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§0. Introduction.
In this paper these are two main theorems (Theorem 2.1 and Theorem
3.1). As a corollasy of these theorems, we have the following result.

Corollary 3.7. Let X be a non-singular projective variety of dim-
ension m defined over the complex number field C, and let E be a vector
bundle on X of rvank r. Suppose that E is ample and that, in addition, E
is generated by its global sections. Then E is numerically positive.

As for the definitions of ample vector bundles and of numerically positive vector
bundles, see Definition 1. 10 and Definition 1.9 in § 1.

In § 1, we recall definitions and some properties of such notions as invariant
polynomials, positive polynomials, Chern cohomology classes, numerically posi-
tive vector bundles, and ample vector bundles. And we list notations concerning
to Grassmann varieties, to Schubert cycles, and to flag manifolds. In § 2, we
prove the following theorem.

Theorem 2.1. Let Oy be the curvature matrix of the dual vector

bundle S of the universal subbundle S on Gr(n, d). P(T) be a homogeneous
polinomial in II(d+1) of degree q. Then the cohomology class of

P<~/—;—1@§> can be expressd in the form:

the cohomology class of P(%@g)

=the cohomology class of Y ay+ar++aa=q%ao, ar, - a0 Pao, ar, - aas WHEVE €VETY
coefficient gy, g, 00=0.

We use some Schubert calculus in proving Theorem 2.1. In § 3, we prove
another theorem.

Theorem 3.1. Let X be a subvariety of Gr(n, d) of dimension m. As-
sume that X «w,,, q,, -0, =0 for some Schubert cycle w,, a,,...,a, 0Of cOdimension
e a;<m. Then there exists a curve C contained in X such that S|C has
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a trivial line bundle as a dirvect summand, where S is the universal sub-
bundle on Gr(n, d).

Theorem 3.1 is proved by using dimension-theoretic method. Combining
Theorem 2.1 and Theorem 3.1, we prove Corollary 3. 7.

In the case of line bundles, there is a famous and useful numerical criterion
for ampleness proved by Y. Nakai. In the cass of vector bundles on curves, by
using unitary representation of stable vector bundles, R. Hartshorne showed
that ampleness is equivalent to numerical positiveness ([6]). In these two cases,
the notion of the cone of positive polynomials in Chern classes is obvious. In
the general case, P. A. Griffiths made a definition of the cone of positive
polynomials in his article [4] (see also § 1). By using resolution of singularities
and strong Lefschetz theorem, S. Bloch and D. Gieseker showed in their article
[1] and in the article [ 3] by Gieseker that monimials in Chern classes of £ and
such polynomials as C,(E) are positive for an ample vector bundle E (for ¢,(E)
see Remark 1.8 in §1). Note that, in the case of vector bundles on 2-dim-
ensional varieties, the above result of Bloch and Gieseker covered the whole
positive polynomials. On the other hand, W. Fulton constructed recently an
example of a vector bundle on P? of rank 2, which is numerically positive but
not ample ([2]). Hence, the remaining problem is to see whether our additional
assumption in Corollary 3.7 can be removed.

The writers wish to thank Professor Masayoshi Nagata for his valuable
advices and Professor Hideyasu Sumihiro for his valuable conversations and
encouragement.

§ 1. Definitions and notations.

a. Invariant polynomials and positive polynomials.

In this subsection, we follow Griffiths [4]. Let M(d+1) be the affine
space consisting of all ((d+1) X (d+1))-matrices over the rational number field
Q, and let A(d+1) be the coordinate ring of M o(d+1). We denote by

Too Tm o 'TOd

Tdo le' : ‘Tdd

an indeterminat (dX1)X(d-+1)-matrix, i.e. T;; (0<i, j<d) form an affine
coordinates of Mqg(d+1). Then, A(d+1)=Q[Ty, Ty, -+, Tl GLg(d+1)
acts naturally on Mg(d+1), i.e. for g=GLyd+1) and ac=sMd+1), a —
¢ lag, where the product is the product as matrices.

