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ABSTRACT. In this paper, we investigate a system
of nonlinear integral equations that has previously been
proposed in modelling of the human cornea. The main result
of our work is a construction of lower and upper estimates
that bound the components of the exact solution to the
system being considered. These results generalize some of
the recent work by other authors. We conclude the paper
with a numerical verification of our analytical estimates.

1. Introduction. Mathematical biology is a prominent and impor-
tant field in applied mathematics. In addition to addressing some cru-
cial problems concerning living beings, it also raises a plethora of in-
teresting mathematical questions. This paper deals with a system of
nonlinear integral equations that has been used in the description of
corneal geometry. Our model was initiated in [14] and later generalized
in [15, 21]. It created a number of interesting inverse problems investi-
gated in [18, 19]. Other authors contributed to the model by providing
some efficient numerical algorithms [8, 9, 20] or positively solving an
open problem concerning unconditional existence and uniqueness [4].
Further, those results were generalized, and their connection to the
nth dimensional prescribed mean-curvature equation was established
in [5, 6]. Some additional results concerning a few related problems
were given by other authors in [7, 16]. We would also like to mention a
very interesting study of an experimental nature [10], in which a real-
world problem of wind loading a permeable screen door was modelled
by our equation.
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The main motivation behind the above cited results is a model of an
important constituent of the human eye, the cornea. It is a shell-like
structure that plays both optical and mechanical roles in the process
of vision. Since it is a surface of the first contact with external factors,
the cornea must be strong and durable. Moreover, due to optical
reasons, it must be as transparent as possible in order to refract light
in an effective way (the optical power of a typical cornea is equal to
2/3 of the entire eye). Therefore, corneal topography and curvature
are important objects in optometrical mathematical modelling. A
thorough exposition of the eye’s anatomy may be found in [12], while
a more physical description of the process of vision is in [2].

The very first models of corneal topography, based on conical sec-
tions, such as ellipsoids and paraboloids, were proposed by Helmholtz
in the early 20th century [11]. This is an accurate way of describ-
ing the cornea with many uses and generalizations (see [3, 13]). On
the other hand, more complex models constructed with the use of the
structural mechanics are invaluable in material and strain analysis of
the cornea [1, 17]. Due to complexity, their properties are very difficult
to infer with analytical tools, and numerical analysis is obligatory. The
main motivation for this work is to derive an intermediate-complexity
model that can capture some of the important material properties of
the cornea and yet still be feasible to be investigated by analytical
means.

Since the main equation of our model is nonlinear, we cannot hope
to obtain a closed-form solution. However, some estimates have been
acquired in the works cited above. In what follows, we present an
inductive method for finding accurate estimates that are constructed
using elementary functions. Not only are they easier to work with
than the numerical solution, but they also describe some quantitative
features of the exact solution. Having the approximate form of the
meridional profile of the corneal topography can help to compute the
curvature, and hence, the eye power.

2. Estimates. Consider the following boundary-value problem that
has arisen in corneal topography modelling
(2.1)

−
(

h′√
1 + h′2

)′

+ ah =
b√

1 + h′2
, h = h(t), 0 ≤ t ≤ 1, a, b ∈ R+,
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supplied with boundary conditions

(2.2) h′(0) = 0, h(1) = 0.

In the above formulas, all variables are nondimensional and represent
quantities associated with corneal geometry. If R is the typical linear
dimension of the cornea (such as its diameter), then Rh(t) represents
its height at Rt. We assume axial symmetry, whence t is the nondimen-
sional distance from the axis of symmetry. Moreover, the parameters a
and b are associated with corneal tension T , elasticity coefficient k and
intra-ocular pressure P . Specifically, a = kR2/T and b = PR/T . More
details concerning the model may be found in the paper [14].

Existence, uniqueness and stability of solutions for (2.1) have been
proved in [4] with the use of elegant and elementary techniques. In
what follows, we will use an integral equations approach to find some
estimates on the solution of (2.1).

In order to transform (2.1) into a system of integral equations, it is
only necessary to use the boundary condition at t = 0. Integrate from
0 to t to obtain

(2.3) h′(t) =
√
1 + h′(t)2

∫ t

0

(
ah(s)− b√

1 + h′(s)2

)
ds.

