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ABSTRACT. This paper investigates the existence of ex-
treme solutions of the three point boundary value problem for
a class of second order integro-differential equations of mixed
type. By using the method of upper and lower solutions and
monotone iterative technique, we establish the existence re-
sults of extreme solutions. An example is also provided to
illustrate the efficiency of the obtained results.

1. Introduction. Theory of integro-differential equations in the
field of modern applied mathematics has made considerable headway,
because all the structure of its emergence has deep physical background
and realistic mathematical model (see [1, 2]). One of the ideas in the
study of certain higher order boundary value problems for differential
equations is to reduce them to boundary value problems for lower
order integro-differential equations [3, 4]. During the past years, many
authors have paid attention to the research of three point boundary
value problems for second order differential equations because of its
potential applications, see, for example, [1, 5-7, 16]. In [8, 9], J.J.
Nieto and R. Rodriguez-Lopez introduced a new concept of lower and
upper solutions, they consider the periodic boundary value problems
for the following first order functional differential equation

{u/(t) = g(t,u(t),u(6(t))), t €[0,T],

(1.1) uw(0) = u(T).
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Similar method has also already succeeded in employing to nonlinear
impulsive integro-differential equations [10].

Motivated by [8-10], we study the existence of solution for a class
of second order integro-differential equation of mixed type subject
to nonlocal boundary conditions. More specifically, we consider the
following three-point boundary value problem

12) {—u”(t)—f(t,u@),[Tu](t),[smu)), teJ=[0.1]

u(0) =0, wu(l)=au(n) — A,

where f € C(J x R*,R),0<a<1,0<n<1, >0,

[Tu](t):/o K(t, s)u(s)ds, [Su](t):/o H(t, s)u(s)ds,

KeCD,RY),D={(t,s)eJxJ:t>s},HeCWUxJR) R =
[0, +00).

The special case [Tu|(t) = [Su](t) = 0 and A = 0 of the above problem
so called nonlocal boundary value problems of ODE, was initiated by
I'in and Moiseev [11]. Recently, several papers have been devoted
to the study of nonlocal boundary value problems of ODE, see [12-
15]. Nonlocal boundary value problems can usually accurately describe
a lot of important physics phenomena and mathematical models, for
example, in view of error of actual measurement and relative factor
disturbance, Robin boundary value condition that u(0) = v/(1) = 0 can
been revised to u(0) = 0,u(1) = u(p) where p is a constant such that
|1—p| is sufficient small. To our knowledge, few paper paid attention to
nonlocal boundary value problems for the integro-differential equations.

In this paper, we are concerned with the existence of extreme solu-
tions for equation (1.2). The paper is organized as follows. In Section
2, we establish several comparison principles. In section 3, we first in-
troduce a new concept of lower and upper solutions, and then give a
proof for the existence theorem related to a linear problem associated
to equation (1.2). In Section 4, by using the method of upper and lower
solutions and monotone iterative technique, we obtain the existence of
extreme solutions for equation (1.2). Finally, an example is provided
to verity the required assumptions.
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2. A comparison principle. In the following, we denote
sin(mt) 9

t =, = R
¢ asin(mn) =T

ko = max{K(t,s): (t,s) € D} >0,
ho = max{H(t,s): (t,s) € J x J} > 0.

We now present the main results of this section.

Theorem 2.1. Assume that u € E = C?(J, R) satisfies
2.1) { —u”(t) + Mu(t) + N[Tu](t) + L[Su](t) <0, teJ,
u(0) <0, u(l) < au(n) —p,
where 0 <a <1, 0<n<1, p>0, constants M >0, N >0,L >0
such that

(2.2) M + Nko + Lho < 2.
Then u(t) <0 forte J.

Proof. Suppose, to the contrary, that u(t) > 0 for some ¢ € J. Then
from the boundary conditions, we have that there exists t* € (0, 1) such
that

(2.3) ug = u(t*) = max u(t) >0,
(2.4) u'(t*) =0, u"(t") <0.

We consider the following two possible cases:
(1) u(t) > 0 for all t € J;
(2) there exist t1, t2 € J such that u(t1) > 0 and u(t2) < 0.

case (1) (2.1) implies that «(0) = 0 and w”(t) > 0 for t € J. From
u(0) = 0 and u(t) > 0 for ¢t € J, we get that v/(0) > 0. Therefore,
u'(t) > u/(0) > 0. It follows that u(1) = maxe s u(t) > 0.

