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ABSTRACT. We develop a fast wavelet collocation method
for solving Fredholm integral equations of the second kind
with weakly singular kernels on polygons, following the gen-
eral setting introduced in a recent paper [11]. Specifically, we
construct wavelet functions and multiscale collocation func-
tionals having vanishing moments on polygons. Critical issues
for numerical implementation of this method are considered,
such as a practical matrix compression scheme, numerical in-
tegration of weakly singular integrals, error controls of nu-
merical quadratures and numerical solutions of the resulting
compressed linear systems. The estimate of the computational
complexity ensures the proposed method is a fast algorithm.
Numerical experiments are presented to demonstrate the pro-
posed methods and confirm the theoretical estimates.

1. Introduction. In a recent paper [11], a general setting was
proposed for fast wavelet collocation methods for solving Fredholm
integral equations of the second kind with weakly singular kernels.
The main purpose of this paper is to develop a concrete fast wavelet
collocation method for the integral equations on polygons, following the
general recipe given in [11]. Specifically, we construct piecewise linear
wavelets on polygons and their corresponding collocation functionals,
both having vanishing moments of order two. We also consider several
critical issues for numerical implementation of this method, such as a
practical matrix compression scheme, numerical integration of weakly
singular integrals, error controls of numerical quadratures and fast
numerical solutions of the resulting compressed linear systems.
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As it is well-known, using a conventional collocation method to dis-
cretize Fredholm integral equations will lead to a linear system with
a full coefficient matrix. It is computationally costly to generate the
full coefficient matrix and to solve the corresponding discrete equations
numerically, especially, when higher dimensional equations are consid-
ered. Therefore, fast algorithms are highly desirable. Recently, wavelet
methods have been playing important roles in seeking fast algorithms
for numerical solutions of integral equations.

Wavelet Galerkin methods and Petrov-Galerkin methods were stud-
ied in [1, 8 10, 16, 17, 25, 26, 29, 30]; see also references cited
therein. A fast multilevel method was developed in [12] using a mul-
tilevel decomposition of the approximation space. References [17,
25] studied compression strategies with slightly different focuses. Pa-
per [17] studied wavelet Galerkin methods using periodic wavelets
based on refinement equations for periodic problems, while [25] devel-
oped wavelet Galerkin methods using piecewise polynomial orthogonal
wavelets. These methods use L2 analysis and therefore the vanish-
ing moments of the multiscale basis functions naturally lead to matrix
compression schemes. One advantage of using piecewise polynomial
wavelets is that the wavelet functions have close forms which provide
convenience for computation. The implementation of wavelet Galerkin
methods based on refinement equations was done in [15] and that of
those based on piecewise polynomial wavelets was considered in [19].

Collocation methods, due to lower computational cost for evaluations
of integrals, for example, see [2, 5], receive more favorable attention
from engineering fields. Yet less attention has been paid to wavelet-
based collocation methods. For a large class of collocation methods,
one of the appropriate spaces to work in is L∞, and this causes
challenging technical obstacles for identifying good matrix compression
strategies. The recent work in [11] provides a framework of fast wavelet
collocation methods for solving integral equations on invariant domains
associated with families of contractive mappings. Paper [14] studies the
actual computation of one-dimensional integral equations using such
methods. We make use of the general setting introduced in [11] with
a specialization to a polygonal domain which is a union of triangles (a
special example of invariant sets) and present special results for this
case.
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We organize this paper in five sections. In Section 2, we describe
wavelet collocation methods for Fredholm integral equations of the
second kind on polygons. The multilevel wavelet basis and collocation
functionals on polygons are constructed. In Section 3, we propose
a block truncation scheme, which is a variation of the theoretical
truncation scheme proposed in [11]. The block truncation scheme is
much more convenient to implement for practical use. We consider in
Section 4 the effect of numerical computation of integrals with weakly
singular kernels. An efficient adaptive quadrature rule for computing
singular double integrals is proposed and a control scheme of errors
incurred by the numerical integration is introduced. The optimal
order of convergence and computational complexity is estimated. In
Section 5, we present several numerical examples which demonstrate
the accuracy and efficiency of the proposed methods.

2. Wavelet collocation schemes on polygons. In this section,
we describe our wavelet collocation schemes. Let E be a polygonal
domain in R2. Set X := L∞(E) and V := C(E). Suppose that K is a
weakly singular kernel so that the operator K : X → V defined by

(Ku)(s) :=
∫

E

K(s, t)u(t) dt, s ∈ E

is compact on X. We consider the Fredholm integral equation of the
second kind

(2.1) (I − K)u = f,

where I is the identity operator on X, f ∈ X is a given function and
u ∈ X is the unknown to be determined. By the Fredholm alternative
theorem, when the corresponding homogeneous equation has only the
trivial solution, equation (2.1) has an unique solution in X. Equations
of this type have many important applications including boundary
integral equations [2, 3] and radiosity equations [4, 6]. There have
been many theoretical studies as well as numerical methods on such
integral equations, cf. [3, 21].

Following the general construction described in [11], we next present
piecewise linear wavelets on polygons and the corresponding multiscale
collocation functionals. These basis functions and collocation function-
als are then used to build a wavelet collocation scheme to solve equation
(2.1).
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FIGURE 2.1. The unit triangle Ω.

2.1 Construction on the unit triangle. In this subsection, we construct
piecewise linear wavelets on the unit triangle

Ω := {(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1}.

Let Zn := {0, 1, . . . , n − 1}. A family of contractive mappings Φ =
{φi : i ∈ Z4} with

(2.2)
φ0(x, y) =

(
x

2
,
y

2

)
, φ1(x, y) =

(
x+ 1

2
,
y

2

)
,

φ2(x, y) =
(
x

2
,
y + 1

2

)
, φ3(x, y) =

(
1 − x

2
,
1 − y

2

)
,

subdivides Ω into four triangles Ωi := φi(Ω), i ∈ Z4, see Figure 2.1.
Observe that
(2.3)

meas (Ωi ∩ Ωi′) = 0, for i, i′ ∈ Z4, i �= i′, and
⋃

i∈Z4

Ωi = Ω.
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With the mappings φi, i ∈ Z4, we define operators Ti : X → X, i ∈ Z4

by
(Ti ◦ g)(t) = g(φ−1

i (t))χΩi
(t), t ∈ Ω,

where χS is the characteristic function of the set S.

We choose three points, see Figure 2.1, in Ω as

(2.4) t00 =
(

1
7
,
4
7

)
, t01 =

(
2
7
,
1
7

)
, t02 =

(
4
7
,
2
7

)
,

and note the set G′
0 := {t0j : j ∈ Z3} is refinable with respect to the

family of mappings Φ, i.e., G′
0 ⊂ Φ(G′

0), where for a set D ∈ R2

Φ(D) :=
⋃

i∈Z4

φi(D),

and admits a unique Lagrange linear interpolation, see [10, 22]. We
also choose three linear polynomials

w00(x, y) = −x+ 2y,
w01(x, y) = −2x− 3y + 2,
w02(x, y) = 3x+ y − 1,

and nine piecewise linear polynomials

w10(x, y) =
1
8
(−2 + 3x+ y)(χΩ0 + χΩ1 + χΩ2)

+
1
8
(22 − 45x− 15y)χΩ3 ,

w11(x, y) =
1
8
(1 − 2x− 3y)(χΩ0 + χΩ1 + χΩ2)

+
1
8
(−23 + 30x+ 45y)χΩ3 ,

w12(x, y) =
1
8
(−1 − x+ 2y)(χΩ0 + χΩ1 + χΩ2)

+
1
8
(7 + 15x− 30y)χΩ3 ,
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w13(x, y) =
1
8
(2 − 3x− 5y)(χΩ0 + χΩ1 + χΩ3)

+
1
8
(−14 + 45x+ 11y)χΩ2 ,

w14(x, y) =
1
8
(1 + x− 6y)(χΩ0 + χΩ1 + χΩ3)

+
1
8
(−15 − 15x+ 26y)χΩ2 ,

w15(x, y) =
1
8
(2 − 7x− y)(χΩ0 + χΩ2 + χΩ3)

+
1
8
(−30 + 41x+ 15y)χΩ1 ,

w16(x, y) =
1
8
(−1 − 2x+ 3y)(χΩ0 + χΩ2 + χΩ3)

+
1
8
(31 − 34x− 45y)χΩ1 ,

w17(x, y) =
1
8
(−5 + 6x+ 7y)(χΩ1 + χΩ2 + χΩ3)

+
1
8
(11 − 26x− 41y)χΩ0 ,

w18(x, y) =
1
8
(−3 + 5x+ 2y)(χΩ1 + χΩ2 + χΩ3)

+
1
8
(−3 − 11x+ 34y)χΩ0 .

Note that

w0i(t0l) = δil, i, l ∈ Z3, and
∫

Ω

h(t)w1j(t) dt = 0, j ∈ Z9,

where h is any linear polynomial on Ω. The linear functions w0i, i ∈ Z3,
are called the scaling functions and the nine piecewise polynomial
functions are called the initial wavelets. The graphs of w0j , j ∈ Z3

and w1k, k ∈ Z9 are shown in Figure 2.2.

We next define a set of collocation functionals corresponding to w0j ,
j ∈ Z3 by

L0 := {�0j : �0j = δt0j
, j ∈ Z3},

where, for any s ∈ E, δs denotes the linear functional in V∗ that for
v ∈ V, 〈δs, v〉 = v(s). We shall need to evaluate δs on functions in
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FIGURE 2.2. Scaling functions and wavelet functions on the unit triangle.

