On automorphisms of G-structures

By

Atsuo Fulimoto

(Received March 21, 1961)

Introduction

The purpose of the present paper is to investigate the properties concerning automorphisms of G-structures. § 1 contains definitions and notations. In § 2, we shall prove some lemmas which will be used in the remaining sections. In § 3, we shall study infinitesimal automorphisms of G-structures. Conditions that a vector field to be an infinitesimal automorphism of G-structure will be given. We consider the set $\mathcal A$ of all infinitesimal automorphisms of G-structure. Under certain condition, $\mathcal A$ is a finite dimensional Lie algebra. In § 4, we shall give a condition that an infinitesimal automorphism of G-connexion is also an infinitesimal automorphism of G-structure. The last section is devoted to the study of invariant G-structures on reductive homogeneous spaces.

The author wishes to express his sincere gratitude to Professor J. Kanitani for his cotinued encouragement.

§ 1. Preliminaries and notations

1. Throughout this paper, all manifolds, mappings, vector fields and differential forms are understood to be of class C^{∞} .

Let M be a differentiable manifold. We shall denote by T(M) the tangent bundle of M and by $T_{u}(M)$ the tangent space of M at $u \in M$. Suppose $f: M \to N$ to be a differentiable mapping of M into a differentiable manifold N. Then f induces a mapping $f_*: T(M) \to T(N)$. Let F be a vector space over reals. We denote by $\phi_F(M)$ the set of all F-valued differential forms on M. The

dual of f_* gives a mapping $f_*: \phi_F(N) \rightarrow \phi_F(M)$.

Let G be a Lie subgroup of the general linear group GL(n, R) in n variables, and \mathcal{G} be its Lie algbra. Let E be an n-dimensional vector space over reals, and E^* be the dual space of E. We define the representation (ρ, E) of GL(n, R) on a vector space E as follows:

$$\rho(g)e_i = \sum_j g_i^j e_j \quad \text{for} \quad g = (g_i^j) \in GL(n, \mathbb{R}),$$

where e_1, \dots, e_n is a base of E. If we consider the restriction of ρ to the subgroup G, then we obtain a representation of G which we denote by the same notation (ρ, E) . Then we obtain two representation $(\rho^* \otimes \operatorname{ad}, E^* \otimes \mathcal{G})$ and $((\rho^* \wedge \rho^*) \otimes \rho, (E^* \wedge E^*) \otimes E)$ of G, where (ρ^*, E^*) is the dual representation of (ρ, E) and $(\operatorname{ad}, \mathcal{G})$ is the adjoint representation of G. For brevity, we shall denote these representations by $(\alpha_1, E^* \otimes \mathcal{G})$ and $(\alpha_2, (E^* \wedge E^*) \otimes E)$ respectively.

Let (\tilde{e}_{σ}) $(\sigma=1, \cdots, \dim G)$ be a base of \mathcal{G} , and let (e_1, \cdots, e_n) be a base of E and (e^1, \cdots, e^n) its dual base. The representation (ρ, E) of G induces the representation $(\bar{\rho}, E)$ of the Lie algebra \mathcal{G} . Then $\bar{\rho}(\tilde{e}_{\sigma})$ can be represented by a matrix $||a_{\sigma j}^*||$:

$$ar{
ho}(\tilde{e}_{\sigma}) \cdot e_j = \sum_i a_{\sigma j}^i e_i$$
 .

In the following we shall write $\bar{\rho}(A)\xi = A \cdot \xi$ for $A \in \mathfrak{gl}(n, \mathbb{R}), \xi \in E$. We define the linear map $\alpha : E^* \otimes \mathcal{G} \rightarrow (E^* \wedge E^*) \otimes E$ as follows:

$$\mathscr{U}(\sum_{\sigma_{i},k}\xi_{k}^{\sigma}e^{k}\otimes \hat{e}_{\sigma})=\sum_{\sigma_{i},j,j,k}(a_{\sigma j}^{\prime}\xi_{k}^{\sigma}-a_{\sigma k}^{\prime}\xi_{j}^{\sigma})e^{j}\wedge e^{k}\otimes e_{i}$$

for any $g \in G$, we see immediately that $\alpha_2(g)$ leaves Im n invariant, and hence we obtain an automorphism $\alpha_3(g)$ of Coker n. Thus we obtain the representation $(\alpha_3, Coker n)$ of G.

DEFINITION 1.1. We say that the group G has the *property* (\mathcal{P}) if the following conditions are satisfied

- 1. Ker = 0.
- 2. There exists a linear map $k: Coker \lor \to (E^* \land E^*) \otimes E$ such that
 - (i) $q \circ k = 1$.
 - (ii) $k \circ \alpha_3(g) = \alpha_2(g) \circ k$ for any $g \in G$,

where q denotes the natural projection $(E^* \wedge E^*) \otimes E \rightarrow Coker$ α .

2. Let M be an n-dimensional differentiable manifold and $\mathscr{F}(M)$ be the frame bundle of M whose projection is π . Let E be an n-dimensional vector space over reals. Recalling that every element x of $\mathscr{F}(M)$ is considered as a linear isomorphism of E onto $T_{\pi(x)}(M)$, we define a tensorial 1-form θ of type (ρ, E) on $\mathscr{F}(M)^{10}$, called basic form, as follows [7]

$$\theta_x(Z) = x^{-1} \cdot \pi_* Z$$
 for any $Z \in T_x(\mathscr{F})$.

Suppose that a connexion Γ is given in $\mathscr{F}(M)$ and denote by ω the connexion form of Γ . For any vector field Z on $\mathscr{F}(M)$, we denote by hZ (resp. vZ) the horizontal (resp. vertical) component of Z with respect to Γ . We denote by X^* the lift of $X \in T(M)$ with respect to Γ . For each point x of $\mathscr{F}(M)$, we denote by \mathfrak{D}_x the set of all points which can be joined to x by horizontal curves. These \mathfrak{D} 's are submanifold of $\mathscr{F}(M)$ which we call horizontal manifolds.

The covariant differential of an l-form Ξ on $\mathcal{F}(M)$ is defined by

(1.1)
$$D\Xi(Z_1, \dots, Z_{l+1}) = d\Xi(hZ_1, \dots, hZ_{l+1})$$

for any vector fields Z_1, \dots, Z_{l+1} on $\mathcal{F}(M)$. Moreover, if Ξ is a tensorial form of type (r, F), then $D\Xi$ is given by ([10])

$$D\Xi = d\Xi + \bar{r}(\omega) \cdot \Xi ,$$

where (\bar{r}, F) denotes the induced representation of the Lie algebra $\mathfrak{gl}(n, R)$.

We shall denote by Ω and Θ the curvature form and torsion form of a given connexion Γ respectively, that is, $\Omega = D\omega$ and $\Theta = D\theta$. Concernig the curvature form and the torsion form, we have the following structure equations ([7]):

(1.3)
$$d\omega = -\frac{1}{2} [\omega, \omega] + \Omega.$$

$$(1.4) d\theta = -\bar{p}(\omega) \cdot \theta + \Theta.$$

¹⁾ As to the definition of tensorial forms, see [10].