If a =1, then u(1) < u(n) < u(l). It follows that u(t) = ¢ > 0(c
is a constant) for t € [n,1] and p = 0. Let ¢t € [n,1], from the first
inequality of (2.1), we obtain that

0 < Mc< Mc+ N[Tu)(t)+ L[Su](t) < u”(t) = 0.

This is a contradiction.
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If 0 < a < 1, then it is easy to obtain that u(n) > w(1), which
contradicts u(1) = max;ey u(t).

If @ = 0, then u(1) < 0, which contradicts u(1) > 0.
case (2) Let t. € J such that u(t.) = minseyu(t) < 0.
If t, < t*, from the first inequality of (2.1), we have

(2.5) u(t) > (M + Nkot+ Lho)u(ts) > (M+ Nko+ Lho)u(t.), t € J.
Integrating the above inequality from s(t. < s < t*) to t*, we obtain
—u'(8) > (t* — 8)(M + Nko + Lho)u(ty), t.<s<t",

and then integrate from ¢, to t*, we get

—u(ty) < ultt) —ulty) < /tt (s — ) (M + Nko + ho)u(t.)ds

_M—I—Nko—i—Lhou
2
M + Nkg + Lhg
S—fu

(t) (" — t.)?
(t.).
Hence
u(t*)(Q — M — Nky — Lho) > 0.
This is a contradiction.
If t, > t*, Integrating inequality (2.5) from t*(t* < s < t,) to s, we
obtain
u'(s) > (s —t*)(M + Nko + Lho)u(ts), t* < s <t,,
and then integrating again from t* to t., we get

M+ N L
u(t) —u(ry > LI TLR 5 pye

therefore

M+Nk0+Lh0

5 u(ty)(te —t*)?

—u(ty) < u(t™) —u(ts) < —
M + Nko + Lhy
<————u

< 5 (te)-
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Hence
u(t*)(Q — M — Nky — Lho) > 0.

This is also a contradiction. The proof is complete. o

Corollary 2.1. Assume that u € E satisfies
—u"(t) + Mu(t) + N[Tu](t) + L[Su](t)

{ +[(M + r)c(t) + N[Tc|(t) + L[Sc)(®)](u(1) — au(n) + p) <0, t€J,
u(0) <0, u(l) > au(n) - p,

where 0 <a <1, 0<n<1, p>0, constants M >0, N >0, L >0
satisfying (2.2), then u(t) <0 fort e J.

Proof. Put

y(t) = u(t) + c(t)(u(l) —au(n) +p), teJ,

then y(t) > u(t) for all ¢ € J. Noting that " (t) = v (t) — re(t) (u(l) —
au(n) + p), t € J, we have

—y"(t) + My( )+ N[Ty](t) + L[Sy](t)

= —u"(t) + Mu(t) + N[Tu|(t) + L[Sul(t) + [(M + r)c(t)

+N[T0]() LIS ()] (u(1) — au(n) + p)
< Oa
y(0) = u(0) <0,
ay(n) — p = au(n) + ac(n)(u(1) — au(n) + p) — p = u(l) = y(1).

Hence by Theorem 2.1, y(t) < 0 for all ¢ € J, which implies that
u(t) <0 for t € J. This ends the proof. u]

3. Linear problem.

Theorem 3.1. Letoc € C(J),0<a <1, 0<n<I1,XA>0,
constants M >0, N >0, L > 0 satisfy (2.2). Consider the problem

—u(t) + Mu(t) + N[Tu)(t) + L[Su](t) = o(t), t € J,
(3:1) {u(O)zO, (1) = au(n) — A
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Suppose that there exist o, f € E such that
(h1) a < B on J.

