An algebraic characterization of the affine plane

By

Masayoshi MIYANISIII

(Communicated by Prof. Nagata, March 16, 1974; Revised May 7, 1974)

1. Statements of results

C. P. Ramanujam [9] characterized the affine plane over the complex field as follows: Let X be a non-singular algebraic surface which is contractible and simply connected at infinity. Then X is isomorphic to the affine two space as an algebraic variety. The purpose of the present article is to prove the following algebraic characterizations of the affine plane.

Theorem 1. Let k be an algebraically closed field of arbitrary characteristic, let A be a finitely generated k-domain of dimension two and let X be the affine surface defined by A. Then X is isomorphic to the affine plane over k if and only if the following conditions are satisfied:

- (i) A is a unique factorization domain.
- (ii) The set A^* of all invertible elements of A coincides with $k^* = k (0)$.
- (iii) There is a non-trivial action of the additive group scheme G_{\bullet} on X defined over k.

Theorem 2. Let k be an algebraically closed field of characteristic zero, let A be a finitely generated, regular, rational k-domain of dimen-

sion two and let X be the affine surface defined by A.

- If the conditions (i) and (ii) of Theorem 1 are satisfied, the condition (iii) is equivalent to the condition:
 - (iii)' There is an algebraic system F of closed curves on X parametrized by a rational curve such that a general member of F is an affine rational curve with only one place at infinity and that two distinct general members of F have no intersection on X.

Theorem 3. Let k be an algebraically closed field of characteristic zero and let X be an affine non-singular surface defined by an affine k-domain A. Assume that the following conditions are satisfied:

- (1) A is a unique factorization domain and $A^* = k^*$.
- (2) There exist non-singular irreducible closed curves C_1 and C_2 on X such that $C_1 \cap C_2 = \{v\}$, and C_1 and C_2 intersect transversally at v.
 - (3) C_1 (resp. C_2) has only one place at infinity.
- (4) Let a_2 be a prime element of A defining the curve C_2 . Then $a_2-\alpha$ is a prime element of A for all $\alpha \in k$.
- (5) There is a non-singular complete surface V containing X such that the closure \bar{C}_2 of C_2 in V is non-singular and $(a_2)_0 = \bar{C}_2$.

Then X is isomorphic to the affine plane A^2 .

2. Proof of Theorem 1.

Let k be a field, let A be a k-domain and let $X = \operatorname{Spec}(A)$. An action of the additive group scheme G_a on X defined over k can be described by means of a locally finite iterative higher derivation D on A. (For the definition and relevant results, see [3] or [4].)

Let A_0 be the invariant subring of A with respect to the given G_a -action. Then we have

Lemma 1. Let k, A and A_0 be as above. Then A_0 is an inert subring of A. Namely, if $a = a_1 a_2$ with $a \in A_0$ and a_1 , $a_2 \in A$, then both a_1 and a_2 belong to A_0 . In particular, if A is a unique factorization domain and if A_0 is a noetherian ring, A_0 is a unique factorization

domain.

For the proof, see [7].

It seems difficult in general to show or deny that given a finitely generated k-domain A and a non-trivial G_{\bullet} -action on $\operatorname{Spec}(A)$, the invariant subring A_{\circ} is finitely generated over k. However we have

Lemma 2. Let k be an algebraically closed field, let A be a finitely generated, unique factorization domain defined over k of dimension two and with $A^* = k^*$. Assume that there is a non-trivial G_{\circ} -action on $\operatorname{Spec}(A)$ defined over k. Then the invariant subring A_{\circ} of A is a one-parameter polynomial ring over k.

Proof. Let K and K_0 be the quotient fields of A and A_0 respectively. It is known [7] that there are an element a of A_0 and an element t of A such that $A[a^{-1}] = A_0[a^{-1}][t]$. Since $A[a^{-1}]$ is a unique factorization domain of dimension 1 and is finitely generated over k. Therefore $A_0[a^{-1}]$, (hence $A[a^{-1}]$), is rational over k. Namely $K_0 = k(u)$ and K = k(u, t).

We shall show that there is an element c of A_0 such that $K_0 = k(c)$. Since $K_0 = k(u) = Q(A_0)$ (where $Q(\cdot)$) means the quotient field), there are elements a and b of A_0 such that u = a/b. Consider a subring $A_1 = k[a, b]$ of A_0 , and let C be the normalization of A_1 in $Q(A_1) = K_0$. Then C is finitely generated over k. Since the assumption that $A^* = k^*$ implies that $C^* = k^*$, C is a one-parameter polynomial ring over k. Write C = k[c] with $c \in A_0$. Then $K_0 = k(c)$.

