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1. Statements of results

C.P. Ramanujam [9] characterized the affine plane over the
complex field as follows: Let X be a non-singular algebraic surface
which is contractible and simply connected at infinity. Then X
is isomorphic to the affine two space as an algebraic variety. The
purpose of the present article is to prove the following algebraic

characterizations of the affine plane.

Theorem 1. Let k be an algebraically closed field of arbitrary
characteristic, let A be a finitely generated k-domain of dimension two
and let X be the affine surface defined by A. Then X is isomorphic to
the affine plane over k if and only if the following conditions are
satisfied :

(1) A is a unique factorization domain.

(ii) The set A* of all invertible elements of A coincides with k* =
k—(0).

(i)  There is a non-trivial action of the additive group scheme G,
on X defined over k.

Theorem 2. Let k be an algebraically closed field of characteristic

zero, let A be a finitely generated, regular, rational k-domain of dimen-
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sion two and let X be the affine surface defined by A.
If the conditions (1) and (ii) of Theorem 1 are satisfied, the condition
(ii1) is equivalent to the condition :
(ii1)"  There is an algebraic system F of closed curves on X paramet-
rized by a rational curve such that a general member of F is an
affine rational curve with only one place at infinity and that

two distinct general members of F have no intersection on X.

Theorem 3. Let k be an algebraically closed field of characteristic
zero and let X be an affine non-singular surface defined by an affine
k-domain A. Assume that the following conditions are satisfied :

(1) A is a unique factorization domain and A* =k*.

(2) There exist non-singular irreducible closed curves C, and C, on
X such that C, N Co={v}, and C, and C, intersect transversally at v.

(3) C: (@resp. C;) has only one place at infinity.

4) Let a;, be a prime element of A defining the curve C, Then
a,—a is a prime element of A for all ack.

(5) There is a non-singular complete surface V containing X such
that the closure C, of C; in V is non-singular and (a.),=C..

Then X is isomorphic to the affine plane A’.

2. Proof of Theorem 1.

Let % be a field, let A be a k-domain and let X=Spec(4).
An action of the additive group scheme G, on X defined over & can
be described by means of a locally finite iterative higher derivation
D on A. (For the definition and relevant results, see [3] or [4].)
Let A, be the invariant subring of A with respect to the given

G,-action. Then we have

Lemma 1. Let %k, A and A, be as above. Then A, is an inert
subring of A. Namely, if a=aa. with a€A, and ai, a: EA, then
both a, and a, belong to A, In particular,if A is a unique factorization

domain and if Ao is a noetherian ring, A, is a unique jfactorization
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domain.
For the proof, see [7].

It seems difficult in general to show or deny that given a finitely
generated k-domain A and a non-trivial G,-action on Spec(A), the

invariant subring A, is finitely generated over 2. However we have

Lemma 2. Let k be an algebraically closed field, let A be a
finitely generated, unique factorization domain defined over k of dimension
two and with A* = k*. Assume that there is a non-trivial G,-action on
Spec(A) defined over k. Then the invariant subring A, of A is a

one-parameter polynomial ring over k.

Proof. Let K and K, be the quotient fields of A and A,
respectively. It is known [7] that there are an element a of A,
and an element ¢ of A such that A[a™']=4.[a"'][¢]. Since A[a™']
is a unique factorization domain, A.[a™'] is a unique factorization
domain of dimension 1 and is finitely generated over k. There-
fore A,[a™'], (hence A[a™']), is rational over k. Namely K,=£k(u)
and K=k (u, t).

We shall show that there is an element ¢ of A, such that K,=
k(c). Since K,=k(u)=Q(A,) (where Q( ) means the quotient
field), there are elements a and b of A, such thatu=a/b. Consider
a subring A,=k[a, b] of A, and let C be the normalization
of A, in Q(A,) =K,. Then C is finitely generated over k. Since
the assumption that A* =k* implies that C* =%*, C is a one-
parameter polynomial ring over k. Write C=k[c] with c€A,. Then
o=k(c). ,

We shall show that A,=k[c]. Otherwise, take any element a
of A,—k[c] and consider a subring A,=k[c, a] of A,. Let C’ be
the normalization of A, in K,. Then C is finitely generated over
k and C*=k*. Hence C is a one-parameter polynomial ring over
k. Moreover, since Q(C) =Q(C’) =K, we should have C=C’". Then
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a€k[c], and this is a contradiction. q. e d.

