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A  Holder condition for Brownian local time

By

H. P. MCKEAN, JR.'

(Communicated by Prof. K. Ito, November 20, 1961)

Given a standard Brownian motion on l e  beginning at 0,
H . Trotter [ 3 ]  proved the (simultaneous) existence of the local
times:

1. t(t, a) =  u m  measure (s: a < x (s) <b , s  <t )
b+a b— a

t >0 , aE R '

and derived the law

2a. p r  l i m  I  t(t, b)— t(t , a)i0 1 = 1  .p [ u rn
. \ /  lg118

I give simple proofs leading to the sharper bound

2b. p r  / . t(t, b)— t(t ,  a)I < 2 \/max t(t, • )1 1
— jir=314.. N/28 1g118

2b is proved assuming t exists and is continuous in space ; afterwards,
I go back and prove the latter statement. H. Tanaka's (unpublished)
expression for the local time as a stochastic integral :

3. P [
l t ( t ,  a) = max [x(t)— a, 0] — max [ —a, O]—x ( d s ) ]  1
2

s
x (s )> a

and the bound'

4a. E [ea(t)]< 1

for the functional
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4b. a(t) ----- ro f [x(s)]x(ds)—  21  ro f[x(s)]ds

4e.P [s : J - T x ( s ) ] c ls  < + D o i --- 1

are the basic tools for this. I want to thank H. Tanaka for com-
municating his integral 3 and for a helpful conversation about the
sample path f of 17 below.

Tanaka's (unpublished) proof of 3 is  as follows.
Bringing in  the indicator ea b o f  th e  interval (a, bEa<b), an

application of the formula for stochastic _differential gives

5. 1  measure (s : a < x (s )< b , s < t )2

= - ro ea b [x(s)]cls

= -ea b [x (t)]- -eab[x(0)]—ro ea b[x(s)]x(ds)

with

0 e <a
6a. e.a 0  — ea b c17) = — .(2 a < < b

n<1.
,  b— a > b

6b. -eab() — Pa b dn ---
n‹t

0
( —a)2

a < b

< a

<2

(b— a)(
a +

 11) >  b ,2

and, using

7a.

and

7b.

lim
Ir j ,

E

(b— a) - 1 0b() = max

f t (  eab 
— e c o )x (ds)

[ —a,

2

0]

i 0 \b— a a

_E rft(  e a t ,   _
e a c . , )

2

d s ]I- i 0  \b— a
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Er e a b (b— x(s)y d s ]
b— a )

._ <E [ e a b ds]

<  constant (b—a),

3  is immediate on letting b l a  in  5 , assuming, as I now do, the
existence of the local time t(t, a).

Given positive numbers a and /3, points a < b ,  an d  putting
b— a=8, an application of 4 a  gives

8a. P [ 2  eabx(ds)> [a+13 max t(t,•)] N/28 1g118]
Ri

< P N e a b x (d s )> .\/ 28 ) C id

i9 /(2/) lg118

=  P [  e a b x(ds)— e b d s >  a  -V28 / g i ld
2 J o a 2

<E[e7s1,eabx(d.3)— A e „b d s]e -7  N/26 1g VS

<  e - cos ig vs

=

and since the same bound applies to —  ea b x (ds) as well,
0

>  [a+ re max t(t,•)] N/28 lg118]

< 28 6 g ,

leading at once to

2 ea b x(ds)
9. maxPr >ad-re max t(t,•)

b= j2 - " / 2 8  g la
0<i— j<2 "

lal <d
< E 2(k2 - n)ai3

0 < k < 2 "
lai <d

< 4d2- n [ 0 - - e ) o f t - 1 - e ]

p [ 2  ea b x(ds)8.
5t

which is the general term of a convergent sum provided d=1, 2,
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3, etc. is fixed, aR >1 , and &> 0 is so small that (1 -8)cei3 -1-&< 0.
Tanaka's integral ( =3), the Borel-Cantelli lemma, and the fact
that max [ b - a, 0] is piecewise smooth can now be combined with
9 to establish

10. P
-

lim
a = i2 - ", b= j2 - "
0<k= j — i<2"!

b— a=& $ 0

_it(t , b)-t(t, a)I 
< a +  R  m a x  t ( t , • ) =  1N/28 1g118 — le,

for each choice o f d>1, a ie>1 , and 0 < 6 <
a 4  - 1  

aR +1
But now, taking into account the fact that t(t, a) is continuous

in space, it is plain sailing over the course laid out by P. Lévy [2]
for the proof of

11. p1I x ( , ) _ x ( s) ,  < i i 1

1-t-s=s 1  ./28 1g 1/8 —
o<s<t<1

to deduce from 10

12. p ri i m  b ) -  t ( t  ,   a) < a +  R max t(t,•)] = 1
I-lb-al-a o V 2 8  /g 1/8 R i

la <d
for each d > 1  and aR >1 , and 2b follows on letting d  +  00  (use

0 near ± 00), letting a g  1 , and making a+0  max t as small

as possible subject to c0=1 .
I  n o w  g o  back and prove that t  exists and  is continuous.

