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§1. Introduction.

1A. Koebe was the first who proved the existence of con-
formal mapping of an arbitrary planar surface onto a horizontal
slit region on the extended plane C. Concerning an open Riemann
surface R of positive genus g, Kusunoki (6] showed the existence
of a meromorphic function f such that
(1) Re (f) has, roughly speaking, the constant value on each
boundary component. Precisely speaking, it can be said
that Re (f) has I',, behavior in the sense of Yoshida
(18],
(i)  the divisor of fis a multiple of (PP,...P,,,)"", where
P, P,,...P,,, are suitable points of R,
(i1) residue of f at P, is equal to 1 (or 1),
(iv)  f(R), the image of R under f, is of at most g+1 sheets
over the extended plane C.
Further, Mori [9] showed that there exists a meromorphic function
f on R such that
(1) Re (f) has I',, behavior,
@)  the divisor of fis (P)™*"', where P is a properly given

point on R,
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(i)  f(R) is of g+1 sheets over C.

For the case of finite surface, Shiba [13] proved the next theo-
rem.

Theorem. Let R be the interior of a compact bordered Rie-
mann surface of genus g and its border consists of K contours S,
Bz« .. Bx. Then there exists a meromorphic function on R which
satisfies the following conditions:

1) f maps R onto a slit region on C such that each contour
8. corresponds to a slit with direction ¢, k=1, 2... K,
where each £, is an arbitrarily given straight line,

(1)  the divisor of f is a multiple of (P,P,...P,.,)"", where
P,, P;,...P,., are arbitrarily given points on R,

(i) f(R) is of at most g+ 1 sheets over C.

But the condition on the boundary in the last theorem is very
restrictive, and our intention in this paper is to remove this restri-
ction and generalize these theorems stated above. In §2, as the
preparations for our purpose, we shall consider some subspaces
(over the real number field) of real differentials on an open
Riemann surface R. In §3, we shall consider the convergence
theorems of Abelian differentials with certain boundary behaviors
(Cf Lemma 3.8) and show, in case of R with finite genus, the
existence of meromorphic functions with these boundary behaviors
(Cf Lemma 8.5 and Lemma 3.7). In §4, we prove the convergence
theorems of Abelian differentials with special boundary behaviors
and the existence theorems of Shiba’s behavior spaces (Cf Theorem
1 and Theorem 2). In §5, we shall generalize the above slitmapping
theorems by use of the results in §2-§4 (Cf Theorem 3, 4, 5).

§2. Orthogonal decompositions for differentials.

2A. Let R be an arbitrary Riemann surface. The totality of
square integrable complex (resp. real) differentials on R forms a
real Hilbert space 4=A4A(R) (resp. '=I"(R)) over the real number
field with the inner product defined by
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<219 22>:RCSS (aldz"l‘blz;z) d.’l'dy,

where 2, =a;(2)dx+b,;(2) dy for a local parameter z=x+iy. It
should be noticed that the meanings of the letters 4 and I' are
different from those in Ahlfors and Sario [3]. With only these
exceptions, we inherit the terminologies and notations of Ahlfors
and Sario [3], if not mentioned further. For example, we define
A, (resp. 4,,) to be the closure of 4. (resp. 4.,) in A4 where /4, (resp.
A.,) is the linear space formed by all exact complex C' differentials
(resp. exact complex C' differentials with compact supports), 4.
(resp. A.) to be the orthogonal complement of A (resp. Af) with
respect to { >, and 4, to be the space A4*N4. With these nota-
tions, the following relations hold :

A=A, 5 A5 = Ay At A= AnAE S A, 5 A2

(=il =iy, A =LA,

where I'} (resp. /) means the orthogonal complemnt of I7; (resp.
A) in I' (resp. A), and ¢ a complex number (Cf Shiba [13]).

2B. Next we consider the real subspaces (subspaces over the
real number field) of real differentials.

Let 2 be a compact bordered Riemann surface. We divide
0Q into two sets @, 8 of contours and consider the following linear
subspaces of real differentials:

I (B, Q) =1{df:dfe " (2) such that f=0 on B},
Iy (e, Q) ={w:wc () such that ¥=0 along a}.

Lemma 2.1. I (a, 2)* is the orthogonal complement of I',(8,
Q) in I'(2).

Proof. Omitted (analogous as in Ahlfors and Sario [3] p 275).

Next on an open Riemann surface R we consider the same
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linear subspaces as above stated. Let R* be the Kerékjarté-Stoi-
low’s compactification of R and P(4) =a\UB a regular partition of
d=R*—R. We call G (resp.G’) an end towards a (resp.p) if
D'=GUG, G2a, G238 and GNG =¢ where D is a regular region
and G the closure in R*. Now we consider the following linear
subspaces :
I'.,(B, R)={df: (a) dfel'.(R), (b) there exists an end U,
towards 8 which is disjoint with the support of f},
I'',(a;, R)={w: (a) wel(R), (b) there exists an end U,
towards « which is disjoint with the support of w},
', (B, R) =the closure of I'l,(3, R) in I,
I'.,(@, R) =the orthogonal complement of I'.,(8, R)* in [

Note 2.1. We ideniify all consatnt functions with zero.
Lemma 2.2. (i) [(a, R)CI%(a, R)YCT . (a, R)CT,,
r.4, Ry=r.cr.@ rycr.,,
where bar stands for the closure in I'.
(i)  With the notations I'),(ay R) =1'\"I",,(a;, R) and I'...(a, R)
="', (a, R), we have

FZFm(,B, R)""Fha(a’ R)*']'F:‘:)
I=T (B R)+1w(a R)* (Weill G [15]).