Let X be a vector field on M. For a differential form Ξ , the Lie derivative $\mathcal{L}_X\Xi$ of Ξ with respect to X is defined by

$$\mathcal{L}_{X}\Xi = \lim_{t \to 0} \frac{1}{t} \left\{ \varphi_{t}^{*}\Xi - \Xi \right\},\,$$

where φ_t denote the local transformations generated by X ([8]). For X and $Y \in T(M)$, we have ([8])

$$(1.6) X \cdot \Xi(Y) = (\mathcal{L}_X \Xi)(Y) + \Xi([X, Y]).$$

$$(1.7) 2d\Xi(X, Y) = X \cdot \Xi(Y) - Y \cdot \Xi(X) - \Xi([X, Y]).$$

$$(1.8) 2d\Xi(X, Y) = (\mathcal{L}_X\Xi)(Y) - (\mathcal{L}_Y\Xi)(X) + \Xi([X, Y]).$$

A vector field X on M induces a vector field \widetilde{X} on $\mathscr{F}(M)$ in the following manner ([7]). For each $x \in \mathscr{F}(M)$ and $u = \pi(x)$, X generates a local 1-parameter group of local transformations φ_t in a neighborizod U of u. Each φ_t induces a local 1-parameter group of transformations $\widetilde{\varphi}_t$ in $\pi^{-1}(U)$ and $\widetilde{\varphi}_t$ induce a vector field \widetilde{X} on $\pi^{-1}(U)$. Since $\widetilde{\varphi}_t$ commute with right translation R_g ($g \in GL(n, R)$), the induced vector field \widetilde{X} is invariant under right translations;

$$(1.9) R_{g*}\tilde{X} = \tilde{X}.$$

It can be shown by straightforward calculation that $\tilde{\varphi}_t$ leave the basic form θ invariant. Hence we have from (1.5)

$$\mathcal{L}_{\tilde{\mathbf{x}}}\theta = 0.$$

§ 2. Several lemmas

3. Keeping the notation of the preceding section, we shall prove several lemmas which will be used in the following.

LEMMA 2.1. Let f be a tensor on $\mathcal{F}(M)$ of type (r, F), then for any $A \in \mathfrak{gl}(n, R)$ and $x \in \mathcal{F}(M)$, we have

$$\sigma(A)_{r} f = -\bar{r}(A) f(x)$$

where $\sigma(A)$ is the fundamental vector field $^{2)}$ corresponding to A and

²⁾ Cf. [7].

 (\bar{r}, F) is the induced representation of (r, F).

Proof.

$$\sigma(A)_{x} f = \lim_{t \to 0} \frac{1}{t} \left\{ f(R_{\exp tA} \cdot x) - f(x) \right\}$$

$$= \lim_{t \to 0} \frac{1}{t} \left\{ r((\exp tA)^{-1}) f(x) - f(x) \right\} = -\bar{r}(A) f(x) . \quad \text{q.e.d.}$$

For any vector field X on M, we define the differentiable functions β_X and γ_X on $\mathscr{F}(M)$ as follows

$$\beta_{X}(x) = \omega_{x}(\tilde{X})$$
 for $x \in \mathcal{F}(M)$,

and

$$\gamma_X(x) = \theta_x(\tilde{X})$$
 for $x \in \mathscr{F}(M)$.

From (1.9) we see that

- (2.1) β_X is a tensor of type $(ad, \mathfrak{gl}(n, R))$ on $\mathcal{F}(M)$.
- (2.2) γ_X is a tensor of type (ρ, E) on $\mathcal{F}(M)$.

Let Z be any vector field on $\mathscr{F}(M)$ and A be the element of $\mathfrak{gl}(n, \mathbb{R})$ such that $\sigma(A)_x = vZ_x$. From (2.2) and Lemma 2.1, it follows that

$$\sigma(A)_r \cdot \theta(\tilde{X}) = -\bar{\rho}(A)\theta(\tilde{X}) = -A \cdot \theta(\tilde{X}),$$

and hence

$$(2.3) vZ \cdot \theta(\tilde{X}) = -\omega(Z) \cdot \theta(\tilde{X}).$$

Since $\overline{ad}(A)B = [A, B]$ for $A, B \in \mathfrak{gl}(n, R)$, we have similarly

$$(2.4) vZ \cdot \omega(\tilde{X}) = -[\omega(Z), \ \omega(\tilde{X})].$$

LEMMA 2.2. For any vector fields X and Y on M,

$$\theta(\![\![\tilde{X},\ \tilde{Y}]\!]) = 2d\theta(\tilde{X},\ \tilde{Y}) = \omega(\tilde{Y})\boldsymbol{\cdot}\theta(\tilde{X}) - \omega(\tilde{X})\boldsymbol{\cdot}\theta(\tilde{Y}) + 2\Theta(\tilde{X},\ \tilde{Y}).$$

Proof. From (1.10) it follows that $\mathcal{L}_{\tilde{X}}\theta = 0$ and $\mathcal{L}_{\tilde{Y}}\theta = 0$. Therefore, making use of (1.6) and (1.7), we have

$$2d\theta(\tilde{X}, \tilde{Y}) = \theta(\lceil \tilde{X}, \tilde{Y} \rceil).$$

The right hand side is nothing but the structure equation (1.4).

LEMMA 2.3. For any vector fields X and Y on M,

$$\omega(\lceil \tilde{X}, \ \tilde{Y} \rceil) = h \tilde{X} \cdot \omega(\tilde{Y}) - h \tilde{Y} \cdot \omega(\tilde{X}) - \lceil \omega(\tilde{X}), \ \omega(\tilde{Y}) \rceil - 2\Omega(\tilde{X}, \ \tilde{Y}).$$

Proof. From (1.3), (1.7) and (2.4), we have

$$\begin{split} 2\Omega(\tilde{X},\ \tilde{Y}) &= 2d\omega(\tilde{X},\ \tilde{Y}) + \left[\omega(\tilde{X}),\ \omega(\tilde{Y})\right] \\ &= \tilde{X}\boldsymbol{\cdot}\omega(\tilde{Y}) - \tilde{Y}\boldsymbol{\cdot}\omega(\tilde{X}) - \omega(\left[\tilde{X},\ \tilde{Y}\right]) + \left[\omega(\tilde{X}),\ \omega(\tilde{Y})\right] \\ &= h\tilde{X}\boldsymbol{\cdot}\omega(\tilde{Y}) - h\tilde{Y}\boldsymbol{\cdot}\omega(\tilde{X}) - \omega(\left[\tilde{X},\ \tilde{Y}\right]) + v\tilde{X}\boldsymbol{\cdot}\omega(\tilde{Y}) - v\tilde{Y}\boldsymbol{\cdot}\omega(\tilde{X}) \\ &\qquad \qquad + \left[\omega(\tilde{X}),\ \omega(\tilde{Y})\right] \\ &= h\tilde{X}\boldsymbol{\cdot}\omega(\tilde{Y}) - h\tilde{Y}\boldsymbol{\cdot}\omega(\tilde{X}) - (\left[\tilde{X},\ \tilde{Y}\right]) - \left[\omega(\tilde{X}),\ \omega(\tilde{Y})\right]. \end{split}$$

LEMMA 2.4. Let X be a vector field on M and Z be a vector field on $\mathscr{F}(M)$, then we have

$$hZ \cdot \theta(\tilde{X}) = \omega(\tilde{X}) \cdot \theta(Z) - 2\Theta(\tilde{X}, Z)$$
.

