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Introduction

The purpose of the present paper is to investigate the
properties concerning automorphisms of G-structures. §1 contains
definitions and notations. In §2, we shall prove some lemmas
which will be used in the remaining sections. In §3, we shall
study infinitesimal automorphisms of G-structures. Conditions
that a vector field to be an infinitesimal automorphism of G-structure
will be given. We consider the set .4 of all infinitesimal automor-
phisms of G-structure. Under certain coudition, 4 is a finite
dimensional Lie algebra. In §4, we shall give a condition that an
infinitesimal automorphism of G-connexion is also an infinitesimal
automorphism of G-structure. The last section is devoted to the
study of invariant G-structures on reductive homogeneous spaces.

The author wishes to express his sincere gratitude to Professor
J. Kanitani for his cotinued encouragement.

§1. Preliminaries and notations

1. Throughout this paper, all manifolds, mappings, vector
fields and differential forms are understood to be of class C”.

Let M be a differentiable manifold. We shall denote by T(M)
the tangent bundle of M and by 7,(M) the tangent space of M
at u€ M. Suppose f:M— N to be a differentiable mapping of M
into a differentiable manifold N. Then f induces a mapping
f«: T(M)— T(N). Let F be a vector space over reals. We denote
by ¢x(M) the set of all F-valued differential forms on M. The
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dual of fy gives a mapping fi: ¢a(N)— Pa(M).

Let G be a Lie subgroup of the general linear group GL(n, R)
in »# variables, and & be its Lie algbra. Let E be an #-dimensional
vector space over reals, and E* be the dual space of E. We define
the representation (p, E) of GL(n, R) on a vector space E as follows :

p(g)e; = ;gt!ej for g=(gh)eGL(n, R),

where ¢,, --+, e, is a base of E. If we consider the restriction of
p to the subgroup G, then we obtain a representation of G which
we denote by the same notation (p, E). Then we obtain two
representation (p*®ad, E¥*® &) and ((p*Ap*)Rp, (EX*AE*)QE)
of G, where (p*, E*) is the dual representation of (p, E) and (ad, Q)
is the adjoint representation of G. For brevity, we shall denote
these representations by («,, E¥*®4G) and («,, (E¥*AE*)QE)

respectively.
Let (¢,) (¢=1, ---,dim.G) be a base of G, and let (e, -:-,e,)
be a base of E and (¢!, --+,¢") its dual base. The representaion

(p, E) of G induces the representation (p, E) of the Lie algebra &G.
Then p(é,) can be represented by a matrix [|as;||:

pe,)-e; = E as;e; .

In the following we shall write p(A)é=A-.£ for A€gl(n, R), £€E.
We define the linear map « : E¥* ® G§— (E* AE*) ®Q E as follows :
A EerRe,) = X (alEi—aldl)el net@Re;
oy k Ty iy gy k
for any g€ G, we see immediately that «,(g) leaves Im ~ invariant,
and hence we obtain an automorphism «,(g) of Coker . Thus
we obtain the representation («,, Coker ) of G.

DeriniTION 1.1. We say that the group G has the property (P)
if the following conditions are satisfied

1. Ker»=0.
2. There exists a linear map k: Coker » — (E* A E*) @ E such that
(i) gek=1.

(i) koay(g) = a,(g)ok  for any geG,
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where ¢ denotes the natural projection (E* A E*)Q E— Coker .

2. Let M be an n-dimensional differentiable manifold and
. (M) be the frame bundle of M whose projection is =. Let E be
an n-dimensional vector space over reals. Recalling that every
element x of ./ (M) is considered as a linear isomorphism of E
onto T,.,(M), we define a tensorial 1-form & of type (p, E) on
& (M)V, called basic form, as follows [7]

0(Z) = x"'emyZ  for any Ze T, (5).

Suppose that a connexion I' is given in . (M) and denote by
® the connexion form of 1. For any vector field Z on . (M), we
denote by AZ (resp. vZ) the horizontal (resp. vertical) component
of Z with respect to I. We denote by X* the lift of X€ T(M)
with respect to I'. For each point x of .& (M), we denote by 9,
the set of all points which can be joined to x by horizontal curves.
These ©’s are submanifold of . (M) which we call horizontal
manifolds.