Definition 1. 1. A polynomial P(T) in A(d+1) is said to be an in-
variant polynomial if P(T) is GLg(d+1)-invariant under the above action.
We denote by I(d+1) the subalgebra of A(d+1), consisting of all invariant
polynomials, and call it an invariant polynomial ring.

Let 4, be the principal g-minar determinant of T (1<g<d+1), i.e.
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Ty Tiiy T,
det] eeeeeeaenn

T, Ty T
Let Q[T, T,, -, T;] be a polynomial ring in d+1 indeterminates over the
field of rational numbers. Let &,,, be the symmetric group over d+1 elements.
&4+, acts naturally on Q[ Ty, Ty, -+, T] by permuting the order of indetermin-
ates. We denote by Q[ T, T4, -+, T;1%4+1 the subalgebra of Q[ T, T, -++, T4
consisting of &, ,-invariant elements, i.e. symmetric polynomials in T, Ty,
-, Ty. Let S, be the fundamental symmetric form in T, T, +--, T4 of degree
q (1<g<d+1).

4,=
0<1<2<<dg<d
iqiq

Lemm 1.2. We have the following interpretation of an invariant
polynomial ring I(d+1).

S
I(d+1) s Q[T Ty, -, Td]@d+l

gg[ 8]9’
Q[dl, AZ’ ttty Ad+1:| ‘?—, QI:SD SZ> R Sd+1:|,
where g and ¢’ are natural inclusion maps, f is defined by f(T,)=T
(0<:i<d), and [’ is defined by f(S,)=4, 1<qg<d+1). Moreover, if we
weight 4;s and S,’'s with degd,=q and with degS,=q (1<q<d+1), all the
maps are isomorphisms as graded algebras.

Proof. 1t is obvious that f” and ¢’ are isomorphisms and that ¢ is an
injection. Hence, it is enough to show that f is surjective. Define a map
h:I(d+1)->Q[T,, Ty, -, T 18+ by h(T;)=06,,T; (0<i, j<d). It is easy to
see that % is well-defined. Note that Spec([(d+1))=M o(d+1)/GLg(d+1).
Let (foh)* be the corresponding endomorphism of Spec(Z(d+1)). Since (f <h)*
is an automorphism on the classes of diagonaizable matirces and since the classes
of diagonaizable matrices is an open dense subset of M o(d+1)/GLg(d+1), we
see that (foh)* is an automorphism on Spec(I(d+1)). Hence, feh is an
automorphism of I(d4-1). Therefore, f is surjective. Q.E.D.

Corollary 1. 3. An invariant homogeneous polynomial P(T) of degree
q in I{d+1)QRoC can be expressed (not necessarilly unique) in the form
P(T): Z pPﬂ'TTPanrl"'TanPrq’

[pE[O,d]"
w, TESy

where ppzr=C (0=[0,d]4, n and t€S).
Proof. Our assertion follows from the following three facts:
(1) PT)eC[4, 4, ---, 4.].

2) 4.(T)= (;1!> 2, sgnmsgntlp o, To. 0.,
</ (pel0,d]"
[n', €6,
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P(T) has an expression of the type

3) Let T={P(TeAld C
® Le { (e A +1)<? stated in Corollary 1.3

be a subset of A(d+1)®X¢C. Then, J forms a graded subring of A(d+1)R¢C.
As for (3), by definition,  is closed under addition and under subtracion.
‘We have to see that 7 is also closed under multiplication. Let
(T [pE[ZO:‘ d]qﬁpnr papaToqe,  and
T TE@q
PIT= ,///T',',"’T':;/:'
( ) {p’E%,d]'l'pp”r p:lprl pquorq
', e
be homogeneous elements in < of degree ¢ and of degree ¢’ respectively.
Then, we have
P(TP(T)= . [%':d]q boned 07t T 0100y T 0,000 L0 iy T 0 it s
Z’e [6, dla’
T, TEBS,
', ey
Put p”=(p, o) [0, d]**?, 7=(r, 7’) and T=(z,7)EeS,X&,, 1;p”7'z?:p‘gnrpp'n:'r’.
Fix a left coset decomposition of &, by &,X&,, say, & ., =]].0.8,XS,.
Then, for each #” in &,,,, there exists a unique ®, such that 0, 7”&, X &,