Proof. Making use of (1.10), (1.6), (1.7), (1.4) and (2.3), we obtain

$$\begin{split} 0 &= (\mathcal{L}_{\widetilde{X}}\theta)(Z) = \widetilde{X} \boldsymbol{\cdot} \theta(Z) - \theta(\widetilde{[X,Z]}) \\ &= 2d\theta(\widetilde{X},Z) + Z \boldsymbol{\cdot} \theta(\widetilde{X}) \\ &= \omega(Z) \boldsymbol{\cdot} \theta(\widetilde{X}) - \omega(\widetilde{X}) \boldsymbol{\cdot} \theta(Z) + 2\Theta(\widetilde{X},Z) + hZ \boldsymbol{\cdot} \theta(\widetilde{X}) \\ &- \omega(Z) \boldsymbol{\cdot} \theta(\widetilde{X}) \\ &= -\omega(\widetilde{X}) \boldsymbol{\cdot} \theta(Z) + 2\theta(\widetilde{X},Z) + hZ \boldsymbol{\cdot} \theta(\widetilde{X}), \quad \text{q.e.d.} \end{split}$$

We say that a vector field X on M is an infinitesimal automorphism of a given connexion ω , if the local transformations φ_t generated by X are all local automorphisms of the given connexion ω ([7]). Concerning infinitesimal automorphisms of a connexion, we shall prove the following two lemmas.

LEMMA 2.5. If X is an infinitesimal automorphism of a connexion ω , then it holds that, for any vector field Z on $\mathcal{F}(M)$,

$$hZ \cdot \omega(\tilde{X}) = 2\Omega(Z, \tilde{X})$$

where Ω denotes the curvature from of ω .

Proof. Since the local transformations $\tilde{\varphi}_t$ induced by \tilde{X} leave the connexion form ω invariant, we see from (1.5) that $\mathcal{L}_{\tilde{X}}\omega = 0$. Hence, by virtue of (1.6), (1.7). (1.3) and (2.4), we obtain

$$\begin{split} 0 &= (\mathcal{L}_{\widetilde{X}}\omega)(Z) = \widetilde{X}\boldsymbol{\cdot}\omega(Z) - \omega(\left[\widetilde{X},Z\right]) \\ &= 2d\omega(\widetilde{X},Z) + Z\boldsymbol{\cdot}\omega(\widetilde{X}) \\ &= -\left[\omega(\widetilde{X}),\ \omega(Z)\right] + 2\Omega(\widetilde{X},Z) + hZ\boldsymbol{\cdot}\omega(\widetilde{X}) + vZ\boldsymbol{\cdot}\omega(\widetilde{X}) \\ &= 2\Omega(\widetilde{X},Z) + hZ\boldsymbol{\cdot}\omega(\widetilde{X}) \,. \end{split}$$

LEMMA 2.6. If X and Y are infinitesimal automorphisms of a connexion ω , then it holds that

$$\omega(\lceil \tilde{X}, \tilde{Y} \rceil) = 2\Omega(\tilde{X}, \tilde{Y}) - [\omega(\tilde{X}), \omega(\tilde{Y})].$$

Proof. From the fact that $(\mathcal{L}_{\widetilde{X}}\omega)(\widetilde{Y})=0$ and from (1.6), it follows that

$$\omega(\hspace{-0.5mm}\lfloor \tilde{X},\; \tilde{Y}\hspace{-0.5mm}
floor) = \tilde{X} \hspace{-0.5mm} \cdot \hspace{-0.5mm} \omega(\, \tilde{Y})$$
 .

Using (2.4) and Lemma 2.5, we have

$$\tilde{X}\boldsymbol{\cdot}\omega(\tilde{Y})=h\tilde{X}\boldsymbol{\cdot}\omega(\tilde{Y})+v\tilde{X}\boldsymbol{\cdot}\omega(\tilde{Y})=2\Omega(\tilde{X},\;\tilde{Y})-\left[\omega(\tilde{X}),\;\omega(\tilde{Y})\right].$$

This proves our lemma.

Now we shall study the tensor β_X .

LEMMA 2.7. There is a one-to-one correspondence between the set of tensors κ of type (ad, $\mathfrak{gl}(n, R)$) on $\mathscr{F}(M)$ and the set of (1, 1)-tensor fields³⁾ K on M. The correspondence is given by

$$\kappa(x) \cdot \theta(X^*) = x^{-1} \cdot K_{\pi(x)}(X) ,$$

where X is a tangent vector at $u = \pi(x)$ and X^* is the lift of X. Moreover it holds that

$$(\nabla_X K)_{\pi(x)}(Y) = x \cdot (X^* \kappa) \cdot x^{-1} Y, \qquad X, Y \in T_{\pi(x)}(M),$$

where $\nabla_X K$ denotes the covariant derivative of K with respect to X.

Proof. The first half of lemma is obvious. We shall prove the second part. Using the formula for the definition of $\nabla_X Y$ ([7]):

$$(\nabla_X Y)_u = x \cdot (X^* \cdot \theta(Y^*)), \qquad \pi(x) = u,$$

we obtain

$$x^{-1}ullet [
abla_X(K(Y))] = X_x^*ullet \{\kappaullet heta(Y^*)\} = (X_x^*) \, heta(Y^*) + \kappa(x)ullet X_x^* heta(Y^*) \, .$$

³⁾ As to the definition of tensor fields, see [7].

On the other hand, it is known 40 that

$$(\nabla_{\mathbf{X}}K)(Y) = \nabla_{\mathbf{Y}}(K(Y)) - K(\nabla_{\mathbf{Y}}Y).$$

Hence we have

$$(\nabla_X K)(Y) = x \cdot (X_x^* \kappa) \cdot x^{-1} Y + x \cdot \kappa(x) \cdot x^{-1} (\nabla_X Y) - K(\nabla_X Y)$$

= $x \cdot (X_x^* \kappa) \cdot x^{-1} Y$,

because $x \cdot \kappa(x) \cdot x^{-1}(\nabla_X Y) = K(\nabla_X Y)$. Thus we have proved the lemma.

Now, for any vector field X on M, we define the (1,1)-tensor fields B_X and T_X on M as follows:

$$B_{\mathbf{X}}(Y) = -\nabla_{\mathbf{Y}}X$$

and

$$T_{\mathbf{x}}(Y) = T(X, Y)$$
,

where T denotes the torsion tensor field. We define the (1, 1)-tensor field A_x on M by

$$A_X = T_X - B_X$$
.