The covariant differential of an /~-form = on .~ (M) is defined by

(1' ]-) DE(ZI) e ’ZI—H) = dE(th Tty hZI+1)

for any vector fields Z,,---,Z,,, on ./ (M). Moreover, if E is a
tensorial form of type (v ,F), then DE is given by ([10])

(1.2) DE = dE+7(0)-E,

where (7, F') denotes the induced representation of the Lie algebra
gl(n, R).

We shall denote by © and ® the curvature form and torsion
form of a given connexion I' respectively, that is, Q=Deo and
®=D0. Concernig the curvature form and the torsion form, we
have the following structure equations ([7]):

(1.3) do = —_;_[w’ a)]_'_Q.

1.4) di = —p(w)-0+6.

1) As to the definition of tensorial forms, see [10].
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Let X be a vector field on M. For a differential form =, the
Lie derivative .LxE of = with respect to X is defined by

(1.5) - LyE = lim = {p¥E -5},

where @, denote the local transformations generated by X ([8]).
For X and Y€ T(M), we have ([8])
(1.6) X-B(Y) = (LENY)+E(X, Y]).
1.7 2d2(X,Y)=X-E(Y)-Y-EX)-E([X, Y].
(1.8) 2dE(X, Y) = (LXEXY)—(LyE)YX)+E([X, Y] .
A vector field X on M induces a vector field X on % (M) in
the following manner ([7]). For each x€.% (M) and u==(x), X
generates a local 1-parameter group of local transformations @,
in a neighboriood U of #. Each @, induces a local 1-parameter
group of transformations @, in = '(U) and &, induce a vector
field X on = YU). Since @, commute with right translation
R, (g€ GL(n, R)), the induced vector field X is invariant under
right translations ;

1.9) RaX =X.
It can be shown by straightfoward calculation that @, leave the
basic form 6 invariant. Hence we have from (1.5)

(1. 10) L30=0.

§2. Several lemmas

3. Keeping the notation of the preceding section, we shall prove
several lemmas which will be used in the following.

LemMma 2.1. Let f be a tensor on % (M) of type (r, F), then
for any Acgl(n, R) and x€.7 (M), we have

where o(A) is the fundamental vector field® corvesponding to A and

2) Cf. [7].
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(7, F) is the induced representation of (r, F).
Proof.
o{A),f = Tim - {f(Rexo 1a-3) —f(2)}

- ljgx%{r«exp LAY F(x)— f(x)} = —HA)F(x). qed

For any vector field X on M, we define the differentiable
functions By and vx on % (M) as follows

Bx(x) = 0w (X) for xe€. 7 (M),
and
vx(x) =0,(X)  for xe F (M).

From (1.9) we see that
2.1) Bx is a tensor of type (ad, gl(n, R)) on . (M).
(2.2) Yx IS a tensor of type (p, E) on & (M).

Let Z be any vector field on ¥ (M) and A be the element of
gl(n, R) such that o(A),=vZ,. From (2.2) and Lemma 2.1, it
follows that

o(A),-0(X) = —p(A)0X) = —A-0(X),

and hence

2.3) vZ 0 X) = —o(Z)-0(X) .

Since ad(A)B=[A, B] for A, B€gl(n, R), we have similarly
2.9 vZ-o(X) = —[(Z), o(X)].

LEmMA 2.2. For any vector fields X and Y on M,

0[X, Y]) = 2d0(X, V) = o(¥)-0(X)—o(X)-0(Y)+20(X, ).

Proof. From (1.10) it follows that L30=0 and L30=0.
Therefore, making use of (1.6) and (1.7), we have

2d0(X, V) = 60X, ¥]).

The right hand side is nothing but the structure equation (1. 4).
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LeEmMA 2.3. For any vector fields X and Y on M,
o([(X, V]) = hX-o(Y)-hV-0(X)-[(X), o(¥)]-20(X, Y).
Proof. From (1.3), (1.7) and (2.4), we have

20(X, V) = 2do(X, Y)+[o(X), o(Y)]
= X.o(Y)- YeoX)—o[X, Y] +[«(X), o(¥)]
= hXo(Y)—hY.0oX)—o([X, Y])+0X 0(¥)—0vY-0(X)
+[o(X), o(Y)]
= hX-o(¥)-h¥-oX)-([X, Y] -[X), o(¥)].