Proof. Since (i) is evident, we prove only the first relation of
(i1). Because I',,(8, R)CI. LI}, we have

T(ay RY* =T (B Rt T
=8 R + T+ =T (B R) 17,
Through this paper we shall use the following notations and
terminologies :
1) E.(R)={y:y is a local rectifiable curve in R, starting
from any point of K and tending to @ where K denotes a

compact region that separates a and g}.



(i)
(iif)

(iv)

(v)

(vi)
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O denotes the closure (in R*) of an open set O on R.
{R.} being a regular canonical exhaustion of R, we write
R,=R\UD\JGD, where D, is an end towards 8 and consists
of the components of R;, then we say {R)} is a normal
exhaustion of R towards a.

For any normal exhaustion {R;} towards « and a diffe-
rentials A& A,, if the limit

limS A

n—»c0 DR”

exists, then we write this value asg A

@

A property will be said to be hold for almost all curves
of a family if the extremal length of the subfamily of
exceptional curves is infinite (Cf Ohtsuka [11)).

If g C(R) is equal to a constant value ¢ on an end

towards a, we say g,=c near a.

Lemma 2.3. (i) Let G, G’ be two ends towards a such that G'D

(i)

(iii)

(iv)

G\ UG, then we have for wEl, (a, G)
w|c (=restriction of w to G)ET,,(a, G).
For wel'.,(a, RYNI" and f=C'(R), f being a Dirichlet

Sfunction on an end towards a, we have

Sﬂfa):O.

ducl,,(a, RYNI" if and only if ducI'. and for almost
all curves y of E.(R) lim u(P) =0.
T3P->a

For duc ', (a, RYNI" and o€t we have S u w=0.

a

Proof. (i) Denoting {o|c:wel, (0, G)} by I..(a, G)ls we

have

Lu(a, G)o=I"(a, G|l (ay G)|oC T o(ay G).
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(i)  is evident from the definition of I'.,(a, R).

(iii) For dueTr.,(a, R)NI" there exists a sequence {df,} such
that df,eI.,(a, R) and||df,—df||— 0. Therefore by Theorem
2.4 in Fuji-i-e [5) we get for almost all curves 5 of E,(R)

lim « (P) =0.

T3Poa

Conversely, by Lemma 1 in Yamaguchi [16] we have d(gu)eT.,
where g, C”(R), g.=1 near a and g,=0 near B. Therefore, for
wel'., (B, R)YNI" we have from (i) (ii) of this Lemma and Lemma
2.2

ldu*, o> = Suw:(d(g.u)*, wy=0,
duel,,(a, RYNT.

@v) For ducsl,,(a, RYNT" we have d(gu)el',~NI"", and so
by the Proposition 6 in Yamaguchi [17] we have

S (gu) ©=0 :S uw.
alJp a

Lemma 2.4 (Weill, G. [15)). (i) Let Q be the interior of a
bordered Riemann surface Q whose border a consists of a finite
number of contours, then we have

I(a, 2)={w: 0, (Q) such that w=0 along a}.
(i)  Let R be an open Riemann surface and {R)} a normal exhau-

stion towards «, then we get

I (a, R) ={w: there exists a sequence {w,} with v,&

I',.(0R;, R,) such that ||o—w,||z;— 0}.

Proof. (i) We can get easily this result by the same way as
in Ahlfors and Sario (3] p 288— p 291.
(i) For werl,(a, R), w|;/ has a decomposition of the form
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ol =0, +o,

where w,€7,,(0R,, R,) and o,l..(8, R,)*. Making use of Lem-
ma 2.3 (1), we get a differential @I, (o, R) such that
||& —@,||s’—> 0 (analogous as in [3]).

But from Lemma 2,3 (iii)) and Theorem 2.4 in Fuji-i-e [5] we
can get for almost all curves y of E;(R)

lim f(P) =0 where df=(0—w)*.

P8
Therefore we have

o—6cl.,. (B R)*N\(a, R)=0, L. e, o=a.
Conversely, for ¢ 1'...(8, R) we get from Lemma 2.3 (i)
Cor *>=lim <o, 65 = 0,

and so wel,,(a, R).

2C. Lemma 2.5. Let {2,} be an exhaustion of R by regularly
imbeded regions, and

AR) =A,R) +4,R)* (esp. I'v(R) =T, (R) + ', (R)*)
4,02, =4,(2,) F4,(2,)5 (resp. Tw(2.) =T,(2,) +T,(2,)%)

be orthogonal decompositions of A,(R) or 4,(2,) (resp. I'(R) or I,
(2.)). Furthermore, if for each n and each € 4,(R)* (resp. X1,
RY)Y), we have X|o,E4,(2)* (resp. ¥|o, €, (2.)Y), then each Lmit
of locally uniformly convergent subsequence of {A.} with 2,€4,(2,)
(resp. I',(2,)) belongs to A,(R) (resp. I',(R)), provided sup [| Aul]e,{ 00

Proof. We prove only the case 4,(R). It is evident that the
limit 2 of locally uniformly convergent subsequence {1} on R
belongs to 4,(R). For &0 and 2 with €4, (R)* there exists a

regular canonical region G such that ||X||z_c{e. Therefore we have
[y A< Hm Ry 2o +ell4]
<UTim (R, 5, —el el e
Consequently 21 4, (R)* and so 24, (R).
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Corollary 2.1. (i) Let {R.} be a regular canonical exhaustion and
A,=r,., :I—i I.., then the result of Lemma 2.5 is true.
(i)  Let {R.} be a normal exhaustion towards g and I',=T1".,(B,*),
then the result of Lemma 2.5 is true.