If we define

(2.4) x(t) := h′(t), y(t) := h(t),

then (2.3) is a part of a fixed-point system

(2.5)

x(t) =
√
1 + x(t)2

∫ t

0

(
ay(s)− b√

1+x(s)2

)
ds,

y(t) = −
∫ 1

t
x(s) ds,

where we have again used (2.2). Now, both boundary conditions have
been incorporated into the system of integral equations (2.5). If we
define the nonlinear operator F by the formula

F(x) :=

(√
1 + x(t)2

∫ t

0

(
ay(s)− b√

1 + x(s)2

)
ds,−

∫ 1

t

x(s) ds

)
,

(2.6)

x(t) = (x(t), y(t)),
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we can see that (2.1)–(2.2) imply the fixed-point problem

(2.7) x = F(x), x(t) = (x(t), y(t)).

The application of Schauder’s fixed-point theorem immediately leads
to the existence result; however, we will not pursue the details here.
Instead, we refer the reader to the work by Coelho, Corsato and Omari
[4] where, apart from existence and uniqueness results, the following
useful theorem was proven.

Theorem 2.1 ([4]). Let (x(t), y(t)) be a solution of (2.5). Then, y is
positive, decreasing and concave for t ∈ (0, 1). Moreover, we have

−
√
exp (2b2/a)− 1 < x(t) < 0

and 0 < y(t) < b/a.

In order to start our reasoning, we first prove an auxiliary lemma
concerning sequences of real numbers that will be utilized below in
defining the approximative sequence of functions.

Lemma 2.2. Assume that 0 < b < 1 and 0 < a ≤ b2
√
1− b2. Define

the sequences cn and dn by the recursive formulas
(2.8)

c1 = b, cn+1 = b− a

dn

(
1−

√
1− d2n

)
, dn = b

√
1− c2n, n ≥ 1.

Then, both of these sequences are convergent and their respective limits,
which we denote by c and d, satisfy

(2.9)

{
c = b− (a/d)

(
1−

√
1− d2

)
,

d = b
√
1− c2.

Moreover, we have the following chain of inequalities

(2.10) 0 <
a

b
≤ dn, cn ≤ b < 1,

with cn decreasing and dn increasing.

Proof. We begin by showing that, for all n ≥ 1, we have 0 < cn,
dn < 1, which implies that both of these sequences are bounded and



NONLINEAR INTEGRAL EQUATIONS IN OPTOMETRY 171

well defined. We proceed by induction. First, note that

(2.11) 0 < c1 = b < 1, 0 < d1 = b
√
1− b2 < 1,

and assume that, for a fixed n, we have 0 < cn < 1. We will show that
this holds for the next term. From (2.8), we have

(2.12) 0 < dn = b
√

1− c2n < 1,

and further,

(2.13) cn+1 = b− a

dn

(
1−

√
1− d2n

)
< 1,

since a and dn are both positive. From an elementary inequality√
1− d2n ≥ 1 − d2n and the assumption a ≤ b2

√
1− b2 < b, we can

estimate
(2.14)

cn+1 ≥ b− a

dn

(
1− (1− d2n)

)
= b− adn > b− a ≥ b− b2

√
1− b2 > 0,

for 0 < b < 1. This completes the induction.

Our next step is the monotonicity. Define

(2.15) φ(t) := b− a

t

(
1−

√
1− t2

)
, ψ(t) := b

√
1− t2,

and notice that both of these functions are decreasing. Again, the
argument will be conducted by mathematical induction. The first terms
of the cn sequence are

(2.16)

c1 = b,

c2 = b− a

b
√
1− b2

(
1−

√
1− b2(1− b2)

)
< b = c1,

hence c2 < c1. Now, assume that cn < cn−1. Since ψ is decreasing,
we have dn = ψ(cn) > ψ(cn−1) = dn−1. Using this result and the
same reasoning as above, we obtain cn+1 = φ(dn) < φ(dn−1) = cn.
Therefore, cn is decreasing while dn is increasing.

Since both sequences considered above are monotone and bounded,
they have a limit that satisfies the system of equations (2.9).

Finally, we must show the inequality cn, dn ≥ a/b. Note that

d1 = b
√
1− b2 ≥ a/b since a ≤ b2

√
1− b2. By monotonicity, we then

have dn ≥ a/b for all n ∈ N. In order to show that cn+1 ≥ a/b, we
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begin with an obvious inequality (1 −
√
1− b2)2 ≥ 0 and observe that

it is equivalent to

(2.17)
√

1− b2 ≤ 1

2−
√
1− b2

.

By the assumption, a ≤ b2
√
1− b2, and it follows that

(2.18)
a

b2
≤ 1

2−
√
1− b2

−→ a ≤ b2

2−
√
1− b2

,

which, after transformation is equivalent to a/b + (a/b)
(
1−

√
1− b2

)
≤ b. Hence,

(2.19) φ(ψ(0)) = b− a

b

(
1−

√
1− b2

)
≥ a

b
.