We shall show that $A_0 = k[c]$. Otherwise, take any element a of $A_0 - k[c]$ and consider a subring $A_2 = k[c, a]$ of A_0 . Let C' be the normalization of A_2 in K_0 . Then C' is finitely generated over k and $C'^* = k^*$. Hence C' is a one-parameter polynomial ring over k. Moreover, since $Q(C) = Q(C') = K_0$, we should have C = C'. Then

 $a \in k[c]$, and this is a contradiction.

q. e. d.

The key to prove the "if" part of Theorem 1 is

Lemma 3. Let k be an algebraically closed field of arbitrary characteristic and let A be a finitely generated k-domain of dimension two. Assume the following conditions:

- (i) A is a unique factorization domain.
- (ii) There is a non-trivial G_a action on Spec(A) defined over k.
- (iii) The invariant subring A_0 of A with respect to the G_a -action is finitely generated over k.

Then A is a one-parameter polynomial ring over A_0 .

Proof. Our proof consists of several steps.

- (1) Let $X = \operatorname{Spec}(A)$, let $Y = \operatorname{Spec}(A_0)$ and let $f: X \longrightarrow Y$ be the canonical morphism defined by the canonical injection $A_0 \hookrightarrow A$. Since A_0 is a finitely generated, unique factorization domain over k, Y is isomorphic to the affine line which might be deleted a finitely many points. Hence there is an element a of A_0 such that $A_0 = k[a, h(a)^{-1}]$, where $h(a) \neq 0$, $\in k[a]$.
- (2) Let $D = \{D_0, D_1, \ldots\}$ be the locally finite iterative higher derivation on A associated with the given G_a -action on $\operatorname{Spec}(A)$ and let $\varphi: A \longrightarrow A[u]$ (u being an indeterminate) be the k-algebra homomorphism defined by $\varphi(x) = \sum_{i \geq 0} D_i(x)u^i$ for every x of A. Define the length l(x) of an element x of A by $l(x) = \deg_u \varphi(x)$. It is then easy to show that if $l(x) \neq 0$ and l(x) is the shortest among the lengths of all elements of $A A_0$, $D_1(x), \ldots, D_{l(x)}(x)$ are G_a -invariant (cf. [7], Appendix). Choose an element t in $A A_0$ so that (i) l(t) is the shortest and that (ii) if we write $D_{l(t)}(t) = ca_1^{a_1} \ldots a_n^{a_n}$ with an invertible element c and mutually distinct prime elements a_1, \ldots, a_n , then $\sum_{1 \leq l \leq n} \alpha_l$ is minimal. Then for any α of k, $k \alpha$ is a prime element of A. For, otherwise, $k \alpha = k_1 t_2$ with $k_1, k_2 \in A$. Then either k_1 or k_2 has the same length as k_1 , and

the other one is G_a -invariant. Assume that t_2 is G_a -invariant, and let $a_1 = D_{I(t_1)}(t_1)$. Then $D_{I(t)}(t) = a_1t_2$, which is contrary to the choice of t since t_2 is not invertible.

