J(21 —3+ 0)= hi(O x i,(21— 3+ 0)=0, we have

h1(J(21— 3+ i))=Œ; (1)— (2/-1+ i)(2I— 2 + i)/2

= -1 2 +(3— 01+i— l+c 2 .

We denote the right hand side of the above equality by /3i(1). Then, fli (1)>0 i f  /
satisfies the inequality in (a) of Lemma 7.3. L et T,,i =Hill:oxti/Y) and let be the
universal family of ideals on X x For a  general point t  of h°((//,i0k(0)
(2/-3+ i))=  max { —13i(1), 0} =0, and  hence 111 41 k(t))(21 — 3+ i))=a1(1)-11°(0 x ,
(21-3 +i))=fi i (1). T h u s , Ul d = ft E Ti ,i 1121 ((4,® k(t)) (21— 3+ i))= A (l)}  i s  a  non-
empty open set of T,,, and for all te  h°41,,,O k(t)(21—  3+ i ) ) = 0 .  By the  defi-
nition of as ideals o f  x „ for some K-valued point t  of It
is known that T,,, a  fortiori, Ul d  is  a  smooth and rational variety ([4] and [13]).
By virtue of the results before Lemma 7.3, for an affine open covering {Wi } o f  U, J ,
there exists a  family of coherent sheaves {F },  where W'i = V(G i ,i)x  u „W i  for
= Each F w :, is  W:i -flat and it parametrizes all the extensions o f
(//,i 0k(0)(21-3+ 0 b y  i■ S2x ,/, ( ,) f o r  every t e W .  Thus there exists a  K-valued
point x of a  W'i  such that E F w ; (:)k(x). Moreover, Fw i l is isomorphic to
F v0 ,1 c , , ,

i ,. Let be the open subscheme o f V(G 1,i )  such that for all algebrai-
cally closed field L,

Vid(L)= {X E V(G,, i)(L )IF k(x) is stable and locally free, where x e W;(L)} .

Then, Fw
,
i (—  /+3)=Fc0e x (— / +3) defines a morphism f i3 of W'i  n V,, to M i(c2 )0 .

It is clear that f d = f (
i i,; ) o n  W.; n W  n J . Thus we obtain a  morphism f  of

to  M ,(c , ) , .  Since V,, does not intersect with the zero section of V(G I,i )  and  since
for tex  E  (VIA  and a E ax is contained in  1/,,, and f , ; (x)= f,, i (otx), f;, i

induces a  morphism f,. ; o f to M i (c2 )0 , where P I . ;  is  the open subscheme
of P(Gi ,i). By the construction of PL i , dim Pid =2a,(0+ f3i (I)— 1 =12 + (3+ i)/+ i+
3c2 - 2 .

Combining the above results and Lemma 7.3, the following is obtained.

Lemma 7 .4 .  For each integer 1 with ( \ /4c2 +1-1)/2_/>0 (or, \ ,/c2 —1> 1> 0),
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there ex ist a  non-singular rational variety  P 1,0  (o r, Po , resp.) of dimension 1 2 +
31+3c 2 - 2  (or, 1 2 +41+3c 2 -1, resp.) and a m orphism  f ,0  (or, fo , resp.) of  P4 0
(or, Po , resp.) to M 0 (c2 )0  (or, M  i (c2 )0 , resp.). Moreover, f , i(P i i )=M  (c 2)0•

I "

From this lemma, we have

Proposition 7.5. A ll the M i(c2 )0  are geom etrically  integral and  non-singular.
Moreover, they are unirational over k.

Proo f . M 0 (c2 )0  (or, M i (c 2 )0 ) is smooth and pure dimension 4c 2 - 3  (or, 4c 2 —
4, resp.). It is easy to see that 1 2 +31+ 3c 2 -2 < 4 c 2 —3 (or, 1 2 +41+3c 2 -1  <4c 2 —
4, resp.) unless /= I , (or, /,, resp.) with (\ /4c 2 + 1 — 1 ) /2  / 0 >( \ /4c 2 +1 —3)/2 (or,
Vc 2 - 1  / ,  >  , / c 2 — 2, resp .). If a  connected component C  of M t(c2 )0  does no t
contain A t,i(P, i), then C  is covered by some of f,, i (P1,i) 's  with / 01 , because every

is connected. Then dim C<mai x, {dim PIA  <4c 2 — 3— i, which contradict to thei *  

fact dim C=4c 2 -3— i. Thus every connected com ponent of M,(c 2 )0 contains
that is, M i(c2 )0 0 „ K  is connected for all over fields K  o f k. Thus M i(c2 )0

is geometrically integral. Since P, 1 , is rational, M i(c2 )0  is unirational. q. e. d.

