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Introduction.

In this paper let R be a commutative ring in which 2 is invertible and let
X be a symmetric # X# matrix with entries in R(#n=2). We denote by a the
ideal of R generated by all the (#—1)X(#—1) minors of X. It is known that
deptha<3 if R is Noetherian (c.f. Theorem 1, [4]). (Here deptha denotes the
common length of maximal R-sequences contained in a.)

The purpose of this note is to construct a complex C* associated with
X of finitely generated free R-modules of length 3 and to show that C*
provides the resolution of R/a if R is Noetherian and if deptha=3.

T. H. Gulliksen and O. G. Negard [3] constructed an elegant complex C*
associated with X but this complex is too big to provide the resolution of R/a
in the present case. Nevertheless we will find that C¥is a direct summand of
C* as a complex and this is available to study some properties of C*,

1. Construction of C*.

In the following let M,(R) denote the free R-module of all the nX#n
matrices with entries in R and we put

A={SeM.(R)/'S=S},

B={TeM,R)/'T=-T},

C={MeM,R)/Trace M =0}.
Note that A, B and C are finitely generated free R-modules of rank ("}Y), (3)
and 7?2 —1 respectively. We denote by Y the matrix of cofactors of X.

Construction of C". '

We put Cs*=B, C,;*=C, C;"=A4, Cy*=R, and C;*=(0) if i<<0 or i>3.
For the differential d we define

dy(T) =XT for TEB,

d:(M)=MX+'(MX) for MeC,

di(S) =TraceY S for S A.
It is easy to check that C¥ is actually a complex with H(C*)=R/a.

First we note

Lemma 1. Suppose that f:R—>R’ is a homomorphism of rings and
let X’ denote the matrix obtained by applying f to the entries of X. Then



52 Shiro Goto and Sadao Tachibana
CY¥=C*RR R

2. Relation between C* and C~.
We recall the construction of C¥ ([3]):C*=Cy"=R, Cs*=C,"= M. (R),

and C," is given by the homology of the complex RLM,,(R)@M,L(R)LR
where i(r)=(7I, vI) for r& R and j(M, N)=Trace(M — N) for M, N M,(R).
(Here I denotes the #X#n unit matrix.) The differential d is defined as
follows:

dyr) =»Y for rER,

dy(M)=the class of (XM, M X) for M M ,(R),

d; (the class of (M, N)=MX—XN for M, Ne M ,(R) with Trace M =
TraceN,

d,(M)=TraceY M for MeM,(R).

The following is the key lemma of this paper:

Lemma 2. C¥is a divect summand of C* as a complex.

Proof. 1f we define the R-inear maps p:M, R)—B, q:C,*>C,
7:M,(R)->A and s:C—C," by

pM)=(M—tM)/2 for M M, (R),

q (the class of (M, N))=(M —!N)/2 for M, N M ,(R) with Trace M=
TraceN,

r(M)=(M~+*M)/2 for M M, (R),

s(M) =the class of (M, —tM) for MeC,
then some straightforward calculation shows that the following diagram is
commutative:

0—0—B—C—>A—>R—0

ii,, ls' iz;
0 ——>R—)M,Ll(R)e(,Ig‘eMl,,(R)—)R——a 0
oo |

0—>0—>>B—C—>A—>R—>0
where iz: B>M,(R) and i,: A—> M ,(R) denote the inclusion maps. Of course
poigzlg, q05=lc alld 7’°iA:1A-

Corollary. Suppose that E is an arbitrary R-module. Then
a?H(C*QrE)=(0).

Proof. H(C*QrE) is an R-submodule of H(C*®xE) by Lemma 2 and
hence the assertion is obvious since a?H(C*@rE)=(0) (c.f. Lemma 2 and 4,
£3D.

Corllary. Let E be an R-module and sup pose that Supp E N SpecR/a
=¢. Then we have H(C*Q,E)=(0).
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3. Main results.
Theorem. Suppose that R is Noetherian and let E be a finitely gener-
ated R-module such that E+aE. Then we have

depth(a, E)+max{ic Z/Hi(CX@ E)+(0)} =3

where depth(a, E) denotes the common length of maximal E-sequences
contained in a.

Proof. We will prove by induction on #=depth (q, E).

(t=0) We must show that H3(C*®rE)#(0). By the assumption, ae=(0)
for some 0#e¢< E. Since Hy(C*Q rE) contains Hy(C*X)pRe) as an R-submodule,
we may assume that E=Re. Moreover, because C*QE=(C*QR)RzE
where R=R/(0):E, we may assume further that (0): E=(0). Thus it suffices
to prove in case E=R and a=(0). Now suppose that H3(C*)=(0). Then
H 3(C*®rRyp)=(0) for every p= Spec R and so, to obtain a contradiction, we can
assume that (R, m) is a local ring of depth R =0 after localization at b for some
pe AssR. In this situation, M =Cokerd; is a free R-module since hd,M <1
and consequently d; is a split monomorphism. Thus, applying ®zR/m, we
can assume that R is a field and so we have :PXP= (28) for some invertible
#n Xn matrix P where D is an s X s diagonal matrix (s=rank X). Now consider

0: 0
an #X# matrix T=(0 01
—1 0
(Recall that a=(0).) Therefore X(PT!P)=0 with 0+ PT*P& B —— this is

the required contradiction.
(>0) Let f be an E-regular element contained in a®.. Applying C*®R,

. Then T B and (PXP)T=0 since s<n—2.

to the exact sequence 0—> F I) E—E/fE—0, we have an exact sequence
O——)C“’@ELC)‘@E%CX@E/fE——)O
R R R
of complexes. This yields an exact sequence of homologies
*)  0->H(C'QE)>H(C'QE/fE)>H; 1(C*Q E)—>0
R R R

for every i€ Z by the corollary of Lemma 2, since f €a?. By the hypothesis of
induction, we have known that (! —1)+max{i€Z/H (C*Q E/fE)+#(0)} =3
and so the result follows from (*).

Corollary. Suppose that R is Noetherian and assume that deptha=3.
Then C* provides a resolution of R/a.

For a Macaulay local ring (R, m) we put #(R)=dimgr/mExt}(R/m, R) (s=
dim R) and call it the £ype of R. It is known that R is a Gorenstein ring if
and only if »(R)=1 (c.f. [2]).

Corollary. Let k be a field of chk+2 and let R=Fk[ {X,;}1<i<j<n] e
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a polynomial ring. We put X =(X,;)151,;a:(X1;=X;: if i>7). Then C* pro-
vides a resolution of R/a with y(Rm/aRn)=(}) where m denotes the maximal
ideal ({Xi;}1cis55n) Of R. In particular R/a is a Gorenstein ring if and
only if n=2.

Proof. By [4], we know that R/a is a Macaulay ring of deptha=3.
Thus C*®pRm is a minimal free resolution of Rm/aRm in this case and conse-
quently we know that #(Rm/aRm)=() (c.f. Lemma 3.5, [1]). Therefore
Ru/aRu is a Gorenstein ring if and only if #=2 and it is known that R/a is a
Gorenstein ring globally if Rm/aRm is a Gorenstein local ring (c.f. Theorem,

(.
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