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Introduction

T h e  purpose o f  t h e  present paper is to investigate the
properties concerning automorphisms of G-structures. § 1 contains
definitions and notations. In § 2, we shall prove some lemmas
which will be used in  the remaining sections. In  3 , we shall
study infinitesimal automorphisms of G-structures. Conditions
that a vector field to be an infinitesimal automorphism of G-structure
will be given. We consider the set ,__)7 of all infinitesimal automor-
phisms of G-structure. Under certain coudition, , J7  is  a  finite
dimensional Lie algebra. In § 4, we shall give a condition that an
infinitesimal automorphism of G-connexion is also an infinitesimal
automorphism o f G  structure. The last section is devoted to the
study of invariant G-structures on reductive homogeneous spaces.

The author wishes to express his sincere gratitude to Professor
J. Kanitani for his cotinued encouragement.

§  1 .  Prelim inaries and notations

1 .  Throughout this paper, a ll manifolds, mappings, vector
fields and differential forms are understood to be o f class

Let M  be a differentiable manifold. We shall denote by T(M)
the tangent bundle o f M  and by Tu(M )  the tangent space of M
at u E M .  Suppose f :  N  to be a differentiable mapping of M
into a  differentiable manifold N .  Then f  induces a  mapping
f *  : T(M )— > T(N). Let F  be a vector space over reals. We denote
by GbF (M )  the set of all F-valued differential forms on M .  The
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dual of f *  gives a mapping f * : (f),(N ) (1 ),(M ).
Let G be a Lie subgroup of the general linear group GL(n, R)

in n variables, and g be its Lie algbra. Let E be an n-dimensional
vector space over reals, and E* be the dual space of E .  We define
the representation (p, E) of GL(n, R) on a vector space E as follows :

p(g)e = E g!e; f o r  g =  (e ) E GL(n, R) ,

where e „ •••  , en  is  a base of E .  I f  we consider the restriction of
p to the subgroup G, then we obtain a representation o f G which
we denote by th e same notation (p , E ). Then we obtain two
representation (p* ad, E *  g )  and ((p* A p*) p ,  (E *  A E * )  E )
of G, where (p*, E*) is the dual representation o f (p, E) and (ad, g)
is the adjoint representation o f  G .  For brevity, we shall denote
these representations by (a„ E *  g )  a n d  (a „  (E* A E * )  E )
respectively.

Let (ea.) (0- =1 , • • •  ,  dim. G ) be a base of g , and let (e „ •- •  , en )
be a base of E  and (e ', • ,  e n )  its dual base. The representaion
(p, E) of G induces the representation (p , E ) of the Lie algebra
Then p ( è )  can be represented by a  matrix la,. 5 11

p( "e„.) • ei  =  E .

In the following we shall write p(A) for A E g l ( n ,  R), E E.
We define the linear map ez : E* (E* A E * )  E  as follows :

E  e k  e „)  =  E  (4 1. — (1 ;,,r;)ei A ek e i

for any g  E G, we see immediately that a 2(g) leaves 1m rt invariant,
and hence we obtain an automorphism a3(g ) o f  Coker (7. Thus
we obtain the representation (a,, Coker (f ) o f G.

DEFINITION 1. 1. We say that the group G has the property  ( g -')
if the following conditions are satisfied
1. Ker " =  O.
2. There exists a linear map k: Coker (f -.(E* A E * )  E  such that

(i ) qok = 1 .
(ii) koa,(g) = a,(g)ok for a n y  g G G,
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where q denotes the natural projection (E* A E *)0 E -.C o k e r / / .

2 .  Let M  be an n-dimensional differentiable manifold and
(M )  be the frame bundle of M  whose projection is 7-r. Let E  be

an n- dimensional vector space over reals. Recalling that every
element x o f  ,2- - - (M )  is considered as a linear isomorphism o f E
onto T ,,,,(M ), we define a  tensorial 1-form 0  of type (p, E) on

called basic form, as follows [7]

Ox (Z ) = x - 1 •7r*Z for any ZE  T x (.9 - ) .

Suppose that a connexion is given in .%- :- . (M )  and denote by
co the connexion form of F. F o r  any vector field Z  on .9 - (M ), we
denote by hZ (resp. v Z ) the horizontal (resp. vertical) component
o f Z  with respect to F. W e denote by X *  the lift of X E T(M )
with respect to F. F o r  each point x of (M ), we denote by k),
the set of all points which can be joined to x by horizontal curves.
These are submanifold of .9 - (M )  which we call horizontal
manifolds.

The covariant differential of an /-form E on ,7- - - (M ) is defined by

(1.1) DE(Z„••• ,Z1+1) da(hZi,••• ,hZ1-1-1)

for any vector fields Z„••• , ZI ± , on 9 - (M ) .  Moreover, i f  E  is a
tensorial form of type (r ,F ), then D E is given by ([10])

(1.2)D E  =  dE +r(co)• E ,

where (r , F ) denotes the induced representation of the Lie algebra
qi(n, R).