LEMMA 2.4. Let X be a vector field on M and Z be a vector
field on ¥ (M), then we have

hZ-0(X) = o(X)-0Z)—20(X, Z) .

Proof. Making use of (1.10), (1.6), (1.7), (1.4) and (2. 3), we
obtain

0= (Lz0)Z) = X-0(Z)-0(X, Z7)
= 2d0(X, Z)+ Z-0(X)
= o(Z)-0(X)—o(X)-02)+20(X, Z)+hZ-0(X)
—o(Z)-0(X)
= —o(X)0Z)+20X, Z)+hZ-0(X), qed.

We say that a vector field X on M is an infinitesimal auto-
morphism of a given comnexion o, if the local transformations @,
generated by X are all local automorphisms of the given connexion
o ([7]). Concerning infinitesimal automorphisms of a connexion,
we shall prove the following two lemmas.

LemMmaA 2.5. If X is an infinitesimal automorphism of a con-
nexion o, then it holds that, for any vector field Z on ./ (M),

hZ-o(X) = 20(Z, X),
where Q denotes the curvature from of o.

Proof. Since the local transformations @, induced by X leave
the connexion form » invariant, we see from (1.5) that [zw=0.
Hence, by virtue of (1.6), (1. 7). (1.3) and (2.4), we obtain
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0 = (Lzo)Z) = X-o(Z)—o(X, Z])
— 2do(X, Z)+ Z-o(X)
— _[w(X), o(Z)]+29X, Z)+hZ-o(X)+0Z-o(X)
= 20X, Z)+ hZ-o(X) .

LEMMA 2.6. If X and Y are infinitesimal automorphisms of a
connexion o, then it holds that

o[ X, Y1) = 20(X, V)~ [oX), «(¥)].

Proof. From the fact that (Lz0)(Y)=0 and from (1.6), it
follows that
o([(X, Y]) = X-o(Y).

Using (2.4) and Lemma 2.5, we have
Xeo(7) = hX-o( V) +0X-0(¥) = 20(X, ¥)—[o(X), o(¥)].

This proves our lemma.
Now we shall study the tensor By.

LEMMA 2.7. There is a one-to-one correspondence between the
set of tensors « of type (ad, gl(n, R)) on .* (M) and the set of (1,1)-
tensor fields® K on M. The correspondence is given by

(%) 0(X*) = 27" Kuo(X)

where X is a tangent vector at u=mn(x) and X* is the lift of X.
Moreover it holds that

(VK )ex(Y) = 2+(X*0)e27'Y, X, Y€ Ton(M),
where VK denotes the covariant derivative of K with respect to X.

Proof. The first half of lemma is obvious. We shall prove
the second part. Using the formula for the definition of V,Y ([7]):

(VxY), = x-(X*-0(Y*)), 7(x)=u,
we obtain

27 [VR(K(Y)] = X} {-0(Y*)} = (X¥)O(Y*)+x(x)- XXO(Y*).

3) As to the definition of tensor fields, see [7].
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On the other hand, it is known® that
(VxK)Y) = Vi(K(Y))—-K(VxY).
Hence we have

(VxK)Y) = x+(XFr)x7'Y + x-0(2) - 27(VxY) - K(V4Y)
= 2o (XF)e 2V,

because x-x(x)-x7(VyY) = K(VxY). Thus we have proved the
lemma.

Now, for any vector field X on M, we define the (1, 1)-tensor
fields By and Ty on M as follows:

Bx(Y) = —V,X,
and
T(Y)=TX,Y),

where T denotes the torsion tensor field. We define the (1, 1)-tensor
field A;® on M by

AX - TX_BX'

Then Ay corresponds to the tensor By of type (ad, gl(n, R)) in the
sense of Lemma 2.7. In fact, according to Lemma 2.4, we see
that o(X)-0(Y*)=Y*.-0(X*)+260(X*, Y*), for any vector fields X
and Y on M. From the definition of torsion tensor field 7, it
follows that 2x-0.(X*, Y*)=T,,,(X, Y). On the other hand, we
have

x+(Y*-0(X*) = VyX = —By(Y).
Thus we conclude that
120,(X)x7'Y = Ay «o(Y).