§3. The convergence theorems of Abelian differentials

and the existence of certain meromorphic functions.

3A. Suppose R is an open Riemann surface of genus g which

may be infinity, and {R,} is a regular canonical exhaustion of R,
then we can choose a canonical homology basis {4;, B;};%, of R
modulo dividing curves such that {4;, B;} \D; is also a canonical
homology basis of D! modulo dD} for each n and k, where D}
denotes a component of R,,,—R, (Cf Ahlfors and Sario [3)).
Furthermore, suppose & ={L;},;% is a family of straight lines on
the complex plane each of which passes through the origin. We
consider a space 4,=4,(&)=/4,(&, R) which satisfies the following
conditions :

@ AL, RYC A (R) =L (R) +il(R),

(b) 4.(Z, R) =il (£, R)*,

(c) S eL,;, S AeL; for each 2€4,(Z, R) and j=1 2, g
Aj Bj

Such a space 4, will be called the “restricted behavior space on

R associated with #”. Further we consider an another space ./, =

A,(&, /]):/1,,(.:?, A, R) which satisfies the following conditions:
(a) A, is a linear subspace (not necessarily closed) of 4.,

(b) there exists a closed subspace A of 4, such that
A DA+id*,

(¢) <A ix*>=0 for any i€,

(d) SA‘XEL,., SsizeLj for each 1€, and j=1,2...g.

Such a space 4, will be called simply the ‘‘behavior space (or
Shiba’s behavior space) on R associated with % and A4” (Cf. Shiba
(13]). For a restricted behavior space A, 4,={1:2€4, where 1
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denotes the complex conjugate of 2} is also a restricted behavior
space which will be called hereafter “the dual behavior space of
A7,

Note 3.1 Hereafter we denote a behavior space (resp. rest-
ricted behavior spabce) by the notation A, (resp. 4,).

Let 4, be a behavior space. A meromorphic differential 2 on
R is called to have A, behavior (on U) if there exist &4, and
Ao A, such that

2=24+2, on U,

where U denotes an end towards 4. A single valued meromorphic
function f on R is called to have /4, behavior (on U) if the diffe-
rential df has 4, behavior (on U). Then the following theorems
hold (Cf. Shiba [13)).

Existence Theorem 1. Let a;, B; be given complex numbers such
that a;EL; and B;EL;. Then there exists uniquely a regular differential
$oy(A)) =80, (As Ay RYEA(R) (resp. ¢,(B)) =5,(B;, A, R)E A, (R))
such that

(a) ¢, (A;) (resp. ¢y, (B,)) has A, behavior,

(b) Shsbaf(A,-)eL., SB¢,j(Aj)—5.,a,eL, Jor k=1.2. g

(resp. S“%; (By) +0s; BEL, Sa 6s;(BHEL, for k=1,2,...g),

where 0,; denotes the Kronecker delta.

Existence Theorem 2. Let P be an arbitrary point on R. For
an integer n>2 there exists a differential ¢pn=¢(P", A, R) (resp. ¢rpn
=¢(P", A, R)) uniquely such that

(@)  @on(resp. ¢pn) has A, behavior on D* where D is a parametric
disk at P,
(D) Pen (resp. ¢pn) is regular except P, where ¢on(resp. ¢p) has the

singularity % (resp. % 2.
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Note 3.2. For simlicity we denote ¢,. and ¢.» by ¢,=6(0,
A, R).

3B. With these preparations we define the convergence of
the sequence of the restricted behavior spaces.

Definition 1. Suppose {4,(Z., R,)}>.: is a sequence of the
restricted behavior spaces and /i(R) a subspace of 4,(R) where
&, denotes a subset of & such that &,= {L;}fz,, g. being the genus
of R,. Further,let {4,(Z,, R} and A(R) satisfy the following
conditions :

(a) for each A€ A(R), there exists {4,} with 4,&4,(Z., R,) such
that ||A—24,|l,,— 0,

(b) if {4} with 2,4,(&,, R,) is a sequence such that sup
[|2.]]s, {00, then each limit of locally uniformly convergent
subsequence of {4,} belongs to AR).

Then we say {A,(ZL., R,)} -1 is convergent to /f(R) and denote by

4,(ZL., R)—> AR).

Lemma 3.1. If A,(%., R.) -———>/f(R), /f(R) is a restricted

behavior space on R associated with & .

Proof. For simplicity we write 4,=4,(%., R,) and A=A(R).
Since 4 is a subspace of 4,.(R) and ||[A—A4,|l,,—— 0 for each
A2 with 2€ 4, 2, being the projection of 1|,, on 4, we can get
easily ACiA*+. Next we prove A>DiA*t. Suppose 21i4* and

Z:Z?—i—l; where 2,4 and 2L A,
then from the fact ACiA*t we have
A= (—2,) Lit*.
But, the restriction of 4, to R, has a decomposition of the form

Z|e,=4,+4. where 2,4, and 2, 4-=i4},
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and so we have ||4,||z,<||4]l; and ||4]|¢,<||4]]. Therefore there exists
{n.} such that {a,} (resp. {.,}) is locally uniformly convergent to
g,/ (resp.s,€iA4*) and so we get

g, +a,=2 Lil*.
Consequently from ¢, 4 1i4* we have successively
0,=0, A2 =0,4, =2, /A

Therefore we have ADiA*+. Thus 4 is a restricted behavior space
on R associated with Z.