Now, from the definition of the sequences cn and dn, we have

(2.20) cn+1 = φ(dn) = φ(ψ(cn)).

Further, observe that, since φ and ψ are both decreasing, their compo-
sition is increasing, and hence, φ(ψ(cn)) ≥ φ(ψ(0)). Finally, combining
(2.20) with (2.19) yields the desired result

(2.21) cn+1 ≥ φ(ψ(0)) ≥ a

b
.

This concludes the proof of Lemma 2.2. �

A simple calculation shows that the system (2.9) is equivalent to
solving a quadric polynomial which, in principle, can always be done.
Yet, formulas for its roots are very involved, and thus, not very useful
in calculations. However, we can give an expression for an approximate
solution of (2.9) valid for small c and d. The idea is to use the Taylor
series

(2.22)

b− a

t

(
1−

√
1− t2

)
= b− a

2
t+O(t2),

b
√

1− t2 = b

(
1− 1

2
t2 +O(t4)

)
.
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Then, we have an approximate system of equations defining c and d
(2.23){

c = b− a

2
d,

d = b(1− c2),
−→


c =

1−
√
1− 2ab2 + a2b2

ab

d =
2

a

(√
a2b2 − 2ab2 + 1

ab
− 1

ab
+ b

)
.

We are ready to prove the main result concerning estimates of the
solution to (2.5). The proof is based on an inductive construction giving
bounds from below and above. Those estimates use the results from
Lemma 2.2.

Theorem 2.3. Let (x(t), y(t)) be a solution of (2.5) for 0 < b < 1 and

a ≤ b2
√
1− b2. If we denote

(2.24) Hu(t) :=

√
1− (ut)2 −

√
1− u2

u
, H ′

u(t) = − ut√
1− (ut)2

,

then the following estimates hold

H ′
c(t) ≤ x(t) ≤ H ′

d(t),(2.25)

and

Hd(t) ≤ y(t) ≤ Hc(t),(2.26)

where c and d are defined in (2.9).

Proof. Let us turn to the system (2.5) and use the estimates found
in Theorem 2.1, i.e., x(t) ≤ 0 and y(t) > 0, to obtain

(2.27) x(t) ≥ −b
√
1 + x(t)2t,

which, after squaring and manipulation, gives

(2.28) x(t)2 ≤ (bt)2

1− (bt)2
.

Taking the root, choosing the negative one and minding the sign change
yields

(2.29) x(t) ≥ − bt√
1− (bt)2

= H ′
b(t) = H ′

c1(t),
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where we used the assumption 0 < b ≤ 1. Here, c1 is the first term
of the cn sequence defined in Lemma 2.2. Now, integrate the above
equation from t to 1 and use the definition of y, i.e., (2.5), to arrive at

(2.30) y(1)− y(t) ≥ −b
∫ 1

t

sds√
1− (bs)2

= −
√
1− (bt)2 −

√
1− b2

b
,

or, since y(1) = 0,

(2.31) y(t) ≤ Hb(t) = Hc1(t).

In order to proceed further, set

fu(s) :=
a

u
(
√

1− (us)2 −
√
1− u2)− b

√
1− (us)2

for s ∈ [0, 1] and u ∈ [0, 1]. Note that, by a simple derivative test,
we can show that, for 1 ≥ u ≥ a/b, the function fu(s) is negative and
s-increasing. Hence, for u ≥ a/b, we have

(2.32)

min
s∈[0,1]

fu(s) = fu(0) =
a

u

(
1−

√
1− u2

)
− b,

max
s∈[0,1]

fu(s) = fu(1) = −b
√
1− u2.

Now, observe that the definition of x(t) with (2.29) and (2.31) implies
(2.33)

x(t)≤
√

1+x(t)2
∫ 1

0

(
a

b

(√
1−(bt)2 −

√
1−b2

)
− b

√
1−(bs)2√

1−(bs)2+(bs)2

)
ds

=
√

1 + x(t)2
∫ t

0

fb(s) ds

≤−b
√
1− b2

√
1 + x(t)2t,

where we have used (2.32). Put d1 := b
√
1− b2, and transform the

above equation to obtain

(2.34) x(t) ≤ H ′
d1
(t),

which forces

(2.35) y(t) ≥ Hd1(t).

We have thus shown that both x and y can be bounded from below
and above with functions belonging to the family Hu defined in (2.24).
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We claim that this procedure can be continued inductively. In order to
show this explicitly, assume that

(2.36) x(t) ≥ H ′
cn(t), y(t) ≤ Hcn(t),

where cn is defined in (2.8). We will show that formula (2.36) implies
further bounds on the order of n + 1. Using (2.36) and our main
equation (2.3), we have

(2.37)
x(t)√

1 + x(t)2
≤

∫ t

0

fcn(s) ds.