X. Therefore, as in [7] we take any norm preserving extension of δs
to X and use the same notation for the extension. In particular, this
extension allows us to evaluate piecewise polynomials on E. To find
the collocation functionals L1 := {�1l : l ∈ Z9} corresponding to w1j ,
j ∈ Z9, we let

(2.5)

�1l =
∑

e∈Z12

c′leδt1e
, t1e = φi(t0j), e = 3i+ j, i ∈ Z4, j ∈ Z3,

and require for l, j ∈ Z9

(2.6) 〈�1l, 1〉 = 0, 〈�1l, x〉 = 0, 〈�1l, y〉 = 0, 〈�1l, w1j〉 = δlj .
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Thus, we obtain that

�10 = −1
2
δt1,2 −

1
2
δt1,7 + δt1,11 ,

�11 = −1
2
δt1,3 −

1
2
δt1,7 + δt1,10 ,

�12 = −1
2
δt1,2 −

1
2
δt1,3 + δt1,9 ,

�13 =
1
2
δt1,2 −

1
2
δt1,3 − δt1,7 + δt1,8 ,

�14 =
1
2
δt1,2 + δt1,6 −

3
2
δt1,7 ,

�15 = −3
2
δt1,3 + δt1,5 +

1
2
δt1,7 ,

�16 = −1
2
δt1,2 − δt1,3 + δt1,4 +

1
2
δt1,7 ,

�17 = δt1,1 −
3
2
δt1,2 +

1
2
δt1,3 ,

�18 = δt1,0 − δt1,2 +
1
2
δt1,3 −

1
2
δt1,7 .

Functionals �0i, i ∈ Z3, are called the scaling functionals and �1i,
i ∈ Z9 are called the initial wavelet functionals. In Figure 2.3, we
plot �0i, i ∈ Z3 and �1j , j ∈ Z9, where each solid vertical bar stands
for a point evaluation functional. The position of the bar indicates the
location of the point, and the height of the bar stands for the coefficient
of each point evaluation functional. Having the initial wavelets w1j ,
j ∈ Z9, it is very easy to generate higher level wavelets wij for i ≥ 2.
We use w(i) to denote number of piecewise polynomials wij at the
resolution level i, for i ≥ 0. Let

Zn
m := Zm × Zm × · · · × Zm

with n folds of Zm. For e := (e0, . . . , en−1) ∈ Zn
4 , we introduce a

composite map
φe := φe0 ◦ φe1 ◦ · · · ◦ φen−1

and a composite operator Te

Te := Te0 ◦ Te1 ◦ · · · ◦ Ten−1 .
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FIGURE 2.3. Collocation functionals in L0 and L1 on the unit triangle.

For convenience, we also define the number associated with e

μ(e) := 4n−1e0 + · · · + 4en−2 + en−1.

Now, for i ≥ 2, j = 9μ(e) + l, e ∈ Zi−1
4 , l ∈ Z9, let

(2.7) wij = Tew1l.

Observe that the support of wij , i ≥ 2, is contained in Sij := φe(Ω),
j ∈ Zw(i).

To generate multiscale (wavelet) collocation functionals, we introduce
for any e ∈ Z4 a linear operator Le : X∗ → X∗ defined for v ∈ X and
� ∈ X∗ by the equation

〈Le�, v〉 = 〈�, v ◦ φe〉.
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Moreover, for e := (e0, . . . , en−1) ∈ Zn
4 , define the composite operator

Le := Le0 ◦ · · · ◦ Len−1 .

Now, for i > 1, j = 9μ(e) + l, e ∈ Zi−1
4 , l ∈ Z9, �ij is defined by

(2.8) �ij := Le�1l.

Note that the “support” of �ij is also contained in Sij .

2.2 Wavelet basis and collocation functionals on polygons. We are
now ready to construct wavelet basis and the corresponding collocation
functionals on polygons. We begin with a nested sequence of finite
dimensional subspaces of X,

(2.9) Fn ⊆ Fn+1, n ∈ N0.

We shall construct the basis of Fn, n ∈ N, consisting of the basis of
Fn−1 and an additional set of functions that are finer in resolution, i.e.,

(2.10) Fn := Fn−1 ⊕ Wn = F0 ⊕ W1 ⊕ · · · ⊕ Wn.

Let {�0, . . . ,�p−1} be a triangulation of a polygonal domain E, and
assume that the triangles can intersect only at vertices or along their
common edges. Let Tj , j ∈ Zp, be the unique affine mapping which
maps Ω one-to-one onto �j . Let U := {(i, j) : i ∈ N0, j ∈ Zw(i)}.
Utilizing �ij , wij , (i, j) ∈ U defined on Ω, we can easily construct
the (wavelet) collocation functionals and wavelet functions �k,ij , wk,ij ,
k ∈ Zp, (i, j) ∈ U on E by

〈�k,ij , v〉 = 〈�ij , v ◦ Tk〉,

and

(2.11) wk,ij(x, y) =
{
wij ◦ T−1

k (x, y) (x, y) ∈ �k,
0 (x, y) ∈ E \ �k,

where, v ∈ X. Moreover, define

F0 = span {wk,0j : j ∈ Z3, k ∈ Zp},
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and
Wi = span {wk,ij : j ∈ Zw(i), k ∈ Zp}, i ≥ 1.

We now present several important properties of the constructed
wavelet basis functions and collocation functionals on polygons.

Proposition 2.1.

dim Wn = w(n) = pw(1) · 4n−1, n ∈ N,

dim Fn := f(n) = pw(0) · 4n, n ∈ N0.

For a set A ⊂ R2, we let d(A) represent the diameter of A, i.e.,
d(A) := sup{|s− t| : s, t ∈ A}, where |.| denotes the Euclidean norm on
the space R2. Let Sk,nm denote the support of wavelet wk,nm, k ∈ Zp,
(n,m) ∈ U. For each n ∈ N0, let

dn := max{d (Sk,nm) , m ∈ Zw(n), k ∈ Zp}.

Proposition 2.2. The constructed wavelet basis functions wk,ij,
k ∈ Zp, (i, j) ∈ U over the polygon E are locally supported and their
supports are shrinking as level i increases, i.e.,

(2.12) dn = O(4−n/2).

Let π2 denote the space of polynomials of degree less than 2.

Proposition 2.3. The constructed wavelets and collocation function-
als have vanishing moments of order two, namely, for any polynomial
h ∈ π2,

〈�k,ij , h〉 = 0, (wk,ij , h) = 0, (i, j) ∈ U, i ≥ 1, k ∈ Zp.

Now let

[ψj , j ∈ Z12] := [w00, w01, w02, T0w00, T0w01, T1w01, T1w02, T2w00,

T2w02, T3w00, T3w01, T3w02].
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We then have for some cjl, j ∈ Z9, l ∈ Z12 that

(2.13) w1j =
∑

l∈Z12

cjlψl, j ∈ Z9.

We use the coefficients cjl, j ∈ Z9, l ∈ Z12 in (2.13) to form matrix
C := [cjl : j ∈ Z9, l ∈ Z12]. Likewise, we use the coefficients c′le in
(2.5) to form matrix C′ with

(2.14) C′ = [c′le : l ∈ Z9, e ∈ Z12].

Proposition 2.4. Both basis functions and collocation functionals
are uniformly bounded.

Proof. For (i, j) ∈ U, i ≥ 2, j= 9μ(e)+l, l ∈ Z9, (2.11) yields

|〈�k,ij , v〉| = |〈�ij , v ◦ Tk〉| = |〈�1l, v ◦ Tk ◦ φe〉| ≤ ‖C′‖∞‖v‖∞,

and

‖wk,ij‖∞ = ‖wij ◦ T−1
k ‖∞ ≤ ‖C‖∞

(
max
j∈Z12

‖ψj‖∞
)
,

proving the result.

Proposition 2.5. For any i, i′ ∈ N0,

〈�k′,i′j′ , wk,ij〉 = δk′kδii′δjj′ ,(2.15)
(i, j), (i′, j′) ∈ U, i ≤ i′, k, k′ ∈ Zp,∑

j∈Zw(i)

|〈�k′,i′j′ , wk,ij〉| ≤ γ, (i, j), (i′, j′) ∈ U, i > i′,(2.16)

where γ := 81/28. Moreover,

(2.17) γ < 4κ/2 − 1,

where κ is the order of the piecewise polynomials of the approximation
spaces and when piecewise linear polynomials are used, κ = 2.
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Proof. We present a proof for (2.16) only. When k′ �= k,
〈�k′,i′j′ , wk,ij〉 = 0 by the definitions of �k′,i′j′ and wk,ij . If k′ = k,
in view of (2.11), we have that 〈�k′,i′j′ , wk,ij〉 = 〈�i′j′ , wij〉. Thus it
suffices to prove

(2.18)
∑

j∈Zw(i)

|〈�i′j′ , wij〉| ≤ γ, (i, j), (i′, j′) ∈ U, i > i′.

Let C1 = [cij , i ∈ Z9, j ∈ Z3],where cij are elements of C. Note
‖C1‖1 = 27/28, and ‖C′‖∞ = 3. Set

(2.19) γ = max{‖C1‖1, ‖C′‖∞‖C1‖1}.

By Lemma 5.2 of [11], which says
∑

j∈Zw(i)
|〈�i′j′ , wij〉| ≤ γ, we have

(2.18).

2.3 The collocation scheme. To describe the collocation scheme, we
let Pn : X �→ Fn be the projection defined by

(2.20) 〈�k,ij ,Pnx〉 = 〈�k,ij , x〉, x ∈ X, k ∈ Zp, (i, j) ∈ Un,

where Un := {(i, j) : j ∈ Zw(i), i ∈ Zn+1}. The collocation scheme for
solving equation (2.1) is to seek a vector un := [uk,ij : k ∈ Zp, (i, j) ∈
Un], such that the function

(2.21) un :=
∑

k∈Zp

∑
(i,j)∈Un

uk,ijwk,ij

in Fn, satisfies

(2.22) (I − PnK)un = Pnf.