(h2)
—a(t) + Ma(t) + N[Ta](t) + L[Sa)(t) < o(t) —a*(t), t € J,
{ (0) <0,
where

a(l) < aa(n) — A,

0,
a*(t) = { ((r+ M)c(t) + N[Tc|(t )+L[SC]( N(a(1) = aa(n)
+A),a(l) > aa(n) — A

(h3)

{ —B"(t) + MB(t) + N[TH](t) + LISPI(t) = o(t) +b7(2), teJ,
B(0) = 0,.

where

b (t) = § (M +7r)e(t) + N[Te|(t) + L[SC|(t))(aB(n) — B(1) = ),

{ 0,8(1) > aB(n) = A,
B(1) < af(n) — ..

Then, there exists a unique solution u to problem (3.1). Moreover,
a<u<f.

Proof. We first show that the solution of equation (3.1) is unique.
Let uq, uo be the solution of (3.1) and set v = u3 — ug. Thus

{ —v"(t) + Mv(t) + N[Tv](t) + L[Sv](t) =0, t € J,
v(0) =0, wv(l) =av(n).

By Theorem 2.1(the special case of p = 0), we have that v < 0 for
t € J, that is, u1 < ug on J. Similarly, one can obtain us < u; on J.
Hence u; = us.

Next, we prove that if u is a solution of equation (3.1), then o < u <
8. Let m = a —u.
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If a(1) < aa(n) — A, then a*(t) = 0 on J. So we have

{ —m"(t) + Mm(t) + N[Tm](t) + L[Sm](t) <0, t € J,
m(0) <0, m(1) < am(n).

By Theorem 2.1, we have that m =a —u <0 on J.

If a(l) > aa(n) — A, then a*(t) = ((r + M)c(t) + N[Tq|(t) +
L[Sc]())(a(1) — aa(n) + A)). Thus

—m/ (t) + Mm(t) + N[Tm](t) + L[Sm](t)
=—a"(t) + Ma(t) + N[Ta|(t) + L[Sal(t)
+ " (t) — Mu(t) — N[Tu](t) — L[Su](t)
< o(t) —a*(t) —o(t)
—a*(t)
= —((r + M)e(t) + N[Te|(t) + LIS (2)) (m(1) — am(n))-

It is easy to see that m(0) <0, m(1) > am(n). By Corollary 2.1, we
have that m = o —u < 0 on J. Analogously, u < /3 on J.

Finally, we show that equation (3.1) has a solution by five steps as
follows.

Step 1 Let
ot = {0 (1) < aa(n) ~ A
a(t) + ct)[a(l) —aa(n) + A, a(l) > aa(n) — A.
= {20 5(1) > ad(n) ~ A
B(t) — c®)af(n) — 6(1) = A, B(1) < af(n) — A

We shall show that @, 3 are the lower and upper solutions of (3.1)
respectively, and

(3.2) a<a<p<p, fortel.

o
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2 ~ [aBm) = A B(1) > aB(n) — A,
o 2= {51 B(1) < aB(n) — A
Hence
(3.3) &(0) <0, &(1) < aa(n) — A,
(3.4) B0) >0, B(1)=aB(n) —X

If (1) < aa(n) — A\, then a = & on J. So

—a"(t) + Ma(t) + N[Ta)(t) + L[Sa)(t) < o(t), t € J.

If (1) > aa(n) — A, then a(t) = a(t) + c(t)[a(1) — aa(n) + A]. Thus

—a"(t) + Ma(t) + N[Ta|(t) + L[Sa](t)
= —a’(t) + Ma(t) + N[Ta(t) + L[Sal(t)
+ (M +r)e(t) + N[TcJ(t) + L[Sc|(t))(a(1) — aa(n) + A)
< o(t).

Combining the above two cases and (3.3), we see that a is a lower
solution of (3.1). Similarly, 8 is an upper solution of (3.1).

It is easy to see that « < &, 3 < 3 on J. We show that @ < 3 on J.
We need to consider the following four cases.

Case 1 a(1) <aa(n) — X and B(1) > aB(n) — A
Case 2 a(l) < aa(n) — A and B(1) < aB(n) — \.
Case 3 «(1) > aa(n) — X and S(1) > aB(n) — A
Case 4 «(1) > aa(n) — X and (1) < aB(n) — \.