- (3) Let $B=A_0[t]$ and let $Z=\operatorname{Spec}(B)$. Then, by the canonical inclusions $A_0 \longrightarrow B \stackrel{\phi}{\longleftrightarrow} A$, Z is a Y-scheme (with the projection g: $Z \longrightarrow Y$), and we have a Y-morphism $\rho: X \longrightarrow Z$ such that $f = g \circ \rho$. ρ is birational since there is an element c of A_0 such that $A[c^{-1}]$ $=A_0[c^{-1}][t]$ (cf. [7], Appendix or the proof of Lemma 2). G_a acts on Z via the restriction of the locally finite iterative higher derivation D on B, and ρ commutes with the G_{α} -actions on X and Z. On the other hand, each fibre of f is irreducible since $a-\alpha$ (which defines the fibre of f at the point $y: a = \alpha$) is a prime element in A for every element α of k with $h(\alpha) \neq 0$ (cf. Lemma 1). We shall show that f is surjective and that for every $y \in Y$, the restriction ρ , of ρ onto $f^{-1}(y)$ is a generically surjective morphism from $f^{-1}(y)$ to $g^{-1}(y)$. For this purpose it suffices to show that for any $\alpha \in k$ such that $h(\alpha) \neq 0$, $\bar{\psi} : B/(a-\alpha)B \longrightarrow A/(a-\alpha)A$ is injective, where $\bar{\psi}$ is induced from ψ . Since $B/(a-\alpha)B\cong k[t]$, assume that $\bar{\psi}(q(t)) = 0$ for some $q(t) \neq 0, \in k[t]$. Since q(t) = $\beta \prod_{1 \le i \le m} (t - \gamma_i)$ with β and γ_i 's in k, $\prod_{1 \le i \le m} (t - \gamma_i) \in (a - \alpha)A$. Since $a - \alpha$ is a prime element of A, there are an integer i $(1 \le i \le m)$ and an element h' of A such that $t-\gamma_i=(a-\alpha)h'$. Since $D_{i(i)}(t)=(a-\alpha)$ $D_{l(k')}(h')$ and l(t) = l(h'), this contradicts to the choice of t. Therefore $\bar{\psi}$ is injective, and it is easy to see that ρ is quasi-finite since each fibre of f (or g) has dimension 1.
- (4) Since ρ is a birational quasi-finite morphism and since X and Z are normal, ρ is an open immersion by the Main Theorem of Zariski (cf. [1]). The image $\rho(X)$ is an affine open set. Since G_{σ} acts on Z and ρ commutes with the G_{σ} -actions on X and Z, it is easy to see that $\rho(X)$ has the complement of codimension two in Z. Then $\rho(X) = Z$. Hence $A = A_0[t]$.

Now the "if" part of Theorem 1 follows easily from Lemmas

2 and 3. The "only if" part is obvious. Thus, Theorem 1 is completely proved.

Remarks. (1) Lemma 3 is false if A is not a unique factorization domain, as is shown in the following example: Let k be an algebraically closed field of characteristic $\neq 2$. Let $A = k[t, X, Y] / (Y^2 - tX - 1)$. A is a rational, regular k-domain, but A is not a unique factorization domain. In fact, A is the affine ring of an affine surface of the form: $\mathbf{P}^1 \times \mathbf{P}^1$ – (an ample irreducible curve). Define a G_a -action on Spec(A) by a k-homomorphism $\varphi: A \longrightarrow A[u]$; $\varphi(t) = t$, $\varphi(X) = X + 2Yu + tu^2$ and $\varphi(Y) = Y + tu$. Then the invariant subring of A is k[t]. Hence A is not a polynomial ring over k[t].

(2) Let k be an algebraically closed field and let A be a finitely generated normal k-domain. Then A^* is isomorphic to a direct product of k^* and a torsion-free **Z**-module of finite rank.

Proof. Let X be the affine variety defined by A and let V be a complete normal variety which contains X as a dense open set. Let Y be the complement of X in V. Then Y has pure codimension 1. Let Y_1, \ldots, Y_n be irreducible components of Y. If f is an invertible element of A, then $(f) = \sum_{1 \le i \le n} m_i Y_i$. Define a mapping $\nu: A^* \longrightarrow \bigoplus_{1 \le i \le n} \mathbf{Z}$ by $\nu(f) = (m_1, \ldots, m_n)$. Then ν is a homomorphism of abelian groups and Ker $\nu = k^*$. Therefore A^*/k^* is a Z-submodule of $\bigoplus_{1 \le i \le n} \mathbf{Z}$, hence A^*/k^* is a torsion-free \mathbf{Z} -module of finite rank. It is then obvious to see that A^* is a direct product of k^* and a free \mathbf{Z} -module A^*/k^* of finite rank.

3. Proof of Theorem 2

First of all, we shall treat the implication (iii)' \Longrightarrow (iii) of Theorem 2. Let k be an algebraically closed field of characteristic zero and let A be a finitely generated, regular, rational k-domain of dimension two. Assume that A is a unique factorization domain

and that $A^* = k^*$. Let X be the affine surface defined by A. Then there is a non-singular projective surface V containing X as an open set.

We shall summarize rather elementary results in the following two Lemmas.

Lemma 4. Let A, X and V be as above. If V-X is irreducible, then V is isomorphic to the projective plane \mathbf{P}^2 and V-X is isomorphic to a hyperplane.