The key to prove the “if” part of Theorem 1 is

Lemma 3. Let k be an algebraically closed field of arbitrary
characteristic and let A be a finitely generated k-domain of dimension
two. Assume the following conditions :

(1) A is a unique factorization domain.
(ii) There is a non-trivial G, action on Spec(A) defined over k.
(ii) The invariant subring A, of A with respect to the G.-action
is finitely generated over k.
Then A is a one-parameter polynomial ring over A,.

Proof. Our proof consists of several steps.

(1) Let X=Spec(4), let Y=Spec(4,) and let f: X——Y be the
canonical morphism defined by the canonical injection A,——A.
Since A, is a finitely generated, unique factorization domain over
k, Y is isomorphic to the affine line which might be deleted a
finitely many points. Hence there is an element a of A, such that
Ao=k[a, h(a)~'], where h(@@)#0, €k[al.

(2) Let D={D,, D,...} be the locally finite iterative higher deri-
vation on A associated with the given G,-action on Spec(4) and
let ¢ : A—A[u] (v being an indeterminate) be the k-algebra
homomorphism defined by ¢ () =), D:(x)u' for every zx of A.
Define the length I(z) of an elemerﬁo xz of A by I(x)=deg.¢().
It is then easy to show that if [(z)#0 and I(zx) is the shortest
among the lengths of all elements of A—A, Di(z),..., Din(x) are
G,-invariant (cf. [7], Appendix). Choose an element ¢ in A—A4,
so that (i) I(¢) is the shortest and that (i) if we write D, (t)
=cai'...ai" with an invertible element ¢ and mutually distinct
prime elements ai, ..., a,, then } a; is minimal. Then for any «
of By t—a is a prime elemerxli's(;f A. For, otherwise, t—a=tt,
with ¢, t;, €A. Then either ¢ or ¢, has the same length as ¢, and
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the other one is G,-invariant. Assume that ¢, is G,-invariant, and let
ay=Diu, (t). Then Dy (t) =ait,, which is contrary to the choice
of ¢t since #, is not invertible.

(3) Let B=A[t] and let Z=Spec(B). Then, by the canonical
inclusions Ag——B—2->A, Z is a Y-scheme (with the projection g:
Z——Y), and we have a Y-morphism p: X——Z such that f=go p.
p is birational since there is an element ¢ of A, such that A[c¢™]
=A,[c™'] [¢t] (cf. [7], Appendix or the proof of Lemma 2). G,
acts on Z via the restriction of the locally finite iterative higher
derivation D on B, and p commutes with the G,-actions on X and
Z. On the other hand, each fibre of f is irreducible since a—a
(which defines the fibre of f at the point y:a=a) is a prime
element in A for every element a of 2 with A(a) #0 (cf. Lemma
1). We shall show that f is surjective and that for every y&Y, the
restriction p, of o onto f7'(y) is a generically surjective morphism
from f~'(y) to g7'(y). For this purpose it suffices to show that
for any ack such that A(a)+#0, ¢: B/(a—a)B—A/(a—a)A
is injective, where ¢ is induced from ¢. Since B/(a—a)B=k[t],
assume that ¢(g(z)) =0 for some ¢(¢) #0, €k[t]. Since q(t) =
ﬁ: IT (¢—y) with 8 and 7/'s in k,l l:I (t—r)E(a—a)A. Since a—a
iss.'f;)rime element of A, there arsesgn integer 7 (1<i<m) and an
element A’ of A such that t—y.=(a—a)h’. Since D;»(¢t) =(a—a)
Diuwn(h’) and [(¢) =I(h’), this contradicts to the choice of ¢
Therefore ¢ is injective, and it is easy to see that p is quasi-finite
since each fibre of f (or g) has dimension 1.

(4) Since p is a birational quasi-finite morphism and since X
and Z are normal, p is an open immersion by the Main Theorem
of Zariski (cf. [1]). The image p(X) is an affine open set. Since
G, acts on Z and p commutes with the G,-actions on X and Z,
it is easy to see that o(X) has the complement of codimension two
in Z. Then p(X)=Z. Hence A=A,[¢]-

Now the “if” part of Theorem 1 follows easily from Lemmas
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2 and 3. The “only if” part is obvious. Thus, Theorem | is com-
pletely proved.