Then A_X corresponds to the tensor β_X of type $(ad, \mathfrak{gl}(n, R))$ in the sense of Lemma 2.7. In fact, according to Lemma 2.4, we see that $\omega(\tilde{X}) \cdot \theta(Y^*) = Y^* \cdot \theta(X^*) + 2\Theta(X^*, Y^*)$, for any vector fields X and Y on M. From the definition of torsion tensor field T, it follows that $2x \cdot \Theta_x(X^*, Y^*) = T_{\pi(x)}(X, Y)$. On the other hand, we have

$$x \cdot (Y^* \cdot \theta(X^*)) = \nabla_Y X = -B_Y(Y)$$
.

Thus we conclude that

$$x \cdot \omega_x(\tilde{X}) \cdot x^{-1} Y = A_{X, \pi(x)}(Y)$$
.

Suppose X to be an infinitesimal automorphism of a connexion. By Lemma 2.7, the formula in Lemma 2.5 is written in the following form

$$\nabla_{\mathbf{v}} A_{\mathbf{v}} = R(Y, X)$$
.

Cf. [7]

⁵⁾ A_X is defined by Kostant [4] in Riemannian case.

where R is the curvature tensor field, that is, $R_{\pi(x)}(X_1, X_2)$ $X_3 = 2x \cdot \Omega_x(X_1^*, X_2^*) x^{-1} X_3^*$, X_1 , X_2 , $X_3 \in T_{\pi(x)}(M)$. Thus we have the well-known formulae

(2.5)
$$\left\{ \begin{array}{l} \nabla_Y X = A_X(Y) - T(X, Y) \, . \\ \nabla_Y A_X = R(Y, X) \, . \end{array} \right.$$

§ 3. Infinitesimal automorphisms of G-structures

4. We say that an n--dimensional differentiable manifold M possesses a G-structure when the structure group of the frame bundle $\mathscr{F}(M)$ of M is reducible to a Lie subgroup G of $GL(n, \mathbb{R})$.

Suppose that M possesses a G-structure and denote by H(G) the reduced bundle. From the definition of the reduced bundle, there is the injection $\iota: H(G) \to \mathscr{F}(M)$. We call a connexion Γ' in H(G) a reduced G-connexion. Given a reduced G-connexion Γ' in H(G), the injection ι maps Γ' into a connexion Γ in $\mathscr{F}(M)$ (see [7]). The linear connexion thus obtained is called a G-connexion in $\mathscr{F}(M)$.

The following proposition follows immediately from the definition of G-connexion.

Proposition 3.1. A G-connexion 1 has the following properties:

- (I) The holonomy group Ψ_b with reference point $b \in H(G)$ of Γ is contained in G.
- (II) Each Γ -horizontal manifold through $b \in H(G)$ is a submanifold of the reduced bundle H(G).
- (III) If ω is the connexion from of Γ , then the connexion form of reduced G-connexion Γ' is $\iota^*\omega$.
- (IV) If Ξ is a differential form on $\mathscr{F}(M)$, then

$$\iota^*(D\Xi) = D'(\iota^*\Xi) ,$$

where D (resp. D') denotes the covariant differentiation operator with respect to Γ (resp. Γ). In particular, if Ω is the curvature form of Γ , then the curvature form of Γ is $\iota^*\Omega$.

Thus the curvature form Ω of a G-connexion restricted to H(G) has its values in \mathcal{G} , the Lie algebra of G.

Let φ be a differentiable transformation of M onto itself. Then φ induces naturally a differentiable transformation $\widetilde{\varphi}$ of $\mathscr{F}(M)$ in the following manner. Any frame $x=(t_1,\cdots,t_n)$ at $u=\pi(x)$ is mapped into the frame $\widetilde{\varphi}(x)=(\varphi_*t_1,\cdots,\varphi_*t_n)$. The induced transformation $\widetilde{\varphi}$ is an automorphism of $\mathscr{F}(M)$, that is, $\widetilde{\varphi}$ satisfies the conditions: $\pi\circ\widetilde{\varphi}=\varphi\circ\pi$ and $\widetilde{\varphi}\circ R_g=R_g\circ\widetilde{\varphi}$ for every $g\in GL(n,\mathbb{R})$.

Given a G-structure on a differentiable manifold M, a differentiable transformation φ of M is called an *automorphism of the* G-structure if the induced transformation $\widetilde{\varphi}$ maps each element of H(G) into an element of H(G).

DEFINITION 3.1. We say that a vector field X on M is an infinitesimal automorphism of a given G-structure, if the local transfomations φ_t generated by X are all local automorphisms of the given G-structure.

PROPOSITION 3.2. A vector field X on M is an infinitesimal automorphism of a G-structure if and only if the vertical component of \tilde{X} with respect to any G-connxion is tangent to H(G) at every point of H(G).

Proof. X is an infinitesimal automorphism of the G-structure if and only if $\tilde{X}_b \in T_b(H(G))$ for every $b \in H(G)$. On the other hand, according to Propositon 3.1, (II), the horizontal component $h\tilde{X}$ of \tilde{X} with respect to any G-connexion is tangent to H(G) at $b \in H(G)$. Hence we have proved the proposition.

From Proposition 3.2, it follows immediately

Proposition 3.3. A vector field X on M is an infinitesimal automorphism of a G-structure if and only if

$$\omega_b(\tilde{X}) \in \mathcal{G}$$

for every point b of H(G), where ω is the connexion form of a G-connexion.

PROPOSITION 3. 4. The set of all infinitesimal automorphisms of G-structure forms a Lie algebra under the usual bracket operation for vector fields.

Proof. Let X and Y be infinitesimal automorphisms of G-structure and let \widetilde{X} and \widetilde{Y} be the induced vector fields on $\mathscr{S}(M)$. Let ω be the connexion from of a G-connexion and Ω its curvature form. We first remark that $[\widetilde{X},\widetilde{Y}] = [\widetilde{X},\widetilde{Y}]$. It follows from Proposition 3.3 that $\omega_b(\widetilde{X}) \in \mathcal{G}$ and $\omega_b(\widetilde{Y}) \in \mathcal{G}$ for every $b \in H(G)$, and hence

(i)
$$[\omega_b(\tilde{X})\omega_b(\tilde{Y})] \in \mathcal{G}$$
 for every $b \in H(G)$.

Since the horizontal component $h\tilde{X}$ of \tilde{X} is tangent to H(G) at $b \in H(G)$, we see that

(ii)
$$h\tilde{X}_b \cdot \omega(\tilde{Y}) \in \mathcal{G}$$
 for every $b \in H(G)$.

Finally, from Proposition 3.1, (IV), we have

(iii)
$$\Omega_b(\tilde{X}, \tilde{Y}) \in \mathcal{G}$$
 for every $b \in H(G)$.

Thus from (i), (ii), (iii) and Lemma 2.3, we conclude that

$$\omega_b(\widetilde{[X,Y]}) \in \mathcal{G}$$
 for every $b \in H(G)$,

which proves our Proposition 3.4.