Proof. V dominates a relatively minimal rational projective surface V_0 , which is isomorphic to \mathbf{P}^2 or F_n with $n \ge 0$ and $n \ne 1$, (cf. [8]). V is obtained from V_0 by repeating local quadratic transformations with non-singular centers; $V = V_r \longrightarrow V_{r-1} \longrightarrow \ldots \longrightarrow V_0$. Then $\mathrm{Pic}(V)$ is a direct sum of $\mathrm{Pic}(V_0)$ and a free \mathbf{Z} -module of rank r. The facts that $\mathrm{Pic}(V_0) \cong \mathbf{Z}$ (if $V_0 \cong \mathbf{P}^2$) or $\mathrm{Pic}(V_0) \cong \mathbf{Z} \oplus \mathbf{Z}$ (if $V_0 \cong F_n$) and that $\mathrm{Pic}(X) = (0)$ imply that $V = V_0 \cong \mathbf{P}^2$ if V - X is irreducible. If $V = \mathbf{P}^2$ and V - X is irreducible, it is easy to see that V - X is a hyperplane.

Lemma 5. Let A, X and V be as above. If X has an algebraic system F of closed curves which satisfies the condition (iii)' of Theorem 2, there is a linear pencil L of divisors on V such that a general member of L is irreducible and of multiplicity 1 and that for a general member C of L, $C \cap X$ is a member of F.

Proof. By the condition (iii)' there is a rational curve T and an irreducible subvariety W of $X \times T$ such that if we denote by p and q the canonical projections of W onto X and T respectively, then for any point $t \in T$, $W_t = q^{-1}(t)$ is a member of F, identifying W_t with $p(W_t)$ by p. Replacing T by an affine open set $(\neq \phi)$ of T, we may assume that T is an affine open set of A^1 , i. e., $T = \operatorname{Spec}(k[u, g(u)^{-1}])$ with $g(u) \neq 0$ and $g(u) \in k[u]$. Let $R = k[u, g(u)^{-1}]$.

Then the affine algebra k[W] of W is of the form $k[W] = A \otimes R/I$, where I is a prime ideal of $A \otimes R$. The condition (iii)' implies that the canonical homomorphism $\rho: A \longrightarrow A \otimes R \longrightarrow k[W]$ $(a \longmapsto a \otimes 1 \pmod{I})$ yields an isomorphism $\rho: k(X) \xrightarrow{\sim} k(W)$. Namely we have a commutative diagram,

We shall identify A with a subalgebra $\rho(A)$ of k[W] and k(X) with k(W) by ρ . Since A is a unique factorization domain and k[W] is finitely generated over A, there exists a set of prime elements (b_1, \ldots, b_r) of A such that

$$A \hookrightarrow k \lceil W \rceil \hookrightarrow A \lceil 1/b_1, \ldots, 1/b_r \rceil$$
.

Let $\bar{u}=1 \otimes u \pmod{I}$ and write $\bar{u}=a_1/a_0$, where $a_0, a_1 \in A$, $(a_0, a_1)=1$ and $a_0=b_1'^1 \dots b_r'^r$ with non-negative integers e_1, \dots, e_r . Then for any point $\alpha \in T(k) \subset k$, $(\bar{u}-\alpha)A[1/b_1, \dots, 1/b_r]=(a_1-\alpha_0a)$ $A[1/b_1, \dots, 1/b_r]$. This implies that the curve on X defined by $a_1-\alpha a_0$ has support in the union of $p(W_a)$ and the curves defined by b_i $(i=1,\dots,r)$. Therefore, for any point $(\beta, \gamma) \in \mathbf{P}^1$ the divisor $(a_1\beta-a_0\gamma)$ on V can be written in the form; $(a_1\beta-a_0\gamma)=C_a+D_0+D_1-D_2$, where the following conditions are satisfied:

- (1) $\alpha = \gamma/\beta$.
- (2) C_a , $D_2 > 0$; D_0 , $D_1 \ge 0$; Supp $(D_1) \cup$ Supp $(D_2) \subset V X$; Supp (D_0) is contained in the union of the closures in V of the curves on X defined by $b_i = 0$ for i = 1, ..., r; D_0 , D_1 and D_2 are fixed divisors (independent of α).
- (3) For a general point α of \mathbf{P}^1 , C_{α} is irreducible and $C_{\alpha} \cap X = p(W_{\alpha})$.

Then the divisors $\{C_{\alpha}\}_{{\alpha}\in\mathbb{P}^1}$ form a linear pencil L. From the construction of L, a general member of L is irreducible and of multiplicity 1. q. e. d.