Suppose X to be an infinitesimal automorphism of a connexion.
By Lemma 2.7, the formula in Lemma 2.5 is written in the
following form
VyAx = R(Y, X),
4) Cf. [7].
5) Ay is defined by Kostant [4] in Riemannian case.
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where R 1is the curvature tensor fiield, that is, R, ,(X;, X))
X, =2x-Q.(X¥, XHHx'X¥, X, X,, X, € Tp,(M). Thus we have
the well-known formulae

VX = Ay(Y)—T(X, Y).
@.5) { V, Ay = R(Y, X).

§3. Infinitesimal automorphisms of G-structures

4. We say that an #--dimensional differentiable manifold M
possesses a G-structure when the structure group of the frame
bundle .# (M) of M is reducible to a Lie subgroup G of GL(n, R).

Suppose that M possesses a G-structure and denote by H(G)
the reduced bundle. From the definition of the reduced bundle,
there is the injection ¢ : H(G)— .~ (M). We call a connexion 1V in
H(G) a reduced G- connexion. Given a reduced G-connexion 1Y in
H(G), the injection : mapsl” into a connexion I' in ¥ (M) (see
[7]. The linear connexion thus obtained is called a G-connexion
in & (M).

The following proposition follows immediately from the defini-
tion of G-connexion.

PrOPOSITION 3.1. A G-connexion ' has the following properties :
(I) The holonomy group ¥, with reference point b€ H(G) of I' is
contained in G.
(II) Each I'-horizontal manifold through b€ H(G) is a submanifold
of the reduced bundle H(G).
(III) If o is the connexion from of ', then the connexion form of
reduced G-connexion 1V is fo.
(IV) If E is a differential form on ..# (M), then

HDE) = DI(#E),

where D (resp. D’) denotes the covariant differentiation operator with
respect to I (resp. ). In particular, if Q is the curvature form
of U, then the curvature form of 1 is *Q.

Thus the curvature form Q of a G-connexion restricted to
H(G) has its values in &, the Lie algebra of G.
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Let @ be a differentiable transformation of M onto itself. Then
@ induces naturally a differentiable transformation @ of & (M)
in the following manner. Any frame x=(¢{, - ,¢,) at u==(x) is
mapped into the frame @(x)=(pxl,, --*, Pxl,). The induced trans-
formation @ is an automorphism of .# (M), that is, @ satisfies the
conditions : wo@=pox and PoR,=R,op for every g€ GL(n, R).

Given a G-structure on a differentiable manifold M, a differ-
entiable transformation @ of M is called an automorphism of the
G-structure if the induced transformation ¢ maps each element of
H(G) into an element of H(G).

DerINITION 3.1. We say that a vector field X on M is an
infinitesimal automorphism of a given G-structure, if the local
transfomations ¢, generated by X are all local automorphisms of
the given G-structure.

ProprosITION 3.2. A wvector field X on M is an infinitesimal
automorphism of a G-structure if and only if the vertical component
of X with respect to any G-connxion is tangent to H(G) at every
point of H(G).

Proof. X is an infinitesimal automorphism of the G-structure
if and only if X, € T,(H(G)) for every b€ H(G). On the other
hand, according to Propositon 3.1, (II), the horizontal component
hX of X with respect to any G-connexion is tangent to H(G) at
be H(G). Hence we have proved the proposition.

From Proposition 3.2, it follows immediately

ProrosITION 3.3. A wvector field X on M is an infinitesimal
automorphism of a G-structure if and only if

w(X)egq

for every point b of H(G), where o is the connexion form of a G-
connexion.

ProprOSITION 3.4. The set of all infinitesimal automorphisms of
G-structure forms a Lie algebra under the usual bracket operation
for vector fields.
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Proof. Let X and Y be infinitesimal automorphisms of G-
structure and let X and Y be the induced vector fields on ./ (M).
Let ® be the connexion from of a G-connexion and Q its curva-

ture form. We first remark that [X, Y]=[X, ¥]. It follows
from Proposition 3.3 that o, (X)€ G and o, (Y)€ G for every
be H(G), and hence

(i) [0(X)o,(Y)]€ &G  for every be H(G).

Since the horizontal component #X of X is tangent to H(G) at
be H(G), we see that

(ii) hX,-o(Y)e g for every b€ H(G).
Finally, from Proposition 3.1, (IV), we have
(iii) X, Veg for every b€ H(G).
Thus from (i), (ii), (iii) and Lemma 2.3, we conclude that
o [X, Y)€G  for every beH®G),
which proves our Proposition 3. 4.