1 471 2~
Hence, for example, taking p” p”n"‘r"=<(q_i_—q;)|> Do, 0, "'n", 047", We have
— 24
P(T)P,(T)— HE[OZ:d]qu P”ﬂ'”"'”TP”z"lpr'l"'Tpl’ﬂ’(q+q')P”r"(q+q')‘
7‘2", T"E’@qu} Q.E. D.

Definition 1.4, (Griffiths). An invariant homogeneous polynomial
P(T) of degree q in I(d+1)RoC is said to be a positive polynomial if
there exist 2,;€ R with 2,;>0 and p,;.€C (p[0,d],, r€S,, and j runs
over a finite set) such that

pprrr = Zj ’zpjluﬂfﬂﬁpj”

for each coefficient p.., in the expression of P(T) mentioned in Corollary
1.3. We denote by I1(d+1), the set of all homogeneous positive polynomials
of degree q, and put I1(d+1)=73,11(d+1),.

Lemma 1.5. The set II(d+1) of positive polynomials is closed under
addition and under multiplication.

Proof. By definition, II(d+1) is closed under addition. We can see that
II(d+1) is closed under multipication in the same way as the proof of Corollary
1.3. Q.E.D.

b. Chern cohomology classes.
Let X be a non-singular complete variety defined over the complex number
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field C. Let E be a vector bundle of rank d+1 on X, and let @5 be a curvature
matrix of E.

Lemma 1.6, (Weil homomorphism). The map wy:I[(d+1)RC—>
H' (X, C) defined by P(T) l——><the cohomology class of P(—'Z_ﬂl@E» is well-

defined and is a homomorphism as graded algebras. Moreover, the map
wy 1S functorial, i.e. for a morphism g:Y —>X, we have g* cwz=1w .

Proof. See Weil [10]. Q.E.D.

Definition 1. 7. The cohomology class of 4,(%@,3) is called the q-th
Chern cohomology class of E.

Let R be a commutative ring with identity and let R[[#]] be the formal
power series ring of one variable ¢ with coefficients in K. For each element
c(t)=1+cit+cot2+--- in R[[t]], we define an element ¢(¢)=1+4¢f+Cot?*+---
in R[[t]] by ¢(t)=1/c(—t). We can calculate ¢,’s successively such as

C1=¢Cy,
C2=C1P—Cy,
C3=c*—2c,cy+cs, etc.
4(T) 1<g<d+1

Remark 1.8. If we take R=I(d+1) and c,=|/ d+1<q,

then we have
Eq: Z Tan"'TdadeQ[TO’ ttty Td:l@d“:I(d"_ 1) (q:L 2; "')’
ao+-“+"d=q
Note that such C,=X agrtag=ql o™ - TSt is a positive polynomial
(qzl, 2) '“)’

¢. Numerically positive vector bundles and ample vector bundles.
Let X be a non-singular projective variety of dimension # defined over C.
Let E be a vector bundle on X.

Definition 1.9, (Griffiths). A vector bundle on X is said to be nu-
merically positive if it satisfies the following condition.

Let q be any integer with 1<q<m=dimX. Let Y be any q-dim-
ensional subvariety of X. Let F be any quotient vector bundle of rank
d+1 of E with Fx0. Let P(T) be any homogeneous positive polynomial
in II(d+1) of degree q with P(T)=0. Then we have

For the properties of numerically positive vector bundles, see Griffiths [4].
Let X be a non-singular projective variety defined over a field & of any
characteristic. Let E be a vector bundle on X.