Now we shall prove the implication (iii)' ⇒ (iii) of Theorem By the second theorem of Bertini, a general member C of the linear pencil L constructed in Lemma 5 has no singular points outside base points of L. Therefore, $C \cap X$ is isomorphic to the affine line A^1 , and L has at most one base point which will be situated on V-X if it exists. Let $f: V \longrightarrow \mathbf{P}^1$ be the rational mapping defined by L, which is regular outside a base point. If L has a base point $P \in V-X$, there exists a succession of locally quadratic transformations $T: V^* \longrightarrow V$ with centers P and its infinitely near base points of L such that the linear system L^* on V^* , which is the total transform of L by T deleted all fixed components, has no base points. Let $f^*: V^* \longrightarrow \mathbf{P}^1$ be the morphism defined by L^* . Then it is not hard to show that for a general member C^* of L^* , $C^* \cap X$ is a member of the algebraic system F on X fixed in the condition (iii)' of Theorem 2 and that the restriction of f^* onto X ($\subset V^*$) is identical with the restriction of f onto X.

Replacing V, L and f by V^* , L^* and f^* respectively, we may assume that L has no base points. Then a general member C of L is non-singular and rational. Hence C is isomorphic to \mathbf{P}^1 . Since $C \cap X$ is isomorphic to \mathbf{A}^1 , C cuts an irreducible component E of V-X at only one point. Since the characteristic of k is zero, the restriction of f onto E yields a birational mapping $f|_E:E\longrightarrow \mathbf{P}^1$. This implies, in particular, that a general member C of L cuts E transversally at only one point. Then there is an affine open set $U(\neq \phi)$ of \mathbf{P}^1 such that $f^{-1}(U)$ is a trivial \mathbf{P}^1 -bundle and that $E \cap f^{-1}(U)$ is a section of $f^{-1}(U)$ (cf. [2], Theorem 1.8). Then $f^{-1}(U) \cap X = f^{-1}(U) - E \cap f^{-1}(U)$ is a trivial \mathbf{A}^1 -bundle over U.

On the other hand, $X-f^{-1}(U) \cap X$ consists of a finitely many (mutually distinct) irreducible curves G_1, \ldots, G_r , which are defined

by prime elements a_1, \ldots, a_r of A respectively. Then $f^{-1}(U) \cap X = \operatorname{Spec}(A[a^{-1}])$ where $a = a_1 \ldots a_r$. Let $U = \operatorname{Spec}(B)$. Then B is a subring of $A[a^{-1}]$, and there exists an element t of A such that $A[a^{-1}] = B[t]$ (= a polynomial ring over B). Since $A^* = k^*$ and A is a unique factorization domain, $(A[a^{-1}])^*/k^* = a$ free **Z**-module of rank r generated by a_1, \ldots, a_r . Since $A[a^{-1}] = B[t]$, we have $(A[a^{-1}])^* = B^*$. If we write B in the form: $B = k[u, g(u)^{-1}]$ with $u \in B$ and $g(u) = \prod_{1 \le i \le r} (u - \alpha_i) \in k[u]$ $(\alpha_1, \ldots, \alpha_r)$ being mutually distinct elements of k), we have that r = s.

We shall show that f(X) is an affine open set of \mathbf{P}^1 . Assume the contrary: $f(X) = \mathbf{P}^1$. Here we may assume that V - X has more than two irreducible components. In fact, if V-X is irreducible, Lemma 4 says that V is isomorphic to \mathbf{P}^2 and V-X is isomorphic to a hyperplane. Therefore X is isomorphic to A^2 , and we have nothing to prove. Now since L has no base point and a general member of L cuts V-X transversally at only one point of the irreducible component E of V-X, the irreducible components of V-X other than E correspond to a finite number of points Q_1, \ldots Q_m of \mathbf{P}^1 by f, i. e., $f(V-X \cup E) = \{Q_1, \ldots, Q_m\}$. Then the assumption that $f(X) = \mathbf{P}^1$ implies that for every $i(1 \le i \le m)$, $f^{-1}(Q_i) \cap X$ is not empty and consists of a finite number of irreducible curves of X which belong to $\{G_1, \ldots, G_r\}$. We may assume that $\bigcup_{1 \le i \le m} (f^{-i}(Q_i) \cap X) = G_1 \cup \ldots \cup G_{r'}, \text{ with } r' \le r. \text{ Let } f(G_{r'+1} \cup \ldots \cup G_r) =$ $\{Q_{m+1}, \ldots, Q_{n}\}$. Then s'=s+1 since U is obtained from \mathbf{P}^{1} deleting the points $u = \alpha_1, \dots, u = \alpha$, and the point of infinity $u = \infty$, and $s' \le r$ since all irreducible curves of $X-f^{-1}(U)\cap X$ are sent onto the points $Q_1, \ldots, Q_{s'}$, by f. However, this is absurd since r=s. Therefore