5. In the rest of this section, we shall confine ourselves to the case where G has property (\mathcal{P}) and we shall consider the canonical G-connexion whose existence has been proved in [1]. We shall prove the following

LEMMA 3.1. If an automorphism φ of G-structure is an automorphism of reduced G-connexion, then φ is an automorphism of G-connexion.

Proof. Let Q_x be the horizontal subspace at $x \in \mathscr{S}(M)$ with respect to the G-connexion. Every element x of $\mathscr{F}(M)$ can be written as $x = R_g \cdot b$ with $g \in GL(n, R)$, $b \in H(G)$. Taking account of the fact that $\mathscr{P} \circ R_g = R_g \circ \mathscr{P}$, we have

$$\begin{split} \tilde{\varphi}_*Q_x &= \tilde{\varphi}_*Q_{bg} = \tilde{\varphi}_*R_gQ_b = R_{g*}\tilde{\varphi}_*Q_b = R_{g*}Q_{\tilde{\varphi}(b)} = Q_{\tilde{\varphi}(b)g} \\ &= Q_{\tilde{\varphi}(x)}\,,\quad \text{q.e.d.} \end{split}$$

In the previous paper [1] we have proved that when G has property (\mathcal{P}) an automorphism of G-structure is an automorphism

of the canonical reduced G-connexion. Hence, from the above Lemma 3.1, we have

PROPOSITION 3.5. Assume that G has the property (\mathcal{P}) . Then an automorphism of the G-structure is an automorphism of the canonical G-connexion.

For a moment, we shall use the symbol \mathcal{T}_u to denote the tangent space of M at $u \in M$. Let b be an element of H(G) such that $\pi(b) = u$. Taking account of the fact that b gives a linear isomorphism of E onto \mathcal{T}_u , we see that $b \cdot \bar{p}(\mathcal{G}) \cdot b^{-1}$ is a Lie algebra of endomorphisms of \mathcal{T}_u . We put $\mathcal{G}(\mathcal{T}_u) = b \cdot \bar{p}(\mathcal{G}) \cdot b^{-1}$, which is independent of the choice of $b \in H(G)$ such that $\pi(b) = u$.

We introduce into $\mathcal{G}(\mathcal{I}_u) + \mathcal{I}_u$ a bracket operation by setting

$$[A_1, A_2] = A_1 \cdot A_2 - A_2 \cdot A_1, \qquad [A, t] = -[t, A] = A(t),$$

$$[t_1, t_2] = 2b \cdot \Omega_b(t_2^*, t_1^*) \cdot b^{-1} + 2b \cdot \Theta_b(t_2^*, t_1^*),$$

for $A,A_1, A_2 \in \mathcal{Q}(\mathcal{T}_u)$ and $t, t_1, t_2 \in \mathcal{T}_u$, where Ω and Θ denote the curvature form and torsion form of the canonical G-connexion and t_1^* , t_2^* denote the horizontal vector at b such that $\pi_*t_1^*=t_1$, $\pi_*t_2^*=t_2$.

We note that $\mathcal{Q}(\mathcal{I}_u) + \mathcal{I}_u$ is not in general a Lie algebra under this bracket.

Let \mathcal{A} be the Lie algebra of infinitesimal automorphisms of G-structure and let \mathcal{B} be the set of all infinitesimal automorphisms of the canonical G-connexion. \mathcal{B} is a Lie algebra under the usual bracket operation for vector fields [7]. According to Proposition 3.5, if G has property (\mathcal{P}) , then \mathcal{A} is a subalgebra of \mathcal{B} .

PROPOSITION 3. 6. Let M be a connected differentiable manifold with a G-structure. Assume that G has the property (\mathfrak{D}) . Let $\Delta: \mathcal{A} \to \mathcal{G}(\mathcal{T}_u) + \mathcal{T}_u$ be the mapping defined by

$$\Delta(X) = -b \cdot \omega_b(\tilde{X}) \cdot b^{\scriptscriptstyle -1} - b \cdot \theta_b(\tilde{X}) \quad \text{for} \quad X \in \mathcal{A}$$
 ,

where ω denotes the connexion form of the canonical G-connexion and θ denotes the basic form. Then Δ is an isomorphism of \mathcal{A} onto $\Delta(\mathcal{A})$.

Proof. We first remark that, under our assumption, an in-

finitesimal automorphism of the G-structure is an infinitesimal automorphism of the canonical G connexion. Let $\tau(t)$ be a differentiable curve in M and Y(t) be the tangent vector to the curve at $\tau(t)$. According to (2.5), an infinitesimal automorphism X of the G-structure satisfies the following system of differential equations along the curve $\tau(t)$:

$$\begin{cases}
\nabla_{Y(t)}X(t) = A(t)Y(t) - T(X(t), Y(t)) \\
\nabla_{Y(t)}A(t) = R(Y(t), X(t)),
\end{cases}$$

where $X(t) = X_{\tau(t)}$, $A(t) = A_{X_{\tau(t)}}$ and ∇ denotes the covariant differential with respect to the canonical G-connexion. Therefore, an infinitesimal automorphism X of the G-structure is uniquely determined by the values of X and A_X at any single point of M. This implies that Δ is one-to-one.

We shall show that Δ is a homomorphism. Let $X, Y \in \mathcal{A}$. Since $[\widetilde{X}, \widetilde{Y}] = [\widetilde{X}, Y]$, we have

$$\Delta(\llbracket X, Y \rrbracket) = -b \cdot \omega_b(\llbracket \tilde{X}, \ \tilde{Y} \rrbracket) \cdot b^{\scriptscriptstyle -1} - b \cdot \theta(\llbracket \tilde{X}, \ \tilde{Y} \rrbracket) .$$

But since X and Y are infinitesimal automorphisms of the canonical G-connexion, we have by Lemma 2.6 that

$$\omega(\lceil \tilde{X}, \ \tilde{Y} \rceil) = 2\Omega(\tilde{X}, \ \tilde{Y}) - \lceil \omega(\tilde{X}), \ \omega(\tilde{Y}) \rceil.$$

Moreover, by Lemma 2.2 we have

$$\theta(\![\tilde{X},\;\tilde{Y}]\!] = \omega(\tilde{Y}) \! \cdot \! \theta(\tilde{X}) \! - \! \omega(\tilde{X}) \! \cdot \! \theta(\tilde{Y}) \! + \! 2\Theta(\tilde{X},\;\tilde{Y}) \, .$$

Thus we have

$$\Delta(\llbracket Y, Y \rrbracket) = -2b \cdot \Omega(\widetilde{X}, \ \widetilde{Y}) \cdot b^{-1} + b \cdot \{\llbracket \omega(\widetilde{X}), \ \omega(\ \widetilde{Y}) \rrbracket\} \cdot b^{-1} \\ -b \cdot \omega(\widetilde{Y}) \cdot \theta(\widetilde{X}) + b \cdot \omega(\widetilde{X}) \theta(\widetilde{Y}) - 2b \cdot \Theta(\widetilde{X}, \ \widetilde{Y}).$$