We shall denote by 12 and 0 the curvature form and torsion
form o f  a  given connexion F respectively, that is, s-2,—Do) and
0—DO. Concernig the curvature form and the torsion form, we
have the following structure equations ([7]) :

(1. 3) 1 
do) —  [co , w ] +S 2  .

2

(1.4)d 0  =  — p ( c 0 ) • 0 + 0 .

1 )  As to the definition o f tensorial forms, see [10 ].
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Let X  be a vector field on M . For a differential form ,E-2, the
Lie derivative l ' x 'E o f E  with respect to X  is defined by

(1.5)=  l i m   1,t

where (p, denote the local transformations generated by X  ([8]).
For X  and Y E  T (M ), we have ([8])

(1.6) X • (Y )  =  (-- 7xE)( 17 ) + E ([X , Y ]).
(1.7)2 d E ( X ,  Y ) = X•E(Y)— Y•'E(X)—E ([X, Y ] )  .

(1. 8) 2dE(X, Y ) =  (X x E)(Y )— (S y S )(X )+ E ([X , Y ]).

A  vector field X  on M  induces a vector field .X on 9 - (M ) in
the following manner ( [7 ] ) .  For each x G 9 - (M )  and u=n - (x), X
generates a local 1-parameter group of local transformations Pt
in a neighboriood U o f u. Each (p , induces a local 1-parameter
group of transformations <Pt in  n- - 1 (U ) and (P i,  a  vector
field  ,X  o n  n- ' ( U ) .  Since (p, commute w ith  r ig h t translation
Rg  (gEGL(n, R )), the induced vector field X  i s  invariant under
right translations

(1.9)R g * X  =  .

It can be shown by straightfoward calculation that 0 , leave the
basic form 0 invariant. Hence we have from (1. 5)

(1.10)=  0 .

§ 2. Several lemmas

3. Keeping the notation of the preceding section, we shall prove
several lemmas which will be used in the following.

LEMMA 2 .1 . Let f  be a  tensor on ,9 - (M )  o f  type (r, F), then
fo r  any A E gffn, R) and xE .'9— (M ), we have

= —F(A)f(x) ,

where 0-(A) is the fundamental vector field" corresponding to A and

2 )  C f. 1171.
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F )  is  the induced representation o f (r, F).

Proof.

0-(A) 1
x  f  =  hm — I f ( R  ,  tA • x) - f ( X ) }

t t

= lirn —

1  
Ir((exp tA) - 1 )f (x )—  f (x )}  = — F(A )f (x ) . q.e.d.

f+0 t

For any vector fie ld  X  on M , we define th e  differentiable
functions I3x  and 7x  on (M )  as  follows

x (x )  =  x ( i0 f o r  x E
and

x(x) ,(X ) f o r  x E 9  (M) .

From (1. 9) we see that

(2. 1) 0 ,  is  a tensor o f type (ad, gl(n, R ) )  on (M) .

(2. 2) 7 x  is  a tensor o f type ( p ,  E )  o n  :,/, - (M ) .

Let Z  be any vector field on :_/- (M ) and A  be the element of
gf(n, R) such that cr(A ),= vZ x . From (2.2) a n d  Lemma 2. 1, it
follows that

cr(A) x  • 0(g ) = —  p(A )0(g ) = —  A • K g) ,

and hence

(2.3)v Z  • e(g) = — (.0(Z)• 0(g) .

Since ad(A )B =EA , for A, BE gl(n, R ), we have similarly

(2.4)v Z • w ( X -  ) = — Eco(Z), w()].

LEMMA 2. 2. For any vector f ields X  and Y on M,

0([X  21) = 2d0(X , Y - ) = w (Y )•0(X- ) -0 0 C- )•0(1- 7  )+2e)(g ,

P ro o f . From (1. 10) it follows that .15,-9= 0  an d  .109= O.
Therefore, making use of (1. 6) and (1. 7), we have

2c/0(X , 2') = 21) .

The right hand side is nothing but the structure equation (1. 4).
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LEMMA 2. 3. For any vector fields X  and Y  on M,

(-0 ([X ,1 71) = hX. 0 )( 1-7) - h2 .(0 (X ) - P 0 (X ), (0 (1-7)11- 2I1(X, 17).

P ro o f. From (1. 3), (1. 7) and (2. 4), we have

21-2(X, 2cho(X, 2-) +[ 60'), (f)(1-7-)]
= .g.w(?) - 177 ..c()(X) - (f)([ X• 2 ])+DVZ), w( 17) ]

hX•co( - h17 • ) -  co([X,571 )+v  -X•0)(1-7) - v  w (X )
+ [û (X ),  6 )( 1 ) ]

=  hX -0 )(2 )-h it -  - 0 )(X ) - (EX, P T - Ew(X ), (0 ( 17 ) ] .