Let $f(X) = \operatorname{Spec}(A_0)$. Then A_0 is a subring of A. Moreover, there is an element a_0 of A_0 such that $U = \operatorname{Spec}(A_0[a_0^{-1}])$, $f^{-1}(U) \cap X = \operatorname{Spec}(A[a_0^{-1}])$ and that $A[a_0^{-1}] = A[a_0^{-1}][t] = a$ polynomial ring over $A_0[a_0^{-1}]$ with $t \in A$. Now define a locally finite iterative higher derivation $D = \{D_0 = id., D_1, \ldots\}$ by setting $D_0 = (1/i!)D_0'$,

f(X) is an affine open set of \mathbf{P}^1 .

 $D_1(b) = 0$ for any element b of A_0 and $D_1(t) = a_0^{\alpha}$ with sufficiently large integer α , (cf. [7], Theorem 2.9 and its proof, or Appendix). Therefore there is a non-trivial G_a -action on X. We have thus proved the implication (iii)' \Longrightarrow (iii) in Theorem 2.

Conversely, assume the condition (iii). Let $\sigma: G_{\bullet} \times X \longrightarrow X$ be the given G_a -action on X. Let $\Phi = (\sigma, p_2) : G_a \times X \longrightarrow X \times X, p_2$ being the projection of $G_a \times X$ to X. Let $\Gamma = \Phi(G_a \times X)$ and let $\overline{\Gamma}$ be the closure of Γ in $X \times X$. We know by ([3], Theorems 2.1 and 2.3) that there exists a G_a -stable open set $U(\neq \phi)$ of X such that there exists a quotient variety Y (in the sense of [3]) of U by the induced action of G_a . Then since the projection $p: U \longrightarrow Y$ is faithfully flat and U is rational, Y is isomorphic to the affine line deleted a finitely many points, (if $Y=\mathbf{P}^1$, replace U by $U-p^{-1}$ (a Then U is a G_{α} -homogeneous space over Y (cf. [5]). Therefore U/Y has a section T' (cf. Théorème 4.13, *ibid.*). Let T be the closure of T' in X. Then T meets (transversally) with a general G_a -orbit at only one point. Let $\tilde{F} = (X \times T) \cap \overline{\Gamma}$. Then \tilde{F} gives rise to a required algebraic system F on X satisfying the condition (iii), shrinking T to a smaller open set of T if necessary. This completes the proof of Theorem 2.

4. Proof of Theorem3

We shall start with a less restrictive situation and add the conditions of Theorem 3 step by step.

Let k be an algebraically closed field of characteristic zero and let X be an affine non-singular surface defined by an affine k-domain A such that A is a unique factorization domain and $A^* = k^*$. Assume that there exists a maximal ideal m of A which is generated by two elements: $m = a_1A + a_2A$ with a_1 , $a_2 \in A$. Let C_1 and C_2 be curves defined by a_1 and a_2 respectively. We may assume without loss of generality that C_1 and C_2 are irreducible. Let v be the point of X corresponding to m. Then $C_1 \cap C_2 = \{v\}$, C_1 and C_2

intersect transversally at v, and v is a non-singular point on C_1 and C_2 .

Lemma 6. Under the above situation assume moreover that C_1 is non-singular and has only one place at infinity. Then C_1 is rational. For any element α of k, denote by C_2^{α} the curve on X defined by $a_2 - \alpha$. Then for almost all α of k, C_2^{α} is irreducible, $C_1 \cap C_2^{\alpha} = \{v_{\alpha}\}$ and C_1^{α} and C_2^{α} intersect transversally at v_{α} .

Proof. Put $d=a_2\pmod{a_1A}$. Then d is a regular function on C_1 . Let \bar{C}_1 be a non-singular irreducible complete curve containing C_1 and let $P_{\infty}=\bar{C}_1-C_1$. Denote by w the normalized discrete valuation corresponding to P_{∞} . Then $(d)=v+w(d)P_{\infty}$. Hence w(d)=-1. For any element α of k, $w(d-\alpha)=w(d(1-\alpha d^{-1}))=w(d)=-1$. Hence $(d-\alpha)=v_\alpha-P_\infty$, where $C_1\cap C_2^\alpha=\{v_\alpha\}$. C_1 and C_2^α intersect transversally at v_α . Since $(d)=v-P_\infty$, C_1 must be rational. q. e. d.