As a corollary to the above, we have

Corrollary 7.5.1. If  c 2 =a 2 -  I  f o r an  integer a ,  then  M ,(c ,), is a rational
v arie ty . If e2  = a2 +3a +1 f or some integer a ,  then M 0 (c2 )0  is a rational v ariety .

m + 2Proo f . H (m )=2( ) +  c i (
m +  1

)+  c,(c, +1)/2— c 2 i s  the Hilbert polyno-

mial of a coherent sheaf of rank 2 with Chern classes e 1, e2 on P .  T h u s  6(H)=1
if  c, =1 or if c, =0 and e 2 is  odd . S ince  a2 +3a +1 is odd, M i(c 2 ) has a  universal
family Ê. in  both case by virtue of Corollary 6.11.1. We shall prove our assertion
in  the  case  of i= 0  because another case can be proved sim ilarly. L e t  x  be the
generic point of M 0 (c2 )0  a n d  le t  r  be the integer / 0  in the proof of Proposition 7.5.
Set E =E 0 ® k (x ) . Then E is a stable sheaf on X .  L e t y  be the generic point of
P r ,o . Then f,.,,,(y)=x. Let z  be a point of V,., 0  lying over y. Since for a non-
empty open set W ' of W , is the pull back o f  Fo b y  the morphism W '--+
P r,O f'-"2"2* MO(C2)0, we have an exact sequence

(7.5.2) 0 Ox. (E0k (x )k (z ))(r)--* J(2r)--). 0,

where J is a coherent ideal o f  0 x .  with dim Supp (0 x ./J)= 0  a n d  h°(e x . 1J)=a 0 (r).
Since the image of z  to  To )  is the generic point of it,

11°(J(2r))=17°(0,(2r))-11°(0 x .1J)

= r 2 +3r+1— c 2 .

If c 2 = a 2 + 3a +1, then r =a and  h°(J(2r))= O. T h u s  dim k ( x ) H°(X x , E(r)) = dimk(z)
(E 0 , 0 0 k (z )) (r))=1 . Hence, for a non-zero element s  o f  H °(X  E (r)), the

following exact sequence on X , is obtained;
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(7.5.3.) 0 E(r)---> 1(2r) 0,

where I is a  coherent ideal of t9 dim Supp(e x i I ) = 0  and  h°(02(.11)=a 0 (r).
Therefore, there exists a morphism g : Spec(k(x))—* 7r ,0 such that x kg)* (4.0)
and, moreover, the extension (7.5.3) defines a non-zero element n of

Hom m x ) (g*(Rp 2 * (1,,0 (2r-3))), k (x ))2 -2.-

Hom k w (H'(X ,,, 1(2r-3)), k (x )) ExtL ,(1(2r — 3), 3\ Qx ., /„( x ) ).

gives rise to a morphism h of Spec (k(x)) to V(G,., o ). It is clear that h(Spec(k(x)))
a Vr,o, and hence h  induces a morphism h of Spec(k(x)) to P r ,0 . S in c e  10

(E0k(x)
k(z))=1, cc ...r/ fo r some E G„,(k(z)), where i s  the extension class of (7.5.2).
Thus h(Spec(k(x)))= y. N ow , since ( f ro :, • Ii)*(E0 )= E  f h  is ju s t th e  natural
morphism of Spec (k(x)) to M 0 (c2 )0 (see Remark 6.12, (3)). This means that k(x)s•--'-
k ( y ) .  On the other hand, k(y) is the function field of P,.,0 which is a rational func-
tion field over k  ([13]). T hus the function field k(x) of M 0 (c2 )0 is also rational.

q. e. d.

Corollary 7 .5 .4 . If  E  is a stable sheaf of  rank 2 on X  =P,i, with Chem classes
c l , c 2 , then E contains a coherent subsheaf  L  of  rank  1 such that d(E, O x (1))/2—
d(L, O x (1))<1 0 or (21,+ 1)/2 according as c , is even or odd, where 1 0 (or, I,) is the
integer w ith ( \ /4c 2 — ci+1 — 1)/2> 1 0 >(,J4c 2 — ci +1 —3)/2 (or, (\/4c 2 — ci+1 — 2)/
2  / 1 > ( 4c2 — ci + 1 + 4)/2, resp.). M oreover, there ex ists a s tab le  locally  free
sheaf  of  rank  2 such that f o r all coherent subsheaves L  of  rank 1, d(E, 0,(1))/2—
d(L , 0,(1))_ l o  or (2/ 1 +1)/2.

P ro o f . We may assume that c, =0 o r  1 . T h e  first assertion can be proved by
a  similar way to Lemma 7.3. If the second assertion is not true, then f, is gener-
ically surjective for some /< / i . This is not the case as was shown in the proof of
Proposition 7.5. q .  e .  d .

Our present aim is to show that M 1(n) and M 0 (n) are connected. For an alge-
braic closure k o f  k. M ,(n)O k k =M ,;(1 , n ) and M 0 (n)O k k  is homeomorphic to
Mpz(0, n). Thus, to prove the connectedness of M 1(n) and M o (n), we may assume
that k  is algebraically closed.

Lemma 7 .6 .  If  E  is a coherent, torsion f ree sheaf  on a non-singular surface
Y  over k  and if  E is not locally  f ree, then for a pinch point y  of  E, there exists an
exact sequence

0 E E' --)  k (y ) 0,

where .E is coherent and torsion free.