Remarks. (1) Lemma 3 is false if A is not a unique factori-
zation domain, as is shown in the following example : Let £ be an
algebraically closed field of characteristic #2. Let A=k[t, X, Y]/
(Y?*—tX—1). A is a rational, regular k-domain, but A is not a
unique factorization domain. In fact, A is the affine ring of an
affine surface of the form: P'xP'— (an ample irreducible curve).
Define a G,-action on Spec(A) by a k-homomorphism ¢ : A—
Alul; o) =t, o(X) =X+ 2Yu+#t’ and ¢(Y) =Y +tu. Then the
invariant subring of A is 2[¢]. Hence A is not a polynomial ring
over k[¢].

(2) Let k& be an algebraically closed field and let A be a finitely
generated normal k-domain. Then A* is isomorphic to a direct

product of 2* and a torsion-free Z-module of finite rank.

Proof. Let X be the affine variety defined by A and let V be
a complete normal variety which contains X as a dense open set.
Let Y be the complement of X in V. Then Y has pure codimension
1. Let Y,... Y, be irreducible components of Y. If fis an
invertible element of A, then (f)= >} m;Y.. Define a mapping

viA*—— @ Z by v(f) =@y .. m:)sjsnThen v i1s a homomorphism
of abeliar:s:gsr"oups and Ker v==%*. Therefore A*/k* is a Z-submod-
ule of @ Z, hence A*/k* is a torsion-free Z-module of finite
rank. 1Istsn then obvious to see that A* is a direct product of &*

and a free Z-module A*/k* of finite rank.

3. Proof of Theorem 2

First of all, we shall treat the implication (iii)’=—= (iii) of
Theorem 2. Letk be an algebraically closed field of characteristic
zero and let A be a finitely generated, regular, rational k-domain

of dimension two. Assume that A is a unique factorization domain
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and that A*=k%*. Let X be the affine surface defined by A.
Then there is a non-singular projective surface V containing X as
an open set.

We shall summarize rather elementary results in the following

two Lemmas.

Lemma 4. Let A, X and V be as above. If V—X is irreducible,
then V is isomorphic to the projective plane P* and V—X is isomorphic

to a hyperplane.

Proof. V dominates a relatively minimal rational projective
surface Vi, which is isomorphic to P? or F, with n>0 and n+#1, (cf.
[8]). V is obtained from V, by repeating local quadratic transfor-

mations with non-singular centers ; V=V, V.. Voo
Then Pic(V) is a direct sum of Pic(V,) and a free Z-module of
rank . The facts that Pic(V,) ZZ(f V,=P?) or Pic(V)) =ZPZ (f
Vo=F,) and that Pic(X)=(0) imply that V=V,= P*iIf V-X is
irreducible. If V=P? and V—X is irreducible, it is easy to see
that V—X is a hyperplane. q.e. d.

Lemma 5. Let A, X and V be as above. If X has an algebraic
system F of closed curves which satisfies the condition (i1)’ of Theorem
2, there is a lknear pencil L of divisors on V such that a general member

of L is irreducible and of multiplicity 1 and that for a general member
Cof L, CNX is a member of F.

Proof. By the condition (iii)’ there is a rational curve 7 and
an irreducible subvariety W of XX 7T such that if we denote by p
and ¢ the canonical projections of W onto X and T respectively,
then for any point t&T, W,=¢ '(¢) is a member of F, identifying
W, with p(W,) by p. Replacing T by an affine open set (#¢)
of T, we may assume that 7 is an affine open set of A', l.e.,, T=
Spec (k[u, gw)']) with g(w) #0 and g(u) €k[u]. Let R=k[u, g(u)']-
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Then the affine algebra [ W] of W is of the form A[ W]=AR®R/I,
1]

where I is a prime ideal of AQR. The condition (iii)” implies that

the canonical homomorphism p : A—AQRR——k[W] (a —a®1

(mod I)) yields an isomorphism p:k(X)_~,k(W). Namely we
have a commutative diagram,

/ﬁ(_ ? W]
k(X) p E(W)

We shall identify A with a subalgebra p(A) of A[W] and k(X)
with (W) by p. Since A is a unique factorization domain and k[ W]

is finitely generated over A, there exists a set of prime elements
(byy .+ b,) of A such that

Ak [W]—A[1/by, . .., 1/5,].

Let a=1®u (mod I) and write @=a./a,, where a, a.EA4,
(ao, a;) =1 and a,=b,""...b,' with non-negative integers e, ... e,.
Then for any point aeT (k) Ck, (a—a)A[l/by, ..., 1/b,]= (ai—aa)
A[l/by,. .., 1/b,]. This implies that the curve on X defined by
a,—aa, has support in the union of p(W.,) and the curves defined
by b; G=1,..., r). Therefore, for any point (3, y) €P' the divisor
(@B—aey) on V can be written in the form; (a.f—awy) =Ca+Ds
+D,—D,, where the following conditions are satisfied :

(1 a=y/p.