156 Sampei Usui and Hiroshi Tango

Definition 1. 10, (Hartshorne). A vector bundle E on X is said to be
ample if, for any coherent sheaf M on X, MQSYE) is generated by its
global sections for a sufficiently large integer a, where SYE) is the a-th
symmetric product of E.

For the properties of ample vector bundles, see Hartshorne [5].

d. Grassmann varieties, Schubert cycles, and flag manifolds.
We use the following notations throughout this paper.
Gr(n, d) : the Grassmann variety parametrizing d-dimensional linear

subspaces of P".

L, : the d-dimensional linear subspace of P" corresponding to a point
x in Gr(n, d).

S : the universal subbundle on Gr(#, d).

@ : the universal quotient bundle on Gr(n, d).

Fl(n;d,, -+, d,) : the flag manifold parametrizing filtrations of P" by
linear subspaces of P".
Let # and d be non-negative integers with #>d, and let a; (0<i<d) be

integers with n—d>ay>a,>--->a@;>0. Take a filtration

An—d—aoCAn—d+l—a1C "'CAn—ad
of P* by linear subspaces A, _g+i-q, s of P* with dim A, -4+i—o;=0—d+i—a,.
We use the following notations for Schubert varieties and Schubert cycles
wao,a1,~~~,a¢(An—d—ao’ An—d+1—ap R An—ad)
={xeGr(n,d)|dim(L.:NAp-_ari-a)=1 (0<i<d)}.

@y, ar, - aq - the Schubert cycle on Gr(n, d) of type (ao, ai, -+, a).
Note that codimg,u, ¢y @ao, a1, - aa = 2010 @i-

§ 2. Positive polynomials and Schubert cycles.
We have an exact sequence of vector bundles on Gr(#, d)

0->S—>F—>Q—0,

where S is the universal subbundle, F' the trivial bundle, and @ the universal
quotient bundle. Let % be the trivial hermitian metric in F, and let f(2)=
(eo(2), +++, €4(2), -++, €,(2)) be a local unitary frame of F with respect to % so that
o(2)=(eo(2), -+, €s(2)) is a local frame of S. We denote by Dy the connection
of F derived from % and by Djg the connection of S derived from the induced
metric in S. Then we have the following diagram

avs)— 2 as)

N .
| il
Dy
AYF)———— AYF).
Griffiths calls the gap Djzoi®—i'oDg the second fundamental form of S in F
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([4]). We use the following notations.

6, 6 . . oy
0p= [ 01 02] : the connection matrix of D, with respect to the frame
3 V4 .
f(2).
05 : the connection matrix of Dg with respect to the frame ¢(2).

b : the matrix representation of Dz<i®—i'oDg with respect to the
frames ¢(z) and f(2).

@Fz[gl gz] : the curvature matrix of Dy with respect to the frame
3 04
f ().

O : the curvature matrix of Dy with respect to the frame ¢(z).

O3= —'0g : the induced curvature matrix of the dual bundle S of S.

Now we prove the following theorem.

Theorem 2.1. Let Oy be the curvature matvix of the dual vector

bundle S of the universal subbundle S on Gr(n,d). Let P(T) be a homogen-
eous positive polynomial in II(d+1) of degree q. Then the cohomology

class of P(f;

2n1@§> can be ex pressed in the form:

the cohomology class of P<‘/2—71@6>
=the cohomology class of Y ay+u++au=qQo, a, - a®as, as, - a0s WHEYe every
coefficient gy, 4, ..., 0,=0.

i.e. In the Ruvector space H*(Gr(n,d), R) we have the following in-
clusion of cones.

the cohomo-|P(T) is a homogeneous the cone generated by

logy class of | positive polynomial ing C|Schubert cycles on

p(*/ ;%) II(d+1) of degree q Gr(n, d) of codimension q|.
T

Lemma 2.2. 0,=0,, b=0,, and b is a matrix consisting of (1, 0)-forms.