P ro o f . Since Y is a non-singular surface, Ê  = ( E v ) v  is locally free and Supp (El
E) is the set of pinch points of E .  Hence, G --(E /E ) is an artinian
Let G' be a submodule of G which is isomorphic to k(y). Then u- '(G ') is the de-
sired sheaf, where u is the natural homomorphism of Ê  to  G. q. e. d.
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Let T  be a  k-scheme and let F be a  quasi-coherent sheaf on X  x k T. For Z =
P(F) and the projection q: Z --0( x k 'T, we obtain a natural homomorphism v: g*(F)

Let p , (or, p 2 ) be the projection of Z  to X  (or, T, resp.). The morphism
p i g :  Z -0 ( defines a  closed immersion F,,,,: Z—>X x &Z. It is easy to see that for
g x  , p 2 q : X x ,Z.-4 X x k T, g • rp i e' -' . q. For W=F p o (Z) and F=g*(F), we have
a natural homomorphism

D: F F ( 8 ) e w  (F p ,q )* (e z (1 ) )=  L.

For a geometric point z  of Z, 15®k(z) is a homomorphism of FOk(y) to k(x), where
x = p 1g(z) and y = p2 g(z). By the universality of the couple (Z, y) (E. G. A. Ch. II,
4.2.3), (Z, 13) parametrizes all the surjective homomorphisms FOk(t)—>k(x) for
geometric points t of T and kW-valued points x of X,.

On the other hand, there exists an étale covering T (n — 1) o f  M i(t/ —1) and a
Ti(n —1)-flat coherent sheaf F  o n  X x k V,/ —I) which parametrizes all the stable
sheaves of rank 2 with Chern classes i, n— I (see the proof of Theorem 6.11 and
E. G. A. Cll. IV, 17.16.3). Applying the above observation to  T = T ;(n— 1), we have
an exact sequence of coherent sheaves on X  x

0 F '

Since both L and P are flat over P(F), so is F'.

Proposition 7.7. L e t  M o (n), be  the open subscheme of W O  whose points
correspond to p-stable sheaves. Then M o (n), and A 4 ,(n) are connected.

Proof. Let M (n ) , be the open subscheme o f W O  w hose points correspond
to  p-stable sheaves. Then M ,(n),= M ,(n). T hus w e have o n ly  to  show that
A'11(n) 1 is  connec ted  fo r  each  i, n. L et Z=17 - '( M,(n — 1),) a n d  le t  T(I —I), =
g - 1 (111;(1-1),), where h (or, g) is the natural morphism of P(F) (or, 'T,(tt —1), resp.)
to  M i(n —1) for the above Ti(n — I) and  P (F ) .  Lemma 7.6 and the property o f iï
stated above im ply that F'1,„,, parametrizes all the  p-stable sheaves o f  rank 2
with Chern class i, n which are not locally free. Hence we have a morphism of
Z to  M i(n), such that C(Z)= A i(n —1), — M i(n)o .

Let us prove our assertion on M i(n), by induction on n. We know that i = 1,
n> 1 or i = 0, n> 2 (see Lemma 7.1). Thus, M,(n), — M i(n) 0 0 4) if and only if i = 1,
n > 2 or î =0, n> 3 because c,((Ev )_c2(E)+ho((Ev,v) 1E) and because E is p-stable
if and only if so is (E v )v . Therefore, i f  M N , — M i(n) 0 0 4), then M,(n —1) 0 00.
This and Proposition 7.5 imply that our assertion is true fo r  i= 1, n=1 o r  i = 0,
n =, 2. Assume that j =1, n > 1  o r  i = 0, n >2 a n d  th a t  M i(n — 1) 1 is connected.
Then, Zo = h - '(1/ ;(n —1)0 ) (/) and, moreover, Zo (k)= Z ( k ) 1  fo r E=F'Ok (z ),
h°((Ev)v/E)-= U . B y this property o f Z o ,  no points of (:(Z0 ) are specializations of
points of C(Z —Z0 ).

Lemma 7 .8 .  L e t Y  be a noetherian, reduced, irreducible scheme and le t F  be
a  coherent C y -m odu le . A ssum e tha t f o r  the generic p o in t y  o f Y , F 3, 0 0 .  Then
P(F) is connected.
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P ro o f . Let p be the projection of P(F) to  Y and let Y, be the the largest open
set of Y over which F is locally free. By our assumption, Y, is not empty and P(F) y o

is irreducible. If W is the closure of P(F) y o  in P(F), then p(W) is closed in Y and
contains the generic point y. Thus p(W)= Y. For a point z  o f  Y, P(F), is con-
nected because P(F) : = P (F (:),k (z )) is  a finite dimensional projective sp a c e . The
fac t tha t p(W )=Y  implies that 0 0  W P (F ) z . Since W  is irreducible, P (F ) is
connected. q. e. d.

Now, let us come back to the proof of Proposition 7.7. F o r  a  connected com-
ponent T of 'T(n —i) 1 , Z  T  is connected and (Z,), is irreducible by the above lemma
because T (n - 1) 1 is  sm o o th . S in c e  /141(n— I), is irreducible and T  is  flat over
M 1(n -1 ),, the image of T to A41(ii — I), contains a non-empty open set of M i(n —1)0 .
Therefore, (Z ,),- is n o t e m p ty . T h e se  and the results before Lemma 7.8 show
that the closure of a(Zo)r) in  M i(n ) ,  is an irreducible component of Mi(n)i —
M i (n),. L e t  C be the connected component of M i(n), which contains C(4 ) .  Since
dim (Z ,),.= 1 + dim X +dim T=  3 +4(n — 1)— 3 — i=  —3— i — I <4n-3 — i = dim C,
C n m,(1) 0 0 0 .  B y virtue of Proposition 7.5, /141(n) 0  is connected. Therefore,
M i(n ), is connected. q. e. d.