On the other hand, from the definition of the bracket operation in $\mathcal{G}(\mathcal{I}_u) + \mathcal{I}_u$, it follows that

$$\begin{split} \left[\Delta(X),\,\Delta(\widetilde{Y})\right] &= \left[-b\boldsymbol{\cdot}\omega(\widetilde{X})\boldsymbol{\cdot}b^{\scriptscriptstyle -1} - b\boldsymbol{\cdot}\theta(\widetilde{X}),\,\,-b\boldsymbol{\cdot}\omega(\widetilde{Y})\boldsymbol{\cdot}b^{\scriptscriptstyle -1} - b\boldsymbol{\cdot}\theta(\widetilde{Y})\right] \\ &= b\boldsymbol{\cdot} \left\{\left[\omega(\widetilde{X}),\,\,\omega(\widetilde{Y})\right]\boldsymbol{\cdot}b^{\scriptscriptstyle -1} + b\boldsymbol{\cdot}\omega(\widetilde{X})\boldsymbol{\cdot}\theta(\widetilde{Y}) - b\boldsymbol{\cdot}\omega(\widetilde{Y})\boldsymbol{\cdot}\theta(\widetilde{X}) \right. \\ &\left. -2b\boldsymbol{\cdot}\Omega(X^*,\,Y^*)\boldsymbol{\cdot}b^{\scriptscriptstyle -1} - 2b\boldsymbol{\cdot}\Theta(X^*,\,Y^*) \right. \end{split}$$

Since $h\widetilde{X} = X^*$ and $hY = Y^*$, we see that $\Omega(X^*, Y^*) = \Omega(\widetilde{X}, \widetilde{Y})$ and $\Theta(X^*, Y^*) = \Theta(\widetilde{X}, \widetilde{Y})$. Hence we conclude that

$$\Delta([X, Y]) = [\Delta(X), \Delta(Y)].$$

COROLLARY 1^{6} . Under the same assumption as in Proposition 3.6, it holds that

$$dim \mathcal{A} \leq dim G + dim M$$
.

Making use of Palais's theorem [8, Theorem VII, Chap. IV], we have from the finite dimensionality of \mathcal{A}

COROLLARY 2⁶). Under the same assumption as in Proposition 3.6, the group of all automorphisms of a G-structure is a Lie group.

§ 4. Holonomy and infinitesimal automorphisms

6. We consider the holonomy group Ψ_x with reference point x of a connexion. The holonomy theorem [7] states: The holonomy algebra σ_x , the Lie algebra of Ψ_x , is the subalgebra of $\mathfrak{gl}(n,R)$ which is generated by all elements of the form $\Omega_y(X^*,Y^*)$, $y\in \mathfrak{D}_x$, where Ω denotes the curvature form and X^* and Y^* are arbitrary horizontal vectors at y.

We shall prove the following

Lemma 4.1. Let M be a simply-connected differentiable manifold of dimension n. If the holonomy algebra σ_x with reference point $x \in \mathcal{F}(M)$ of a connexion ω in $\mathcal{F}(M)$ is weakly reductive in $\mathfrak{gl}(n, R)$, then, for any infinitesimal automorphism X of the connexion, we have

$$\omega_{y}(\tilde{X}) \in N(\sigma_{x}) \quad \text{for} \quad y \in \mathfrak{D}_{x}$$

where $N(\sigma_x)$ denotes the normalizer of σ_x in $\mathfrak{gl}(n, R)$ and \mathfrak{D}_x denotes the holonomy manifold through x.

Proof. Since σ_x is weakly reductive in $\mathfrak{gl}(n, R)$, there exists a subspace \mathfrak{n} of $\mathfrak{gl}(n, R)$ such that $\mathfrak{gl}(n, R) = \sigma_x + \mathfrak{n}$ (direct sum) and $[\sigma_x, \mathfrak{n}] \in \mathfrak{n}$. For any element A of $\mathfrak{gl}(n, R)$, we denote by $A_{\mathfrak{n}}$ (resp.

⁶⁾ Cf. [5].

 A_{σ_x}) the n-component (resp. σ_x -component) of A. It is well known that the structural group of the principal bundle \mathfrak{F}_x is the holonomy group Ψ_x with reference point x. The simply-connectedness of M implies that Ψ_x is connected. Therefore from the weak reductivity of σ_x , it follows that $\omega(\tilde{X})_n$ is a tensor of type (ad, \mathfrak{n}) on \mathfrak{F}_x . From the holonomy theorem, we know that $\Omega_y(X^*, Y^*) \in \sigma_x$, where $y \in \mathfrak{F}_x$ and $X, Y \in T(M)$. Since $Y^* \cdot \omega(\tilde{X})_n \in \mathfrak{n}$ and $Y^* \cdot \omega(\tilde{X})_{\sigma_x} \in \sigma_x$, it follows from Lemma 2.5 that $Y^* \cdot \omega(\tilde{X})_n = 0$, that is, $\omega(\tilde{X})_n$ is constant on \mathfrak{F}_x . Consequently we have for any $a \in \Psi_x$

$$\omega_{\mathbf{y}}(\widetilde{X})_{\mathfrak{N}} = \omega_{\mathbf{y}a}(\widetilde{X})_{\mathfrak{N}} = ad(a^{-1})\omega_{\mathbf{y}}(\widetilde{X})_{\mathfrak{N}}$$
 ,

and hence, for any $A \in \sigma_x$, $[A, \omega_v(\tilde{X})_{11}] = 0$. Thus we have

$$[\omega_{\mathbf{v}}(\tilde{X}), A] = [\omega_{\mathbf{v}}(\tilde{X})_{\sigma_{\mathbf{v}}}, A] \in \sigma_{\mathbf{x}} \quad \text{for} \quad A \in \sigma_{\mathbf{x}},$$

which proves our assertion.

We shall seek for the condition that an infinitesimal automorphism of a G-connexion is an infinitesimal automorphism of a G-structure.

We recall that $\mathfrak{D}_b \subset H(G)$ and $\sigma_b \subset \mathcal{G}$ for $b \in H(G)$. Every point z of H(G) can be written in the form $z = y \cdot g$, where $g \in G$ and $y \in \mathfrak{D}_b$. Then from Lemma 4.1 we see that $\omega_{yg}(\tilde{X}) = ad(g^{-1})\omega_y(\tilde{X}) \in ad(g^{-1})N(\sigma_b)$. Thus if $\sigma_b = N(\sigma_b)$ for a single point $b \in H(G)$, then $\omega_z(\tilde{X}) \in \mathcal{G}$ for every $z \in H(G)$.

On the other hand, S. Kobayashi [3] has proved the following

(4.1) Suppose that the subalgebra σ_b of $\mathfrak{gl}(n,R)$ satisfies the following conditions: (i) $\overline{ad}(\sigma_b)$ is irreducible, (ii) σ_b is reductive in $\mathfrak{gl}(n,R)$ in the sense of Koszul, (iii) σ_b does not contain any non-trivial ideal of $\mathfrak{gl}(n,R)$. Then $N(\sigma_b)=\sigma_b$.