Beginning with the stochastic integrals e„00.x(ds) e(a)(a E RI), the
0

trick is to prove, as I now do, that e can be modified so as to be
continuous in space.

Because

13. P r  max eabds > n2 - n]
a = (k —1)2 -  " 0

b= k2 - "
la <d

<d2"13 [ : e °2- d s > n 2 - "]

_<d(21e)"E [ex p(2" 
0 e02 _ „ds)]

lal <d



16. P lim
a=i2 - ", b= j2 -  " 8 1g1 IS

- lb -al=s io

f t
) o ea b x(ds)

A  Holder condition for Brownian local time 199

+-
_<d(21e)net c 8 el0E[ex p ( 2 "  e„ ds)]

0 0
+-

= d(21e)net c e d 0 [1 +
0

+ 2 2 n i do, ••• do, ndb , ••• ndb,
0 0 0 0

e -1 1
21201 e -- (b2 - 1 , 1)212 ( 0 2- 0 1) C ( b 1 - 1 , 1 - 1 ) 2 / 2 ( 0 1 - 0 1 - 1 )

V 2 71- 01  N /27T (0 2
—  01)  • V 2 7r(0 ,-0 ,,)

<d(21e)nef c 'e l0 [1 + E 1  convoluted with 11\/27r0 1 times]
0 i=i

= d(21e)net

= d(21e)net  \ /  2  

V 2 —1

is the general term of a convergent sum a n d  ea b d s  is monotone
0

in  a and h, one finds

[ 
Ç

b
e  d s

14. P urn °i a <  +  0 0

lb— al-510 8 lg 1/8

and so, using the obvious bound

15a. P h t  ea b x (ds)> ce+ 11  , o
t  ea b ds]

0

= P p  5:eabx(ds)_1 5t0eabds > a d

< e - `4 3

with ceV 81g118  and 3 IV  8  (a19> 1 )  in place of a and IS to obtain

15b. P [  e a b x (ds) > c c  81g118+ e  d s—  b
0 2V Jo

< 28cdo a =  lb—al,

it follows as in  the proof of 2b above that
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But this means that the modified sample path

17. f(a)u r n  e ( b ) lim eb,.a(ds) a E Rl
b=k 2 - " a b = k2 -  a  o

is continuous ; in addition,

coo18. P h  f(c)dc — e d c )x (d sd =  1 a < b
a 0 a

because P[f(a)----e(a)] --=-1 (a E R '), and since a b ,
 measure (s : a<

x(s) s< t) e„bd s , and fd c  are all continuous in  a  and b,0
an application of 5 gives

19. P[-1 measure (s : a < x(s) b ,  s  < t)
2

=  a b [ X ( t ) ]
- -

 a b (
0 ) —  f d c ,  a < b i=  1,

leading at once to the fact that

20. —
1

t(t, a) max [x(t)— a, 0] — max [ — a, 0] — f(a)
2

exists and is continuous, as was to be proved.
A second application of the above method gives the bound'

21. P [2 r  eob x (ds) >  [a+  m ax  t(t, a)] \ /2  1 g2 118]
O ct b

<2(1g 118) -  ,

leading at once to

22. PL1
2
im (t , )— t(t1t 8

—  o  N / 2 8  1 g 2 1

'
 0)1

/ 8
<  2 0 4

'  
0)] 1.

Given t > 0 and a E  , the conditional local time [t(t, b):b  E R 1,
P(• /x(t) a)] is a diffusion, and, expressing it in terms of a standard
Brownian motion (via a change of scale and a time substitution),
it is immediate that the bounds 2b and 22 are best possible ; this
beautiful result will appear in a forthcoming paper by D. B. Ray.

Massachustetts Institute o f Technology
November 1961.

3 1 g 2 c =lg ( lg c ) .
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