Proof. By definitions, we have 05=0; and hence 6=0;. In order to prove
the third assertion, take a holomorphic frame @(z)=(24(2), ---, é(2)) of S. Let
©(z2)=¢(2)g(z) be the change of frames. Let D,=D, + D} be the type decom-
position. Since D} is 0 on the holomorphic sections of F' by definition, we have

(0, -+, 0)=(D;"eo(2), -+, Di"eu(2))

d// 01// 02//
i S ])

Hence, we have 65/ =0, i.e. 8; is of type (1, 0) Q.E.D.

Corollary 2.3. ©,='b,b.
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Proof. 0,=d0;+0;,0r
_|:d01 401701+ 02705 dl92+01/\02+92/\04]

A3+ 03,0+ 0,705 dOs+ 03,05+ 0,704 '
By the compatibility of D, and & we have

0="05+0..
Therefore, by using Lemma 2. 2, we have
6,=65—"b:b.
Since F is a trivial bundle, ®,=0. Hence, we have
Os="bAb. Q.E.D.

Lemma 2.4. Let g=dim Gr(n,d). H*(Gr(n,d), R) and H**(Gr(n,d),
R) are dual for cup product pairing and the Schubert cycles
(@ao, a1, aa| G0+ @1+ +a:=q} and
{040, b1, - ba| Do+b1+ - +bs =g —q}
form the dual base each other.
1 a;+b,=n—d (i+j=d),

1.6. gy a1, ad*Pbo,br,-ba ™ 0 otherwise

Proof. See Hodge & Pedoe [7]. Q.E.D.

Proof of Theorem 2. 1. By Corollary 2. 3, we have
y= —'105=—("b\b)=",b.

Let PT)= X ; porfpeT ompar++T pwp be a positive polynomial of degree
pel0,d1e
Ty TE@Q

g. Substituting 0¥ in P(T"), we have
P(@g): Z #Pnﬁpfbalprlzalprl.“baqprrqzaqprq
‘pE[O,d]q

acld+1,n]?
T, TEBGq

=(—1)2@" V2% pyniiprbaipm 'baqpxqgalﬂrl' . ‘b-aqpfq
:(_1)q(q—l)/2 3 Qpana’
pha

where b=[bgs10bar14] and Qpa= 2, fpzbaspn*-Dago,. Hence, we have
ﬂe@q

.........

p(‘/;,les) —(— 1)q(q—1)/2<’1;>q Ea QoaQpa.

Since, by Lemma 2.2, b is a matrix consiting of (1, 0)-forms, Qu’s are (g, 0)-
forms. Therefore, for any g-dimensional subvariety Y of G7(n, d), we have
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[ P(“’ —1g;)>0.
Y 2r
That is, the cohomology class of P(Jé; 1@5) is numerically non-negative.

Hence, in the expression

the cohomology class of P<*/2_7r 1@5)

=the cohomology class of Y ay+ar+-+as=q@ao ar, - ad®a0 ar, - aa>

we see, by using Lemma 2. 4, that every coefficient a,q, 4y, ., a4 =0. Q.E.D.

§ 3. Numerical positivity of ample vector bundles.
In this section, we prove the following theorem.

Theorem 3. 1. Let X be a subvariety of Gr(n, d) of dimension m. Ass-
ume that X «w,, q,,..,0a=0 for some Schubert cycle wyy,a,, ., q, OF codimension
toa;<m. Then there exists a curve C contained in X such that S|C has a
trivial line bundle as a dirvect summand, where S is the universal subbundle.

Let X be a subvariety of Gr(n, d) of dimension m. We call a point P in P*
a center of X if dim{xe X |L,> P}>1. We denote by X, the set of centers of X.

Lemma 3.2. X, is a closed subset of P".