(2) C., D:>0; Dy, D>0; Supp(D)USupp(D)CV-X;
Supp (D) is contained in the union of the closures in V of the
curves on X defined by b,=0 for i=1,...,7r; Dy, D, and D, are
fixed divisors (independent of «).

(3) For a general point @ of P!, C. is irreducible and C.NX
=p(W.).
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Then the divisors {C.}.cr! form a linear pencil L. From the
construction of L, a general member of L is irreducible and of
multiplicity 1. g.e. d.

Now we shall prove the implication (iii))’== (iii) of Theorem
2. By the second theorem of Bertini, a general member C of
the linear pencil L constructed in Lemma 5 has no singular points
outside base points of L. Therefore, CNX is isomorphic to the
affine line A', and L has at most one base point which will be
situated on V—X if it exists. Let f: V——P"' be the rational mapping
defined by L, which is regular outside a base point. If L has a
base point P (€ V —X), there exists a succession of locally quadratic
transformations T : V*——V with centers P and its infinitely near
base points of L such that the linear system L* on V*, which is
the total transform of L by T deleted all fixed components, has
no base points. Let f*:V*——P' be the morphism defined by
L*. Then it is not hard to show that for a general member C*
of L*, C*N X is a member of the algebraic system F on X fixed
in the condition (iii))’ of Theorem 2 and that the restriction of
f* onto X (CV*) is identical with the restriction of f onto X.

Replacing V, L and f by V*, L* and f* respectively, we may
assume that L has no base points. Then a general member C of
L is non-singular and rational. Hence C is isomorphic to P'. Since
CNX is isomorphic to A', C cuts an irreducible component E of
V—X at only one point. Since the characteristic of & is zero, the
restriction of f onto E yields a birational mapping f|s : E—P".
This implies, in particular, that a general member C of L cuts E
transversally at only one point. Then there is an affine open set
U(+# ¢) of P' such that f7'(U) is a trivial P'-bundle and that
Enf'(U) is a section of f'(U) (cf. [2], Theorem 1.8). Then
A ONX=F"U)—ENf*(U) is a trivial A'-bundle over U.

On the other hand, X—f7'(U) N X consists of a finitely many
(mutually distinct) irreducible curves G, .., G, which are defined
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by prime elements ai,..., a, of A respectively. Then f(U)NX
=Spec(4[a"']) where a=a,...a,. Let U=Spec(B). Then B
is a subring of A[a™'], and there exists an element ¢ of A -such
that A[a™']1=B[¢] (= a polynomial ring over B). Since A*=Fk*
and A is a unique factorization domain, (A[a™'])*/k*=a free
Z-module of rank r generated by ay,. .. a,. Since A[a™']=B[¢],
we have (A[a™'])* =B*. If we write B in the form: B==k[u, g(u)™]
with ueB and g) = II (u—a;,) €k[u] (as. . ., a, being mutually
distinct elements of &), lev':‘have that r=s. "

We shall show that' f(X) is an affine open set of P'. Assume
the contrary: f(X)=P'. Here we may assume that V—X has
more than two irreducible components. In fact, if V—Xis irreduc-
ible, Lemma 4 says that V is isomorphic to P*and V—X is isomor-
phi¢ to a hyperplane. Therefore X is isomorphic to A? and we
have nothing to prove. Now since L has no base point and a
general member of L cuts V—X transversally at only one point of
the irreducible component E of V—X, the irreducible components
of V—X other than E correspond to a finite number of points Q. . .,
Q. of P' by f,i.e, f(V—XUE)={Q.s..., Q.}. Then the assump-
tion that f(X)=P' implies that for every i(1<i<m), f(Q:) NX is
not empty and consists of a finite number of irreducible curves
of X which belong to {G..., G,}. We may assume that
,Ssm(f-i(Q‘) NX)=G,U...UG,, with¥<r. Let f(G,.s;U...UG,) =
{Qni1se -+ Q). Then s’=s541 since U is obtained from P' deleting
the points u =ay,. .., u=a, and the point of infinity ¥ =00, and s'<r
since all itrreducible curves of X—f'(U)NX are sent onto the points
Qs .. Q., by £ However, this is absurd since r=s. Therefore
f(X) is an affine open set of P