LEMMA 2. 4. L et X  be a  vector field on M  and Z  be a vector
f ield on ,_̀ - (M ) ,  then we have

hZ•0(X) = 0)(g)•0(Z)-2H(X, Z) .

P ro o f. Making use of (1. 10), (1. 6), (1. 7), (1. 4) and (2. 3), we
obtain

0 (.1 9 ) ( Z )  X .- 4 )(Z )-  0([X , Z])
2d0(g, Z)+Z• 0(X)
co(Z)• 0(X)-co(X)• d(Z)+ 201(X, Z)+ hZ• 0(X)

-0 )(Z)•0(k)
-(X ).0 (Z )+20 (X , Z )±  hZ  -0 (X ) , q.e,d.

We say that a  vector field X  on M  is an infinitesimal auto-
morphism o f  a given connexion co, if the local transformations Pt
generated by X are all local automorphisms of the given connexion
co ([7]). Concerning infinitesimal automorphisms of a connexion,
we shall prove the following two lemmas.

LEMMA 2. 5. I f  X  is an  infinitesimal automorphism o f  a  con-
nex ion (0, then it holds that, f o r any vector field Z  on ._/- (M),

hZ•w(1?) 2,1-2(Z, X ),

where 12 denotes the curvature from o f  0)•

P ro o f. Since the local transformations 93, induced by X  leave
the connexion form co invariant, we see from (1. 5) that 0.
Hence, by virtue o f (1. 6), (1. 7). (1. 3) and (2. 4), we obtain
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0 = ( ...C (0 ) (Z )  = X-(0(Z ) - 0)( [ X, Z ] )

= 2d0)(X- , Z )+ z.a)(X )
—po(g), co(Z)].+21-2(5c", Z )+ hZ .0)(X )+ vZ •co(k )
an,(X, Z )+ h Z •w (g )  .

LEMMA 2. 6. I f  X  and Y are infinitesimal autom orphism s of a
connexion (0, then it holds that

co([ , P ]) w ( ? ) ]

Pro o f . From th e  fact that  ( .['w ) (  2 )= O  an d  from  (1. 6), it
follows that

co([ , 2 "]) X•w(?) •

Using (2. 4) and Lemma 2. 5, we have

X.0)(17-.) =  hX•co( ) +vX- .(0( -17 ) 21-2,(X, V. ) — k(X), (,)( Y. )] •

This proves our lemma.
Now we shall study the tensor 13x .

LEMMA 2. 7. T here  is  a  one-to-one correspondence between the
set of tensors K  of type (ad, gl(n, R )) on , -. (M ) and the set of (1,1)-
tensor f ields" K  on  M . T h e  correspondence is given by

K(x)• 0(X*) x - ' • K , ( , ) (X ) ,

where X  i s  a tangent v ector at u =z ( x )  and X* is  the lift of X.
M oreover it holds that

x la(x )(Y ) x •(X *  fc). x -1 17X ,  Y e Tv(x)(M)

where V x K  denotes the covariant derivative o f K  w ith respect to X .

Pro o f . The f irs t h a lf  o f lemma is obvious. W e shall prove
the second part. Using the formula for the definition of Vx Y ([ 7 ]) :

(VxY). x -(X * -0 (Y * )) 71-(x) = u ,
we obtain

x -1 •EV x (K (Y ))] = X  { K•O(Y *)} (X )e(Y *)+Ic(x )-.X 10(Y *).

3 )  As to the definition o f tensor fields, see [7].
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On the other hand, it is known" that

(Vx K )(Y ) =  Vx (K(Y ))— K(V x Y ).

Hence we have

(V x K )(Y ) = x •(X tic)•x - 1 Y +x •ic(x )•x '(V x Y )— K(V ,Y )
= x •(X ic)•x - lY ,

because x -K (x )-x '(V x Y ) = K(V x Y ) .  T h us w e h ave  proved the
lemma.

Now, for any vector field X  on M , we define the (1, 1)-tensor
fields B x  a n d  T x  o n  M  a s  follows :

B ( Y )  —V E X,
and

T x (Y ) = T (X , Y ) ,

where T  denotes the torsion tensor fie ld . We define the (1, 1)-tensor
field A x "  on M  by

A =  T x — Bx •

Then A x  corresponds to the tensor Rx  of type (ad, gi(n, R )) in the
sense o f  Lemma 2. 7. In  fac t, according to Lemma 2 . 4 , we see
that w(X- )•e(Y*)= Y*•0(X*)+ 20(X*, Y*), fo r any vector fields X
an d  Y  o n  M .  From the definition of torsion tensor f ie ld  T ,  it
follows that 2x•H x(X *, 17 *)= T„( , ) (X , Y ). O n  th e  other hand, we
have

x • ( Y* • 0( X* )) = V y X = — B x ( Y ) .