The corresponding linear system has the form

(2.23) (En − Kn)un = fn,

where

En := [Ek′i′j′,kij : k, k′ ∈ Zp, (i, j), (i′, j′) ∈ Un] = [〈�k′,i′j′ , wk,ij〉],
(2.24)

Kn := [Kk′i′j′,kij : k, k′ ∈ Zp, (i, j), (i′, j′) ∈ Un] = [〈�k′,i′j′ ,Kwk,ij〉]
(2.25)
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FIGURE 2.4. The matrix E3.

and
fn = [fk′ij : k′ ∈ Zp, (i′, j′) ∈ Un] = [〈�i′j′ , f ◦ Tk′〉] .

From (2.15), it is clear that En is upper triangular. Figure 2.4 demon-
strates computed full matrix E3 after discretizing the integral equation
(2.1) with E = Ω using the piecewise linear wavelets. According to [11],
after discretizing the integral equation using the constructed wavelet
basis and collocation functionals, the matrix Kn is numerically sparse
and the matrix appears as a “finger” shape. Figure 2.5 depicts the
computed full matrix K3 after discretizing (2.1) with E = Ω and

(2.26) K(s, t) =
1

|s− t| , s, t ∈ Ω.

3. Block truncation schemes. In this section, we present a block
truncation scheme which allows us to approximate matrix Kn by a
sparse matrix.
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FIGURE 2.5. The full matrix K3.

Let μ be a lattice point in N2
0, viz, μ := [μi ∈ N0 : i ∈ Z2]. As usual,

we set |μ| =
∑

i∈Z2
μi and for a function v ∈ X we use the standard

multi-index notation for derivatives

Dμ
xv(x) =

∂|μ|v(x)
∂xμ0

0 ∂xμ1
1

, x ∈ R2.

We assume that the weakly singular kernel K has the following proper-
ties: For μ, ρ ∈ N2

0, s, t ∈ E, s �= t, the kernel K has continuous partial
derivatives Dμ

sD
ρ
tK(s, t) for |μ| ≤ 2, |ρ| ≤ 2. Moreover, there exist

positive constants σ with 0 ≤ σ < 2 and θ1 such that for |μ| = |ρ| = 2
there holds

(3.1) |Dμ
sD

ρ
tK(s, t)| ≤ θ1

|s− t|σ+|μ|+|ρ| , s �= t.

According to Lemma 3.1 of [11] the value of |Kk′i′j′,kij | depends on
the distance dist (Ŝk′i′j′ , Skij) between the support Ŝk′i′j′ of �k′i′j′ and
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the support Skij of wkij . Specifically, if there exists a constant z > 1
such that

dist (Ŝk′i′j′ , Skij) ≥ z(di + di′),

where di is the maximum of diameters of Sk,ij , for all j ∈ Zw(i), k ∈ Zp,
see (2.12), then there exists a positive constant c (we use c for a generic
constant throughout this paper) so that

|Kk′i′j′,kij | ≤ c(didi′)κ
∑

s∈Ŝk′i′j′

∫
Skij

1
|s− t|2κ+σ

dt.

This estimate leads to the following theoretical truncation scheme for
Kn in [11]:

Let K̃n := [K̃k′i′j′,kij : (i′, j′), (i, j) ∈ Un, k, k′ ∈ Zp] be the
truncation matrix whose entries are defined in terms of a matrix
truncation parameter εi′i by

(3.2) K̃k′i′j′,kij :=
{
Kk′i′j′,kij if dist (Ŝk′,i′j′ , Sk,ij) ≤ εi′i,
0 otherwise.

The truncation parameters εi′i are chosen such that for some positive
constants z′ and z > 1,

(3.3) εi′i = max{z′4[−i+b′(n−i′)]/2, z(di + di′)}, i, i′ ∈ Zn+1,

where
κ− σ′

2κ− σ′ < b′ ≤ 1, with 0 < σ′ < 2 − σ,

and n is the highest level of resolution of the approximation space.
Note the truncation parameter εi′i (3.3) changes as i, i′ change. This
truncation scheme requires computing dist (Ŝk′i′j′ , Skij) explicitly in
order to determine if the element Kk′i′j′,kij needs to be calculated.
Computing such quantities requires significant computational cost. The
block truncation scheme which we describe next avoids computing such
quantities.

Note that in solving the integral equation (2.1) by the proposed
wavelet collocation method, the element Kk′i′j′,kij , k, k′ ∈ Zp, (i, j),
(i′, j′) ∈ Un, can be computed by

(3.4) Kk′i′j′,kij = JTk

∫
Ω

〈
�i′j′ ,K

(
Tk′(·), Tk(t)

)〉
wij(t) dt,
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where JTk
is the Jacobian of map Tk. In view of (3.4), when com-

puting the element Kk′i′j′,kij of Kn, one only needs to consider the
corresponding wij and �i′j′ defined on Ω. Therefore, we will present
our block truncation schemes in terms of wij and �i′j′ . For (i, j) ∈ Un,
with i ≥ 2, there exists a unique pair of e ∈ Zi−1

4 and l ∈ Z9 such
that j = 9μ(e) + l and wij = Tew1l. Likewise, for (i′, j′) ∈ Un, with
i′ ≥ 2, there exists a unique pair of e′ ∈ Zi′−1

4 and l′ ∈ Z9 such that
j′ = μ(e′)r + l′ and �i′j′ = Le′�1l′ . Recall that the support of wij

is Sij := φe(Ω), and the “support” of �i′j′ is Ŝi′j′ := φe′(Ω). The
two supports Ŝi′j′ and Sij are both right triangles transformed from
Ω. For Sij , we denote its vertex of right angle by P0 = (x0, y0), and
counterclockwise, denote the other two vertices by P1 = (x1, y1) and
P2 = (x2, y2). It is not difficult to find that the centroid of Sij is at

(Cx, Cy) :=
(
x0 +

x1 − x0

3
, y0 +

x1 − x0

3

)
.

We assign a multi-index qij := (q1, q2) to Sij with

(3.5) q1 =
⌊

Cx

4(1−i)/2

⌋
and q2 =

⌊
Cy

4(1−i)/2

⌋
.

The index qij is always associated with the support Sij and this
should be clear with the context. To ease the burden of notation,
we will use q instead of qij . Let λ : Zi−1

4 �→ Z2
4(i−1)/2 be the function

defined by (3.5). Then, we have that q = λ(e). We shall assign a
multi-index q to e = (e0, e1, . . . , ei−2) associated with wij and q′ to
e′ = (e′0, e′1, . . . , e′i′−2) associated with �i′j′ as follows:

(1) If i ≥ i′, let ec := (e0, e1, . . . , ei′−2) and

(3.6) q′ = (q′1, q
′
2) = λ(e′), q = (q1, q2) = λ(ec).

(2) If i < i′, let e′c := (e′0, e′1, . . . , e′i−2) and

(3.7) q′ = (q′1, q
′
2) = λ(e′c), q = (q1, q2) = λ(e).

Note that each element Kk′i′j′,kij corresponds to a pair of (q′,q).
Consequently, we can define a block Ki′,i

q′q by

(3.8) Ki′,i
q′q := {Kk′i′j′,kij : k′, k ∈ Zp, Kk′i′j′,kij corresponds to

the same pair (q′,q)}.
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For convenience of later discussion, we define a submatrix of En by

Ei′i := [Ek′i′j′,kij : j′ ∈ Zw(i′), j ∈ Zw(i), k, k
′ ∈ Zp],

and similarly, the submatrix Ki′i of Kn and K̃i′i of K̃n. Hence, we
have that

Ki′i =
[
Ki′,i

q′q : k′, k ∈ Zp,q′,q ∈ Z2
4(i0−1)/2

]
,

where i0 := min{i′, i}.
Figure 3.1 shows the idea of the block truncation scheme. If the

“support” Ŝi′j′ of the collocation functional �i′j′ is in a finer level
comparing with the support Sij of the wavelet function wij , then the
support of the same level as that of the wavelet wij containing Ŝi′j′ is
considered when q′ is assigned. A similar idea is applied if the support
Sij of the wavelet wij is in a finer level.

Let S := φec
(Ω) if i ≥ i′ and S := φe′

c
(Ω) if i < i′. We have the

following lemmas.

Lemma 3.1. Let Kk′i′j′,kij be an entry of Ki′,i
q′q, for (i′, j′), (i, j) ∈

Un, k′, k ∈ Zp. Then,

|q − q′| −
√

2
4(i′−1)/2

≤ dist (Ŝi′j′ , S) ≤ |q − q′|
4(i′−1)/2

, for i ≥ i′,

(3.9)

or
|q − q′| −

√
2

4(i−1)/2
≤ dist (Sij , S) ≤ |q − q′|

4(i−1)/2
, for i < i′.

Lemma 3.2. Let Kk′i′j′,kij be an entry of Ki′,i
q′q, for (i′, j′), (i, j) ∈

Un, k′, k ∈ Zp. Then,

(3.10)
|q − q′| −

√
2

4(i0−1)/2
≤ dist (Ŝi′j′ , Sij) <

|q− q′| +
√

2
4(i0−1)/2

.

Proof. We present only a proof for the case i ≥ i′ since the proof for
the case i < i′ is similar. By (3.6) we have that

q = λ(ec), with ec = (e0, . . . , ei′−2).
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FIGURE 3.1. Block truncation scheme.

Observing that Sij ⊂ S = φec
(Ω), we conclude that

dist (Ŝi′j′ , S) ≤ dist (Ŝi′j′ , Sij) < dist (Ŝi′j′ , S) +
√

2
4(i′−1)/2

.

Applying Lemma 3.1, we have the desired estimate (3.10).

