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A Holder condition for Brownian local time

By
H. P. McKEAN, Jr.

(Communicated by Prof. K. Ito, November 20, 1961)

Given a standard Brownian motion on R' beginning at O,
H. Trotter [3] proved the (simultaneous) existence of the Jocal
times :

1 K¢, @) — lim Te3sure (s:a<x(s)<b, s<t)
' ’ bya b—a

t >0, ae R!

and derived the law

|t 0)—1(¢, a)| _ ]:
2a. P[w—lnllg}no V' 81gl/8 0 L
I give simple proofs leading to the sharper bound

im &0t A ~o /mosii ] _
2b. P[lb—lallgéw V28 lgl/g =2 n};lx i, =1,

2b is proved assuming t exists and is continuous in space ; afterwards,
I go back and prove the latter statement. H. Tanaka’s (unpublished)
expression for the local time as a stochastic integral :

3. P[%t(t, a) = max [x(¢)—a, 0]—max[ —a, 0]— S x(ds)] =1

s<t
2(8)>a

and the bound®
da. E[SP]1<1

for the functional

1 The support of the ONR, U.S. Govt. is gratefully acknowledged.
2 See, for example, E. B. Dynkin [1].
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. o) = S:f[x(S)]x(dS)—%S:fz[x(S)]ds

de. P[S: FLa(s)]ds < + oo] —1

are the basic tools for this. I want to thank H. Tanaka for com-
municating his integral 3 and for a helpful conversation about the
sample path f of 17 below.

Tanaka’s (unpublished) proof of 3 is as follows.

Bringing in the indicator e,, of the interval (a, b](a<bd), an
application of the formula for stochastic differential gives

5. % measure (s:a< x(s)<<b, s<¥)

= %S eas[2(s)1ds

= 6 lr] 2201 - || 2 Lx(1x(ds)

with
0 E<a
6a. e, — S e,,dn = | E—a a<E<D
nse b—a E>b
0 E<a
(E—a)
6b. 7, = S odn =1 2 elE<)b
<t a+b
(b—a)(f——z—) >
and, using

7a. 11,131 (b—a)“é,,,,(&) = max [£—aq, 0]

and

2

. E S:(bé_—””‘l—eam>x(ds)

- ol e )]
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¢ b—x(s)\? ]

B[ [ ea(?5 ) as
t

E[S e,,,,ds]

< constant (b—a),

IA

IA

3 is immediate on letting b | a in 5, assuming, as I now do, the
existence of the local time (¢, a).

Given positive numbers a and B, points a<b, and putting
b—a=345, an application of 4a gives

8a. PLZ Steabx(ds)>[a€+ﬁ’ max t(¢,-)] V26 Ig 1/8]

<P S Ca(ds) > 5 VB IFT[B+ %S" ¢, E)d&]
y=B\(2/5)Igl]s

o [t - ,y t o -

=P goeabx(ds) ESo ., ds >E\/28 lg1/3]

[~ ¢ _ﬁt Y /o5 a1/
<E e'Y.[oeabx(dS) 5 Ioe,,;,ds]e 5 V2% ig1/s

< g~2Big1/8
= 9P

and since the same bound applies to — Steabx(ds) as well,
8. P[2 \ S’ ,,x(ds) ‘ > [a+ B max t(¢,-)] \/23171/3‘]
0 Rl

< 28%,

leading at once to

9. P max T a+ B max (¢, -
a=i2-" b=j2-" \/201g1/8 > R ()
0<]-_ig2:xe
lal<d
< X 2k27M)*R
o<lE<2m
la|<d

< 4d2—n[(1—e)asﬂ—l—e] ,

which is the general term of a convergent sum provided d=1, 2,
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3, efc. is fixed, aB™>1, and € >0 is so small that (1—&)aB—1—&<0.
Tanaka’s integral (=3), the Borel-Cantelli lemma, and the fact
that max [b—a, O] is piecewise smooth can now be combined with
9 to establish