Here we only consider Case 4, other cases are similar and so the proof
is omitted. Let m = a — 3 for t € J, then m(0) < 0, m(1) < am(n)
and

—m"(t) + Mm(t) + N[Tm|(t) + L[Sm](t)
= —a’(t) + Ma(t) + N[Tal(t) + L[Sa](t)
+ 3" (t) = MB(t) = N[TB)(t) — L[SP](t)
—a'(t) + Ma(t) + N[Ta(t) + L[Sa(t) + a*(t) + 8" (t)
— MB(t) - N[TB)(t) — LISAI(t) - b*(t)

<o) —oft) =0.
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By Theorem 2.1, we obtain that m < 0 on J, that is, @ < 8 on .J. Thus
(3.2) holds.

Step 2 We consider the equation

—u"(t) + Mu(t) + N[Tu](t) + L[Su](t) = o(t), teJ,
(3.5) {U(O) =0, u(l) = p.

Next, we show that equation (3.5) has a unique solution u(t, y).

It is easy to check that equation (3.5) is equivalent to the integral
equation

u(t) = pt —1—/0 G(t,s)[o(s) — Mu(s) — N[T'u](s) — L[Su](s)]ds

where

G(t,s) = {

Define a mapping A : C(J) — C(J) by
Au(t) = pt —l—/o G(t, s)[o(s) — Mu(s) — N[Tu](s) — L[Su](s)]ds.

For any z, y € C(J), we have

(Az)(t) — (Ay)(?)
= /0 G(t, s)[M(y(s) — x(s)) + N[T(y — 2)](s) + L[S(y — 2)](s)]ds.

Noting that max;c s fol G(t,s)ds = 1/8, by (2.2), we obtain

max |(Az)(t) — (Ay)(t)] < (M + Nko + Lho) max |z(t) — y(t)]

1
1
< — —
I{lea}{/o G(t,s)ds < 41{1€a}(|m(t) y(t)],

and so 1
|4z — Aylo < 7|z —ylo.
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It shows that A : C'(J) — C(J) is a contraction mapping. Thus there
exists a u € C(J) such that Au = u. The equation (3.5) has a unique
solution.

Step 3 We show that for any ¢ € J, the unique solution u(t, ) of
(3.5) is continuous in p. Let wu(t, u1), u(t, u2) be the solution of
(3.6)
{ —u’(t) + Mu(t) + N[Tu](t) + L[Sul(t) = o(t), teJ,

u(0) = 0. u(l) = m
and
(3.7)
{ —u”(t) + Mu(t) + N[Tul(t) + L[Su](t) = o(t), te€J,
u(0) = 0, u(l) = pa,

respectively. Then

(3.8)  wult, i) = pit
1
+ [ G(t.8)iot) = Muts. o) = NTul(s. ) = LiSul (s, ).
i=1,2.

From (3.8), we have

max |u(t, p1) — u(t, p2)| < (M + Nko + Lho) max [u(t, p1) — u(t, p2)|

1
maX/ G(t,s)ds+ | p1 — 2 |
0

teJ
_M—i—Nk:o—i—LhO
-
+ 1 —pe |-

I?Ea}{ |U’(ta /J/l) - U’(ta /-1/2)|

Hence

8
< — .
|—8—J\4—J\71<;0—Lho“‘1 o |

toun) — ult
max [u(t, p1) — u(t, p2)

Step 4 We show that

(3.9) a(t) < ult, p) < B(t)
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for any ¢t € J and p € [aa(n) — A, af(n) — A], where u(t, 1) is unique
solution of (3.5).

Let m(t) = a(t) — u(t, p). From p € [a@(n) — A, aB(n) — A] and (3.3),
we have that m(1) = a(1) — p < aa(n) = A — p <0, m(0) = a(0) <0,
and
—m" (t) + Mm(t) + N[T'm](t) + L[Sm](t)

= —a(t) + Ma(t)
T N[TG](#) + LISa)(t) + u"(t, 1) — Mu(t, p) — N[Tu(t, o)
— L[Su|(t,n) < o(t) —o(t) = 0.
By Theorem 2.1, we obtain that m < 0 on J, that is, a(t) < u(t, 1) on
J. Similarly, u(t, \) < 5(t) on J.
Step 5 Let

D =laa(n) = A, aB(n) = Al, P(p) = au(y, p) = A,
where wu(t, pt) is unique solution of (3.5). From step 4, we have
P(D) C D.