5. In the rest of this section, we shall confine ourselves to
the case where G has property (&) and we shall consider the
canonical G-connexion whose existence has been proved in [1].
We shall prove the following

LemMA 3.1. If an automorphism @ of G-structure is an auto-
morphism of reduced G-commexion, them @ is an automorphism of
G-connexion.

Proof. Let @, be the horizontal subspace at x€ . (M) with
respect to the G-connexion. Every element x of ..# (M) can be
written as x=R,-b with g€GL(n, R), b€ H(G). Taking account
of the fact that $oR,=R,op, we have

PR, = ¢*ng = (P*Rng = Rg*(p*Qb = Rg*QE(b) = Q'&(b)g
= Q};;(x) y q.e.d.

In the previous paper [1] we have proved that when G has
property (&) an automorphism of G-structure is an automorphism
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of the canonical reduced G-connexion. Hence, from the above
Lemma 3.1, we have

PrOPOSITION 3.5. Assume that G has the property (P). Then
an automorphism of the G-structure is an automorphism of the
canonical G-connexion.

For a moment, we shall use the symbol .~, to denote the
tangent space of M at w€M. Let b be an element of H(G) such
that #(b)=u. Taking account of the fact that b gives a linear
isomorphism of E onto .v,, we see that b-p(G)-b~* is a Lie algebra
of endomorphisms of .v,. We put G(%,)=0b-p(G)-b~', which is
independent of the choice of b€ H(G) such that =(b)=u.

We introduce into G(.v,)+.~, a bracket operation by setting

[Alr Az] = Al'Az_Az'An [A, t] = —[t, A] = A(t) ,
[¢, t,] = 2b-Q,(tF, t¥)-07'+2b-O,(t¥, t¥),

for AA,, A,€ G.7,) and ¢ ¢, t,€.v,, where Q and ® denote the
curvature form and torsion form of the canonical G-connexion and
t¥, t¥ denote the horizontal vector at b such that =¥ =¢, = tf=1¢,.

We note that G(.7, )+ ., is not in general a Lie algebra under
this bracket.

Let 4 be the Lie algebra of infinitesimal automorphisms of
G-structure and let B be the set of all infinitesiml automorphisms
of the canonical G-connexion. B is a Lie algebra under the
usual bracket operation for vector fields [7]. According to Pro-
position 3.5, if G has property (&), then ./ is a subalgebra of A.

PROPOSITION 3.6. Let M be a connected differentiable manifold
with a G-structure. Assume that G has the property (P). Let
A: A—> QT+ v, be the mapping defined by

AX) = —b-0y(X) b —b-0,(X) for Xe,

where o denotes the connexion form of the canonical G-connexion
and 0 denotes the basic form. Then A is an isomorphism of A
onto A(A).

Proof. We first remark that, under our assumption, an in-
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finitesimal automorphism of the G-structure is an infinitesimal
automorphism of the canonical G connexion. Let (¢) be a differ-
entiable curve in M and Y(#) be the tangent vector to the curve
at (¢). According to (2.5), an infinitesimal automorphism X of
the G-structure satisfies the following system of differential equa-
tions along the curve 7(¢):

{ VyanrX(#) = ADY () — T(X(), Y(?))
Vv At) = R(Y(?), X(?)),

where X(t)=X7(,),A(t)=AXT(D and V denotes the covariant differ-
ential with respect to the canonical G-connexion. Therefore, an
infinitesimal automorphism X of the G-structure is uniquely deter-
mined by the valtes of X and Ay at any single point of M. This
implies that A is one-to-one.

We shall show that A is a homomorphism. Let X, Ye /.

Since [X, Y]:[ﬁ’], we have
ACX, Y] = —b-w,,([X, Y])-b“—b-@([X, YY)).

But since X and Y are infinitesimal automorphisms of the canonical
G-connexion, we have by Lemma 2.6 that

o[X, Y]) = 20X, ¥)~[X), o(7)].
Moreover, by Lemma 2.2 we have
O[X, Y]) = o(¥)-0(X)—(X)-0(Y)+20(X, T).
Thus we have

ALY, Y] = —20-X, V)b +b-{[o(X), o )]} 5"
—b-o(Y)-0X)+b-0(X)O(Y)—-2b-0(X, Y).

