A complex associated with a symmetric matrix

By

Shiro GOTO and Sadao TACHIBANA

(Communicated by Prof. Nagata March 15, 1976)

Introduction.

In this paper let R be a commutative ring in which 2 is invertible and let X be a symmetric $n \times n$ matrix with entries in $R(n \ge 2)$. We denote by a the ideal of R generated by all the $(n-1)\times(n-1)$ minors of X. It is known that depth $a \le 3$ if R is Noetherian (c.f. Theorem 1, [4]). (Here depth a denotes the common length of maximal R-sequences contained in a.)

The purpose of this note is to construct a complex C^x associated with X of finitely generated free R-modules of length 3 and to show that C^x provides the resolution of R/\mathfrak{a} if R is Noetherian and if depth $\mathfrak{a}=3$.

T. H. Gulliksen and O. G. Negard [3] constructed an elegant complex \tilde{C}^x associated with X but this complex is too big to provide the resolution of R/α in the present case. Nevertheless we will find that C^x is a direct summand of \tilde{C}^x as a complex and this is available to study some properties of C^x .

1. Construction of C^{X} .

In the following let $M_n(R)$ denote the free R-module of all the $n \times n$ matrices with entries in R and we put

 $A = \{S \in M_n(R)/{}^tS = S\},\$

 $B = \{T \in M_n(R)/{}^tT = -T\},\$

 $C = \{M \in M_n(R) / \operatorname{Trace} M = 0\}.$

Note that A, B and C are finitely generated free R-modules of rank $\binom{n+1}{2}$, $\binom{n}{2}$ and n^2-1 respectively. We denote by Y the matrix of cofactors of X.

Construction of C^{X} .

We put $C_3^x = B$, $C_2^x = C$, $C_1^x = A$, $C_0^x = R$, and $C_i^x = (0)$ if i < 0 or i > 3. For the differential d we define

 $d_{\mathfrak{s}}(T) = XT$ for $T \in B$,

 $d_2(M) = MX + {}^t(MX)$ for $M \in C$,

 $d_1(S) = \operatorname{Trace} YS$ for $S \in A$.

It is easy to check that C^x is actually a complex with $H_0(C^x) = R/\mathfrak{a}$. First we note

Lemma 1. Suppose that $f: R \rightarrow R'$ is a homomorphism of rings and let X' denote the matrix obtained by applying f to the entries of X. Then

 $C^{X'}\cong C^X\otimes_R R'.$

2. Relation between C^{X} and \tilde{C}^{X} .

We recall the construction of $\tilde{C}^x([3]): \tilde{C}_4^x = \tilde{C}_0^x = R, \tilde{C}_3^x = \tilde{C}_1^x = M_n(R)$, and \tilde{C}_2^x is given by the homology of the complex $R \xrightarrow{i} M_n(R) \oplus M_n(R) \xrightarrow{j} R$ where i(r) = (rI, rI) for $r \in R$ and $j(M, N) = \operatorname{Trace}(M-N)$ for $M, N \in M_n(R)$. (Here I denotes the $n \times n$ unit matrix.) The differential d is defined as follows:

 $d_4(r) = rY$ for $r \in R$,

 $d_3(M) =$ the class of (XM, MX) for $M \in M_n(R)$,

 d_2 (the class of (M, N))=MX-XN for $M, N \in M_n(R)$ with TraceM=TraceN,

 $d_1(M) = \operatorname{Trace} YM$ for $M \in M_n(R)$.

The following is the key lemma of this paper:

Lemma 2. C^x is a direct summand of \tilde{C}^x as a complex.

Proof. If we define the *R*-linear maps $p: M_n(R) \to B$, $q: \tilde{C}_2^X \to C$, $r: M_n(R) \to A$ and $s: C \to \tilde{C}_2^X$ by

 $p(M) = (M - {}^{t}M)/2$ for $M \in M_n(R)$,

q (the class of (M, N))= $(M - {}^{t}N)/2$ for $M, N \in M_{n}(R)$ with Trace M =Trace N,

 $r(M) = (M + {}^tM)/2$ for $M \in M_n(R)$,

s(M) = the class of $(M, -^{t}M)$ for $M \in C$,

then some straightforward calculation shows that the following diagram is commutative:

where $i_B: B \to M_n(R)$ and $i_A: A \to M_n(R)$ denote the inclusion maps. Of course $p \circ i_B = 1_B$, $q \circ s = 1_C$ and $r \circ i_A = 1_A$.

Corollary. Suppose that E is an arbitrary R-module. Then $a^2H(C^x\otimes_R E)=(0)$.

Proof. $H(C^{X} \otimes_{R} E)$ is an *R*-submodule of $H(\tilde{C}^{X} \otimes_{R} E)$ by Lemma 2 and hence the assertion is obvious since $\mathfrak{a}^{2}H(\tilde{C}^{X} \otimes_{R} E)=(0)$ (c.f. Lemma 2 and 4, [3]).

Corllary. Let E be an R-module and suppose that $\operatorname{Supp}_{R} E \cap \operatorname{Spec} R/\mathfrak{a} = \phi$. Then we have $H(C^{X} \otimes_{R} E) = (0)$.

52

3. Main results.

Theorem. Suppose that R is Noetherian and let E be a finitely generated R-module such that $E \neq \alpha E$. Then we have

depth(\mathfrak{a}, E) + max { $i \in \mathbb{Z}/H_i(\mathbb{C}^x \otimes E) \neq (0)$ } = 3

where depth(a, E) denotes the common length of maximal E-sequences contained in a.