Thus we conclude that

x•ox(X )•x - T Y Ax -.(x)( 1 7 ) •

Suppose X  to be an infinitesimal automorphism of a connexion.
By Lemma 2 . 7 , th e  fo rm u la  in  Lemma 2 . 5  is  w ritten  in  the
following form

V A x  =  R(Y , X ),

4) Cf. [7 ].
5) Ax  is defined by Kostant [4 ] in Riemannian case.
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where R  i s  the curvature tensor field, that is, R,,(x)(Xi, X2)
X3 =2x•12.za p ,  )mx-ixT, X „  X 2 , X, E Tit(x)(111). T h u s  w e  have
the well-known formulae

(2. 5)
f V y X  =  A ,-(Y )-  T(X, Y) .

V A x  = R(Y, X ).

§ 3. In f in ite s im a l a u to m o rp h is m s  of G - structures

4. We say that an n--dimensional differentiable manifold M
possesses a  G-structure when the structure group o f th e frame
bundle ,'} - (M )  of M  is reducible to a Lie subgroup G o f GL(n, R).

Suppose that M  possesses a G-structure and denote by H(G)
the reduced bundle. From the definition o f the reduced bundle,
there is the injection t : H(G)-->. . ( M ) .  We call a connexion i n
H (G ) a  reduced G--connexion. Given a reduced G-connexion r  in
H (G ), the injection t maps i n t o  a connexion l '  in ._̀,/- (M )  (see
[7 ] ) .  The linear connexion thus obtained is called a G-connexion
in 9 - (M).

The following proposition follows immediately from the defini-
tion of G-connexion.

PROPOSITION 3. 1. A G-connexion l  has the following properties:
(I) The holonomy group qfb  w ith ref erence point bEH(G) of 1 -` is
contained in  G.
(II) Each P-horizontal manifold through bEH (G ) is  a submanifold
of the reduced bundle H(G).
(III) If w  is  the connexion f rom  o f r, then the connexion f orm  of
reduced G-connexion 1" is  t*w.
(IV) I f  E  is  a dif ferential form  on ,:,‘- (M ), then

t*(DE) = EY (t*F4) ,

w here D  (resp . D ') denotes the covariant dif ferentiation operator w ith
respect to F (resp. v). In particular, if 12 i s  the curvature form
o f r, then the curvature form  o f l ' '  i s  L*12.

Thus the curvature form S -2 of a G-connexion restricted to
H(G) has its values in g , the Lie algebra o f G.
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Let q) be a differentiable transformation of M  onto itself. Then
induces naturally a  differentiable transformation "q) of 9 - (M )

in  the following manner. Any frame x=(t 1 ,••• , tn )  a t u=n - (x ) is
mapped into the frame 0(x)—(p * t1 , ••• , (N A ). The induced trans-
formation fp  is  an automorphism of 9 — (M ), that is , (p-  satisfies the
conditions : 71-.475= p o n -  and ook—Rg o -o- fo r  every g E GL(n, R).

Given a G -structure on a differentiable manifold M , a  differ-
entiable transformation g, o f M  is called an  automorphism of the
G-structure if the induced transformation cp maps each element of
H(G) into an  element of H(G).

DEFINITION 3. 1. W e say that a  vector fie ld  X  on M  i s  an
inf initesim al automorphism o f  a  giv en G-structure, if  th e  lo c a l
transfomations (7), generated by X  are  a ll local automorphisms of
the given G-structure.

PROPOSITION 3. 2. A  vector fie ld  X  on  M  i s  an  infinitesimal
automorphism of a G--structure if  and only if the vertical component
o f  X  w ith respect to  any  G-connxion i s  tangent to H(G) at every
point of H(G).

Pro o f . X  is an infinitesimal automorphism of the G-structure
if  a n d  only i f  g b E T b (H (G )) fo r  every  b E H(G). O n the other
hand, according to Propositon 3. 1, (II), the horizontal component
hg  of X-  w ith  respect to any G-connexion is  tangent to  H (G ) at
b E H (G ). Hence we have proved the proposition.

From Proposition 3. 2, it follows immediately

PROPOSITION 3. 3. A  vector f ield X  o n  M  i s  an  infinitesimal
automorphism of a G-structure if and only i f

a)b(X)E

fo r  every point b of H (G), where co is the connexion f o rm  of a G- -

connexion.

PROPOSITION 3. 4. The set of all inf initesim al automorphisms of
G-structure f orm s a Lie algebra under the usual bracket operation
fo r  vector fields.
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P ro o f . Let X  an d  Y  be infinitesimal automorphisms of G-
structure and let g‘ and 2" be the induced vector fields on
Let ro be the connexion from of a G-connexion and S2, its curva-
tu re  fo rm . W e first rem ark  that [X , 1 1 = [ ,  2 ] .  It follows
fro m  Proposition 3. 3 t h a t  (0,(X) E .6' and  cob ( ? )  e .6' fo r  every
b E H(G), and hence

( i ) [ c o b ( g ) c o b (  2 ) ]  E  .g for e v e ry  b E H(G) .