Since D is a compact convex set and P is continuous, it follows by
Schaefer’s fixed point theorem that P has a fixed point ug in D such
that au(n, po) — A = po. Obviously, u(t, po) is unique solution of (3.1).
This ends the proof. O

4. Main results. In this section, we first give the following
definition.

Definition 4.1. A function o € E is called a lower solution of
equation (1.2) if

{ —a’(t) < f(t,a(t), [Ta](t), [Sal(t) — a(t), t € J,
(0)

SO;

0, a(l) < aa(n) — A,
a(t) = (M +r)c(t) + N[T](t) + LS| (1)) (1) — a(n) + A),
a(l) > aa(n) — A
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Definition 4.2. A function § € E is called an upper solution of
equation (1.2) if

{—WW)Zf@ﬁ@%Wmﬁhwm@D+Mﬂ7tEL
8(0) =0,

0, B(1) > aB(n) — A,
b(t) = q (M +r)c(t) + N[Tc|(t) + L[Sc|(t))(aB(n) — B(1) = N),
B(1) < aB(n) — A

We note that the above a(t) and b(t) are respectively a*(¢) and b*(¢)
defined as in Theorem 3.1. Here, the reason is that we introduce
a(t) and b(t) for the nonlinear problem (1.2), while a*(t) and b*(t)
are introduced for the linear problem (3.1).

Our main result is the following theorem.

Theorem 4.1. Suppose that 0 < a <1, 0<n <1, A >0 and the
following conditions are satisfied

(i) «, B are lower and upper solutions for boundary value problem
(1.2) respectively, a(t) < B(t) on J.

(ii) The constants M > 0, N >0, L > 0 in the Definition 4.1 and
4.2 satisfy (2.2) and

i3]

f(tvxvyaz) - f(tvi.vgv ) > —M(x—f) - N(y—ﬂ) —L(Z—Z),
foralt) <& < @ < (), [Tal(t) < § <y < [THE), [Sal(t) < 2 <
< [SAI0). te .

Then, there exist monotone sequences {an}, {0Bn} with ap = o, Bo =
B such that lim, . an(t) = e(t), lim,_o Bn(t) = 7(t) uniformly
on J, and e, r are the minimal and the maximal solutions of (1.2)
respectively, such that

op<a;<ag<-rap<e<e<r<G, << <G <f

on J, where x is any solution of (1.2) such that a(t) < x(t) < B(t) on
J.
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Proof. Let [, 0] = {u € E : a(t) < u(t) < B(t),t € J}. For any
v € |a, 0], we consider the equation

—u”(t) + Mu(t) + N[Tul(t) + L[Su|(t)

= F(t A, [T, 1S9)(8) + Mr(t) + N[TA](0) + LISA](0),
ted,

u(0) =0, u(1) = au(n) — A

(4.1)

Since « is a lower solution of (1.2), from (ii), we have that

=" (t) + Ma(t) + N[Ta|(t) + L[Sa](t)

Similarly, we have that

—pB"(t) + MB(t) + N[TB|(t) + L[SB](t)
> f(t,7(@), [TY(1), [SHI(1))
+ M~ (t) + N[Tv|(t) + LISH](t) +b*(¢)3(0) > 0,

where a*, b* are defined in Theorem 3.1.

By Theorem 3.1, the equation (4.1) has a unique solution u € E. We
define an operator A by u = A, then A is an operator from [a, 5] to
E.

‘We shall show that
(a) ag < Aag, Ao < Bo-
(b) A is nondecreasing in [ag, Bo]-

To prove (a), let p = g — a1, where a3 = Acyg. We finish (a) by two
cases.

Case 1. ap(1) < aap(n) — A. Since ag is a lower solution of (1.2),
then we have

(4.2) —ag(t) < f(t,a(t), [Taol(t), [Sao](t)) — alt),
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where a(t) = 0. Hence, for ¢t € J, we get

=p"(t) + Mp(t) + N[Tp|(t) + L[Sp](t)
= —ag(t) + o (t) + Mag(t) — May(t) + N[Tao)(t)
— N[Ta1](t) + L[Sap](t) — L[Sa1](t)
< f(t ao(t), [Taol(t), [Saol(t)) — f(t, ao(t), [Tao)(t), [Sao](t))
= 0.