On the other hand, from the definition of the bracket operation
in Q.v,)+ <, ,it follows that

[AX), A(Y)] = [—b-0(X)-b'—b-0(X), —b-a(TV)-b"'—b-6(T)]
= b-{[@(X), o(¥)]-b"'+b-0(X)-O(Y)—b-0(¥)-0(X)
—2b-Q(X*, Y*)-b'—2b-O(X*, Y*).
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Since hX=X* and hY=Y*, we see that Q(X* Y*)=Q(X, ¥) and
O(X*, Y*)=0(X, Y). Hence we conclude that

A[X, Y] = [AX), AY)].

COROLLARY 1%. Under the same assumption as in Proposition
3.6, it holds that

dim A <dimG+dim M .

Making use of Palais’s theorem [8, Theorem VII, Chap. IV], we
have from the finite dimensionality of /4

CoROLLARY 2%. Under the same assumption as in Proposition
3.6, the group of all automorphisms of a G structure is a Lie group.

§4. Holonomy and infinitesimal automorphisms

6. We consider the holonomy group ¥, with reference point x
of a connexion. The holonomy theorem [7] states: The holonomy
algebra o,, the Lie algebra of W,, is the subalgebra of gl(xn, R)
which is generated by all elements of the form Q,(X*, Y*), ye9,,
where Q denotes the curvature form and X* and Y* are arbitrary
horizontal vectors at y.

We shall prove the following

LEMMA 4.1. Let M be a simply-connected differentiable mani-
fold of dimension n. If the holonomy algebra o, with reference
point x€ 4 (M) of a connexion o in % (M) is weakly reductive in
al(n, R), then, for any infinitesimal automorphism X of the connexion,
we have

o (X)e N,  for y€D,,

where N(c,) denotes the normalizer of o, in gl(n, R) and 9, denotes
the holonomy manifold through x.

Proof. Since o, is weakly reductive in gl(n#, R), there exists a
subspace 1 of gl(#, R) such that gl(#, R)=0¢,+n (direct sum) and
[¢., n]cn. For any element A of gl(n, R), we denote by An (resp.

6) Cf.[5].
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A,.) the n component (resp. o, -component) of A. It is well known
that the structural group of the prinicipal bundle ©, is the
holonomy group VWV, with reference point x. The simply-
connectedness of M implies that WV, is connected. Therefore
from the weak reductivity of o, it follows that o(X): is a tensor
of type (ad,n) on .. From the holonomy theorem, we know
that QO (X* Y*)€o,, where y€9, and X, Ye T(M). Since
Y*-o(X)n €n and Y*:0(X),, €0o,, it follows from Lemma 2.5 that
Y*.o(X)s =0, that is, ©(X)n is constant on $,. Consequently we
have for any ae V¥,

CDy(X)n = Cl’ya(X)n = dd(d_l)&)y()z)u ,
and hence, for any A€o,, [A4,0,(X)i]=0. Thus we have
[a)y(X)) A] = [wy(X)a-x ’ A] €o, for A€o,,

which proves our assertion.

We shall seek for the condition that an infinitesimal auto-
morphism of a G-connexion is an infinitesimal automorphism of
a G-structure.

We recall that 9, H(G) and o,C G for be H(G). Every point
z of H(G) can be written in the form z=y-g, where g€ G and
y€9,. Then from Lemma 4.1 we see that (oyg(X‘)=ad(g“)coy(X)e
ad(g ') N(s,). Thus if o,=N(s,) for a single point b€ H(G), then
o, (X)e @ for every z¢€ H(G).

On the other hand, S. Kobayashi [3] has proved the following

(4.1) Suppose that the subalgebra o, of gl(n, R) satisfies the follow-
ing conditions : (i) ad(c,) is irreducible, (ii) o, is reductive in gl(n, R)
in the sense of Koszul, (iii) o, does not contain any non-trivial ideal
of gl(n, R). Then N(o,)=o0,.

If o, is reductive in gl(n, R) in the sense of Koszul, then o,
is weakly reductive in gl(n, R). Consequently, we have, combining
these facts with Proposition 3.3

PrROPOSITION 4.1. Let M be a simply-connected differentiable
manifold with a G-structure. Suppose that the holonomy group Vv,



16 Atsuo Fujimoto

with reference point b€ H(G) of a G connexion satisfies the following
conditions : (i) ad(s,) is irreducible, (ii) the holonomy algebra o, is
reductive in gl(n, R) in the sense of Koszul, (iii) o, does not contain
any non-trival ideal. Then an infinitesimal automorphism of the G-
connexion is also an infinitesimal automorphism of the G-structure.