|t(Z, b)—1t(t, a)|

10. P lim == 2 a3 max t(f, - 1=1
a=i2-" b=j2-» \/261g1[6 T Rl ¢,°)
0<k=j—i<2"

b—a=3d)0
la|<d
aB—1

for each choice of d_>1, aBf™>1, and 0< &<

aB+1

But now, taking into account the fact that t(¢, a) is continuous
in space, it is plain sailing over the course laid out by P. Lévy [2]
for the proof of
11. P[ Tim l—"(t)—_ﬂ<1] _1

t—s=510V201g1/8 —
0<s<t<1

to deduce from 10

12. P[ lim M;i(t_;ﬁ)_'gcwrﬁmax t(z‘,-)] -1
[b—a|=5{0 R!
la|<d
for each d>1 and aB8™>1, and 2b follows on letting d{ + oo (use
t=0 near =+ ), letting @B |1, and making a«+ B maxt as small
Rl

as possible subject to aB=1.
I now go back and prove that t exists and is continuous.
t
Beginning with the stochastic integrals S e,.x(ds) =e(a)(@a € R"), the
0

trick is to prove, as I now do, that ¢ can be modified so as to be
continuous in space.
Because

t
13. P[ max S e,z,,ds>n2“"]
a=(k—1)2-" Jo
b=k2""
la|<d

< d2"P[S: Coy-ndS > n2""]

_ < d(2/e)”E[exp (2” S: e,,r,,ds>]
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< d(2/e)"et S:w e“’dﬁE[ exp <2" S: eozfnds>]
— dfeye | oo [1+

+ 3y 2m Se do, - S" d@lgz_ndbl Srndb,

0

@ 1320, o= Cby=b12/%0,-0)  p=Cby=by_D/287 =8y ;) ]

V270, 27(0,—0,) N 27(6,—6,,)

199

< d(2/e)et S+me‘°dc9 [1+3)1 convoluted with 1//270 I times]

= d(2/e)"e* Z 273

:dz n t \/2
(/e)e\/?q

t
is the general term of a convergent sum and S e,ds is monotone

0
in ¢ and b, one finds

l: L S €4S ]
14. P lim 0 +oo|=1,
lb—a|=5,001g1/8 <

and so, using the obvious bound
15a. P[S' eop(ds) > a+ 5 S' e,,,,ds]

—P[ e ,,x(ds)——g e,z,,ds>aﬂ]
<Le

with av/§1g1/8 and B/ § (aB>>1) in place of a and 8 to obtain

t
15b. Pm ,l,,x(ds)‘>a\/81g 1/5+ \/3 Soea,,ds]
<28wﬁ 8=|b_a|,
it follows as in the proof of 2b above that

t
U [ I a,,x<ds>]
. 1m

a=i2"",b=3527" \/81g1/8
|b—a|=58]0

+oof=1.
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But this means that the modified sample path

17.  f@= lim ()= lim Ste,,mx(ds) ac R
b=k2™" | a b=Fk2"" | a Yo

is continuous; in addition,
18, P[Sb f(e)de = S' (Sbemdc>x(ds)] -1 a<b
because P[f(a)=e(a)]=1 (a€ R'), and since e,,, measure (s:a<

x(s) <b, sgt)zgteabds, and Sb fdc are all continuous in @ and b,
0 a

an application of 5 gives

19. P[% measure (s:a< x(s)<b, s<t)

— _ b
= Gulx®]—2u(0) | fde, a<b] _1,
leading at once to the fact that
20. %t(z‘, @) = max [x(!)—a, 0] —max [ —a, 0]—f(a)

exists and is continuous, as was to be proved.
A second application of the above method gives the bound®

21. P[2l S' eux(ds) ) > [a+Bmax i, a)] \/QW]
<2(lg1/d) =,

leading at once to

= |t 8)—t(¢, 0)] o | —
22 P[le;r_r,}w s gz\/t(t,O)] 1.

Given ¢ >0 and ¢ € R’, the conditional local time [i(¢, b):b€ R",
P(-/x(t)=a)] is a diffusion, and, expressing it in terms of a standard
Brownian motion (via a change of scale and a time substitution),
it is immediate that the bounds 2b and 22 are best possible ; this
beautiful result will appear in a forthcoming paper by D. B. Ray.

Massachustetts Institute of Technology
November 1961.

3 lgye=lg(lgo).
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