It is easy to verify that

p(0) <0, p(1) <ap(n).

By Theorem 2.1, p(t) < 0, which implies g < Aay.
Case 2. agp(1) > aap(n) — A, which implies that (4.2) holds for

a(t) = [(M +r)e(t) + N[TJ(t) + LISe|(t)](ao(1) — aao(n) + A).
Hence, p(0) <0, p(1) > ap(n) — A and

=p"(t) + Mp(t) + N[Tp|(t) + L[Sp](t)
= —aj(t)+af(t) + Mag(t)—May(t) + N[Tao)(t) — N[Tas](t)
+ L[Sa](t) — L[Sa1](t)
< f(t ao(t), [Taol(t), [Saol(t)) — alt)
= f(t, ao(t), [Teo](t), [Sao](t))
= —a(t)= —((M +r)c(t) + N[Tc|(t)+ L[Sc|(t))(p(1) — ap(n)).

It follows by Corollary 2.1 that p(t) < 0, which implies oy < Aap.
Similarly, AGy < fBo.

To prove (b). We show that Auy < Aps if apg < p1 < po < Bo.
Let pf = Apq, ps = Apz and p = pi — pb, then by (ii), we have

—p"(t) + Mp(t) + N[Tp)(t) + L[Sp|(t)
= [t 1 (t), [Tra](?), [Spa](t)) + Mpa (t) + N[Tpa](t)
+ L[Spa](t) — f(t, pa(t), [Tra](1), [Sp2)(t) — Mpua(t)
— N[Tps)(t) — L[Sp2](t)
<0.
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And
p(0) =0, p(1) = ap(n).
By Theorem 2.1, p(t) < 0, which implies Apu; < Aps. Define the

sequences {an}, {6n} with ap = «, By = B such that ap41 =
Aay, Bny1 = ABy for n=0,1,2,.... From (a) and (b), we have

ap<ag <o <o KB, < < B < B < o
ont € J, and each o, (3, € F satisfies

—a(t) + Moy (t) + N[Ta,)(t) + Lo (t)
= f(ta O‘nfl(t)a [Tanfl](t)v [Sanfl](t))
+M04n71(t) + N[Tanfl](t) + L[Sanfl](t)a te J;
an(0) =0, a,(l) =aan(n) — A
—Bn(t) + MBn(t) + N[T,](t) + L[SPa](t)
= [t Bn1(1), [T 5n1](1), [SBn—1](#))
+M6n—1(f') + N[Tﬁn—l](t) + L[Sﬁn—l](t)v te J7
Bn(0) =0, Bn(1) = aBn(n) — A.

Therefore there exist e, r such that lim o, (t) = e(t), lim §,(¢t) =
r(t) uniformly on J. Clearly, e, r are solutions of (1.2).

Finally, we prove that if € [ag, fo] is any solution of (1.2), then
e(t) < x(t) < r(t) on J. To this end, we assume, without loss of
generality, that «, (t) < z(t) < 8,(t) for some n, since ap(t) < z(t) <
Bo(t). From property (b), we can get

ant1(t) < z(t) < Brya(t), ted
Hence we can conclude that
a(t) < x(t) < Bi(t), for all k > n.
Passing to the limit as k — oo, we obtain e(t) < z(t) < r(t), t € J.

This ends the proof. O

Example 4.1. Consider the following equation

{ —2"(t)=1(1—x)+ fol sx(s)ds
z(0) =0, z(1) =z(2) - 1.
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It is clear that o = —1—>5t is a lower solution of (4.2). Let M =1/2,L =
0, then f(t,u,v) = (1 —u) + fo s)ds satisfies (ii) of Theorem 4.1.
Next we show that B =t — 2t? is a upper solution of (4.2).

Obviously 8(0) =0, 8(1) = -1<3(3) — 3 = —£ and
=p"(t) =4 = f(t,5(),[SB](t)) + b(t)
:%(1—t—2t2)+/0 Ht — 242)dt + - (M+ 2 Sin(r?)

sm(% )

By Theorem 4.1, (4.2) has at least a solution x(t) € [a, §]. Moreover,
we get from (4.2) that z(t) satisfies

22" (t) — 2'(t) = 0.
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