§ 5. Homogeneous G-structures

7. Let K be a connected Lie group, L be a closed subgroup
of K. Denote by & and & the Lie algebra of K and L respec-
tively. Let K/L be a reductive homogeneous space of dimension
n. Namely there exists a subspece m of & such that =m+
and ad(L)mcm. Let p be the natural projection K— K/L and
ple)=u,. Each element k of K defines a differentiable transforma-
tion 7(k) of K/L. Since v(/)u,=u, for /€ L, 7(!) induces a linear
transformation 7(/)4« of the tangent space at u, onto itself, which
is the same as ad(/) on m. Thus we obtain the so-called linear
isotopy representation « of L, «@: L—GL(n, R). We shall denote
by L the linear isotropy group, that is L=«(L). Each differen-
tiable transformation t(k) induces an automorphism ';(\15 of the
frame bundle ..»# (K/L) of K/L. Thus it holds that

G.1) R or(k) = 7(k)oR,, acGL(n, R).
(5.2) r(k)or = wor(k),

where = is the projection of the frame bundle .~ (K/L).

DEFINITION 5.1. A G-structure on a reductive homogeneous
space K/L is called an invariant G- structure if every =(k), k€ K,
is an automorphism of G-structure.

Let x, be the frame at u,= p(e) such that x,-E=p.E for E€m.
If we fix a base &, ---,&, of m, then x, may be identified with

(s, psE., -+, pxE). It is easily verified that 7(/) x,= R,,x, for /€ L.
Now we define the map X : K—.& (K/L) as follows

(5.3) X(k) = (k) x , for any keK.

Then we see that
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(5. 4) X(kl) = Ry X(k)  for k€K and [€L,
and ]
(5. 5) Xod, =7(k)oX for keK,

where @&, denotes the left translation of K corresponding to k€ K.
Therefore X is a homomorphism of the principal bundle K(K/L, L)
into the frame bundle . (K/L). It can be readily verified that
X(K) is a reduced bundle of .% (K/L) and has the structural group

L. Moreover, from (5.5), we see that each =(k) leaves X(K)
invariant. Thus we obtain

(5.6)” A reductive homogenous space K/|L possesses an invariant
L-structure.

Now we shall prove the following

PROPOSITION 5.1. In order that a reductive homogeneous space
K/L admits an invariant G-structure it is necessary and sufficient
that there exists an element a of GL(n, R) such that aGa > L.

Proof. Suppose that K /L admits an invariant G--structure
and denote by H(G) its reduced bundle. Take a frame b, of H(G)
at u,. Then there exists an element @ of GL(#, R) such that
b,=R,x,. Denote by L, (resp. G,) the fibre over u of X(K) (resp.
H(G)). Then R,L, CG,. In fact, any element x of L, can be
written as szw(,)xoz;(vl)xo. Hence

R.x = Rya(D)x, = () Rox, = m(1) b, € H(G).
Since Z,T(k),,o:;‘(\k,)i,,o and GT(,?),,():';(Vk)Guo, we see that
Razr(k)uo = Ra;(\k’)zuo = ';-(\kSRaZuo C %Guo = GTCk)uo .

Therefore R,X(K)C H(G). This implies that G>a 'La.
Conversely, let G be a Lie subgroup of GL(n, R) such that
aGa*>L, aecGL(n, R). R,X(K) is a principal bundle over K/L

7) Added in Proof. A similar result was obtained independently by D. Bernard.
(See D. Bernard: Sur la géométrie différentielle des G-structures, Theése, (1960)).
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with structural group @ 'La. Moreover, from (5.2) and (5.5) it
follows that R, X(K) is invariant by =(k), k€ K. Let H(G) be the
principal bundle over K/L which is obtained from R,X(K) by
enlarging the structural group from @ 'La to G. Clearly H(G) is
invariant by all =(k), k€ K. Hence K/L admits an invariant G-
structure. Thus we have proved the proposition.