If σ_b is reductive in $\mathfrak{gl}(n, R)$ in the sense of Koszul, then σ_b is weakly reductive in $\mathfrak{gl}(n, R)$. Consequently, we have, combining these facts with Proposition 3.3

PROPOSITION 4.1. Let M be a simply-connected differentiable manifold with a G-structure. Suppose that the holonomy group Ψ_h

with reference point $b \in H(G)$ of a G-connexion satisfies the following conditions: (i) $\overline{ad}(\sigma_b)$ is irreducible, (ii) the holonomy algebra σ_b is reductive in $\mathfrak{gl}(n,R)$ in the sense of Koszul, (iii) σ_b does not contain any non-trival ideal. Then an infinitesimal automorphism of the G-connexion is also an infinitesimal automorphism of the G-structure.

§ 5. Homogeneous G-structures

7. Let K be a connected Lie group, L be a closed subgroup of K. Denote by \Re and \Re the Lie algebra of K and L respectively. Let K/L be a reductive homogeneous space of dimension n. Namely there exists a subspece m of \Re such that $\Re = m + 2$ and ad(L) m < m. Let p be the natural projection $K \to K/L$ and $p(e) = u_0$. Each element k of K defines a differentiable transformation $\tau(k)$ of K/L. Since $\tau(l) u_0 = u_0$ for $l \in L$, $\tau(l)$ induces a linear transformation $\tau(l)_*$ of the tangent space at u_0 onto itself, which is the same as ad(l) on m. Thus we obtain the so-called linear isotopy representation α of L, $\alpha: L \to GL(n, R)$. We shall denote by \tilde{L} the linear isotropy group, that is $\tilde{L} = \alpha(L)$. Each differentiable transformation $\tau(k)$ induces an automorphism $\widetilde{\tau(k)}$ of the frame bundle $\mathscr{F}(K/L)$ of K/L. Thus it holds that

(5.1)
$$R_a \circ \widetilde{\tau(k)} = \widetilde{\tau(k)} \circ R_a, \quad a \in GL(n, R).$$

$$\tau(k)\circ\pi = \widetilde{\pi\circ\tau(k)},$$

where π is the projection of the frame bundle $\mathcal{F}(K/L)$.

DEFINITION 5.1. A G-structure on a reductive homogeneous space K/L is called an *invariant* G-structure if every $\tau(k)$, $k \in K$, is an automorphism of G-structure.

Let x_0 be the frame at $u_0 = p(e)$ such that $x_0 \cdot \xi = p_* \xi$ for $\xi \in \mathbb{N}$. If we fix a base ξ_1, \dots, ξ_n of \mathbb{N} , then x_0 may be identified with $(u_0, p_* \xi_1, \dots, p_* \xi_n)$. It is easily verified that $\tau(l) x_0 = R_{\alpha(l)} x_0$ for $l \in L$. Now we define the map $\mathcal{X}: K \to \mathcal{F}(K/L)$ as follows

(5.3)
$$\chi(k) = \widetilde{\tau(k)} \chi_0$$
 for any $k \in K$.

Then we see that

(5.4)
$$\chi(kl) = R_{\sigma(l)}\chi(k) \quad \text{for } k \in K \text{ and } l \in L,$$

and

(5.5)
$$\chi \circ \Phi_k = \widetilde{\tau(k)} \circ \chi$$
 for $k \in K$,

where Φ_k denotes the left translation of K corresponding to $k \in K$. Therefore X is a homomorphism of the principal bundle K(K/L, L) into the frame bundle $\mathcal{F}(K/L)$. It can be readily verified that X(K) is a reduced bundle of $\mathcal{F}(K/L)$ and has the structural group \tilde{L} . Moreover, from (5.5), we see that each $\widetilde{\tau(k)}$ leaves X(K) invariant. Thus we obtain

 $(5.6)^{7}$ A reductive homogenous space K/L possesses an invariant \tilde{L} -structure.

Now we shall prove the following

PROPOSITION 5.1. In order that a reductive homogeneous space K/L admits an invariant G-structure it is necessary and sufficient that there exists an element a of GL(n, R) such that $aGa^{-1} > \tilde{L}$.

Proof. Suppose that K/L admits an invariant G--structure and denote by H(G) its reduced bundle. Take a frame b_0 of H(G) at u_0 . Then there exists an element a of GL(n,R) such that $b_0 = R_a x_0$. Denote by \tilde{L}_u (resp. G_u) the fibre over u of X(K) (resp. H(G)). Then $R_a \tilde{L}_{u_0} \subset G_{u_0}$. In fact, any element x of \tilde{L}_{u_0} can be written as $x = R_{u(I)} x_0 = \overline{\tau(I)} x_0$. Hence

$$R_a x = \widetilde{R_a \tau(l)} x_0 = \widetilde{\tau(l)} R_a x_0 = \widetilde{\tau(l)} b_0 \in H(G)$$
.

Since $\widetilde{L}_{\tau(k)u_0} = \widetilde{\tau(k)} \widetilde{L}_{u_0}$ and $G_{\tau(k)u_0} = \widetilde{\tau(k)} G_{u_0}$, we see that

$$R_a \widetilde{L}_{\tau(k)u_0} = R_a \widetilde{\tau(k)} \widetilde{L}_{u_0} = \widetilde{\tau(k)} R_a \widetilde{L}_{u_0} \subset \widetilde{\tau(k)} G_{u_0} = G_{\tau(k)u_0} \,.$$

Therefore $R_a \chi(K) \subset H(G)$. This implies that $G \supset a^{-1} \tilde{L} a$.

Conversely, let G be a Lie subgroup of GL(n, R) such that $aGa^{-1} \supset \tilde{L}$, $a \in GL(n, R)$. $R_a X(K)$ is a principal bundle over K/L

⁷⁾ Added in Proof. A similar result was obtained independently by D. Bernard. (See D. Bernard: Sur la géométrie différentielle des G-structures, Thèse, (1960)).

with structural group $a^{-1}\tilde{L}a$. Moreover, from (5.2) and (5.5) it follows that $R_aX(K)$ is invariant by $\tau(k)$, $k \in K$. Let H(G) be the principal bundle over K/L which is obtained from $R_aX(K)$ by enlarging the structural group from $a^{-1}\tilde{L}a$ to G. Clearly H(G) is invariant by all $\tau(k)$, $k \in K$. Hence K/L admits an invariant G-structure. Thus we have proved the proposition.

We consider next invariant connexion on K/L. Since K/L is reductive, there exists an invariant connexion $\Gamma_{\rm III}$ in the principal bundle K(K/L,L) (see [7]). Namely $\Gamma_{\rm III}$ -horizontal subspace at $k\in K$ is Φ_{k*} III. The homomorphism $\mathcal X$ of K(K/L,L) into $\mathcal F(K/L)$ maps the above invariant connexion $\Gamma_{\rm III}$ in K(K/L,L) into Γ_0 in $\mathcal F(K/L)$. Thus the horizontal subspace at $R_a\mathcal X(k)$ with respect to Γ_0 is $R_a*\mathcal X_*\Phi_{k*}$ III. This connexion Γ_0 is nothing but the canonical connexion of the second kind in the sense of Nomizu [6]. From the construction of Γ_0 , we easily see that Γ_0 is reducible to a connexion in $R_a\mathcal X(K)$ which is invariant connexion. Consequently we have the following two propositions.