Our next step is to show  that /110 (n ) is connected. Let Td = and let
I d  be the universal family of ideals on X x 

k 7 d
 T h e n ,  as in the proof of Lemma

7.4, we can construct a universal family of extensions

(7.9) 0 E Id „,, 0

on W '=V (R Ip.(1 d ( -3))),,,„ where W is an affine open of Td and p is the projection
Of X  X k Td tO Td.

The following is proved in the same way as Lemma 2.5 of [4].

Lemma 7.10. Let E be a locally free sheaf  of  rank  2 on a non-singular sur-
f ac e  Y . If E ' is a coherent subsheaf with dim Supp (EIE')= 0, then dim Hom e

EIE')_411°(EIE').

By virtue of Corollary 5.3 of [6 ] and the above. dim y (Q0<dim W' +4n —
4d=4n—d at every point y  of the open subscheme Q V  of Quotd„ / / w , such
that x is a point of Q V  if and only if it lies over a point z  of W ' with E,,,,,e)k(z)
locally free. For th e universal subsheaf E V  on X  x,97.,;9, we can find an open
subscheme U;VI of Q V  such that for all algebraically closed fields K,

U (K )=  t y e N (K ) I E V O k (y )  is stable}

For every y e U ( K ) ,  c 1 (EV Ok (y ))=0, c 2 (E 'V O k (y ))=n a n d  EV,I 0 k (y )  is not
fi-stable. Therefore, E d e f i n e s  a morphism g',!,;̀ ' o f U V  t o  W O  such that
g (CI ) is contained in Ai/0 (n)— M o (n),.

Lemma 7.11. If  d> 2, then dim y'V( LPV)< dim A/0 (1).

P ro o f . It is easy to see that dim Aut (E,,,Ok(z))=dim End (E w .Ok(z))> 2 for
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a ll z E  W '.  O n  th e  o ther h and , Au t(EV .1 0 k ( y ) ) -G „ ,  fo r  a ll geom etric  p o in ts  y  o f

U .  H ence , f o r  a l l  K -va lu ed  geom etric  p o in ts  y  o f  U 9, rt.X e (U V ) ,(K ) IE V
O k(x ).E 14;̀)Ok(y)} i s  th e  s e t  o f  K-va lued  p o in t s  o f  a  subscheme w ith  positive

d im ension  in  (U74',9)z , where z is  th e  im a g e  o f y  in  W ' .  M oreove r, fo r th e  natural

action a o f  G  o n  W ', E w ,ak(w);-_-Ew ,Ok(ct(ot, w ) ) .  There fo re , fo r  every p o in t  x

o f  U V , d im  (g )- 1 (09(x))> 2 ,  a n d  hence  d im  g (149)<4n — d —2 <4n — 3 =

dim M o (n). q .  e . d .

There exists a  reduced closed subscheme S e  o f  T, x k Te (e> 1) w ith  the fo llow -

ing properties:

(7 .12 .1 ) Fo r th e  p ro je c tion s  p: S e —T, and  g :  Se —>Te , J 1 =(l  x0 )4410  con-

tains J e =(l x  X  k 9 )*(Ie ) as ideal sheaves o f  dx.,se•

(7 .12 .2 ) g is  a fin ite  surjective morphism.

(7 .12 .3 ) F o r  geom etric p o in ts  t, o f  T, a n d  12 o f  Te , there ex ists a  geometric

point s of S e  lying over (t,, 1 2 ) if and on ly if I, k ( t 1) conta ins /e 0k(t 2) as subsheaves

o f

Let us consider the fo llow ing  exact com m utative diagram ;

0 e --1--) Ox. k s. 0

$ 1
0 Je J , )  M 2  - )  0

F o r  a  p o in t  s o f  S e , s ince  ot®k(s) is  in jective, so  is  y O k ( s ) .  T h is  a n d  Lem m a 6.5

im p ly  tha t M 2  is  f la t over O n  the  o ther hand , fo r an  affine open set W o f  7'1 ,
we get an affine scheme W ' and  a  un iversa l fam ily  of extensions

0 ----+ E I, C),,,0 w  , 0

a s  in  (7.9). S in c e  W;(k(0) = E xq x  (/, Ok(t), A Ox i l k ( 0 )L.'11°(X t,
2 

S2x,1k( o)Y= k(t) fo r a ll t E  W , E k(y) is  loca lly  free for a ll y E W"=  W' —0-section.

S e t  VT= W" X W S ,,, E v 7=Eiv
, 0 0 Ov r  a n d  6-- - 0 0 e v 7 .  T h e n  w e  h a v e  a  sur-

jective homomorphism

ip: Ev7
600 v ,

6 > 1 1 O o T ,(9 Vr = .
1

10 0 s .cvV; ">12V-Vos;-"V7.