Since the horizontal component h:g o f g-  i s  tangent to  H(G) at
b E H(G), we see that

(ii)) hXb•cf)(1.7)G for e v e ry  b E H(G) .

Finally, from Proposition 3. 1, (IV), we have

(iii) nb (X , /7 ) E g for e v e ry  b E H(G) .

Thus from (i), (ii), (iii) and Lemma 2. 3, we conclude that

(0 b(EX, E g f o r  e v e ry  b E H(G)

which proves our Proposition 3. 4.

5. In  the rest o f  th is  section, we shall confine ourselves to
the case where G  has property (gD) an d  w e shall consider the
canonical G-connexion whose existence has been proved in  M .
We shall prove the following

LEMMA 3. 1. If an  automorphism qi of G-structure is  an auto-
m orphism  of  reduced G-connexion, then (7, is an automorphism of
G-connexion.

Pro o f . Let Q , be the horizontal subspace at x E ,j - - - (M )  with
respect to  the G-connexion. Every element x  of .} - (M ) can be
written a s  x = Rg  • b w ith g E GL(n, R), b E H (G ). Taking account
of the fact that 00 RE, = Rg oqi, we have

0* (4  = 0* (lb g  = (P*R g Qb = Ro(P*Qb R g *Q7p(b) = ( h ( b ) g

= Q 7 p ( ,) q.e.d.

In the previous paper [1 ]  we have proved that when G  has
property (2 )  an automorphism of G-structure is  an automorphism
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o f  th e  canonical reduced G-connexion. Hence, from th e  above
Lemma 3. 1, we have

PROPOSITION 3. 5. Assume that G  has the property (9)). Then
an autom orphism  of the G-structure is  an  autom orphism  o f  the
canonical G-connexion.

For a m om ent, we shall u se  th e  sym bol 9  to denote the
tangent space o f  M  a t u E M .  Let b be an  element of H(G) such
that 7-/-(b)— u . Taking account o f th e  fact that b  gives a  linear
isomorphism of E onto• ,  we see that b•p(.61)•b - 1  is  a  L ie  algebra
o f endomorphisms of We put ) =b•p(g)•b-1, which is
independent of the choice of b E H(G) such that 7r(b)= u.

We introduce into g( ) + a bracket operation by setting

[A „  A 2 ] =  A,- A,— A ,• A „ [A , t] = — [t, A ] = A (t) ,
[t„ t 2 ] = 2b•S2 b ( tt  , tn •b - 1 +2b•O b (g , ,

fo r A ,A „ A, E g(._% :) and t, t„ t, E Ç ,
 where n and ( )  denote the

curvature form and torsion form of the canonical G-connexion and
t ,  g  denote the horizontal vector at b such that 7r* t i =  t1 , 7 r * t1' = t2 .

W e note that g(_%—i, ) + is not in general a Lie algebra under
this bracket.

Let j l  b e  the L ie algebra o f  infinitesimal automorphisms of
G-structure and let g  be the set of all infinitesiml automorphisms
o f  th e  canonical G-connexion. g  is  a  L i e  algebra under the
usual bracket operation for vector fields [7 ]. According to Pro-
position 3. 5, i f  G  has property CT), then A  is a subalgebra of B .

PROPOSITION 3. 6. Let M  be a connected differentiable manifold
w ith a G-structure. Assume that G  has the property CT). Let
A : --->  g( )  +  .Y ,; be the mapping defined by

A (X ) = — b•w b (X-  )•b - 1  — b •Ob (g )  f o r  X  E A  ,

where co denotes the connexion fo rm  o f  the canonical G-connexion
and 9 denotes the basic form . Then A is an isomorphism of A
onto A (A ).

P ro o f. We first remark that, under our assumption, an in-
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finitesimal automorphism of the G -structure i s  a n  infinitesimal
automorphism of the canonical G connexion. Let T(t) be a  differ-
entiable curve in M  and Y(t) be the tangent vector to th e  curve
at T(t). According to (2. 5), an  infinitesimal automorphism X  of
the G- structure satisfies the following system of differential equa-
tions along the curve T(t) :

y ( t ) X(t) = A(t)Y(t)—  T(X(t), Y(t))

V y(t)A(t) = R(Y(t), X(t))

where X (t)=X ,(t),A (t)=A x _( t )  and  V  denotes the covariant differ-
ential w ith respect to the canonical G-connexion. Therefore, an
infinitesimal automorphism X  of the G-structure is uniquely deter-
mined by the valLs of X  and A x  a t an y  single point of M .  This
implies that A is one-to-one.

W e sh a ll show th a t A  is  a  homomorphism. L et X, Y E
Since E.g, [X , Y ], we have

A( [ X, Y ] = —b•cob(a,11)•b - 1 —b-6([X, V ]) .

But since X and Y are infinitesimal automorphisms of the canonical
G-connexion, we have by Lemma 2. 6 that

co(a , ? ]) =  2 S -2(X, P) — Ew(g), c°(?)]