PROPOSITION 5.2. The canonical connexion of the second kind on a reductive homogeneous space is an invariant \tilde{L} -connexion.

PROPOSITION 5.3. Suppose that a reductive homogeneous space admits an invariant G-structure. Then the canonical connexion of the second kind is an invariant G-connexion.

It is well known [6] that the canonical connexion of the second kind on a symmetric homogeneous space is without torsion. On the other hand, if there exists a G-connexion without torsion, then the structure tensor of G-structure vanishes (see. [1]). Hence we have

COROLLARY 1. If a symmetric homogeneous space admits an invariant G-structure, then the structure tensor of the G-structure vanishes.

Finally we shall prove the following

PROPOSITION 5. 4. Let K/L be a reductive homogeneous space with a fixed decomposition of the Lie algebra $\Re = m + 2$, $ad(L)m \in m$.

Suppose that K/L admits an invariant G-structure. Then there exists a one-to-one correspondence between the set of all invariant G-connexions and the set of all linear maps Λ of m into $\mathcal G$ such that

$$\Lambda \circ ad(l) = ad(l) \circ \Lambda \circ ad(l^{-1})$$
 for $l \in L$.

Proof. Let Γ_0 be the canonical connexion of the second kind and let ω_0 be the restriction of the connexion form of Γ_0 to the reduced bundle H(G). Take any invariant G-connexion Γ . We denote by ω the restriction of the connexion form of Γ to H(G). Put $\lambda = \omega - \omega_0$. Since ω_0 and ω are both invariant \mathcal{G} -valued forms on H(G), we see that λ is an invariant tensorial 1-form of type (ad, \mathcal{G}) on H(G). Conversely, given an invariant tensorial 1-form λ of type (ad, \mathcal{G}) on H(G), then $\omega_0 + \lambda$ gives rise to an invariant reduced G-connexion. Thus we see that there exists a one-to-one correspondence between the set of all invariant G-connexions and the set of all invariant tensorial 1-forms of type (ad, \mathcal{G}) on H(G).

For an invariant 1-form λ of type (ad, \mathcal{G}) on H(G), we define

$$\Lambda_{\nu}(X) Y = b \cdot \lambda_{b}(X^{*}) \cdot b^{-1} Y$$

where $\pi(b)=u$, and X, $Y \in T_u(K/L)$ and X^* denotes the lift of X with respect to Γ_0 . Clearly this definition is independent of the choice of $b \in H(G)$ such that $\pi(b)=u$. Then Λ is an invariant (1, 2)-tensor field on K/L:

$$[\Lambda_{\tau(k)u}(\tau(k)_*X)](\tau(k)_*Y) = \tau(k)_*[\Lambda_u(X) \cdot Y].$$

In fact, since $\widetilde{\tau(k)}_*$ maps each Γ_0 -horizontal subspace onto a Γ_0 -horizontal subspace and $\tau(k) \circ \pi = \pi \circ \widetilde{\tau(k)}_*$, we obtain $(\tau(k)_*X)^*\widetilde{\tau(k)b}_* = \widetilde{\tau(k)}_*X_b^*$ by the uniqueness of a lift. Therefore we obtain

$$\lambda_{\overline{\tau(k)}\,b}((\overline{\tau(k)_*}X)^*) = \lambda_{\overline{\tau(k)}\,b}(\widetilde{\overline{\tau(k)}_*}X^*) = \lambda_b(X^*)$$

because λ is an invariant tensorial 1-form. On the other hand, for any $\xi \in \mathbb{m}$, we have $[\tau(k)b] \cdot \xi = \tau(k)_*(b \cdot \xi)$, $b \in H(G)$, $k \in K$, and hence $[\tau(k)b]^{-1}\tau(k)_*Y = b^{-1}Y$. Thus we have

$$\begin{split} \big[\Lambda_{\tau(k)}{}_{u}(\tau(k)_{*}X) \big] (\tau(k)_{*}Y) &= \big[\widetilde{\tau(k)} b \big] \cdot \lambda_{\widetilde{\tau(k)}}{}_{b}((\tau(k)_{*}X)^{*}) \big[\widetilde{\tau(k)} b \big]^{-1} \tau(k)_{*}Y \\ &= \tau(k)_{*} \big[b \cdot \lambda_{b}(X^{*}) \cdot b^{-1}Y \big] = \tau(k)_{*} \big[\Lambda_{u}(X)Y \big] \,. \end{split}$$

In particular, the invariance of Λ at p(e) by $\tau(l)$ implies

(5.7)
$$\Lambda_{u_0}(\tau(l)_*X)Y = \tau(l)_*\Lambda_{u_0}(X)\tau(l^{-1})_*Y.$$

Conversely, given a (1,2)-tensor Λ_{u_0} on $T_{u_0}(K/L)$ which satisfies the relation (5.7) and such that $\Lambda_{u_0}(X) \in b_0 \mathcal{G} b_0^{-1}$, $\pi(b_0) = p(e)$, then by the transitivity of K we can define the invariant (1,2)-tensor field Λ on K/L such that $\Lambda_u(X) \in b\mathcal{G} b^{-1}$, $\pi(b) = u$. Hence we obtain the tensorial 1-form of type (ad,\mathcal{G}) on H(G). Remarking that $b \cdot \mathcal{G} \cdot b^{-1}$ is isomorphic to \mathcal{G} and $T_{u_0}(K/L)$ is isomorphic to m, we have proved the proposition.

BIBLIOGRAPHY

- [1] A. Fujimoto; On the structure tensor of G-strucure, Mem. Coll. Sci. Univ. Kyôto, 32 (1960), pp. 157-169.
- [2] R. Hermann; Sur les automorphismes infinitésimaux d'une G-structure, C.R. Sci. Paris, 239 (1954), pp. 1178-1180.
- [3] S. Kobayashi; Des groupes linéaires irréductibles et la géométrie differentielle, Proc. Japan Acad., 30 (1954), pp. 933-935.
- [4] B. Kostant; Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc., 80 (1955), pp. 528-542.
- [5] P. Libermann; Pseudogroupes infinitésimaux. Application aux G-structures, C.R. Sci. Paris, 246 (1958), pp. 1365-1368.
- [6] K. Nomizu; Invariant affine connections on homogeneous spaces, Amer. Journ. Math., 76 (1954), pp. 33-65.
- [7] K. Nomizu; Lie groups and differential geometry, Publ. of the Math. Soc. of Japan, No. 2. (1956).
- [8] R. S. Palais; A definition of the exterior derivative in terms of Lie derivatives, Proc. Amer. Math. Soc., 5 (1954), pp. 902-908.
- [9] R. S. Palais; A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22 (1956).
- [10] S. Takizawa; On Cartan connexions and their torsions, Mem. Coll. Sci. Univ. Kyôto, 29 (1955), pp. 199-217.