Set F v .i, = k e r (0 ) . Since and  M 2 (:) e v
,
,
, a re  fla t over VT, so is

A pp ly ing  the same argum ent as above to  the case w here  S e = T,,, W'= Spec (k),
J 1  = X T .

 a n d  Eiv , = C E P , w e  o b ta in  a  V S -fla t cohe ren t sh ea f F 1 o n  X x
where I/8= Te .

The  se t o f coup le s  ( lif ,  F r ') p a ram e tr ize s  a ll the  coheren t, to rs io n  fre e  sheaf

E o f  rank  2 on  X  w ith  the fo llow ing  exact com m utative d iagram ;
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0 —0(.9 v - 0 E  - - > L 0

I
0 x — 0  E ' - - -0  L ' — 0  0,

where L and L' are torsion free sheaf of rank  1 with c ,(L )= c ,(L ')= 0 , c 2 (L )= e  and
c2 (L ')= i and where E '= (E v )v .

L e t V il ' e b e  the open subscheme o f  Q i ' , = Q u o t " - e , , , ! i x , i v !  su c h  th a t fo r all
algebraically closed fields K,

1/7, e(10= {y E Qp(K)1G 1C) k(y) is  stab le  and  dimy n- 'n (y )<3n -20 , where G.
is  the universal subsheaf o n  X x k i211, and  7r: Q pt , - >V r  is the structure morphism.
Let F v ?, be the universal subsheaf o n  X X k V . e . Note tha t Fw, .. is flat over
and dim V il ' e  <  3n -2 e + d im  V T  = 3 n + i.

L et Z„=( IL U 1
)  j t  ( IL V7 , e) ( jLV  e ) a n d  le t  F „  b e  the

[n12 ]> e> 0
[1112]>c, ;,, I

coherent sheaf on X x ,Z„ such that and  F„I x x „?. , =F,. ,: , ..
Then F„ is flat over Z„.

Lemma 7.13. Let K  be cm  a lgebra ica lly c losed fie ld  conta in ing k and let E
be a coherent sheaf of rank  2 on X k  w ith  c 1(E )= 0  and c2 ( E ) = n .  I f E  is  stable
but not p-stable, then there exists a K-va lued geom etric point y  o f Z „ such  tha t

P ro o f . Since E is stable but not p-stable, the following exact sequence is ob-
tained;

0 - >  LI - - -0 E  - 0  L 2

where L, and  L2 are coherent ideal sheaves o f  (9,,, with dim Supp(e x „/L1) =0 and
c2 (L 1) >c 2 (L 2 ). Since (L,v)v = this gives rise to an exact sequence

0 E' L'2 —> 0,

where E '= (E v )v  an d  c2 (L 2 ) _c2 (L )= --d. If  d>2, then  th e  above exact sequence
provides us with a  K-valued point x o f W' such that Ef,,, E' . By the defini-
tion  o f  Q V ,  E corresponds to  a  K-valued poin t y  of  Q lying over x  because
h °(E 'lE )= c 2 ( E ) - c 2 (E ' ) = n - d .  Since E  is stable, y  is contained in U ( K ) ,  and
hence F „O k (y )= E . Now assume that (1=1=0 o r  I. F o r  the  natural homomor-
phism E' -E'/E, se t E"=.1. - 1 (0 x ,,/L,). Then th e  following exact commutative
diagrams are obtained:

0  - )  C x x E " — 4  L 2 - - 0  0

(7.13.1)
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0 — * L , L2 - ›

(7.13.2)

0 E "  L2 - >

If e=c 2 (L 2 ) ,  then (7.13.1) yields a K-valued point x o f  Vf such that F70k (x )=E ".
Since h°(6 x  L , )= c 2 (L0=n — e, (7.13.2) defines a  K-valued p o in t y  o f 0 .  On
th e  other h a n d , dim H o m ,,  e x ,,,/L 1 )_<_2(n—e) a n d  dim K  H o n i  ( 1 , 2 , Ox d
L,)<(n — e)+ e= n by th e  same argument a s  in  the proof o f  Lemma 2.5 o f  [4].
Thus dim K Ox id L ,)+  dim KCxKiLt) < dim K

Cx K /L,)< 3n —2e. Since Hom„,, K (E,69,0 ,11,1 ) is the Zariski tangent space of n- I n(y)
at y, dimy n - 'n (y)5  3n- 2e. T h is  a n d  th e  fact that E  is stable imply that y  is a  K-
valued point of V7 , e with F„Ok(y)-_'E. q. e. d.

Proposition 7 .1 4 . M o (n) is connected.

Pro o f . F„ defines a  morphism g„ o f  Z„ to Mo (n). By the construction of
Z,„ g,,(Z„)g M o (n)— Mo (n),. Lemma 7.13 means that g„(Z„)=M 0 (n)— Mo (n),. By
a  similar argument to the  proof of Lemma 7.11, we see that dim g„(1q ,

 e ) < 311 — 3 +
2i <4n — 3 = dim Mo ( n )  because dim Pi' e  = 3n + i, dim Aut (E4,, (Dk(t))> 2  f o r  all
le  W ', dim Aut (0T 2 )= 4  a n d  because n> i +1. T h is  an d  Lemma 7.11 show that
dim g„(Z„)<dim W O .  Then, by the same argument as in the proof of Proposition
7.7, we know that Mo (n) is connected. q. e. d.