We are now ready to present the block truncation scheme. Given
r := [ri′i : ri′i > 0, i′, i ∈ Zn+1], the block truncation scheme can be
described as

K̃i′,i =
[
Ki′,i

q′q(r) : q′,q ∈ Z2
4(i0−1)/2

]
with

Ki′,i
q′q(r) =

{
Ki′,i

q′q |q − q′| ≤ ri′i,

0 otherwise.
(3.11)
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As in [11], we let K̃n : Fn �→ Fn be a linear operator relative to
the basis {wk,ij : (i, j) ∈ Un, k ∈ Zp} and the corresponding wavelet
functionals, with E−1

n K̃n as its matrix representation. It can be shown
as [11] that, for n ≥M with M being some positive integer,

(3.12) (I − K̃n)ũn = Pnf

has a unique solution ũn. The next theorem shows that solutions of
(3.12) by this block truncation scheme has the same order of conver-
gence and computational complexity as those by adopting the theoret-
ical truncation scheme (3.3), provided that the truncation parameter
r is properly chosen. For a positive integer κ, by Wκ,∞(E) we denote
the set of all functions v on E such that Dμv ∈ X and we define the
norm ‖v‖κ,∞ := max{‖Dμv‖∞ : |μ| ≤ κ} on Wκ,∞(E). Also, we use
N (An) for the number of nonzero entries in matrix An.

Theorem 3.3. Let u ∈ Wκ,∞(E). For some z′ > 0 and z > 0,
choose
(3.13 )
ri′i := max{z′4[b′(n−i′)+(i′−i−1)]/2, z(4(−i+i′)/2+1)}+

√
2, for i′ < i

and

(3.14) ri′i := max{z′4[b′(n−i′)−1]/2, z(4(i−i′)/2+1)}+
√

2, for i′ ≥ i.

Then there exists a positive constant c such that

(3.15) ‖u− ũn‖∞ ≤ cf(n)−κ/2 log f(n)‖u‖κ,∞

and

(3.16) N (En − K̃n) = O (f(n) log f(n)) .

Proof. It was proved in [11] that, if the truncation parameter εi′i is
chosen by (3.3), and scheme (3.2) is applied, then estimate (3.15) holds.
It suffices to show that, when the block truncation scheme (3.11) is used
with the parameters ri′i satisfying (3.13) and (3.14),

(3.17) K̃k′i′j′,kij := Kk′i′j′,kij if dist (Ŝk′,i′j′ , Sk,ij) ≤ εi′i.
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When dist (Ŝk′,i′j′ , Sk,ij) ≤ εi′i, we easily obtain that

|q− q′| ≤
√

2 + 4(i0−1)/2εi′i

by using Lemma 3.2. We choose the righthanded side of the above
formula to be ri′i by using (3.3) and (2.12). Thus, (3.17) holds when
the block truncation scheme is performed and hence (3.15) follows.

It remains to prove (3.16). To this end, we set

Λ1 := {(i′, j′), (i, j) ∈ Un : |q′ − q| ≤ ri′i},
Λ2 := {(i′, j′), (i, j) ∈ Un : dist (Ŝi′j′ , Sij) ≤ εi′i},
Λ3 := {(i′, j′), (i, j) ∈ Un : εi′i < dist (Ŝi′j′ , Sij) and |q′ − q| ≤ ri′i}.

By Lemma 3.2, the inequality |q′ − q| ≤ ri′i −
√

2 implies that
dist (Ŝi′j′ , Sij) ≤ εi′i. Thus, we have that

card (Λ1) = card (Λ2) + card (Λ3).

It is proved in [11] that

(3.18) card (Λ2) = O(f(n) log f(n)).

Now for any fixed i′, i ∈ Zn+1, there are at most c4i0−1 sub-blocks
Ki′,i

qq′ in Ki′,i for some positive constant c, satisfying both εi′i <

dist (Ŝi′j′ , Sij) and |q′ − q| ≤ ri′i. While each sub-block Ki′,i
q′q has

at most 2 · 92 · p · 4|i−i′| entries. Therefore,

card (Λ3) ≤ 4 · 92 · c
∑

i∈Zn+1

∑
i′∈Zi+1

4|i−i′|+i0−1 = O
(
f(n) log f(n)

)
.

This with (3.18) establishes (3.16).

Remark. When i ≥ i′, for any given triangle Ŝi′j′ associated with the
index q′, the block truncation scheme is expected to catch any triangle
S associated with the index q surrounding Ŝi′j′ . On the other hand, we
do not want too many triangles to be caught by the scheme. A simple
analysis shows that for triangles surrounding Ŝi′j′ ,

√
2 ≤ |q′−q| <

√
3
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FIGURE 3.2. Number of nonzero elements vs. level in a logarithmic scale when

using the block truncation scheme with ri′i =
√

3.

and hence
√

2 < ri′i ≤
√

3, i′, i ∈ Zn+1 would be a very good choice.
It remains true for the case when i < i′.

Figure 3.2 depicts the number of nonzero elements vs. level in a
logarithmic scale when using the block truncation scheme with ri′i =√

3. The matrix Kn after compression is quite sparse when n is
relatively large. (See Figure 3.3. The sparse matrix is computed for the
integral equation (2.1) with E = Ω and K is given by (2.26).) Special
sparse matrix storage is used when doing the actual computation.
Not only does this speed up computing, but also this dramatically
saves memory. In fact when n is relatively large, we are forced to
use the sparse storage scheme to store the matrix. On our computer
cluster.math.wvu.edu, with AMD Athlon(tm) MP Processor 1600+
and 1 Gigabyte of RAM, if serial codes are used, we have to use sparse
storage when n ≥ 6. In Figure 3.4, we plot both K̃3 and K3 in
Example 5.4.
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FIGURE 3.3. The sparse matrix K5 after compression.

4. A numerical quadrature rule and its error analysis.
All entries of the matrix K̃n need to be computed numerically by
evaluating weakly singular integrals. The numerical computation of
these integrals is the most costly task in the numerical solutions of
the integral equations. Therefore, it is of great importance to design a
quadrature rule that leads to fast computation.

In this section, we describe a numerical quadrature rule to compute
the entries of K̃n and consider the effect of errors introduced by the
numerical integrations. For this purpose, we assume that for any
lattice point μ ∈ N2

0, the kernel function K(s, t), s, t ∈ R2 satisfies
the following condition

(4.1) |Dμ
t K(s, t)| ≤ c|s− t|−σ−|μ|, s �= t.

Recall that, in solving the integral equation (2.1) by the pro-
posed wavelet collocation method, the element Kk′i′j′,kij , k, k′ ∈ Zp,
(i, j), (i′, j′) ∈ Un is computed by using (3.4), where the wavelet func-
tion wij is a piecewise polynomial supported only on a small triangle
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FIGURE 3.4. The full matrix K3 and the compressed matrix K̃3.

Sij ⊂ Ω. We now represent the set Sij in the form {(x, y) : a1 ≤ x ≤
a′1, a2 ≤ y ≤ a′2 − x} with 0 ≤ a1 < a′1 ≤ 1, 0 ≤ a2, a

′
2 ≤ 1. Thus, each

entry of matrix Kn in (2.23) involves an integral in the form

(4.2) I :=
∫ a′

1

a1

∫ −x+a′
2

a2

hij(s, t) dy dx

with
hij(s, t) := K(s, t)wij(t),

where s, t ∈ Ω, s := (ξ, ζ), t := (x, y). For different entry of Kn, their
a1, a′1, a2, a′2 and s are different. Nevertheless, the quadrature rule
developed in this section provides a uniform precision for all the entries
of Kn.

The basic idea of our quadrature method is applying Fubini’s theorem
to the above integral. For each single integral, we apply the composite
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Gaussian quadrature rule which was developed in [14] by using an idea
from [29] and [21]. To this end, we rewrite (4.2) as

(4.3) I =
∫ a′

1

a1

h(x) dx, with h(x) :=
∫ −x+a′

2

a2

hij(t) dy.

We now describe a nonuniform partition of the interval [a1, a
′
1). Set

t̂0 = 0, t̂e = θm−e, e− 1 ∈ Zm, θ ∈ (0, 1),

where m is a prescribed integer (usually it takes a small value, say
m ≤ 10). According to [27], 0.1 < θ < 0.2 is optimal. With this
partition of [0, 1], we choose two collections of nodes with ξ ∈ [0, 1] as
the shifting parameter:

πr
x := {tre = ξ + t̂e, e ∈ Zm+1}, and πl

x := {tle = ξ − t̂e, e ∈ Zm+1}.

Note that tr0 = tl0 = ξ, trm = 1 + ξ and tlm = ξ − 1. We denote
by πx(wij) the set of x-coordinates of the corners of the triangular
shaped subregions of the support Sij associated with the function wij .
Rearrange the elements of

(4.4) πx(wij) ∪ πr
x ∪ πl

x ∪ {a1, a
′
1} ∩ [a1, a

′
1]

in an increasing order and name them by a1 = t0 < t1 < · · · < tm′ = a′1
and set

(4.5) Ĵα := [tα, tα+1), α ∈ Zm′ .

To compute (4.3), we define a piecewise polynomial Sx(h) on [a1, a
′
1]

by the following rule: Sx(h) is the polynomial which interpolates h at
the zeros of the Legendre polynomial of total degree ke on Ĵα, where

(4.6) ke := e+ 2 if Ĵα ⊂ [tre, t
r
e+1) or Ĵα ⊂ [tle+1, t

l
e), e ∈ Zm.

Let
t+α :=

tα+1 + tα
2

, t−α :=
tα+1 − tα

2
, α ∈ Zm′ ,
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and let τl,e, l ∈ Zke
denote the zeros of the Legendre polynomial of

degree ke on (−1, 1). Using these parameters we define the quadrature
nodes and weights by

τ̂α
l,e = t−α τl,e + t+α

and

(4.7) ŵα
l,e =

∫ tα+1

tα

∏
l′ �=l,l′∈Zke

x− τ̂α
l′,e

τ̂α
l,e − τ̂α

l′,e
dx, α ∈ Zm′ , l ∈ Zke

.

For simplicity, we will drop the subscript e in the notation τ̂α
l,e and ŵα

l,e.
That is, we use τ̂α

l and ŵα
l for τ̂α

l,e and ŵα
l,e, respectively. We then have

the quadrature rule obtained by replacing the integrand h by Sx(h) in
(4.3):

(4.8) Îm =
m′−1∑
α=0

ke−1∑
l=0

ŵα
l h(τ̂α

l ).