Lemma 3.2. Let W be a fixed end towards 4 and {R,} a regular
canonical exhaustion. We consider the sequence {df.} with df,.€l..(R.)
N (R.NAW) such that sup |ldf.]|z, oo, then there exists a subseqitence
{df.} such that '

1) {df.) is locally uniformly convergent to df on W', W’ being an
end towards 4 and W \UdW' CW,
(i) dflw.=dg|w, where dgel',,(R), and df|w, is harmonic.

Proof. By the conditions there exists {df,,} which is locally
uniformly convergent on W to an exact harmonic differential df.
Now we take g C*(R) such that g=1 on W, g=0 on W and
1>g>0 where W’ is an fixed end towards 4 such that W\UoW’
c W, then {dG,,} with dG,=d(gf.) is locally uniformly convergent
to dG=dgf. Further, for each &l and >0, there exists a
regular region £ such that ||o||z-.<{ec and so we have

Ko, dGY|=[<w, dGYx -2 +lim{w, dG,,>|
<e|ldG||+ [lim{w, dG.,,>s,, -0|<{e constant.
Consequently, dGeT',,(R).

Lemma 3.3. When A4,=4,(Z., R,)=—= A,(&, R) =A,, there exists
{rns} such that
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(i)  for each j, ¢.;(A; Ay Ri)— 0.;(4;, 4, R),
¢p,»(B;, Aw R,)— ¢ﬁJ(BI’ 4, R),
(”) f07' a 0’ ¢(0’ Anp Rn,,)'_—> ¢(03 An R)9

where the convergences are locally uniform on R.

Proof. We prove only the case ¢(P", 4,, R), because other

cases are proved analogously. At first we write

0= =2V,

o~
<

where V is a parametric disk at P and ¢ a parameter of V such
that 2(P)=0. Then we can extend 6 to a closed C'(R-P) diffe-
rential § such that

0-i6* =0 on VAUD* and the support of dc D,

where D and V’ denote parametric disks such that Vo D>D >V
Therefore §-76* has the decomposition of the form
6-i6* =A.+df?,
4,
0_20*=2nc+d :::9

where 4.4, (R), 4,.€A.(R.), df.e A, (R)NA and df.,eA..(R,)NA.
From (1) df.(resp.df.,) is harmonic on D’ (resp. D'NR,), and so is
A.(resp. 4,.). Next by the orthogonal decompositions we obtain

2: = 1+2-L+dg0)
2
'2" :'zn + 2;“ +dgwn

where 2€/4,(R), 2*€A,(R)Y, dg.e L. R)NANL(D), 2,4, (L.,
R), e A (L., R)*+=il,(Z,., R)* and dg..€ A..R)NA"A, (D'
R,)). We set

Tnzé_zn_dgon:‘l;lh-!_d a*n+zé*)
t =0—-2 —dg, =2-+dfF +i0*.
Then we can get (Cf Shiba [13))



Convergence theorems of Abelian differentials 85
(P, 4, R) =é— (r+it*),

$ (P, A, R,) = §,<7,+ifr).

But from (1] and (2] we have
llp(P", A, R,) —¢(P", A, R)|| { 4||60—if*|| < constant.

Consequently, there exists {n,} such that (Cf Lemma 3. 2)

6P, 4., R,,) —¢®P", 4, R) — ¥,
where ¥ is a regular differential. On the other hand, from the
assumption A,—= 4,, ¥ is a regular differential with /4, behavior
on D¢ (Cf Lemma 3.1), and so by the uniqueness theorem (Cf
Shiba (13)) ¥ reduces to 0. '

Corollary 3.1 (Kusunok1 (6])). Let {R.} be a regular canonical
exhaustion of R, A,=I.(R) —]—zl},(R) and A,=T,.R,) —I—zﬂ,. (R.),
then by the Corollary 2.1 (1) we have A== A,, therefore there exists

a subsequence {n.} = {k} such that
for any j ¢.(4;, 4y R\ — ¢(4;, 4., R),
¢ (Byy, Ay Ri)—> ¢(B;, 4, R),
for a 0, ¢s(Aiy R)—> ¢o(Ay R).

3C. Suppose R is of finite genus g and § is a finite divisor,
then with g and J we associate the following linear subset over the

real number field:

S</I,, -é):{f:f is a single valued meromorphic function with

4, behavior on R and the divisor of fis a multiple of%},

D(4,, 6) ={a:a is a meromorphic differential with 4, behavior
and the divisor of « is a multiple of §}.
Then Shiba [13] showed the following theorems:
1) {g.; (4 4., R), ¢s;(B;, 4, R)},;%, forms a basis of D(4,, 1),
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(ii) Riemann-Roch’s Theorem :

17

dim S(/L, ;

)=2 (ord 6—g+1) +dim D (AL, ),

where A, denotes the dual behavior space of 4.

Definition 2. Let R be an open Riemann surface of finite
genus g and 4, a behavior space on R, then we call a point P a
Weierstrass point for A, if there exists a non constant meromorphic
function with 4, behavior which has the only singularity of order
at most g at P. We denote the set consisting of all Weierstrass points

Jor A, by W(4,, R).

Lemma 3.4. Suppose R is an open Riemann surface with finite

genus g :gyl, then the complement of W (A, R) is open dense on R.