Moreover, by Lemma 2. 2 we have

0([ , ?]) = co(1 -7)•0(.g)—co(g)-0(?)+20(it, .

Thus we have

AT 17, Y ]) = + b• 1N X ), 0 )(1 7- )]}
— b • co(I") • 0(50+ b •co(X)0(1-7) -2b .0(X- , 17-).

On the other hand, from the definition of the bracket operation
in  .6)(,Y, )+ follows that

[A (x), A (P )] Ir—b•c0(.X- )•b - - 1— b•9(X . ), —b•co(1.7)•b - l—b•0(17 )1
= b• {[co( ), co(P)]•b - ' +b-c0(.5)-0(17 ) —b•co(?)•0(X .)

—2b•s-2,(X*, Y*)•b - 1  —2b•O (X*, 17.*) .
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Since h:X=X* and hY= Y*, w e see that 12(X *, Y*)=t2 (g, Y- )  and
e (X *, IT *)=0 (g , Y.). Hence we conclude that

A([X, Y ]) [ A (X ) ,  A (Y ) ] .

COROLLARY 16 ) . Under the  same assumption as in Proposition
3. 6, it holds that

dim a. dim G + dim M.

M aking use of Palais's theorem [8 , Theorem V II, Chap. IV], we
have from the finite dimensionality of ,J7

COROLLARY 2 6 ) . Under the  same assumption as in Proposition
3. 6, the group of  all automorphisms of  a G--structure is a Lie group.

§ 4. Holonom y and infinitesimal automorphisms

6 .  We consider the holonomy group T , with reference point x
of a connexion. The holonomy theorem [7 ] states : The holonomy
algebra cs ,  the L ie algebra of nr,, is  the subalgebra of i(n, R)
which is generated by all elements of the form S-2,(X*, Y*), y E ,

where 1-2 denotes the curvature form and X * and Y* are arbitrary
horizontal vectors at y.

W e shall prove the following

LEMMA 4. 1. L et M  be a  simply-connected differentiable mani-
f o ld  of  dim ension n. I f  the  holonomy algebra o -, with reference
point xE ,r7- (M )  of  a connexion co in is weakly reductive in
gi(n, R), then, f or any infinitesimal automorphism X of the connexion,
we have

(0 ()Z ) E  Mo - x ) f o r y  G

where N(0-x )  denotes the normalizer of  c x  i n  gl(n, R ) and denotes
the holonomy m anifold through x.

Pro o f . Since 0-, is weakly reductive in I(n, R), there exists a
subspace u of gl(n, R ) such that gI(n, R)=0 - +n  (direct sum) and
[ ( T x  11] C n. For any element A  of gI(n, R), we denote by An (resp.

6 )  C f. [5 ].
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A T x ) the n -component (resp. o- x  -component) of A .  It is well known
th at the structural group o f  th e  prin icipal bundle c i s  the
holonom y g ro u p  kV, w ith  referen ce  p o in t x. T h e  simply-
connectedness o f  M  im p lies that T s  is connected. Therefore
from the weak reductivity of 0-s ,  it follows that co(Spn is  a  tensor
o f type (ad, n ) on From th e  holonomy theorem, we know
t h a t  ny (x*, Y*) E 0-, ,  w h ere  y E a n d  X ,Y  E T(M). Since
Y* •co(k)n E n and Y*.c0(.50, x  E 0 - , ,  it follows from Lemma 2. 5 that
y*-co(g)n =0, that is, co(5011 is constant on Consequently we
have for any a ET x

co y (X)n -----  co ,(1?- )11 = ad(a - ')C')y (X)Il f

and hence, for any A Eo-,, [A ,co y (g ) , ]=  0. Thus we have

[a) y (X  ), A ] = [co y (X ), x ,  A ] G 0- f o r  A E 0- , ,

which proves our assertion.
W e shall seek for the condition that an  infinitesimal auto-

morphism of a G-connexion is  a n  infinitesimal automorphism of
a  G-structure.

We recall that k.)b C H(G) and a., C g  for b E H (G ) . Every point
z  o f H (G ) can be w ritten in  th e  form z  y  g ,  where g E  G  and
y E 12b. Then from Lemma 4. 1 we see that wy g (X)----ad(g - 1 )6)(X )E
ad(g 1 )N(o-

 b). Thus i f  0- , =N (a -, )  for a single point b E H(G), then
coz(g) E g  for every z E H(G).

On the other hand, S. Kobayashi [ 3 ]  has proved the following

(4. 1) Suppose that the subalgebra Œb  o f gi(n, R ) satisfies the follow-
ing conditions : (i) ad(0 - ,) is irreducible, (ii) 0- , is reductive in  gi(n, R)
in the sense of K osz ul, (iii) Œb does not contain any non-trivial ideal
of i (n ,  R). Then N(0-

b ) —crb .