Finally let us show that M o (n) is connected.

Lemma 7 .1 5 . L et K  be an algebraically  closed f ield containing k and let E
be a  coherent sheaf of  rank  2  on X , w ith c i (E )=O and c 2 (E )= n .  I f  E is semi-
stable but not stable, then n is a  non-negative even integer and  gr(E)=L, L 2 ,

where L1 is an ideal sheaf  of
 X K

with c 1(L 1) =0 and c2 (L 1) = n/2.

The proof is easy and we omit it.
Let n =2m , T„,=1-1i1bTi k  and let I„, be the universal family o f  ideal sheaves on

X x k T,n . T h e n , o n  X x ,'T  x  ( 'I h a v e  a  coherent sheaf F=(1 2f x k p,)*(I,„)()
(1 ,x 0 2 )*(1,„) which is f la t over T„,x k T ,„. F  defines a  morphism f„: T,„x
M o (n). Lemma 7.15 implies that f„(T,„x k 'T,„) = M 0 (n)— M o (n ), whence M 0 (n ) -
M 0 (n) is connected. Assume that A(n)= M o (n)— M o (n) is a  connected component
o f M o (n). Then, there exist a  subscheme R o f  a  Quot-scheme a n d  a  morphism
h : R—>A(n). (A(n), h) is a  good quotient by PGL(N), R  is smooth and  dim R=
4 n -3 + N 2 — 1 (cf. proofs of Corollary 6.7.3 and Proposition 6.9). L et L , and L,
be ideals o f 0,0 (  such that 62 0 ,IL ,= k(x i) and (9,0 ,/L 2 = k (y ) with x 1,..., x„„

t=1 J=1
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y,,..., y,„ mutually distinct. Since die.. „ ),,,(L 2 , and 1 e ( L 2 , L 1)'L'

i=1 k(yi), for the spectral sequence E'Pa = HP(X K , L,)) Eq+q =Extrx 1

(L2 , L,), Ei , ° - 0 ,  dim K E1 , °-=m - 1  and dim,E1 , °= tn. Thus dim K  Ext,l x . (L2 , L 1 )
= -2 m  -1 . For a  K -algebra  B ,  using the spectral sequence an d  th e  fact that
Hi(X K , L,))0,13 fli(X „, ,Yee.m, x 8 (L 2 0„B , L,C) K B)), H°(X K ,
(L 2 , LMC),13':--•H°(X o , S.,(L i , (L 2 0 K B,L 1 O K B)), we see that the natural homomor-
phism ExtL (L 2 , L i )C) K B-+Ext,t,,.(L 2 C) K B, L ,O K B )  is  an  isom orph ism . Thus,
on V =V (ExtL K (L2 , L ,)v ), a  universal element of Extj,,,,(L 2 C),(9,,, L 1 ® K e),,)
is given. W e can construct, therefore, a  universal family of extensions

0 ---> ---> E v  ---> L 2 0 K e y

on X X k V. E v  is flat over V and dim V=2m- 1.
Similarly we have a universal family of extensions

0 L 2 0 k C io Evr L i® K e v e 0.

Let W= VI_ V ' and let E iv  be the coherent sheaf o n  X w  such  that Ew l =E v

and By the universality of R , there exist an open covering {U 1} o f
W and morphisms g, o f  ti t t o  R such that E w lx v i  i s  the pull back of the universal
quotient sheaf on X x K R  by g i . Let g be the morphism

g: (..LLUi) x k PGL(N)  ( 1 - 9 1 )
" R  x  k PGL(N)

where a is the action of PGL(N) on R .  If y is the point of A(n) which corresponds
to  semi-stable sheaves E with gr(E)=L 1 C)L2 , then the image of g  is just h- 1 (y).

By a  similar argument as before, we see that dim (im g)< 2m -2+N 2 -1=n - 2 +
N 2 -1 . T hese  resu lts show that there exists a  non-empty open set W of A(n) such
tha t fo r a ll points y  of W , dim /1- 1 (y)<11-2+N 2 - 1 .  W e have therefore that
dim A(n)> 3n - E  On the other hand, dim (T,„ x K T „ ,)= 2 n . This is a contradiction
if n > 0 , whence M o (n )-M o (n) is not a connected component of M o (n). T h is  a n d
Proposition 7.14 imply that M o (n) is connected if n > O .  If  n= 0 , every semi-stable
sheaf is isomorphic to 0 42,2 by Lemma 7.15 and the fact that M 0 (0)=0. T hus w e
obtain

Proposition 7 .1 6  M 0 (n) is connected.

Summarizing the above results, we have

Theorem 7 .1 7 .  L e t M(c,, c 2 ) (or, M(c i , c2 )) be the moduli scheme of stable
(or, semi-stable, resp.) sheaves of rank 2 on P i with Chern classes c,, c 2 .

1) M(c,, c 2 ) is  a  non-singular, irreducible, unirational variety over k and
dim M(c i , c2 )=4c 2 - c i -  3.