Proof. Suppose A, is the dual behavior space of 4,, and
0., (A Ay R) =Ff; dz,
$s; (B, Ay R) =fi4, dz,

where 2=x+iy is a local parameter at P such that 2(P)=0. We
consider the real analytic function with respect to  and y such
that

Vau (2) :|Rgh o Row Towennn o I;k_llﬁ k:l, 2. -8
where R; and I; denote the transposed matrices of
(Re fi, Re f5,..... Re f1), and (Im fi, Im f;,...Im f})

respectively, and f}:{ii'zfj,f}’zﬂ. For PeW(4,, R), we have

V. (P) =0 and the converse is also true, that is to say, W(/4,, R) is
closed on R. If E= {the closure in R of W(4, R)‘} is not equal
to R, we put R—E=U. From the fact V,(2) %0 on U(Cf. Ku-
sunoki [6) p255) and {¢.,(4;, 4, R), ¢, (B;, 4;, R)};% 1s a basis
of D(A,, 1) we can prove this theorem by the same way as in
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Mori [8].

Corollary 3.2. If weset A,=1",.(R) -;-i]‘,...(R), we get the Theo-
rem 1 in Mori (8].

Lemma 3.5. Suppose R is an open Riemann surface of genus g,

1<{g{c0, and {R.} is a regular canonical exhaustion of R. If we assume
Au=Ao (gn) Rn)= Aa (B(f, R) =/Ia9

then we have
(1) when Pe W(4,, R), then Pe W(d.,, R.,)° for kDk, where k,
is sufficiently large,
(i1) for the function f which has A, behavior and has only a pole
of order g+ 1 at P, there exists a sequence {f.,} = {fi} such that
(a) £ is a meromorphic function on R, which has A, behavior on
D'\R,. Here D denotes a fized parametric disk at P,
(b) fi—f—— 0 locally uniformly on R.

Proof. Let the dual behavior space of A, (resp.4,) be A;
(resp. 4,), and the basis of D(A;, 1) (resp. D(4, 1)) be {4,
&5} % (resp. {@s;, #5:};%). Further, denoting the determinant of
order 2g which is constructed from {¢.; ¢z} (resp. {@2, ¢5}) in
the proof of Lemma 3.4 by V, (2) (resp.V;(2)), we have the
subsequence {n.} = {k} such that Vi, (2)— Vi, (2). But for Pe
W4, R), V;,(2)=£0, therefore we have Vi, (2)+0 by Lemma 3. 3
and so Pe W(4,, R,)°. Concerning (il), suppose the singularity of
df at P is

‘Z+:2 ar +ibr d~
- , ~ 2,
r=2 P4

where all a,, b, are real constant, then by the uniqueness theorem
(Shiba [13]) df is equal to a differential ¢ such that

£+2
> oa, @, Ay R)+b,¢ (P, A,y R) =0
r=2
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if and only if S 5=0, S 6=0, k=1,2,...g.

On the other hand, the matrix T of the coefficients of the following
system of the linear (with respect to a,, b, r=2, 3, .g+2) equations

=3, « gﬁgb(P', A, R)+b, Sdgb(P', 4, R), k=12 ¢

By B

has rank 2g (because dim S(A, P™*"') =4 and dim S(4,, P~%) =2),
that is to say, T has a minor determinant |T’| of order 2g such
that |T’|40. Consequently the matrix T, of the coefficients of
the following system of the linear equations

g+2
0=3, S“gb(P’, Ay R +0, SA¢(P', Ay R, k=1,...g.

By By

has rank 2g, i.e.,, T, has the minor determinant |T,| %0 which
corresponds to |T’| in T. Therefore, taking proper constants, from
Lemma 3.3 there exists {f,} which satisfyes the conditions (a) and

(b).

Lemma 3.6. Let R be an open Riemann surface of finite genus
>0, then it is possible to find g distinct points Py, Ppy... .. P, of R
such that

dim D(4,, d) =0,
where 6=P,P,...P,. (Cf. Kusunoki (6] p 255)

Lemma 3.7. Let R be an open Riemann surface of finite genus
250, {R.} a regular canonical exhaustion of R, A== A, and P, a
given point of R. Then for suitable choice of g points Py, Py, ... P,
there exists a meromorphic function f on R with A, behavior such that

(1)  the divisor of f is a multiple of (PiPs....P,..) ™" and the residue
of fat P, is equal to 1,
(1)  there exists a sequence {f.,} = {fe} such that

(a) f, is a meromorphic function on R, with A, behavior,
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(b)  fo—f—— 0 locally uniformly on R.

Proof. From Lemma 3,6 and its proof, we can take g distinct

points P, P, ...P.,, such that
Pl:':P,‘, j=2, 3 . .g+l and dim S(A,,, (P2P3P4 oo P'.'.l)—l) =2-

Therefore, the determinant of the coefficients of the following
system of the linear (with respect to x;,y; j=2,3...g+1) equations

(n 0=7 x,-g & (P, Aoy R) +y; SAgb(P?, A, R), k=12 g
i=1 A k
is different from zero. Consequently we have the required (in
(1)) function f such that

df="S 2,6(P% A R) 4y, A, R)
i=1

where z;, y; j=2,3...g41 are the solution of [1] after choices
of z;=—1, y,=0. Next by Lemma 3.3 there exists {n,} = {£} such
that each determinant of the following linear (with respect to {z;,

g+1

y;} 413 equations

ﬁ]hgx&mm@mwﬁymmmmhug

By
is different from zero. Accordingly, taking proper constant, for

each £ we can get f, from (2] after choices of z,=—1; y,=0 and

moreover we see that {f,} satisfies the condition (ii).

§4. Special behavior spaces and the convergence theorems.