We consider next invariant connexion on K/L. Since K/L
is reductive, there exists an invariant connexion 'y in the principal
bundle K(K/L, L) (see [7]). Namely I'w-horizontal subspace at
k€K is ®,4m. The homomorphism X of K(K/L, L) into . (K/L)
maps the above invariant connexion I'm in K(K/L, L) into I', in
.~ (K/L). Thus the horizontal subspace at R,X(k) with respect to
I, is R,xX4®.xm. This connexion 1, is nothing but the canonical
connexion of the second kind in the sense of Nomizu [6]. From
the construction of I',, we easily see that I', is reducible to a
connexion in R,X(K) which is invariant connexion. Consequently
we have the following two propositions.

ProrosITION 5.2. The canonical connexion of the second kind
on a reductive homogeneous space is an invariant L-connexion.

PrOPOSITION 5.3. Suppose that a reductive homogeneous space
admits an invariant G-structure. Then the canonical connexion of
the second kind is an invariant G-connexion.

It is well known | 6] that the canonical connexion of the second
kind on a symmetric homogeneous space is without torsion. On
the other hand, if there exists a G-connexion without torsion, then
the structure tensor of G-structure vanishes (see. [1]). Hence we
have

COROLLARY 1. If a symmetric homogeneous space admits an
invariant G-structure, then the structure tensor of the G-structure
vanishes.

Finally we shall prove the following

PRrROPOSITION 5.4. Let K/L be a reductive homogeneous space
with a fixed decomposition of the Lie algebra K=m -+, ad(L)m Cm.
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Suppose that K|L admits an invariant G-structure. Then there
exists a one-to-one correspondence between the set of all invariant
G-connexions and the set of all linear maps A of m into G such that

Aoad(l) = ad(l)oAoad(I”)  for I€L.

Proof. Let I’y be the canonical connexion of the second kind
and let @, be the restriction of the connexion form of Iy to the
reduced buudle H(G). Take any invariant G-connexion 1. We
denote by ® the restriction of the connexion form of I' to H(G).
Put A=w—w,. Since ®», and ® are both invariant &-valued forms
on H(G), we see that A is an invariant tensorial 1-form of type
(ad, G) on H(G). Conversely, given an invariant tensorial 1-form
A of type (ad, G) on H(G), then o,+\ gives rise to an invariant
reduced G-connexion. Thus we see that there exists a one-to-one
correspondence between the set of all invariant G-connexions and
the set of all invariant tensorial 1-forms of type (ad, G) on H(G).

For an invariant 1-form XA of type (ad, &) on H(G), we Qeﬁne

A(X)Y = b1y(X*)0'Y,

where #(b)=u, and X, Y€ T, (K/L) and X* denotes the lift of X
with respect to 1,. Clearly this definition is independent of the
choice of b€ H(G) such that #(b)=u. Then A is an invariant (1, 2)-
tensor field on K/L:

[A o l(B)+X) N (R)xY) = m(R)[ALX)-Y].

In fact, since T(k)x maps each I'-horizontal subspace onto a I',-
horizontal subspace and T7(k)ew==or(k), we obtain (7(k)+X)*=5
=7(k)xX¥ by the uniqueness of a lift. Therefore we obtain

N o (T(R) X )¥) = Ay (T ()4 X®) = Ny(X%)

because A is an invariant tensorial 1-form. On the other hand,
for any £em, we have [7(k)b]-E=1(k)x(b+E), be H(G), k€ K, and
hence [r(k)b] 'v(k)xY=5b""Y. Thus we have

[A o (B X) N (k)4 Y) = [7(R) ] -Nezms o((r ()X )L (k) b] "7 ()5 Y
— r(k)sbM(X%) -5V ] = m(R)[ALX)Y].
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In particular, the invariance of A at p(e) by =(/) implies
(5.7 A (T3 X)Y = m(Dsd ([ X)T(I7 )Y .

Conversely, given a (1,2)-tensor A, on T,(K/L) which
satisfies the relation (5.7) and such that A, (X)€b,Gbs", 7(b,)
= p(e), then by the transitivity of K we can define the invariant
(1, 2)-tensor field A on K/L such that A/(X)e€bGhb™", =(b)=u.
Hence we obtain the tensorial 1-form of type (ad, §) on H(G).
Remarking that - G-67" is isomorphic to ¢ and T, (K/L) is isomor-
phic to m, we have proved the proposition.
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