Now, since by Lemma 2.2, the sequence cn is greater than or equal to
a/b, we can use (2.32) to make a further estimate by using the definition
of x(t) (as in (2.5)) and taking the maximal value of f (similarly as in
(2.33))

(2.38)
x(t)√

1 + x(t)2
≤ −b

√
1− c2nt = −dnt < 0.

Transforming this expression, gives us

(2.39) x(t) ≤ H ′
dn
(t),

which, after integration from t to 1 and using boundary condition (2.2),
becomes

(2.40) y(t) ≥ Hdn(t).

We can repeat above steps to obtain another bound, this time involving
cn+1. To this end, use (2.3) with (2.39) and (2.40) to obtain
(2.41)

x(t)√
1 + x(t)2

≥
∫ t

0

fdn(s) ds ≥
(
a

dn

(
1−

√
1− d2n

)
− b

)
t = −cn+1t,

where Lemma 2.2 was used in concluding that dn ≥ (a/b) so that we
could use (2.32). After transformation, the above equation becomes

(2.42) x(t) ≥ H ′
cn+1

(t),

which, after integration, gives

(2.43) y(t) ≤ Hcn+1(t).

This is the assertion which had to be shown in order to conclude the
induction.
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Finally, invoking Lemma 2.2 helps us to conclude that cn and dn are
convergent. This establishes the estimates given in (2.25)–(2.26). The
proof is complete. �

Numerical simulations show that estimates (2.39)–(2.40) have in-
creasing accuracy with a and b closer to 0. This is expected since, for
a = b = 0 by (2.9), we have c = d = 0, while

(2.44) lim
u→0

Hu(t) = 0,

which is identical to the exact solution of (2.1). Plots of our approx-
imations to y are presented in Figure 1. Note that, for b = 0.5 and
a = b2

√
1− b2, curves representing limits of the approximative se-

quences are almost indistinguishable.

As a final comment, we can state a quick estimate on the difference
between the unknown exact solution of (2.5) and its bounds. In
applications, the y-component of the solution is more important since
it gives us the shape of the cornea. We can quickly give a quantitative
estimate on the difference between y and its approximations Hc and
Hd. We have

(2.45) y(t)−Hd(t) ≤ Hc(t)−Hd(t), Hc(t)− y(t) ≤ Hc(t)−Hd(t),

and thus, it is sufficient to find a bound on the difference Hc(t)−Hd(t).

The next remark gives the precise statement. It can be used as a
quick gauge for the magnitude of the corneal apex elevation. This, in
turn, is one of the fundamental parameters measured in optometry.

Remark 2.4. LetHu be as defined in (2.24) while c and d are solutions
of (2.9). Then,

(2.46) Hc(t)−Hd(t) ≤
1

d2

(
1√

1− d2
− 1√

1− (dt)2

)
(c− d),

and

(2.47) H ′
d(t)−H ′

c(t) ≤
t

(1− (dt)2)
3/2

(c− d).
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Figure 1. Plots of y-component of numerical solution to (2.5) along with
its estimates found in Theorem 2.3. Inset legends describe various curves.
The choice of parameters is the following: a = b2

√
1− b2 = 0.353, b = 0.9

(top) and a = b2
√
1− b2 = 0.216, b = 0.5 (bottom).

In particular, for the corneal apex, we have

(2.48) max {y(0)−Hd(0),Hc(0)− y(0)} ≤ c− d

d2

(
1√

1− d2
− 1

)
.

Proof. Let us start with finding bounds on the derivatives. To this
end, use Lagrange’s theorem, and write

(2.49) H ′
d(t)−H ′

c(t) =
∂

∂u
H ′

u(t)
∣∣∣
u=u∗

(c− d),
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for some d ≤ u∗ ≤ c. Now, simple calculation yields

(2.50)
∂

∂u
H ′

u(t)
∣∣∣
u=u∗

=
t

(1− (u∗t)2)
3/2

≤ t

(1− (dt)2)
3/2

.

Hence, the bound on H ′
d(t) −H ′

c(t). Finally, integrating (2.47) from t
to 1 yields (2.46). This completes the proof. �

3. Conclusion. As numerical analysis has verified that our esti-
mates can be very accurate, especially for small values of b. This,
in turn, is equivalent to saying that the intra-ocular pressure has low
values. This situation leads to a condition known as hypotony, which
has a number of negative consequences for the eye. We hope that our
analysis can provide some insights about this disease as well as the
ophthalmological aspects of mathematical biology.
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