Let f(X) =Spec(4,). Then A, is a subring of A. Moreover,
there is an element a, of A, such that U=Spec(4i[a."']),
() N X=Spec(A[a,"']) and that A[a,"'] =A[a,"'][¢t] = a polyno-
mial ring over A,[a,”'] with t€A. Now define a locally finite itera-
tive higher derivation D= {Dy=id., Dy,...} by setting D;=(1/i!)Dj,
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D,(0) =0 for any element b of A, and D, (¢) =a; with sufficiently
large integer a, (cf. [7], Theorem 2.9 and its proof, or Appendix).
Therefore there is a non-trivial G,-action on X. We have thus
proved the implication (iii)’==(iii)) in Theorem 2. _

' Conversely, assume the condition (iii). Let ¢:G, x X——X be
the given G,-action on X. Let @= (o, p,) : G, X X—X X X, p, being
the projection of G, XX to X. Let I'=®(G,xX) and let I" be the
closure of I' in XxX. We know by ([3], Theorems 2.1 and 2. 3)
that there exists a G,-stable open set U(#¢) of X such that there
exists a quotient variety Y (in the sense of [3]) of U by the
induced action of G,. Then since the projection p: U—Y is
faithfully flat and U is rational, Y is isomorphic to the affine line
deleted a finitely many points, (if Y=P"', replace U by ‘U—pi(a
point)). Then U is a G,-homogeneous space over Y (cf. [3]).
Therefore U/Y has a section T” (cf. Théoréme 4,13, ibid.). | Le.t~
T be the closure of 77 in X. Then T meets (transversally) with a
general G,-orbit at only one point. Let F=(XxT)NI. Then F
gives rise to a required algebraic system F on X satisfying the
condition (iii), shrinking T to a smaller open set of T if necessary.

This completes the proof of Theorem 2.

4. Proof of Theorems3

We shall start with a less restrictive situation and add the con-
ditions of Theorem 3 step by step.

Let £ be an algebraically closed field of characteristic zero and
let X be an affine non-singular surface defined by-an affine k-
domain A such that A is a unique factorization domain and
A*=Fk*. Assume that there exists a maximal ideal m of A which is
generated by two elements: m:a,A+a2A with a,, a.&'A. Let C; and
C; be curves defined by a, and a, respectively. We may assume
without loss -of generality that C, and C; are irreducible. Let v be
the point of X corresponding to m. Then C,NC.= {v}, C, and C,
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intersect transversally at v, and v is a non-singular point on C,

and C,.

Lemma 6. Under the above situation assume moreover that C,
is non-singular and has only one place at infinity. Then C, is
rational. For any element a of k, denote by C; the curve on X defined
by a;—a. Then for almost all a of k, C; is irreducible, C,N C; =
{v.} and C, and C; intersect transversally at v..

Proof. Put d=a,(modulo a,A). Then d is a regular function
on C. Let C, be a non-singular irreducible complete curve con-
taining C, and let P.,=C,—C,. Denote by w the normalized discrete
valuation corresponding to P.. Then (d)=v+w(d)P.. Hence
w(d) =—1. For any element a of %k w({d—a)=w(d(l—ad™?))=
w(d)=—1. Hence (d—a)=v,—P., where C,NC; = {v.}. C, and C;
intersect transversally at v,. Since (d) =v—P., C, must be rational.

q.e.d.

Lemma 7. Let A be an affine k-domain and let a be an element
of A—k. Assume the following conditions :

(1) A is a unique factorization domain.

(2) For any ack, a—a is a prime element of A.

(3) A*=k*.
Let S=k[a]—0 and let A’=S8"'A. Then we have :

(1) A’ isa unique factorization domain.

(ii) A™=K* where K=Fk(a).

(iit) The quotient field Q(A’) of A’ is a regeular extension of
K. Therefore A’ defines an affine variety defined over K with dimension
one less than the dimension of the variety defined by A over k.

Proof. The assertion (i) is well-known. If A" #K*, there
exist elements x and y of A—k[a] such that zy=¢(a) #0, €k[a].
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Since A is a unique factorization domain and a—a is a prime
element of A for all @ of 2, and yek[a]. This is a contradiction,
and the assertion (ii) is proved. As for the assertion (iii), we
have only to show that K is algebraically closed in Q(A’) since
char(k) =0. Assume that f/g is algebraic over K, f and g being
elements of A such that (f, g) =1. Then there exist ¢y ..., ¢, of
k[a] such that the greatest common divisor of ¢ ..., ¢, is 1 and
that

o (f/g)" +o(f/e)" ' +. ..+ .= 0.