4A. Suppose R is an open Riemann surface of genus g which
may be infinity, {R,} a regular canonical exhaustion, P(J) :\KJ,B,. a
finite regular partition of 4 and 2=R,, with sufficiently larkg=fl: Toe
Further we write B =pg,(0R.), B:(dR,) being induced by B, on
oR,, and Q‘:\KJ W, where W, denotes the end towards S..

k=1

Besides & ={L,;},% and Z,={L;}, (g.:the genus of R,) we con-
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sider the families of lines on the complex plane C and the families
of differentials on R such that:
/={l, k=1,2,... K, where each /, is a line passing through
the origin of C},
«L={Lj, j=1,2,....g where L;=L, for j such that A;,, B,C®
and Lj=il,={y—1 t:t€L)} for j and k such that A, B,C

Wh}a
AR, 2, /)=(2: () A€A.R), (b) Im ZAETw(By R), k=
1.2,.... K (c) g A€L,, j=1,2,.....g where z, is a complex
A

number such that z,€/, and |2| =1},
A,(Ray &Ly /) =1{2:(a) 2€4,..(R,), (b) Im 2,2, (Bis R.), k=

1,2,....K, (c)SMIEL,-, i=1,2.....g, where z€l, |z|=1],

A, (R, &, ¢)={A:there exists a sequence {4,} with 2,4, (R,,
L., ) such that ||2, —2||,,— 0}.

Note 4.1. For the finite Riemann surface R, 4, R, &, /)
is a restricted behavior space (Cf. Shiba [13]). On the contrary
when R is open, it is a question whether 4, (R, &, /) is a

behavior space or not.

Note 4.2 For ie4, R, ., /), Re Zz,A|y, is exact on W,,
k=12 ....K.

Theorem 1. Under above notations we have
1) A4, R, &, /) is a restricted behavior space on R,
1) Adp=4,(R.y o&. )= AR, &, /),
therefore from Lemma 8.8 we get for each j and a singularity 0

¢ai(Ah Aeas R,)— ¢a,.(AJ> A, R),
¢h(Bi’ Aguy Ry)— ¢ﬁj(Bn Aoy R),
¢(0s Aqns Rn)—’¢(0s A, R),
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Before proceeding the proof, we state the following special cases.

Corollary 4.1. For the identity partition and ¥ = / = {the ima-
ginary axis}, A,(R, &, /) coincides with i I'., behavior space in Yoshida’s
sense (Cf. Yoshida (18)).

Corollary 4.2. If R is of finite genus, we have for any pair of
L and /

GO 4R, &L, /)=AR, &, /),
(ll) Aq(Rn’ gn’ /)ﬁAq(R, g, /).

4B. Proof of Theorem 1.

Proof of the Theorem 1 consists of the following four steps,

namely Lemma 4.1 - Lemma 4. 4.

Lemma 4.1. 4,(R, &, /)CA,R, &, /) for any pair of &
and /.

Proof. We have only to prove Im z,2e1,, (8 R), k=12, . K
for each 2€4,(R, &%, 7). Let {R.] be normal exhaustion towards
B+ which is constructed by {R,}, and D a doubly connected region
such that D’=G\UG’ where G (resp. G’) is an end towards §,
(resp. '=4—B,) such that GNG' =¢. Further we take g.= C*(R)
such that g,=1 on G and g,=0 on G’. For the sequence {4} with
sLed, R, &., /) defining 2€4,(R, &, /) we can construct
another sequence {2,} such that

X=Im 2,4, on R\JGR,,
=0 on R—R,\UoR,,

where 2,=2, on R,~G, 4, =2 on G’ and 1,=dg.f,+d(f—fg,) on
D, df (resp df,) being equal to 2 (resp 4,) on D. Evidently we
have 2,€7'.,(8,, R) (Cf. Constantinescu. C und Cornea. A (4]
Hilfssatz 7.2) and ||4,—Im z,4]|—> 0. Consequently we have
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Im EJE[‘»/\F“(ﬁ;., R) :1—',,,(‘8“ R)o q. c. do

Lemma 4.2. For ecach ¥, we have
idR, &, /)**CLR, L, 7)
Cid,(R, &, /)**CA4,(R, &L, 7).

Proof. At first we show ie4,,(R) if 2L 4,(R, &, /)*.
A dividing curve yC W, induces a partition P,(d) of 4 such that

P, (d) =8B, where 8,08, and BiDd—4.
Now we take the function f such that f=H} where g C*(R*),

g=real constant £0 near 8, and g=0 near B, then we know
df =iz dfe 4;(R, &, /),
because df, =iz, dH" A, (R., Z., /) and
lldfs —df'llz,— 0.
Therefore we have for 2 with 2L A,(R, &, /)*

0=<df’, 2*>=Ilim {dfi, 2*>s,=Re iz, real const S ).

T

By the same way we can get

0=Re z.g 2, and so i€ 4,,.(R).
T

Next we show S e L, S A€ iL, for AL L (R, &, /) where
Aj Bj
iL; means {y—1 t:t€L;}. Let 0(4,) (resp.o.(4;)) be the repro-
ducing differential in I".(R) (resp. I.(R,)) associated with A; and
{;eL;, then we have by Accola [2]
[I€ias (A;) —Cio (A)) 1[5, < |G| {Extremal length of {4,}.
—Extremal length of {A;}},

where {A4;}, (resp. {4;}) stands for the family of curves which are

homologous to A; on R, (resp.R). From the continuity lemma
(Cf. Suita (14)), we get ||{;0.(A4;) =6 (A;)||ls,—> 0. Evidently we
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have {0.(4,)E4,(R,y ., /) and so {io(Q4,)EML, (R, X, /). The-
refore we get
0=<z, Goa)>=-Re § | 2 { ieiL.
Aj Aj
Analogously we get S i€il; for 214, (R, &, /)*. At last we
Bj

show Re z,2e7l,,(8s, R) if 2L A4,(R, &, »)*. Taking dferl...(f,
R) where f'=4—p,, then 2, dfe 4, (R, &, /) and so

0=<zdf, *>=Re S 2 fl=Re S 2o fA={df*, Re D
El B
il (R, L, /)*CAR, L, /).