2) M (c,, c2 )  is  a  norm a l, irreducible, projective variety over k  which con-

tains M(c,, e 2 ) as an open subscheme.

3 )  M(c i , c2 ) 0  if and only if  4c2 -  ci >0, 0 4 .  M (c,, c 2 ) 4 a n d  only i f
4c2 - 0  4 .  If 4c 2 -c= 0 , th en  M(c l , c2 )= Spec (k).
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4) M(c i , c2 ) 0 M (c,, c2 )  if and  on ly  if 4c2 — c i 0 mod 8.
5) M (c,, c2 )  has a un ive rsa l fam ily  if 4c 2 — ci 0 mod 8.
6 )  I f  c2 =(ci — 1)/4+a 2  — 1 o r  c il4 + a 2 +3a +1 f o r  an in teger a , then M (c,,

c2 ) is  ra tional.

Let us close this section with the following questions.

Question 7.18. Is every S- xls(H) bounded o r every M 1 5 (H ) projective?

Question 7.19. What is the closure of M x / s (H ) in  Mxis(H)?

Question 7.20. Let S=Spec(k) for a field k  and let M 'x i s  (c ,,..., c „; r) be the
moduli scheme of semi-stable sheaves of rank r  on X  with Chern classes c„
(algebraic equivalence). When is c„; r) connected?

Question 7.21. Under th e  notation o f  Theorem 7.17, is  M(c l , c 2 ) rational?
By virtue of Barth's results in  [2], M(c l , c 2 ) is rational if c , is even.

Appendix.

T o show that our results are  not trivial on  every smooth, projective variety,
we shall prove the following.

Proposition A.1. Le t X  be a  sm ooth , p ro jec tive  va rie ty  ove r a n  algebrai-

ca lly  c losed fie ld  k  w ith  ve ry  a m p le  in ve rtib le  sh e a f x (1 ) ,  le t D  be a d iv iso r on

X  and let r  be  an  in te g e r w ith  r>dim X .  Assume th a t d im X > 0 and  X  P .
Then, fo r  every in teger s, there  ex is ts  a  loca lly  free it-stable sheaf E  on X  with
respect to  Ox ( 1) (see Definition 5.1) su ch  tha t r(E )= r, c i (E )= D  (ra tiona l equ iva-

lence) and d (c ,(E ), x ( 1 ) )  s  if dim 2.

First of all, let us prove the following lemma.

Lemma A .2 . L e t  Y  b e  a  sm ooth  p ro jec tive  va rie ty  ove r k  w ith  ample in-
vertib le  sheaf 0,,(1), let E be a locally free coherent sheaf o n  Y  w ith  r(E)> dim Y
and let 8  b e  a  bounded fam ily  o f  coherent subsheaves o f  E  such that fo r  a ll
G e B , r (G )< r(E ) . T hen  the re  ex is ts  a n  in te ge r nc,  s u c h  th a t fo r  a ll in te g e rs
fl >  no , E contains e y ( —n) as a subsheaf with the fo llow ing properties;

1) EIC y ( —n) is locally free,

2) c9 ( —n) n G = 0  fo r  a l l  G e B.

P r o o f .  Since B  is bounded, the  se t {d(G, 9 y (1))IG e B1 is bounded. Thus,
the set {d(e(G), e y (1))IG e B } is bounded below, where E(G) is the coherent subsheaf
of E such that s (G )  G, r(e(G))= r(G) and Ele(G) is torsion free. By virtue of Cor-
ollary 1.2.1 of [11], T3= {e(G)1G e B } is a  bounded family. W e have only to show
the lemma for B instead of B .  Therefore, replacing B by B , we may assume that
EIG is torsion free for all Ge B .  Suppose that we can find a  subsheaf Oy ( —n) of
E which enjoys the property (1) and (2') £9 ( —  n) G  for a ll G e B .  1f I=0),(— n)
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n GOO, then r(/)=1 because I  is  a subsheaf of the torsion free sheaf E . H ence
the subsheaf 0,(— n)11 of EIG is  a torsion sheaf, which contradicts the fact that
EIG is torsion free. Thus we have only to find n, for the properties (1) and (2').

Since B is bounded, there exists a k-scheme of finite type T  and a coherent sub-
sheaf F of E '=E 0 ,0 1 , with the following three properties; (a) E 'IF is fia t over T,
(b) r(FOk (s))<r(E) for all se T  and (c) for all G E B, we can find a k-valued point
t of T such that FO k (t)=G  as subsheaves of E. By the property (b) and the fact
th a t T is finite type, there exists an integer n , such that for all n> n o and a ll t T ,
(F0k (t))(n) is generated by its global sections, 1i 1((FOk (t))(n))=0 for a ll i>0 and
h°(E(n))>11°((FOk(0)(n))+ dim T. These and (a) imply that for every n> n o , F =
p* (F(11)) is  a  locally free, coherent subsheaf o f  E=p(E'(11))-2--2.-H°(Y , E(ti))0 k 0 T ,
where p is the projection of X  x ,T  to  T, F(n)=FC) k (9y (n) and E'(n)=E'0,,O r (ti)=
E(n)(),;(97.. For Z= pur( Y, E(0)v),  J (  V )  is a closed subsheme of Z x,T=P(E v ).
By virtue of the choice  of no , dim P(rv)<dim Z . T h u s ,  for the projection q of
Z X ,T  to  Z, the closure Z, of q(P(Fv)) in Z is a proper closed subset of Z. Then,
for a k-valued point z of V=Z —Z 0 , sz is not contained in u H°(Y, G(n)) by virtue