Lemma 7. Let A be an affine k-domain and let a be an element of A-k. Assume the following conditions:

- (1) A is a unique factorization domain.
- (2) For any $\alpha \in k$, $a \alpha$ is a prime element of A.
- (3) $A^* = k^*$.

Let S=k[a]-0 and let $A'=S^{-1}A$. Then we have:

- (i) A' is a unique factorization domain.
- (ii) $A'^* = K^*$ where K = k(a).
- (iii) The quotient field Q(A') of A' is a regular extension of K. Therefore A' defines an affine variety defined over K with dimension one less than the dimension of the variety defined by A over k.

Proof. The assertion (i) is well-known. If $A'^* \neq K^*$, there exist elements x and y of $A-k\lceil a \rceil$ such that $xy = \varphi(a) \neq 0$, $\in k\lceil a \rceil$.

Since A is a unique factorization domain and $a-\alpha$ is a prime element of A for all α of k, x and $y \in k[a]$. This is a contradiction, and the assertion (ii) is proved. As for the assertion (iii), we have only to show that K is algebraically closed in Q(A') since $\operatorname{char}(k) = 0$. Assume that f/g is algebraic over K, f and g being elements of A such that (f, g) = 1. Then there exist $\varphi_0, \ldots, \varphi_n$ of k[a] such that the greatest common divisor of $\varphi_0, \ldots, \varphi_n$ is 1 and that

$$\varphi_0(f/g)^n + \varphi_1(f/g)^{n-1} + \ldots + \varphi_n = 0.$$

Then it is easy to see that f and g divide φ_* and φ_0 respectively. Hence f and $g \in k[a]$. Thus $f/g \in K$.

Lemma 8. Besides the assumptions of Lemma 6, assume the following additional conditions:

- (1) C_2 has only one place at infinity.
- (2) There exists a non-singular complete surface V containing X, on which the closure \bar{C}_2 of C_2 is non-singular and $(a_2)_0 = \bar{C}_2$.
- (3) For any element α of k, $a_2-\alpha$ is a prime element of A. Then for almost all element α of k, C_2^{α} is rational and has only one place at infinity.

Proof. Our proof consists of several steps.

(I) For a general element $\alpha \in k$, the principal divisor $(a_2 - \alpha)$ on V is of the form; $(a_2 - \alpha) = \bar{C}_2^{\alpha} + D - (\text{the polar divisor})$, where $D \ge 0$ is contained in V - X and independent of α . Specializing α to 0, we have: $(a_2) = \bar{C}_2 - (\text{the polar divisor})$ by the last condition of the assumption (2). Hence D = 0. It is then easy to show that there exists a linear pencil L of divisors on V such that \bar{C}_2 is a member of L and the closure \bar{C}_2^{α} of C_2^{α} is a member of L for almost all α of L. If L has a base point (which is the unique base point), by repeating the blowings-up with center at the base point and its appropriate infinitely near points, we have a non-singular complete

surface \tilde{V} containing X and a linear pencil \tilde{L} of divisors on \tilde{V} , which is obtained from the total transform of L deleting the fixed components, such that:

- \tilde{L} has no base points.
- (ii) The closure \tilde{C}_2 of C_2 and the closure \tilde{C}_2^{α} of C_2^{α} (for almost all α of k) in \tilde{V} are members of \tilde{L} .
- (iii) The closure \tilde{C}_1 of C_1 does not pass through the point $\tilde{C}_2 C_2$.
- Let $p: \widetilde{V} \longrightarrow P$ be the morphism defined by \widetilde{L} , and let $y_0 = p(\widetilde{C}_2)$. Then there exists an open neighbourhood Y of y_0 in \mathbf{P}^1 such that \widetilde{C}_1 intersects transversally with each fibre $p^{-1}(y)$ for all $y \in Y$. Then by [2, p. 3], $\widetilde{C}_1 \cap p^{-1}(Y)$ is p-ample, and $p: W = p^{-1}(Y) \longrightarrow Y$ is flat. Restricting Y to a smaller open neighbourhood of y_0 if necessary, we may assume that $p: W \longrightarrow Y$ is smooth. The curve $\widetilde{C}_1 \cap W$ gives rise to a section s of p.
- (II) Since $p: W \longrightarrow Y$ is a smooth projective morphism whose fibres are geometrically integral curves, the Picard scheme $\operatorname{Pic}_{W/Y}$ is representable and $\operatorname{Pic}_{W/Y}^0$ is a smooth group scheme over Y. Moreover, for any Y-scheme T, $\operatorname{Pic}(W \times T) = \operatorname{Pic}_{W/Y}(T) \times \operatorname{Pic}(T)$ (a direct product) since p has a section s. Therefore $\operatorname{Pic}_{W/Y} \times T = \operatorname{Pic}_{W \times T/T}$ for any Y-scheme T. In particular $(\operatorname{Pic}_{W/Y})_{x_0} \cong \operatorname{Pic}_{x_2/K} \cong \mathbf{Z}$. Since $\operatorname{Pic}_{W/Y}^0$ is smooth and connected, $\operatorname{Pic}_{W/Y}^0 = 0$. Let K be the function field of Y and let $W_K = W \times \operatorname{Spec}(K)$. Then $\operatorname{Pic}_{WK/K}^0 = 0$. This implies that the arithmetic genus of W_K is zero.
- (III) W_{κ} is in fact the non-singular complete model of the affine curve C defined by $A' = S^{-1}A$ over $K = k(a_2)$, where $S = K[a_2] = 0$ (cf. Lemma 2). C has a K-rational point P which is provided by the sectional curve $\tilde{C}_1 \cap W$. Since the arithmetic genus of W_{κ} is zero and W_{κ} has a K-rational point P, W_{κ} is K-isomorphic to \mathbf{P}^1 . (IV) Since $C \subset W_{\kappa}$ is defined over K, $W_{\kappa} = C$ consists of a finite number of K-rational prime cycles. Introduce a homogenneous coordinate (x_0, x_1) in \mathbf{P}_{κ}^1 such that P = (1, 0) and let $x = x_0/x_1$. Then there exist irreducible polynomials f_1, \ldots, f_n of K[x]

such that the affine ring of C-P is $K[x, f_1^{-1}, \ldots, f_n^{-1}]$. Then $(K[x, f_1^{-1}, \ldots, f_n^{-1}])^* \cong K^* \times \mathbf{Z}^n$. However since the affine ring A' of C is a unique factorization domain and $A'^* = K^*$, we must have n = 1. This means that $W_K - C$ consists of only one K-rational prime cycle. On the other hand, P is linearly equivalent to the K-rational prime cycle $W_K - C$ with an appropriate multiplicity. This implies that $W_K - C$ consists of only one K-rational point. Hence C is K-isomorphic to the affine line A^1 . This implies that for almost all α of k, the curve C_2^{α} defined by $\alpha_2 - \alpha$ is isomorphic to A^1 and that C_2^{α} has therefore only one place at infinity. This completes the proof of Lemma 8.

Lemma 8 says that X is rational and has a rational pencil of curves $\{C_2^{\alpha} : \alpha \in k\}$ satisfying the condition (iii)' of Theorem 2. Thus we have proved our Theorem 3, applying Theorem 2. Finally we shall remark that if X is isomorphic to the affine plane all conditions of our Theorem 3 are satisfied.

DEPARTMENT OF MATHEMATICS
OSAKA UNIVERSITY
TOYONAKA, OSAKA 560, JAPAN.

References

- [1] A. Grothendieck et J. Dieudonné, Éléments de Géométrie Algébrique, Inst. Hautes Etudes Sci. Publ. Math., 11 (1961), Paris.
- [2] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90 (1968), 1-54.
- [3] M. Miyanishi, Some remarks on the actions of the additive group schemes, J. Math. Kyoto Univ., 10 (1970), 189—205.
- [4] M. Miyanishi, Ga-action of the affine plane, Nagoya Math. J., 41 (1971), 97-100.
- [5] M. Miyanishi, Introduction à la théorie des sites et son application à la construction des préschémas quotients, Sém. Math. Sup., 1970, Univ. Montreal, Canada.
- [6] M. Miyanishi, Some remarks on polynomial rings, Osaka J. Math., 10 (1973), 617

 -624.
- [7] M. Miyanishi and Y. Nakai, Some remarks on strongly invariant rings, Osaka J. Math., 12, (1975). 1-17
- [8] M. Nagata, On rational surfaces I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. of Kyoto, 32 (1960), 351—370.

[9] C. P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. Math., 94 (1971), 69-88.