Proof. We will prove by induction on $t = \text{depth}(\mathfrak{a}, E)$.

(t=0) We must show that $H_3(C^X \otimes_R E) \neq (0)$. By the assumption, ae=(0) for some $0 \neq e \in E$. Since $H_3(C^X \otimes_R E)$ contains $H_3(C^X \otimes_R Re)$ as an R-submodule, we may assume that E=Re. Moreover, because $C^X \otimes_R E \cong (C^X \otimes_R \overline{R}) \otimes_{\overline{R}} E$ where $R=\overline{R}/(0)$: E, we may assume further that (0): E=(0). Thus it suffices to prove in case E=R and a=(0). Now suppose that $H_3(C^X)=(0)$. Then $H_3(C^X \otimes_R R_p)=(0)$ for every $p \in \operatorname{Spec} R$ and so, to obtain a contradiction, we can assume that (R, \mathfrak{m}) is a local ring of depth R=0 after localization at \mathfrak{p} for some $\mathfrak{p} \in \operatorname{Ass} R$. In this situation, $M=\operatorname{Coker} d_3$ is a free R-module since $\operatorname{hd}_R M \leq 1$ and consequently d_3 is a split monomorphism. Thus, applying $\otimes_R R/\mathfrak{m}$, we can assume that R is a field and so we have ${}^tPXP = \left(\begin{array}{c} D & 0 \\ 0 & 0 \end{array} \right)$ for some invertible $n \times n$ matrix P where D is an $s \times s$ diagonal matrix $(s=\operatorname{rank} X)$. Now consider an $n \times n$ matrix $T = \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right)$. Then $T \in B$ and $({}^tPXP)T = 0$ since $s \leq n-2$. (Recall that a=(0).) Therefore $X(PT^tP)=0$ with $0 \neq PT^tP \in B$ —— this is the required contradiction.

(t>0) Let f be an E-regular element contained in \mathfrak{a}^2 . Applying $C^X \otimes_R$ to the exact sequence $0 \to E \xrightarrow{f} E \to E/fE \to 0$, we have an exact sequence

$$0 \to C^{X} \bigotimes_{R} E \xrightarrow{f} C^{X} \bigotimes_{R} E \to C^{X} \bigotimes_{R} E / fE \to 0$$

of complexes. This yields an exact sequence of homologies

(*)
$$0 \to H_i(C^X \bigotimes_R E) \to H_i(C^X \bigotimes_R E/fE) \to H_{i-1}(C^X \bigotimes_R E) \to 0$$

for every $i \in \mathbb{Z}$ by the corollary of Lemma 2, since $f \in \mathfrak{a}^2$. By the hypothesis of induction, we have known that $(t-1) + \max\{i \in \mathbb{Z}/H_i(\mathbb{C}^X \otimes_R E/fE) \neq (0)\} = 3$ and so the result follows from (*).

Corollary. Suppose that R is Noetherian and assume that depth a=3. Then C^x provides a resolution of R/a.

For a Macaulay local ring (R, \mathfrak{m}) we put $r(R) = \dim_{R/\mathfrak{m}} \operatorname{Ext}_{R}^{s}(R/\mathfrak{m}, R)$ $(s = \dim R)$ and call it the *type* of R. It is known that R is a *Gorenstein* ring if and only if r(R)=1 (c.f. [2]).

Corollary. Let k be a field of $\operatorname{ch} k \neq 2$ and let $R = k[\{X_{ij}\}_{1 \leq i \leq j \leq n}]$ be

a polynomial ring. We put $X = (X_{ij})_{1 \le i, j \le n} (X_{ij} = X_{ji} \text{ if } i > j)$. Then C^x provides a resolution of R/α with $r(R_m/\alpha R_m) = \binom{n}{2}$ where m denotes the maximal ideal $(\{X_{ij}\}_{1 \le i \le j \le n})$ of R. In particular R/α is a Gorenstein ring if and only if n=2.

Proof. By [4], we know that R/\mathfrak{a} is a Macaulay ring of depth $\mathfrak{a}=3$. Thus $C^x \bigotimes_R R_\mathfrak{m}$ is a minimal free resolution of $R_\mathfrak{m}/\mathfrak{a}R_\mathfrak{m}$ in this case and consequently we know that $r(R_\mathfrak{m}/\mathfrak{a}R_\mathfrak{m})=\binom{n}{2}$ (c. f. Lemma 3.5, [1]). Therefore $R_\mathfrak{m}/\mathfrak{a}R_\mathfrak{m}$ is a Gorenstein ring if and only if n=2 and it is known that R/\mathfrak{a} is a Gorenstein ring globally if $R_\mathfrak{m}/\mathfrak{a}R_\mathfrak{m}$ is a Gorenstein local ring (c. f. Theorem, [1]).

> DEPARTMENT OF MATHEMATICS NIHON UNIVERSITY

References

- Y. Aoyama and S. Goto, On the type of graded Cohen-Macaulay rings, J. Kyoto Univ., 15 (1975), 19-23.
- [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeit., 82 (1963), 8-28.
- [3] T. H. Gulliksen and O. G. Negard, Un complexe résolvant pour certains idéaux déterminantiels, C. R. A. S., 274 (1972), 16-18.
- [4] R. E. Kutz, Cohen-Macaulay rings and ideal theory in rings of invariants of algebraic groups, Trans. A. M. S., 194 (1974), 115-129.