Proof. By the Pliicker coordinates, G#(#, d) can be embedded in a pro-
jective space P¥. Put Y,={xeX|L,2P} for a point P in P*. Then, for a
point P in P", it is easy to see that the following conditions are equivalent to
each other:

i) PeX,
i) dimY,>1,
iii) Y,NM=¢ for any hyperplane M in P".
Hence, we have X.=Np(UremnxL.). Therefore X, is a closed subset of
P, Q.E.D.

Let X be as above and let H be a general hyperplane in P". Let x; be a
generic point of X. Then there exists unique point y; of G#(#, d—1) such that
L, =L, NH. We denote by X the subvariety of G#(n, d—1) which has y, as
a generic point. Since {yeGr(n,d—1)|L,C H} is isomorphic to Gr(n—1,
d—1), X4 can be also regarded as a subvariety of Gr(n—1, d —1).

Lemma 3.3. Assume that X wgp,, . 000,,=0 on Gr(n,d). Then X,-
Ogo,a1,-v00..=0 on Gr(n—1,d—1) for any general hyperplane H in P".

Proof. Since H is general and since X «wg,a,,.-,00.,0=0, there exists a
sequence

AOCA1C"°CAd_1CAd—_—H
of linear subspaces of P" such that dimA;,=n—d+i—a; (0<i<d—1) and that
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{reX|dim(L,NA)>i (0<i<d-—-1)} =¢.
By the definition of X, for any point ¥ in X, there exists a point % in X such
that L,c L,. Hence, we have
{yeXyldim(L,NA)>1 (0<i<d—1)} =9,
that is, Xu*®ay. a1, ae,=0 as a cycle on Gr(n—1,d—1). Q.E.D.

Lemma 3.4. Let X be subvariety of Gr(n, d) of dimension m. Assume
that m>d+1 and that X o,,..,=0. Then, for any point x in X, we have
L.NnX.x¢.

Proof. Let %, be a point in X. We consider the following diagram :
Fln;n—1,4d)
T T2
Gr(n,n—1) Gr(n,d)DX > x.

Set Z=n oy Y (%0)= {heGr(n,n—1)|L,DL,} and set W=="YZ)Nm"Y(X)
={(h, x)eFln;n—1,d)|x€X, LyD L., and L,OL,}. For any point h in
Z, we have, by our assumption Y «®,,,..,=0, that

dim (7, 1) N W) =dim (X Noyy,..1(Ls)) =>dim X —d.
Hence, there exists an irreducible component W, of W such that
(1) dimW,>dimZ+dimX —d=dim X +n—2d—1.
Put Yo=n:(W,). From (1), we have, for any point x in Yo, that
2) dim(z (%) NW)>dim (7 (x) N W) >dim X +7 —2d—1—dimY,.

Since m Y (x)NW = {heGr(n,n—1)| Ly,D L, and L,DL,}, we have

. - _ . [linear subspace of P"
(¥ dim(m () NW)=n—1-dim spanned by L, and L,,

=n—1—2d—dim(L, N Ly,)).
Combining (2) and (3), we have, for any point ¥ in Y, that
(4) dim(L,N Ly)>dim X —dimY.
Next, we consider the following diagram:
Fl(n;d,0)
b / \Pz
Grin,dy>X2Y, Gr(n,0)=P"> L..
From (4), we have
dim (P17} (Y o) N P (L)) >dimY o+ dim X —dimY o =dim X.
Hence, for any point P in pzep; (Y o) N Ly, we have
dim (P~ 'Y o) N P2 Y(P))>dim X —dim L,,=m—d >1.
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This shows that there exists an (#m—d)-dimensional subvariety ¥ of X such
that, for any point x in Y, L, goes through a common point P in P". That is
L,NX.x¢. Q.E.D.

Lemma 3.5. Let X be a subvariety of Gr(n, d) of dimension m. Ass-
ume that X «wyy, q,, ..., .s=0 for some Schubert cycle w,g,q,, ..., Of codimension
¢oa.<m. Then, for any point x in X, we have L,N X, x¢.

Proof. We prove the above statement by induction on #2 and on d. When
m=1 or d=0, it is obvious. We now assume that m>2 and d>1.