To compute Îm, we need to evaluate h(τ̂α
l ). Now

(4.9) h(τ̂α
l ) =

∫ a′′
2

a2

hij

(
τ̂α
l , y

)
dy,

with a′′2 = a′2 − τ̂α
l .

We compute (4.9) using the same idea as to compute (4.3). Corre-
spondingly, we have

πu
y := {su

j = ζ+ t̂e, e ∈ Zm+1}, and πd
y := {sd

e = ζ− t̂e, e ∈ Zm+1}.

We denote by πy(wij) the set of y-coordinates of the intersection points
of the vertical line x = τ̂α

l with the boundaries of the triangular
shaped subregions of the support Sij of the function wij . Rearrange
the elements of

(4.10) πy(wij) ∪ πu
y ∪ πd

y ∪ {a2, a
′′
2} ∩ [a2, a

′′
2 ]

in an increasing order and name them by a2 = s0 < s1 < · · · < sm′′ =
a′′2 to form a partition of [a2, a

′′
2 ] with ζ as the shifting parameter and

set

(4.11) Jβ := [sβ, sβ+1) : β ∈ Zm′′ .
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Singular point 

FIGURE 4.1. Domain of integration for Example 4.1.

We define the piecewise polynomial Sy(hij) which interpolates hij

on [a2, a
′′
2 ] such that on [sβ, sβ+1), β ∈ Zm′′ , Sy(hij) is a polynomial of

degree ke, which can be defined similarly as in (4.6), in the same way as
we define Sx(h). We use τα

l and wα
l to denote the quadrature nodes and

weights in the y direction, respectively. In (4.9), we replace hij(τ̂α
l , ·)

by Sy(hij), and this gives us a quadrature method for computing h(τ̂α
l ).

The resulting quadrature value of I after approximating hij(τ̂α
l , ·) by

Sy(hij) in (4.8) is denoted by Im.

We next present a numerical example that demonstrates the efficiency
of the quadrature rule. The order of convergence is computed by
|Im − Im+1|/|Im+1 − Im+2| for m ≥ 1. We note that

|Im − Im+1|
|Im+1 − Im+2|

≈ c,

which indicates that the quadrature error is decreasing exponentially,
cf. Lemma 4.7.

Example 4.1. Consider the integral

I =
∫ 1

0

∫ 1−x

0

x+ y + 1√
(x− 0.3)2 + (y − 0.2)2

dy dx.

The singular point (0.3, 0.2) is inside the domain Ω of integration,
see Figure 4.1, and σ = 1 for the given integrand. We tabulate our
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numerical results in Table 4.1. It is clearly seen that the quadrature
rule gives accurate results, and the order of convergence is also verified.
θ = 0.17 is used in this example and all other examples in this paper.

TABLE 4.1. Numerical quadrature results for Example 4.1.

m Numerical Im |Im−Im+1| Order of
convergence

1 3.42569712973761929
2 3.64089019720423062 2.15e-01
3 3.70794909693406188 6.71e-02 3.21
4 3.71993130161368305 1.20e-02 5.60
5 3.72198907967352980 2.06e-03 5.82
6 3.72234233204242752 3.53e-04 5.83
7 3.72240262535117647 6.03e-05 5.86
8 3.72241283633917743 1.02e-05 5.90
9 3.72241457684138661 1.74e-06 5.87
10 3.72241487370465405 2.97e-07 5.86
11 3.72241492439826888 5.07e-08 5.86
12 3.72241493312499959 8.73e-09 5.81

When the elements of the matrix K̃n are computed by using the
numerical quadrature developed above, new quadrature errors are
introduced into the error of the numerical solution. Next we analyze
the quadrature error and design an error control method so that
the convergence order of the numerical solution is preserved with
almost linear computational cost (measured in terms of the number
of quadrature nodes).

Recall that the compressed matrix K̃n is obtained by the block
truncation strategy defined with the truncation parameters ri′i, i′, i ∈
Zn+1. For the given truncation parameter ri′i, we introduce an index
set for k′, k ∈ Zp, (i′, j′) ∈ Un,

Zk′i′j′,ki := {j : j ∈ Zw(i),Kk′i′j′,kij is a nonzero entry of

Kq′q
i′i and |q − q′| ≤ ri′i}.
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That is, it is the set of indices of elements in the k′i′j′ row of the block
K̃i′i such that the associated wavelet wkij is supported on �k. We also
define for � ∈ Z9,

Z�
k′i′j′,ki := {j ∈ Zk′i′j′,ki : j = 9μ(e) + �}.

Observe that Z�
k′i′j′,ki ⊂ Zk′i′j′,ki. For j1, j2 ∈ Z�

k′i′j′,ki with j1 �= j2,

meas (supp (wk,ij1) ∩ supp (wk,ij2)) = 0,

and for any � ∈ Z9,

T−1
k

( ⋃
j∈Z�

k′i′j′,ki

supp (wk,ij)
)

⊂ Ω.

We now define for � ∈ Z9 and (i′, j′) ∈ Un

w̄k′i′j′,ki�(t) :=
{
wkij(t) if t ∈ int (supp (wkij)) for some j ∈ Z�

k′i′j′,ki

0 otherwise

and set
h̄k′i′j′,ki�(s, t) := K(s, t)w̄k′i′j′,ki�(t).

Note that in the block K̃i′i, for fixed k′i′j′, there are p such functions
as k ∈ Zp. When the entry Kk′i′j′,kij of K̃n is computed, it is
calculated according to (3.4) through change of variables. We therefore
write w̄i′j′,i�(t) and h̄i′j′,i�(s, t) for w̄k′i′j′,ki�(t) and h̄k′i′j′,ki�(s, t),
respectively, after a change of variables.

We next analyze the quadrature error of the proposed integration
method. Let

I(h̄i′j′,i�) :=
∫ 1

0

∫ 1−x

0

h̄i′j′,i�(s, t) dy dx,

Im(h̄i′j′,i�) be the approximate quadrature value of I(h̄i′j′,i�) obtained
by the proposed integration method, and

E := I(h̄i′j′,i�) − Im(h̄i′j′,i�).
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We need the following technical lemmas. Since the proof of Lemma 4.2
is similar to that of Lemma 4.1 in [14], we present it without a proof.

Lemma 4.2. Let {kl = l + 2 : l ∈ N0} be an increasing sequence
of positive integers and l′ ∈ N0. Then, for a fixed positive number q,
there exists a positive constant c such that

22qkl

(2kl)!θ(2−σ)l̂+2kl(1+l−l̂)
≤ c,

where l̂ = max{l, l′}.

For simplicity, we introduce the index sets associated with the subin-
tervals for the x variable

Γα := {e ∈ Zm′ : Ĵe ⊆ [trα, t
r
α+1] or Ĵe ⊆ [tlα, t

l
α+1]},

A := {α ∈ Zm : (Ĵe ∩ [trα, t
r
α+1]) ⊂ [0, 1] or

(Ĵe ∩ [tlα, t
l
α+1]) ⊂ [0, 1], e ∈ Zm′},

and
Γ := {(e, α) : e ∈ Γα, α ∈ A}.

Likewise, we define the index sets associated with the subintervals for
the y variable

Λβ := {e′ ∈ Zm′′ : Je′ ⊆ [su
β, s

u
β+1] or Je′ ⊆ [sd

β, s
d
β+1]},

B(x) := {β ∈ Zm′′ : (Je′ ∩ [su
β, s

u
β+1]) ⊂ [0, 1 − x] or

(Je′ ∩ [sd
β, s

d
β+1]) ⊂ [0, 1 − x], x ∈ (0, 1), e′ ∈ Zm′′}

and
Λ(x) = {(e′, β) : e′ ∈ Λβ :, β ∈ B(x)}, x ∈ (0, 1).

We now return to the estimate of I(h̄i′j′,i�). For notational conve-
nience, for a fixed s, we let

g(x) =
∫ 1−x

0

h̄i′j′,i�(s, t(x, y)) dy, for x ∈ [0, 1]
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and we will abuse the notation by writing

h̄i′j′,i�(x, y) for h̄i′j′,i�(s, t(x, y)).

Hence, we have that

I(h̄i′j′,i�) =
∫ 1

0

g(x) dx =
∑

(e,α)∈Γ

∫
Ĵe

g(x) dx.

Applying the Gaussian quadrature rule to the integral, we have that∫
Ĵe

g(x) dx =
∑

l∈Zkα

ŵe
l g(τ̂

e
l ) +

1
(2kα)!

∫
Ĵe

Qe,α(x)D2kα
x g(x) dx,

where,
Qe,α(x) :=

∏
l∈Zkα

(x− τ̂ e
l )2, x ∈ Ĵe.

Setting
I1 :=

∑
(e,α)∈Γ

∑
l∈Zkα

ŵe
l g(τ̂

e
l )

and
(4.12)

E1 :=
∑

(e,α)∈Γ

1
(2kα)!

∫
Ĵe

D2kα
x

(∫ 1−x

0

h̄i′j′,i�(x, y) dy
)
Qe,α(x) dx,

we have that
I(h̄i′j′,i�) = I1 + E1.

Next we compute

g(τ̂ e
l ) =

∫ 1−τ̂e
l

0

h̄i′j′,i�(τ̂ e
l , y) dy.

To this end, by applying the composite Gaussian quadrature rule
with the nonuniform partition of [0, 1 − τ̂ e

l ] and using interpolating
polynomials, we observe that

g(τ̂ e
l ) =

∑
(e′,β)∈Λ(τ̂e

l
)

[ ∑
l′∈Zkβ

we′
l′ h̄i′j′,i�(τ̂ e

l , τ
e′
l′ )

+
1

(2kβ)!

∫
Je′

Pe′,β(y)D2kβ
y h̄i′j′,i�(τ̂ e

l , y) dy
]
,
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where
Pe′,β(y) :=

∏
l′∈Zkβ

(y − τ e′
l′ )2, y ∈ Je′ .