GeB
of (c) and so  sz e y G(n) for all G G  B , where sz is  an element of H°(Y, E(n)) such
th a t ksz corresponds to  z. On the other hand, there exists a non-empty open set
U of Z such that for a ll k-valued points u o f U, E(n)/s,,e y  is  loca lly  free because
r(E)> dim Y and E(n) is generated by its global sections. Now, for a k-valued point
x of U n V , the subsheaf sx 0y 00 y ( —n) of E meets our requirement.  q. e. d.

The following is well-known and proved easily.

Lemma A .3 . L et X  be a  smooth projective variety over k , let Y  be an  irredu-
cible subvariety  of  codimension I  an d  le t  G  be a  coherent C y-m odule of  rank  r.
Then rY  is the first Cheri) class of  G as an (9„-module.

Now we can prove our proposition.

Proof  of  Proposition  4 . 1. I f  d im  X  =1, o u r  assertion is w ell-know n. Thus
we assume that dim X > 2. Replacing D  by  D + rH„, with an H„, el (m)l, m»0,
w e m ay assum e that 1Dl contains a sm ooth irreducible m em ber. P ick a smooth,
irreducible, k-rational m em ber Y of IA .  Let F = P  a n dand let B o b e  the set of tor-
sion free, coherent, quotient sheaves G  o f F  w ith d(G, e x (1))<r(G)d(Y , x (1))/r.
By virtue of Corollary 1.2.1 of [11], B 0 is  a bounded  fam ily . For a coherent quo-
tien t shea f G  of F . s e t  tc(G)=ker(FO(9 y — GC)64). Then, B= {k(G)IG e Bo }  is
b o u n d e d . For a n  e y -module H , r(H) denotes the rank  of H  as an Cy - module.
Since every member G of B, is torsion free and Y is an irreducible divisor, r(x(G))
=r—  r(G ). Applying Lemma A.2 to the situation th a t  Y= Y, E= F® 9 , B =B  and
Cy (1)=O x (1 )00,, w e obta in  the integer n o . F i x  an integer n  su c h  th a t n> n o

and d('T, (9 x (1)) s  for a T e  ( n ) l .  e y ( — n) is contained in F()O y  s o  th a t  the
properties (I) and (2) of Lemma A.2 are enjoyed. Set F 0 =(FO 0 y )/e y ( — n) and
E=ker(F00 x (Y)-+F 0 00 x (Y)). Let us show th a t E  has the required properties.
First of all, E is a regular vector bundle defined by some members u,. of H°(Y.

.11
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0 (n )) ([9 ] p  112). Thus E is locally free, r(E )=r, c,(E )= Y  and c2 (E )= T  for a
Te le y (n)1, whence c 1(E )= D  and d(c 2 (E), (9x ( I ) )_ s  (see [9] Ch. II). Let K  be a
coherent subsheaf of E such that 0 < r (K )< r  and E IK =G  is to rsion  free . Then
we can find a torsion free, coherent, quotient sheaf G' of F such that K is contained
in K' =ker(Fge x (Y)—■G'Oe x (Y )) and r (K )= r (K ') .  Since G  is torsion free, the
natural homomorphism a  o f  G  to  G' QC x (Y )  is injective. Set H =coker (a) and
/ =(K(G')/K(G') n c9( — n))00 x (Y ), then we have the following exact commutative
diagram :

Î
G G '00x (Y ) - - *  H >0

0 -->  E F a C x (Y ) — ) F 0 0(9 x (Y ) 0

f f
0 K '  *0

Î

Assume th a t  K(G') n cy (—  n)0 0 , th a t  is, r(I)=r— r(G')— 1. S ince r(F 0 ) = r — 1,
r(H )=  r(G '). By Lemma A.3, c „(G) = c,(G')+ r(G')Y— r(G')Y= c i (G'). By the pro-
perty (2) f o r  no , G' OB 0 , w h en ce  d(G, ex( 1) )= A G ', 9x( 1))> r (G ')d (Y , x (1))1r=
r (G )d (E , ( l ) )/ r . Next assume that K(G') n ey (—  n)= 0. T h e n  r(1)=r— r(G ) and
s o  r(H)= r(G')— 1. By Lemma A.3 again, c,(G )=c,(G ')+  Y  which implies that
d(G, e),(1))= d(G', x(1))+ d(Y, x (1)). Since F  i s  semi-stable, d(G', e)„(1))_. O.
We see therefore that d (G , x (1)) d(Y, Ox (1 ))>r(G )d (Y , x (1))Ir = r(G)d(E, x (1))/r.
Thus E is it-stable. q .  e .  d .

Remark A.4. If dim X =3, then Proposition A.1 holds for r = 2.
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