Case 1. When @, >0: If X.w,,,..,1=0, the assertion is proved in Lemma
3.4. Therefore we may assume that X.w,,..,150. Note that @, a4, 0=
®a9-1, 011, ag-1°®1,1,,1- Let H be a general hyperplane in P". Since dim
(XNoyy,.. (H)=m—d—1 and since (X Noy,1,.,1(H))*@g9—1,2,-1, -, aa—1=0, the

assertion is proved by induction hypothesis.

Case 2. When @;=0: Assume that L,,N X,=¢, for a point %, in X, and
and we will derive a contradiction. We use the following diagrams and notations.

1) Fi(n;d,d—1)

ﬁ/ \Ch
Grin,d)DX Gr(n,d—1)DGr(n—1,d—1)D> Xy,
where p; and ¢, are natural projections, and put
X=p"(X)N g (Xn),
Xo={reX|L,cH}=XNwy,,..(H), and
Xno=q1°p:17(Xo)-

@ Fl(n—1;d—1,0)

P/ \42
Grin—1,d—1)>Xy>Xn, Grin—1,00=P'=H,
where p, and ¢ are natural projections, and put
Y=qgoq2”(XH)=yeL)J(HLy, and
Yo=q:p:'(Xuo)= U L.

yEXH, 0
(3) Flin—1;d—1,0)xH
m:ple,,/ \ngqul”
Grin—1,d—1)xH HxH
p/ Y r/ \
Grin—1,d—-1)D X, ™ H>Y, H>oY,,

where the projections are defined by
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(5, Q, P)
Ty Ty
(3, P) @ P)
V X / N
y P Q.

We go on in several steps.

Step 1. dim X,=dim X =dim X.

Indeed, working with the diagram (1), we have a point ¥y, in X, with
L,cL,NH. By the assumption L,,NX.=¢, we see that ¢;"'(y)NX is a

finite set. Hence, we have dim X,=dimX. The equality dim X =dim X is
obvious by definition.

Step 2. L,N(Xy).x¢ for any point ¥ in X .
Indeed, by Lemma 3. 3, we have X y+w4, 4,00, =0. Hence, by the induc-
tion hypothesis on d and by the result of Step 1, we have the required assertion.

Step 3. dimY<dim(Urex,L.)<dimX —d—1+d=dimX —1.

Indeed, for any point y in X, there exists a point ¥ in X such that
L,cL,. Hence, Yo=(Uyexu,oLv)T(Urex,L:).

Step 4. dimY =dim X +d—1.
Indeed, we have (Urex-x,L.)NHCY C(UzexL.) N H by definitions. Con-
sider the following diagram.

Fl(n;d,0)
p‘o/ \(‘]3
Gr(n,d) D X>X, Gr(n, 0)=P".

By our assumption L,,N X ,=¢ for a point x, in X, we see that p;"'(X)N
q:"'(Py) is a finite set for a point P, in P". Hence, we have dim(U,exL.)
=dimgqzops Y (X)=dim(Usex-x,L.) =dimgs°p; (X —X,)=dim X +d. There-

fore, since H is general, we have the required assertion.

Step 5. L,NY,=¢ for some point y in X .

Indeed, if we assume the contrary, we are led to a contradiction as follows.
Let y, be a generic point of X ;. We can take a point P; in L, NY, by our assump-
tion in this step. We denote by Z the closure of (¥, P;) in Gr(n—1,d—1)x H.
Consider the diagram (3). Since mom; (Z)={(Q, P)€ H X H| there exists
a specialization (v, P) of (¥, P1) such that L,5Q}, we have, in particuiar,
PeL,NY, for a point (Q, P) in m:ox,"(Z). Hence, we have Semyom;"1(Z)=Y.
Therefore, we see that #(zyom Y (Z)—s" (Y ))x¢. Hence, we may assume that
there exists a point Py in #(mzom;"(Z)—s (Y )) such that Py L,,C L,,, where
Yo is the point in X mentioned in Step 1. Then, by our assumption in Case 2,
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we see that Po& X, that is, the set {x& X |L,>P,} is finite. Hence, we have
dim (7 }(Po) N (zzomy (Z)—51(Y,)))=d —1. Therefore, we have
dim (3o, Y(Z)—s (Y ) <dimq(Z)+d—1
<dim X +d—2.