Furthermore since 4,(R,, &,, /) is a restricted behavior space,
we have

iR, &, /)**24,R, £, 7). q.e.d.
Lemma 4.3. A, (R, %, /) is a restricted behavior space.

Proof. For any pair of 2, Y€4 R, &, /) we have (Cf.
Shiba [13] Lemma 6)

a irty=tim e[ £{{ 2 7-{ 7 2] -5 ;)

i=1

where we write 2=df, near ;. But since

Re ng zg i7~g JS z]:o,
i=1 Aj Bj Aj Bj
Re 2,A=dF, on W, and Re 2,/ =dF, on W,,
where F,, F, denote the Dirichlet functions on W, (Cf. NQte 4.2),

we have from Lemma 2,3 successively

Re SF: f,ﬁ:gp, (Re % f, Re i +Im % £ Im %ix)

== . Im 27— Fi Im 50— 0,

A i0*>=0, 4, (R, o&, /)Cid,(R, oL, /)*L
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Consequently from Lemma 4.2 we have the result of Lemma 4, 3.
Lemma 4.4, A, (R, o&,, /)=— A, R, &L, /).

Proof. For the sequence {,} with 3,4, (R,, &,., /) such
tnat sup ||4.||s,{o0, there exists a subsequence {4,,} which are
locally ”uniformly convergent to a differential 2 4,,,(R) on R. We
have only to prove the above differential 2 satisfies the condidtion
Im 2,2l (B, R), k=1,2 ... K. At first we take a doubly con-
nected region D such that D'=G\UG’ where G (resp.G’) is an end
towards B, (resp. 4—B8,=p") such that GNG=¢ and consider the
differential @, such that

w,=1, on R,NG, w,=d(g.f.) +d(f(1—g)]) on D, and
w,=2 on (&,
where 4,=df, on D, 2=df on D and g, C*(R) such that g,=1 on
G and g,=0 on G’. Then we get casily the following:
i) 0,eAR.=R,UG) and Im z,0,eI.,(0R;, R,),
@) r,,=Im z,w,,— Im z,A=7 locally uniformly on R.
For el.,, (B, R)YN" and ¢)0, there exists a regular canonical

region £ such that ||g]|s-o<c and so
<z a*HIellell +lim[Cra,y 0™ Do
CllellHlim[ <oy 0%, |<Celel
Consequently <z, ¢*>=0, r&'.,(5:, R) and so have
Im 227, (3s R).

Thus the proof of Theorem 1 is comlete.

4C. Making use of the Theorem 1, for each finite regular
partition P(4) we can show the existence of a behavior space
associated with any given pair of & and /. Suppose {R,} is a

canonical exhaustion. We set
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nAzAa(R) R,."g’ /)’

WP, L, /)=U=~ U A and B=" A A

n=1 k=n n=1 k=n

Lemma 4.5 A=V

Proof. From the theorem 1 we can get successively

WA _(r\ JA) L= (mz AL,

k=

W= (A U A= (A(A MHyE= U A i A=i B

n=1 k=n n=1 k=n =1 k=n

Theorem 2. Let P(4) be a finite regular partition of 4. Then

we have the following :

1) A=APW), &L, /) isa behavior space associated with £,
(i1) the necessary and sufficient condition that A should be a
restricted behavior space is that A =21,

Proof. (i) For &0 and 2€?, there exists 4, such that
Ae ., A and [|2—4][<e.
Further for a fixed integer m with m>n, there exists 2, such that
€ 4, n.dm and ||z—zz||<~§_
Thus we can get the sequence {4} such that

(a) 2,,,1 with »n,

(b) 2= g5
Therefore we have for any 19

A i2*>=lim {4,, i2}>=0, and
proo
A =A4:A*L (Cf. Lemma 4, 5),

that is to say, 2 is a behavior space associated with #. The proof
of (ii) is omitted (Cf. Lemma 4,5).
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4D. Furthermore for some finite non regular partitions we

can show the existence of a behavior space associated with any

given pair of # and /. For example, let P(4)=a\upUy be a

partition of 4 where a, a\UB are closed, then there exists a sequence

of regular partitions {P,(4)} with P,(4) =a,\ /By, such that a,
VBl aup and a, | a. We set
A=AP. (D, £, 7),

A=A (B, 2, /)=~ L.
n=1 k=n
Corollary 4. 3. 9 (13(4), L, /) is a behavior space associated
with &, where P(4) =a\JP\Jy is a partition such that « and a\JB

are closed.

Proof. From the Theorem 2 we can get successively the

following :

A= (MNAHL D (N AL,

k=1 k=n &

At = (N UAHLC (NN D L= A,c i .
n=1 k==n

n=1 k=n n=1 k=n

Therefore 9 is a behavior space associated with &.

§5. Applications to conformal mappings.

5A. At first we show the relation between the functions with
A, (R, &, /) behavior and the canonical exact Abelian differentials
in Kusunoki’s sense. For an open Riemann surface R of finite
genus, we set A4,=4,(R, &, /) where ¥ =/ = {the imarginary
axis}, so that the corresponding partition is the identity partition.