Hence
I1 = Im + E2,

with

Im :=
∑

(e,α)∈Γ

∑
l∈Zkα

∑
(e′,β)∈Λ(τ̂e

l
)

∑
l′∈Zkβ

ŵe
lw

e′
l′ h̄i′j′,i�(τ̂ e

l , τ
e′
l′ )

and

E2 =
∑

(e,α)∈Γ

∑
l∈Zkα

ŵe
l

( ∑
(e′,β)∈Λ(τ̂e

l
)

1
(2kβ)!

×
∫

Je′
Pe′,β(y)D2kβ

y h̄i′j′,i�(τ̂ e
l , y) dy

)
.

To estimate E2, we observe that E2 is in fact the quadrature formula
in the x direction for the integral

(4.13)

E3 :=
∑

(e,α)∈Γ

∫
Ĵe

( ∑
(e′,β)∈Λ(x)

1
(2kβ)!

∫
Je′

Pe′,β(y)D2kβ
y h̄i′j′,i�(x, y) dy

)
dx.

with the error

E4 :=
∑

(e,α)∈Γ

1
(2kα)!

∫
Ĵe

D2kα
x

[ ∑
(e′,β)∈Λ(x)

1
(2kβ)!

×
∫

Je′
Pe′,β(y)D2kβ

y h̄i′j′,i�(x, y) dy
]
Qe,α(x) dx.

Hence, we conclude that

E2 = E3 − E4.

We next estimate E1, E3 and E4. For convenience, let

ν =

[(
di + di′ +

ri′i +
√

2
4(i0−1)/2

)
4(i−1)/2

]
.
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We first estimate E3.

Lemma 4.3. The following estimate holds:

|E3| ≤ cθm(2−σ)νκ.

Proof. Recall that

Pe′,β(y) ≤ γ(β), for e′ ∈ Λβ , y ∈ Je′

where
γ(β) := θ2kβ(m−β−1)(1 − θ)2kβ .

From (4.13), we obtain that

|E3| ≤
∑

(e,α)∈Γ

∑
β∈B(0)

γ(β)
(2kβ)!

∫
Ĵe

( ∑
e′∈Λβ

∫
Je′

|D2kβ
y h̄i′j′,i�(x, y)| dy

)
dx,

where we have used B(x) ⊂ B(0) for 0 ≤ x ≤ 1. Note that
wij(t) = Tew1�(t) with e ∈ Zi−1

4 and j = 9μ(e)+� and that the wavelet
function wij is a piecewise polynomial of order κ = 2. Denoting the
set of points of discontinuity of wij by π(wij), the set of points of
discontinuity of π(h̄i′j′,i�) is

π(h̄i′j′,i�) = ∪{π(wij) : j ∈ Z�
k′i′j′,ki}.

For t = (x, y) ∈ supp (h̄i′j′,i�) \ ({s} ∪ π(h̄i′j′,i�)), using assumption
(4.1) we have that

|D2kβ
y h̄i′j′,i�(s, t)| ≤ c22kβ |s− t|−(σ+2kβ)

∑
b∈Zκ

|s− t|b4b(i−1)/2.

Noting when h̄i′j′,i�(s, t) �= 0,

|s− t| ≤ di + di′ +
ri′i +

√
2

4(i0−1)/2
.
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Observing that the set B(0) is independent of x, we thus have that

(4.14)

|E3| ≤ c
∑

β∈B(0)

22kβνκ

(2kβ)!
γ(β)

∑
(e,α)∈Γ

∫
Ĵe

( ∑
e′∈Λβ

∫
Je′

|s− t|−(σ+2kβ) dy

)
dx

= c
∑

β∈B(0)

22kβνκ

(2kβ)!
γ(β)

∫ 1

0

( ∑
e′∈Λβ

∫
Je′

|s− t|−(σ+2kβ) dy

)
dx.

Introduce two rectangular domains

�̃1 := [0, 1] × [su
β , s

u
β+1], �̃2 := [0, 1] × [sd

β , s
d
β+1],

and observe that ⋃
e′∈Λβ

([0, 1] × Je′) ⊂ (�̃1 ∪ �̃2).

For l = 1, 2, let

E3,l =
∑

β∈B(0)

22kβνκ

(2kβ)!
γ(β)

∫
�̃l

|s− t|−(σ+2kβ) dy dx.

We then have that
|E3| ≤ c(E3,1 + E3,2).

Since∫
�̃l

|s− t|−(σ+2kβ) dy dx

≤
∫ 2π

0

∫ √
2

θm−β

r1−σ−2kβ dr dϑ ≤ cθ(m−β)(2−σ−2kβ),

we conclude that

E3,l ≤ c
∑

β∈B(0)

22kβ (1 − θ)2kβθm(2−σ)

(2kβ)!θ(2−σ)β+2kβ
νκ

On the other hand, applying Lemma 4.2 with q = 1 yields

E3,l ≤ cθm(2−σ)νκ.
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Combining the above two estimates gives

|E3| ≤ cθm(2−σ)νκ,

proving the lemma.

To estimate E1, we need the next simple fact, which might be proved
by induction.

Lemma 4.4. Let ñ ≥ 1 be an integer. Suppose that f ∈ Cñ([0, 1] ×
[0, 1]). Then

Dñ
x

∫ 1−x

0

f(x, y) dy =
∫ 1−x

0

Dñ
1 f(x, y) dy

−
ñ−1∑
j=0

j∑
k=0

(
j

k

)
(−1)kDñ−k−1

1 Dk
2f(x, 1 − x),

where Dk
j f denotes the kth partial derivative of f with respect to the

jth variable.

Lemma 4.5. The following estimate holds:

|E1| ≤ cθm(2−σ)νκ.

Proof. Using Lemma 4.4, we obtain that∣∣∣∣D2kα
x

(∫ 1−x

0

h̄i′j′,i�(x, y) dy
)∣∣∣∣

≤
∫ 1−x

0

|D2kα
x h̄i′j′,i�(x, y)| dy

+
2kα−1∑

j̃=0

j̃∑
k̃=0

(
j̃

k̃

)
|D2kα−1−k̃

1 Dk̃
2 h̄i′j′,i�(x, 1 − x)|.

Note that the point t̃ = (x, 1 − x) for 0 < x < 1 is on the hypotenuse
of the unit triangle Ω. The value of h̄i′j′,i�(x, 1 − x) is understood as
the limit when a point t ∈ Ω approaches t̃. Thus,

|E1| ≤ E1,1 + E1,2
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where

E1,1 :=
∑

(e,α)∈Γ

1
(2kα)!

∫
Ĵe

∫ 1−x

0

|D2kα
x h̄i′j′,i�(x, y)|Qe,α(x) dy dx,

E1,2 :=
∑

(e,α)∈Γ

1
(2kα)!

×
∫

Ĵe

2kα−1∑
j̃=0

j̃∑
k̃=0

(
j̃

k̃

)
|D2kα−1−k̃

1 Dk̃
2 h̄i′j′,i�(x, 1 − x)|Qe,α(x) dx.

For t = (x, y) ∈ supp (h̄i′j′,i�) \ ({s} ∪ π(h̄i′j′,i�)), using assumption
(4.1) we have that

|D2kα
x h̄i′j′,i�(s, t)| ≤ c22kα |s− t|−(σ+2kα)

∑
a∈Zκ

|s− t|a4a(i−1)/2

and

|D2kα−1−k̃
1 Dk̃

2 h̄i′j′,i�(s, t)|
≤ c22kα−1|s− t|−(σ+2kα−1)

∑
a+b∈Zκ

|s− t|(a+b)4(a+b)(i−1)/2.

Noting Qe,α(x) ≤ γ(α) for e ∈ Γα, x ∈ Ĵe and when h̄i′j′,i�(s, t) �= 0,

θm−α ≤ |s− t| ≤ di + di′ +
ri′i +

√
2

4(i0−1)/2
.

We then have

E1,1 ≤
∑
α∈A

c22kαγ(α)νκ

(2kα)!

∑
e∈Γα

∫
Ĵe

∫ 1

0

|s− t|−(σ+2kα) dy dx

and

E1,2 ≤
∑
α∈A

c24kαγ(α)νκ

(2kα)!

∑
e∈Γα

∫
Ĵe

|s− t̃|−(σ+2kα−1) dx.

In view of the proof of |E3|, see (4.14), we readily have

E1,1 ≤ cθm(2−σ)νκ.
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Now∑
e∈Γα

∫
Ĵe

|s− t̃|−(σ+2kα−1) dx ≤ θ(m−α)(1−σ−2kα)(θm−α−1 − θm−α)

≤ cθ(m−α)(2−σ−2kα).

Then

E1,2 ≤ c
∑
α∈A

24kα(1 − θ)2kαθm(2−σ)

(2kα)!θ(2−σ)α+2kα
νκ.

Applying Lemma 4.2 with q = 2 yields

E1,2 ≤ cθm(2−σ)νκ, and hence |E1| ≤ cθm(2−σ)νκ.

In the next lemma, we estimate E4.

Lemma 4.6. The following estimate holds:

|E4| ≤ cθm(2−σ)νκ.

Proof. To estimate E4, we first compute

D := D2kα
x

[ ∑
(e′,β)∈Λ(x)

1
(2kβ)!

∫
Je′

Pe′,β(y)D2kβ
y h̄i′j′,i�(x, y) dy

]
, x ∈ Ĵe.