The last inequality follows from the result of Step 3. On the other hand, from
the result of Step 4, we have

dim (zomy " W(Z)—s (Y ))=dimY =dim X +d —1.
This contradicts to the above estimation.

Step 6. By the result of Step 5, and by our assumption in Case 2, there
exists a point %, in X and a point ¥, in X such that L,,=L,,NH, L,,NX.=4¢,
and L,,NY,=¢. By the induction hypothesis on d, there exists a point P; in
L,,N(X}y)., that is, the set {ye X, |L,= P,} is infinite. Since P,&Y,, the set
{ye Xy|L,2P;} is contained in X,;— Xy, Since (X —Xo)>(Xz—X4y,) is a
surjective morphism and since the set {x&X|L,>P,} is the inverse image of
the set {yeXy|L,2P;}, we see that the set {x&X|L,>P,} is infinite. This
contradicts to L,, N X, =¢. Q.E.D.

Theorem 3. 1 follows immediately from Lemma 3. 5.

Pemark 3. 6. Probably the following statement (indicating more geome-
trical meaning) will be valid.

Let X be a subvariety of Gr(n,d) of dimension m=2. Assume that
Xeway a1, aa=0 for some Schubert cycle wyy,a,, ., a0 Of cOdimension Y\ a;<
m. Then, for any point x, in X, there exists a curve C contained in X
such that C goes through the point x, and that NiecL.>¢.

But our dimension-theoretic argument is too rough to verify the above
statement.

Corollary 3.7. Let X be a non-singular projective variety of dimen-
sion m defined over the complex number field C. Let E be a vector bundle
of rank v on X. Suppose that E is ample and that, in addition, E is gener-
ated by its global sections. Then, E is numerically positive.

Proof. Let q be an integer with 1<g<m=dimX. LetY be a g-dimen-
sional subvariety of X. Let F be a quotient vector bundle of rank d+1 of E|Y
with /0. Let P(T) be a homogeneous positive polynomial in I7(d+1) of
degree g with P(T)%0. Since E is generated by its global sections, £|Y and
hence F is generated by its global sections. Hence, we have a morphism

F:Y >Gr(n, d) with F=f*(S),

where S is the dual of the universal subbandle S on Gr(n,d). Since we may
assume that #—d >m, we see that
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(I(d+1)®C), > H*(Gr(n, d), C)
Q
w w

V-1
271'7@

Hence, we see that the cohomology class of P<
orem 2.1, the cohomology class of P(J_l@,.) can be expressed as

g> is not zero. By The-

the cohomolgy class of P(‘/ 1@,)

=f *(the cohomology class of P( 2_;7@g>>
=the cohomology class of Yaiar++aa=qQao,ar, - aaf *@aq, a1, a0

where every coefficient @, 4,,--, 4,20 and they are not all zero. Since E is
ample, £|Y is ample and hence F is ample. Therefore, the morphism f is

finite. Hence, S | f(Y') is ample. Applying Theorem 3.1 for f(Y), we have
that f(Y)ewgyq, a1, -, 2a>0 for any Schubert cycle wgy, 41, ., o, of codimension ;i a;
=¢q. Therefore, we see that

V=1
S P( 2 @F>:Y°(Z Qag,a1, - a0 ] ¥®ag, a1y aa)
Y T
=20 Qg a1, aaY * ¥4, a1, au
= ; Z aao,(11,'",adf*(Y).wao.a1,-'-, ad

>0,
where ¢ is the mapping degree of the morphism f. Q.E.D.
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