Open Access
Translator Disclaimer
SUMMER 2013 Derivation of variation of parameters formulas for non- linear Volterra equations, using a method of embedding
Ephraim O. Agyingi, Christopher T.H. Baker
J. Integral Equations Applications 25(2): 159-191 (SUMMER 2013). DOI: 10.1216/JIE-2013-25-2-159

Abstract

We show that a method of embedding for a class of non-linear Volterra equations can be used in a novel fashion to obtain variation of parameters formulas for Volterra integral equations subjected to a general type of variation of the equation. The approach is of intrinsic interest. Our variation of parameters formulas generalize classical formulas for ordinary differential equations (due to Alekseev) and for linear Volterra integral equations (based on resolvents). Illustrative examples are related to known results.

Citation

Download Citation

Ephraim O. Agyingi. Christopher T.H. Baker. "Derivation of variation of parameters formulas for non- linear Volterra equations, using a method of embedding." J. Integral Equations Applications 25 (2) 159 - 191, SUMMER 2013. https://doi.org/10.1216/JIE-2013-25-2-159

Information

Published: SUMMER 2013
First available in Project Euclid: 4 November 2013

zbMATH: 1285.45003
MathSciNet: MR3161611
Digital Object Identifier: 10.1216/JIE-2013-25-2-159

Keywords: ‎embedding‎ , Perturbation analysis , variation of parameters , Volterra equations

Rights: Copyright © 2013 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
33 PAGES


SHARE
Vol.25 • No. 2 • SUMMER 2013
Back to Top