Then it is easy to see that f and g divide ¢, and ¢, respectively.
Hence f and g €k[a]. Thus f/g K. g-e. d.

Lemma 8. Besides the assumptions of Lemma 6, assume the
following additional conditions :

(1) C, has only one place at infinity.

(2) There exists a non-singular complete surface V containing X,
on which the closure C, of C, is non-singular and (a.).=C.

(8) For any element « of k, a;—a is a prime element of A.
Then for almost all element a of k, C; is rational and has only one

place at infinity.

Proof. Our proof consists of several steps.
(I) For a general element ack, the principal divisor (a,—a) on
V is of the form; (a,—a) =Cs+D— (the polar divisor), where D>0
is contained in V—X and independent of a. Specializing a to 0,
we have : (a,) =C,— (the polar divisor) by the last condition of the
assumption (2). Hence D=0. It is then easy to show that there
exists a linear pencil L of divisors on V such that C, is a member
of L and the closure C; of C; is a member of L for almost all «
of 2. If L has a base point (which is the unique base point), by
repeating the blowings-up with center at the base point and its

appropriate infinitely near points, we have a non-singular complete
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surface V containing X and a linear pencil L of divisors on V,
which is obtained from the total transform of L deleting the fixed
components, such that:

(1) L has no base points.

" (ii) The closure C, of C, and the closure C; of C; (for
almost all @ of ) in V are members of L.

(ii) The closure C, of C, does not pass through the point
C.—C..

Let p: V——P be the morphism defined by L, and let y,=p(C.).
Then there exists an open neighbourhood Y of y, in P' such that
C, intersects transversally with each fibre p~'(y) for all y&Y. Then
by [2, p-3], Cinp~'(Y) is p-ample, and p: W=p"'(Y)—Y is flat.
Restricting Y to a smaller open neighbourhood of y, if necessary,
we may assume that p: W—>sY is smooth. The curve C,N W
gives rise to a section s of p.

(IT) Since p: W——Y is a smooth projective morphism whose fibres
are geometrically integral curves, the Picard scheme Picy,y is repre-
sentable and Picy,y is a smooth group scheme over Y. Moreover,
for any Y-scheme 7, Pic(WxT)=Picw,(T) xPic(T) (a direct
product) since p has a sectiony s.  Therefore Picy,y X T=Picw.1/r
for any Y-scheme 7. In particular (Picw,y),OSPiccz/,.f:—’Z. Sirylc'c
Picy,y is smooth and connected, Picy,y=0. Let K be the function
field of Y and let Wx=Wx Spec(K). Then Pic},,«=0. This implies
that the arithmetic genus };)f Wk is zero. ‘.
(IIT) Wk 1s in fact the non-singular complete model of the affine
curve C defined by A’=S"'A over K=k(a,), where S=KTa,] —0
(cf. Lemma 2). C has a K-rational point P which is provided by
the sectional curve C; N W. Since the arithmetic genus of Wy is
zero and W, has a K-rational point P, W, is K-isomorphic to P
(IV) Since C (C Wy) is defined over K, Wx—C consists of a
finite number of K-rational prime cycles. Introduce a homo-
genneous coordinate (xo, z:) in Pk such that P=(1, 0) and let z=
zo/r. Then there exist irreducible polynomials fi,..., f, of K[x]
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such that the affine ring of C—P is K[z, fi',..., f']. Then (K[z,
oy fI)*=K* x2Z'. However since the affine ring A’ of C isa
unique factorization domain and A" =K*, we must have n=]1.
This means that Wx—C consists of only one K-rational prime cycle.
On the other hand, P is linearly equivalent to the K-rational prime
cycle Wix—C with an appropriate multiplicity. This implies that
Wy —C consists of only one K-rational point. Hence C is K-isomor-
phic to the affine line A'. This implies that for almost all a of %,
the curve C; defined by a, —a is isomorphic to A' and that Ci has
therefore only one place at infinity. This completes the proof

of Lemma 8.

Lemma 8 says that X is rational and has a rational pencil of
curves {C; ; ack} satisfying the condition (iii)’ of Theorem 2. Thus
we have proved our Theorem 3, applying Theorem 2. Finally we
shall remark that if X is isomorphic to the affine plane all con-

ditions of our Theorem 3 are satisfied.
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