Note for the domain Je′ = [se′ , se′+1) of the integration, one ending
point may be dependent on x. For a fixed i ≥ 1, the level of wij

and a fixed x with 0 < x < 1, we classify the points in the partition
{se′ : e′ ∈ Zm′′} of [0, 1−x] into two groups. Group one contains points
which are constant with respect to x and group two consists of points
dependent on x, which is denoted by Πi

x. In review of the construction
of wij , we have that

Πi
x :=

{
se′

l
:=

l

2i
− x : l = 1, 2, . . . , 2i, i ≥ 1, 0 < x <

l

2i

}
.
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For each of the points

se′
l
:=

l

2i
− x, l = 1, 2, . . . , 2i − 1,

there are always two subintervals of [1− x) associated with it, namely,

Je′
l−1

=
[
se′

l−1
,
l

2i
− x

)
, Je′

l
=
[
l

2i
− x, se′

l+1

)
.

When l = 2i, there is only one interval Jm′′−1 = [sm′′−1, 1 − x)
associated with it. We denote by kβl

the degree of the interpolating
polynomial on the interval Je′

l
. When the two integration limits are

constant, we have that

D2kα
x

∫ se′+1

se′
Pe′,β(y)D2kβ

y h̄i′j′,i�(x, y) dy

=
∫ se′+1

se′
Pe′,β(y)D2kα

x D
2kβ
y h̄i′j′,i�(x, y) dy.

By Lemma 4.4 with

f(x, y) := Pe′,β(y)D2kβ
y h̄i′j′,i�(x, y)

we conclude that

(4.15) D2kα
x

∫ l/2i−x

se′
Pe′,β(y)D2kβ

y h̄i′j′,i�(x, y) dy

=
∫ l/2i−x

se′
Pe′,β(y)D2kα

x D
2kβ
y h̄i′j′,i�(x, y) dy

−
2kα−1∑

j̃=0

j̃∑
k̃=0

(
j̃

k̃

)
(−1)k̃D2kα−1−k̃

1 Dk̃
2f(x, l/2i − x).

Since
f(x, y) = Pe′,β(y)D2kβ

y K(x, y)wij(x, y)
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by applying the Leibniz formula twice, the second term in (4.15)
becomes

S(e′, β, l/2i − x)

:= −
2kα−1∑
j1=0

j1∑
k̃=0

(
j1

k̃

) k̃∑
j2=0

(
k̃

j2

) ∑
h1+h2∈Zκ

[(
2kα−1−k̃

h1

)(
2kβ +k̃−j2

h2

)
× (−1)k̃D2kα−1−k̃−h1

1 D
2kβ+k̃−j2−h2
2 K(x, l/2i−x)

×Dh1
1 Dh2

2 wij(x, l/2i− x)Dj2Pe′,β(l/2i− x)
]
.

It follows that

D =
∑

(e′,β)∈Λ(x)

1
(2kβ)!

∫
Je′

Pe′,β(y)D2kα
x D

2kβ
y h̄i′j′,i�(x, y) dy

+
2i∑

l=1

1
(2kβl−1)!

S(e′l−1, βl−1, l/2i − x)

−
2i−1∑
l=1

1
(2kβl

)!
S(e′l, βl, l/2i − x).

Again, the evaluation of h̄i′j′,i� at the point t̃ = (x, l/2i − x) is
understood as the limit as a point t ∈ suppwij approaches t̃. Therefore,
we obtain that

|E4| ≤ E4,1 + E4,2,

where

E4,1 =
∑

(e,α)∈Γ

1
(2kα)!

∑
(e′,β)∈Λ(ηe

x)

∣∣∣D2kα
x D

2kβ
y h̄i′j′,i�(ηe

x, ζ
e′
y )
∣∣∣

(2kβ)!

×
∫

Ĵe×Je′
Pe′,β(y)Qe,α(x) dy dx
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for some (ηe
x, ζ

e′
y ) ∈ Ĵe × Je′ , and

E4,2 =
∑

(e,α)∈Γ

1
(2kα)!

∫
Ĵe

⎡⎣ 2i∑
l=1

1
(2kβl−1)!

|S(e′l−1, βl−1, l/2i− x)|

+
2i−1∑
l=1

1
(2kβl

)!
|S(e′l, βl, l/2i− x)|

⎤⎦Qe,α(x) dx.

We next estimate E4,1. For t ∈ supp (h̄i′j′,i�)\({s}∪π(h̄i′j′,i�)), using
assumption (4.1) we have that

|D2kα
x D

2kβ
y h̄i′j′,i�(s, t)|

≤ c
∑

a+b∈Zκ

ρa,b|s− t|−(σ+2kα+2kβ−a−b)4(a+b)(i−1)/2,

where

ρa,b :=
(2kα)!(2kβ)!

a!b!(2kα − a)!(2kβ − b)!
.

Let t′ := (ηe
x, ζ

e′
y ) and α̂ := max{α, β}. Observing that when

h̄i′j′,i�(s, t′) �= 0,

θm−α̂ ≤ |s− t′| ≤ di + di′ +
ri′i +

√
2

4(i0−1)/2
,

we then obtain that

|D2kα
x D

2kβ
y h̄i′j′,i�(s, t′)| ≤ cνκ22kα22kβθ−(m−α̂)(σ+2kα+2kβ).

Note that B(ηe
x) ⊂ B(0) and thus

E4,1 ≤ c
∑
α∈A

∑
β∈B(0)

λ(α, β)γ(α)γ(β)
∑
e∈Γα

∑
e′∈Λβ

∫
Ĵe×Je′

dy dx,

where

λ(α, β) :=
22kα22kβθ−(m−α̂)(σ+2kα+2kβ)νκ

(2kα)!(2kβ)!
.
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We now introduce four rectangular domains

1 := [trα, t
r
α+1] × [su

β , s
u
β+1], 2 := [trα, t

r
α+1] × [sd

β, s
d
β+1],

3 := [tlα, t
l
α+1] × [su

β , s
u
β+1], 4 := [tlα, t

l
α+1] × [sd

β, s
d
β+1]

and observe that

⋃
e∈Γα,e′∈Λβ

(
Ĵe × Je′

)
⊂

4⋃
j=1

j .

For j = 1, 2, 3, 4 we let

E4,1(j) :=
∑
α∈A

∑
β∈B(0)

λ(α, β)γ(α)γ(β) meas ( j).

Thus, we have that

E4,1 ≤ c

4∑
j=1

E4,1(j).

Noting that

meas ( j) ≤
∫ 2π

0

∫ θm−α̂−1

θm−α̂

r dr dϑ = cθ2(m−α̂−1)

we obtain that

E4,1(j) ≤ c
∑
α∈A

∑
β∈B(0)

22kα22kβ (1 − θ)2kα(1 − θ)2kβθm(2−σ)νκ

(2kα)!(2kβ)!θ(2−σ)α̂+2kα(1+α−α̂)+2kβ(1+β−α̂)
.

Applying Lemma 4.2 with q = 1 yields

E4,1(j) ≤ cθm(2−σ)νκ and thus E4,1 ≤ cθm(2−σ)νκ.

It remains to estimate E4,2. To this end, We first estimate |S(e′, β,
l/2i − x)|, which is associated with the interval Je′ := [se′ , se′+1) =
[se′ , l/2i − x). We first note that

|Dj2Pe′,β(l/2i − x)| ≤ (2kβ)!
(2kβ − j2)!

|Je′ |2kβ−j2 , 0 ≤ j2 ≤ 2kβ
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where |Je′ | is the length of the interval Je′ . Recall that the wavelet
function wij is a piecewise polynomial of order κ = 2; we thus have

|Dh1
1 Dh2

2 wij(x, l/2i − x)| ≤ c4(h1+h2)(i−1)/2.

For t̃ = (x, l/2i−x) ∈ supp (h̄i′j′,i�)\({s}∪π(h̄i′j′,i�)), using assumption
(4.1) we have that

|D2kα−1−k̃−h1
1 D

2kβ+k̃−j2−h2
2 K(x, l/2i − x)|

≤ |s− t̃|−(σ+2kα+2kβ−1−j2−h1−h2).

Note that when h̄i′j′,i�(s, t̃) �= 0, we have that

(4.16) θm−α̂ ≤ |s− t̃| ≤ di + di′ +
ri′i +

√
2

4(i0−1)/2
,

and thus
2 |Je′ |∣∣s− t̃

∣∣ ≤ 2θm−β−1(1 − θ)
θm−β

=
2(1 − θ)

θ
.

Therefore,

|S(e′, β, l/2i − x)| ≤ cνκ−1|s− t̃|−(σ+2kα−1)22kα(2kβ)!

×
2kα−1∑
j1=0

j1∑
k̃=0

(
j1

k̃

) k̃∑
j2=0

(
k̃

j2

)
[2(1 − θ)]2kβ−j2

θ2kβ−j2(2kβ − j2)!
.

By Lemma 4.2, we find that

[2(1 − θ)]2kβ−j2

θ2kβ−j2(2kβ − j2)!
≤ c, for some constant c.

Consequently,

|S(e′, β, l/2i − x)| ≤ cνκ−1|s− t̃|−(σ+2kα−1)26kα(2kβ)!.

Now note that when h̄i′j′,i�(s, t̃) �= 0, we only need to add those terms
of the two summations in E4,2 for which the second inequality of (4.16)
holds. The number of those terms is at most

2 · 2 ·
(
di + di′ +

ri′i +
√

2
4(i0−1)/2

)/(
4−i/2

)
= 8ν.
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Therefore,

E4,2 ≤
∑

(e,α)∈Γ

cνκ26kαγ(α)
(2kα)!

∫
Ĵe

|s− t̃|−(σ+2kα−1) dx

≤ c
∑
α∈A

26kα(1 − θ)2kαθm(2−σ)

(2kα)!θ(2−σ)α+2kα
νκ.

Applying Lemma 4.2 with q = 3 yields

E4,2 ≤ cθm(2−σ)νκ.

This with the estimate for E4,1 gives the desired estimate for E4.

The estimates of E1, E3 and E4 together establish the following
lemma.

Lemma 4.7. Suppose that condition (4.1) holds. Then there exists
a positive constant c such that for i ∈ Zn+1, � ∈ Z9, (i′, j′) ∈ Un

(4.17) E ≤ cθ(2−σ)m

[(
di + di′ +

ri′i +
√

2
4(i0−1)/2

)
4(i−1)/2

]κ

.