I f  0- ,  is reductive in  gt(n, R) in the sense of Koszul, then al,
is weakly reductive in çff(n, R). Consequently, we have, combining
these facts with Proposition 3. 3

PROPOSITION 4. 1. Let M  be a  simply-connected differentiable
manifold with a G-structure. Suppose that the holonomy group Irb
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with reference point b E H(G) of a G connexion satisfies the following
conditions: (i) ad(o - b )  is irreducible, (ii) the holonomy algebra o- b is
reductive in f (n ,  R ) in the sense o f  Koszul, (iii) cri, does not contain
any  non-trival ideal. T h e n  an  infinitesimal automorphism of  the G-
connexion is also an  infinitesimal automorphism o f  the G-structure.

§  5 . Homogeneous G- structures

7. Let K  be a connected Lie group, L  be a closed subgroup
o f K .  Denote by ST and 2  the Lie algebra o f K  and L  respec-
tive ly . Let K  L  be a reductive homogeneous space of dimension
n. Namely there exists a  subspece ni o f St such that St = m + 2
and a d(L)m C tn. Let p  b e  the natural projection K  K  L  and
p(e)=u 0 . Each element k of K  defines a differentiable transforma-
tion T(k) of K  L .  Since T(/)uo =u o fo r  1EL, T(1) induces a  linear
transformation 7-(1)*  of the tangent space at u , onto itself, which
is the same as ad(1) on ni. Thus we obtain the so-called linear
isotopy representation a o f L, L — > G L (n , R ). We shall denote
by L  the linear isotropy group, that is -L = a (L ) .  Each differen-
tiable transformation T(k) induces an automorphism .7-(k) of the
frame bundle .} (K / L )  of K I L .  Thus it holds that

(5. 1) Ra0.7-(k) = .7- (k).R a , a E GL(n, R) .

(5.2)T ( 1 0 0 7 r 7 . 07-(k) ,

where 7-/- is  the projection of the frame bundle ..̀ ?- (K IL).

DEFINITION 5. 1. A G-structure on a reductive homogeneous
space KI L is called an inv ariant G structure i f  every T(k), k EK,
is an automorphism of G-structure.

Let x, be the frame at uo =P (e ) such that .x,• =ps, f o r  G

I f  w e fix  a base ••• , o f in, then x, may be identified with
(u o ,  p l k , • • •  , p * ) . It is easily verified that T(1) xo = R o n . ;  for 1 E L.
Now we define the map X: K --- (K1 L) as follows

(5.3)X ( k )  =  T(k) x 0f o r  a n y  k E K

Then we see that
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(5. 4) X(kl) = R„,„X(k) f o r  k E K  a n d  / E L ,

and

(5.5)2 6 0 ( 1 3  k  =T(k).% f o r  kE K ,

where C I k  denotes the left translation of K  corresponding to k E K.
Therefore X is a homomorphism of the principal bundle K(K L, L)
into the frame bundle S r - (K I L ) .  It can be readily verified that
X (K ) is a  reduced bundle of ,2  (K  L ) and has the structural group
L . Moreover, from (5. 5), we see that each T (k ) leaves X(K)
invariant. Thus we obtain

(5. 6)" A  reductive homogenous space K  L  possesses an inv ariant
L—structure.

Now we shall prove the following

PROPOSITION 5. 1. I n  order that a  reductive homogeneous space
K I L  adm its an inv ariant G-structure it is necessary  and sufficient
that there ex ists an  element a o f  GL(n, R) such that aGa - 1  >L .

Pro o f . Suppose that K  L  admits an invariant G--structure
and denote by H(G) its reduced bundle. Take a frame b0 o f  H(G)
a t  u „ . Then there exists a n  element a  o f GL(n, R ) such that
bo =R a x0 . Denote by L u  (resp. Gu )  the fibre over u of X (K ) (resp.
H (G )).  Then R a L u o G „ Q . In fact, any element x  o f  L u o  can be
written as x = T ( l )  x , .  Hence

R a x = R a T(l)x, = T(1)R a x0 =  7(1)130 E H(G) .

Since L , - (k )u o — ̀ r (k ) " , o an d  G7(k),( 0 = T(k)G u a , we see that

R a L r( k ) u o  =  RaT(k)L., = TR)RaLu o < = G,(h)., •

Therefore R a X(K) C H(G). This implies that G D c rla.
Conversely, let G  be a  L ie  subgroup of GL(n, R) such that

aGa - 1  D L , aEGL(n, R ).  R a X (K ) is  a principal bundle over KI L

7 )  Added in Proof. A  similar result was obtained independently by D. Bernard.
(See D. Bernard : Sur la géométrie différentielle des G--structures, Thèse, (1960)).



18 Atsuo Fujimoto

with structural group a- lL a . Moreover, from (5. 2) and  (5. 5) it
follows that Ra X (K ) is invariant by 7- (k), k E K .  L et H(G) be the
principal bundle over K I L  which is obtained from Ra X (K ) by
enlarging the structural group from a 1 -La to G .  Clearly H(G) is
invariant by all T(k), k E K . Hence K IL  admits an  invariant G-
structure. Thus we have proved the proposition.