Lemma 5.1. Let R be of finite genus, then the meromorphic function
f has A, behavior if and only if df is canonical exact in Kusunoki’s

sense.

Proof. Let df be canonical exact, then by Yoshida (18] df has
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n
A, behavior. Conversely, let df be an exact differential with 4,

behavior on W, W being an end towards 4, then we can write
df=¢+24, on W,

where ¢4, and 2..€4.,.. If we set

o= 3 o (A) a0 (B}, ¢'=p—o,
where o(4,) (resp.o(B.:)) is the reproducing differentials associated
with 4, (resp. By), b.=gh¢ and “‘:SJ&’ then we have

Im i¢’e N, =1,."(as R is of finite genus).

On the other hand Re o|sw=du satisfies the condition u=
(I)Liwu on W, (I)L.» being Sario’s principal operator on dW corres-
ponding to the identity partition (Cf. Rodin and Sario [12] p 100).
Moreover u satisfies the condition

(I) Liw u=constant+f.,, on W,
where df,,eT',, (Cf. Nakai and Sario [10) Theorem 1). Therefore

we can write
df=¢+2.a=(l),,,,, +iwn“+2:a on W,

where 2,4, e,,€l'\, and w,,EI..., hence df is canonical exact
differential.

5B. Now we shall generalize the classical theorems stated in
§1 by making use of the results in §2~§4.

Theorem 3. Suppose R is an open Riemann surface with finite

1) If R is of finite genus; thenilwlxm=rhoﬂlwhe. In fact, for ®&1"no we have o|g,
=wa+o, where o= ho(Rn) and @,ET 1e(Rn)* so that | |@y—w| |z, —>0. The-
refore for any t&/"hse we have

£
£ — | — —
<o, 7> 31_{1;[15;‘.1{8“(»” Sﬂir SMT SB:'("”} Sak..f"r]’
wherel dfu=wn near dRy so that f=constant on each component of 9R,. Conse-
quenty we get lim SBR fnt=0, and so the special bilinear relation between /"5, and
n-»oo "

Ihse is valid, therefore Iam=1reN I ro (Cf. Accola (1J).
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genus g, P(4) 2»\2‘8‘ a finite regular partition of Kerékjdrto-Stoilow’s
boundary and P a point of R which is non Weierstrass point for A,=
A, (R, &, /), then there exists a meromorphic function f on R which
satisfies the following conditions :

@) f has 4,(R, &, /) behavior,

(i1)  f has only a pole of order g+1 at P,

(i)  f(R), the image of R under f, is of at most g+ sheets over

the Riemann sphere.

Proof. Let {R,} be a regular canonical exhaustion, then by
Lemma 3.5 and Corollary 4.2 there exists sequence {f,,} and a
function f which satisfies the following conditions:

(a) f,, is a meromorphic function on R,, with 4, =4,(R,,
.., /) behavior on V°N\R,, where Vis a fixed parametric
disk at P,
(b) f has only a pole of order g+1 at P,
(¢) fu,—f—— 0, locally uniformly on R,
(d) fu,(R.,) is at most g+ 1 sheeted over the Riemann sphere
(Cf. Shiba [13)).
In the following, for simplicity we write {n,} = {v}. Now we fix a
complex number « arbitrarily, then by the argument principle we

have

n (f9 a, Rv) - (g+1) = 7212.1“ San fd_fa fOl" XJ>7I:-

But since

lS dfe an integer for pn,,
R,

271 fo—a
R W R | S af N
2ri S”, fi—a 2 Yon, foa 0 HTO

we can get

n(fy @y R) —(g+1)= k?irzr Sak _?dé& for larg s

On the other hand, since f, is of 4,, behavior, we have
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k=1

[, dare mw=51,darg(s—a)=0.

Consequently we have n(f, a, R,)<g+1 for u>n,.

Corollary 5.1. If we set ¥ =/ = {the imaginary axis}, Theorem
8 coincides partially with the Theorem 8 in Mori (9.

Theorem 4. Suppose R is of finite genus and P, Py ...P,,,
are arbitrarily g+1 points of R, then there exists a meromorphic function
fwith A4,(R, &, /) behavior such that

(1)  the divisor of fis a multiple of (P.P,....P,.)7",
(i)  f(R) s of at most g+ 1 sheets over the Riemann sphere.

Proof. Omitted.

Theorem 5. Let R be an open Riemann surface with finite
genus, and P, an arbitrarily given point of R, then for suitable choice
of g points Py Py oo ... P,.. of R there exists a meromorphic function
f which satisfies the following conditions :

@)  fhas A,(R, &, /) behavior and the residue of f at P, is
equal to 1,
(i1)  the divisor of fis a multiple of (P.P,...P,.,)7",
(i) f(R) is of at most g+ sheets over the Riemann sphere.

Proof. From Lemma 3,7 and Corollary 4.2, we can prove

this theorem by the same way as in Theorem 3.

Corollary 5.2. If we set ¥ =/ = {the imaginary axis}, then
the Theorem 5 reduces to the Theorem 14 in Kusunoki (6].

Corollary 5.3 Assume that the regular partition P(4)=8UB:
and W,(resp W,) is an end towards B,(resp B.). If we set

A,={1:2e 4, S €L, g €L, i=12...g
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Im 2,21, (Bs, R) where 2., k=1, 2,

l,=real axis and l,=imaginary axis},

then Theorem 5 coincides partially with the Theorem 5.8 in Mizumoto

(7.
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