We consider next invariant connexion on K I L .  Since KIL
is reductive, there exists an invariant connexion FIn in the principal
bundle K(K I L , L ) (see [7]). Namely Fm-horizontal subspace at
k E K  is cl)k*m . The homomorphism X of K(K I L, L) into 97K I L)
maps th e  above invariant connexion  Fm  i n  K(K  L, L ) into F, in

(K  L ) .  Thus the horizontal subspace at Ra X(k) with respect to
1'0 is R a * X* (1)k*1I1. This connexion F, is nothing but the canonical
connexion of the second kind in  the sense of Nom izu  [6 ]. From
the construction of  F ,  easily see that F. is reducible to a
connexion in Ra X(K ) which is invariant connexion. Consequently
we have the following two propositions.

PROPOSITION 5. 2. The canonical connexion of the second kind
on a reductive homogeneous space is an inv ariant L - connexion.

PROPOSITION 5. 3. S uppose that a  reductive homogeneous space
adm its an invariant G-structure. Then the canonical connexion of
the second k ind is an invariant G-connexion.

It is well known [6] that the canonical connexion of the second
kind on  a symmetric homogeneous space is without torsion. On
the other hand, if there exists a G-connexion without torsion, then
the structure tensor of G- structure vanishes (see. [1]). Hence we
have

COROLLARY 1. I f  a  sym m etric hom ogeneous space adm its an
invariant G-structure, then the structure tensor o f  the G-structure
vanishes.

Finally we shall prove the following

PROPOSITION 5. 4. Let K  L  be a  reductive homogeneous space
w ith a fixed decomposition of the Lie algebra a= ad(L)nt c ni.



On automorphisms of G-structures 19

S uppose that K I L  adm its an invariant G structure. Then there
ex ists a one-to-one correspondence between the set of a l l  invariant
G-connexions and the set of all linear m aps A  o f  In into g  such that

Aoad(l) = ad(l)0Aoad(l - ') f o r  lE LL .

P ro o f . L e t [ 0 be the canonical connexion of the second kind
and let w o be  the restriction of the connexion form of F o t o  the
reduced buudle H (G ). Take any invariant G-connexion 1'. We
denote by w the restriction of the connexion form of 1' to H(G).
Put X=c0-0 0 . Since coo and w are both invariant g-valued forms
on H(G), we see that X is an invariant tensorial 1-form of type
(ad, g) on H (G ). Conversely, given an invariant tensorial 1-form
X of type (ad, g )  on H (G ), then coo +X gives rise to an invariant
reduced G-connexion. Thus we see that there exists a one-to-one
correspondence between the set of all invariant G-connexions and
the set of all invariant tensorial 1- forms of type (ad , g ) on H(G).

For an invariant 1-form X of type (ad, g) on H(G), we define

Au(X ) Y  b •X,(X*) • b -  I Y ,

where 7r(b)=u, and X, YE T a(K IL ) and X *  denotes the lift of X
with respect to r o . Clearly this definition is independent of the
choice of b E H(G) such that z (b )---u . Then A is an invariant (1, 2)-
tensor field on K IL :

[A,,„,„(T(k) * X )](r(k ) * Y) = 7 .(k) * [A u(X )• Y ] .

In  fact, since 7.(k) *  maps each r o-horizontal subspace onto a 1 -
horizontal subspace and q- (007. --7/- 0,7-(k), we obtain (T(k) * X)*,77„b

_—_,T(k) * X : b y  the uniqueness o f a  lift . Therefore we obtain

-x b (( r (k )*X ) * )  =  ,7k') b(T (k)*X* ) = X b(X * )

because X is an invariant tensorial 1-form. On the other hand,
for any E nt, we have E7 (k) = (k ) * (b b e H (G ), kEK, and
hence ET (k) (k) * Y  = Y . T h u s  we have

EA  k) i(r(k)*X)Yr(k)*Y ) = Pr(k)b].X-75-0 b((9 (k)*X)*)E`r(k) b] -  T  (k)*Y
= ( k ) * Eb .X b(X*) • b -  Y  =  ( k ) * EA  „(X )Y  .
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In particular, the invariance of A  at p(e) by 9- (/) implies

(5.7)A u 0 ( T ( / ) * X ) Y  T(1) * A„0(X) T(1') * Y

Conversely, given a  (1, 2)-tensor A uo o n  T u o (K IL )  which
satisfies the re lation  (5. 7) an d  such that A 0 (X ) E  b0 g b ' , 7 -r(b0)
—p(e), then by the transitivity of K  we can define the invariant
(1, 2)-tensor f ie ld  A  o n  K I L  such that A (X )E  7r(b)=u.
Hence we obtain th e  tensorial 1-form of type (ad, g )  on H(G).
Remarking that b•g•b - 1  is isomorphic to g  and T u o (K IL ) is isomor-
phic to ni, w e  have proved the proposition.
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