We denote by ˜̃Kn the compressed matrix with entries computed
numerically by the quadrature method. Accordingly, the submatrix˜̃Ki′i of ˜̃Kn is defined similarly to Ki′i of Kn. By using the definition
of the �∞ norm of matrices and the definition of h̄i′j′,i� , we translate
the error estimate for each entry presented in Lemma 4.7 to the error
for a block.

Lemma 4.8. There exists a constant c such that, for i′, i ∈ Zn+1

and n ∈ N,

‖K̃i′i − ˜̃Ki′i‖∞

≤ c

[(
4(−i+1)/2 + 4(−i′+1)/2 +

ri′i +
√

2
4(i0−1)/2

)
4(i−1)/2

]κ

θm(2−σ).
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Let mi′i be the integer m appearing in the proposed quadrature

rule for the computation of the entries of block ˜̃Kiπ . We choose mi′i
according to

(4.18) mi′i ≥ c(2i+ i′), i, i′ ∈ Zn+1

for some positive constant c. Let ˜̃un be the approximate solution of the

integral equation (2.1) computed according to ˜̃Kn.

Theorem 4.9. Suppose that the entries of ˜̃Kn are computed by the
proposed quadrature rule with mi′i given by (4.18). Then there exists a
positive constant c and a positive integer N such that, for all n > N ,

(4.19) ‖u− ˜̃un‖∞ ≤ cf(n)−κ/2 log f(n)‖u‖∞.

Proof. By the proof of Theorem 4.4 of [11], the estimate (4.19) holds
if there exists a constant c such that for i′, i ∈ Zn+1 and for all n ∈ N

(4.20) ‖Ki′,i − ˜̃Ki′,i‖∞ ≤ cε
−(2κ−σ′)
i′i (didi′)κ, i′, i ∈ Zn+1,

where εi′i is defined in (3.3). Using the triangle inequality, it suffices
to prove that there exists a constant c such that

‖K̃i′i − ˜̃Ki′i‖∞ ≤ cε
−(2κ−σ′)
iπ (didi′)κ, i′, i ∈ Zn+1.

Our choice of mi′i ensures that

θ(2−σ)mi′i ≤ c

(
ri′i +

√
2

4(i0−1)/2

)−(3κ−σ′)

4−(2κi+κi′)/2.

This with

c1(4(−i+1)/2 + 4(−i′+1)/2) ≤ εi′i ≤
ri′i +

√
2

4(i0−1)/2
≤ c2

for some positive constant c1 and c2 implies that
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[(
4(−i+1)/2 + 4(−i′+1)/2 +

ri′i +
√

2
4(i0−1)/2

)
4(i−1)/2

]κ

θ(2−σ)mi′i

≤ cε
−(2κ−σ′)
i′i 4−κ(i′+i)/2.

Thus, the result of this theorem follows directly from Lemma 4.8.

In the next theorem, we estimate the total number Mn of function

evaluations needed for computing all entries of matrix ˜̃Kn.

Theorem 4.10. Let mi′i, i′, i ∈ Zn+1 be the smallest integer
satisfying condition (4.18). Then there exists a positive constant c such
that

Mn ≤ cf(n) log5 f(n).

Proof. The proof of this theorem is similar to that for Theorem 4.5
of [14]. Let Mi′i and Mk′i′j′,i be the number of function evaluations

for computing the entries of ˜̃Ki′i and the k′i′j′ row of the block ˜̃Ki′i,
respectively. To estimate Mk′i′j′,i, we let M(h) be the number of
function evaluations used in computing Im(h). For fixed k′i′j′, let

hk′i′j′,kij(s, t) := K(s, t)wkij(t).

Recalling the definition of the function h̄k′i′j′,ki�, we have that

Mk′i′j′,i =
∑

k∈Zp

∑
j∈Zk′i′j′,ki

M(hk′i′j′,kij)

=
∑
�∈Z9

∑
k∈Zp

∑
j∈Z�

k′i′j′,ki

M(hk′i′j′,kij)

=
∑

k∈Zp

∑
�∈Z9

M(h̄k′i′j′,ki�).

Noting that

Card
{
α : Jα ⊂ [θmi′i−l , θmi′i−l−1 ]

}
≤ θmi′i−l−1 − θmi′i−l

4(−i+1)/2
+ 2,
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we observe that

√
Mk′i′j′,i ≤ 2

∑
k∈Zp

∑
�∈Z9

mi′i−1∑
l=0

kl

(
θmi′i−l−1 − θmi′i−l

4(−i+1)/2
+ 2

)
.

Since kl = l+2, for l ∈ Zm, there exists a positive constant c such that

√
Mk′i′j′,i ≤ c

(
1
θ
− 1

)
4(i−1)/2

(miπ−1∑
l=0

lθmi′i−l + 2
miπ−1∑

l=0

θmiπ−l

)

+ 2c
mi′i−1∑

l=0

(l + 2).

According to the truncation strategy, we only have to add those terms
of the sum in the last formula for which

tl = θmiπ−l ≤ riπ +
√

2
4(i0−1)/2

+ di′ + di.

By the choice of ri′i, the following holds

riπ

4(i0−1)/2
=

√
2

4(i0−1)/2
+ max

{
z′4[b′(n−i′)−i]/2,

z
(
4(−i+1)/2 + 4(−i′+1)/2

)}
.

Using the assumption on the choice of mi′i, we conclude that

√
Mk′i′j′,i ≤ c

[
(n+ n2)4(i−1)/2

(
4[b′(n−i′)−i]/2

+4(−i+1)/2 + 4(−i′+1)/2
)

+ n2
]
.

Hence,

Mk′i′j′,i ≤ cn4
(
4[b′(n−i′)−1] + 4(i−i′) + 1

)
.
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This leads to

Mn =
∑

i∈Zn+1

∑
i′∈Zn+1

Mi′i =
∑

i∈Zn+1

∑
i′∈Zn+1

pw(i′)Mk′i′j′,i.

Noticing that w(i′) = c4i′−1 for some constant c, we thus obtain that

Mn ≤ c
∑

i∈Zn+1

∑
i′∈Zn+1

[
n4

(
4b′n4(1−b′)i′ + 4i + 4i′

)]
.

Recalling that f(n) = O(4n), a simple computation yields the estimate
of the theorem.

5. Numerical experiments. In this section, we present numerical
examples to demonstrate the proposed methods for solving integral
equation (2.1) with various domains E. In all of these examples, we
use the kernel

K(x, y, ξ, ζ) :=
1√

(x− ξ)2 + (y − ζ)2
, (x, y), (ξ, ζ) ∈ E,

and choose

f(x, y) := x2 + y2 −
∫

E

ξ2 + ζ2√
(x− ξ)2 + (y − ζ)2

dξ dζ, (x, y) ∈ E

so that

u(x, y) = x2 + y2, (x, y) ∈ E

is the exact solution to equation (2.1).

In our numerical examples, we use the multilevel iterative method de-
veloped in [18] to solve the linear system unless stated otherwise. The
compression rate is computed as the ratio of the number of nonzero
entries in the compressed matrix K̃n over the total number of entries
of Kn. The order of convergence of the approximation solution un in
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the space Fn is computed by log4 ‖u− un‖∞/‖u− un+1‖∞, where n
stands for the level number of resolution and u is the exact solution.
The theoretical order of convergence is 1.

Example 5.1. The adaptive quadrature rule. In this example, we
test if the proposed quadrature rule is good enough in solving the
integral equation (2.1). We take E = Ω. To exclude other possible
factors affecting the solution, the linear system of equations are solved
by standard Gaussian elimination method. No compression is assumed.
The matrix entries obtained without using quadrature are computed
by analytical formula. The results are tabulated in Table 5.1. We see
that the results by using the proposed quadrature rule are very close
to those obtained without quadrature rule.

TABLE 5.1. Comparison of uncompressed solutions using

the wavelet collocation method, with and without

numerical integration for the entries.

Without quadrature With quadrature
n L∞-error order m L∞-error order
1 1.513187e-1 7 1.513184e-1
2 3.599605e-2 1.04 7 3.599379e-2 1.04
3 7.499082e-3 1.13 7 7.496564e-3 1.13
4 1.849162e-3 1.01 7 1.850269e-3 1.01
5 4.650610e-4 1.00 7 4.657219e-4 1.00

Example 5.2. Block truncation scheme. This example is designed
to test if the proposed block truncation strategy is good enough. We
solve the integral equation (2.1) with E = Ω. All the elements are
computed by analytical method and the linear system of equations
are solved by standard Gaussian elimination method. The results are
tabulated in Table 5.2. We can see that the compressed solutions by
block truncation scheme follow very closely the uncompressed solutions.
The block truncation parameter ri′i is set as

√
3.
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TABLE 5.2. Comparison of solutions obtained by the full

collocation method and by the compressed method.

Block truncation scheme with ri′i =
√

3

Full collocation solution un Compressed solution ũn

n L∞-error order L∞-error order compression
rate

1 1.513187e-1 1.513187e-1 1.000000

2 3.599605e-2 1.04 3.599605e-2 1.04 1.000000

3 7.499082e-3 1.13 7.493692e-3 1.13 0.758301

4 1.849162e-3 1.01 1.851165e-3 1.01 0.416626

5 4.650610e-4 1.00 4.683404e-4 0.99 0.181021

Example 5.3. Multilevel iteration method. In this example, we
test if the Gauss-Seidel type multilevel iteration method gives good
solutions. The solutions are compared with those from standard
Gaussian elimination. All the entries are computed analytically and
no compression is assumed. The results are tabulated in Table 5.3. We
see that both methods give very close solutions, where β is the number
of iterations. The significant reduction of the computing time when
using iterative method is very impressive.

TABLE 5.3. Comparison of uncompressed solutions using Gaussian

elimination and multilevel iteration methods.

Multilevel iterate Gaussian elimination

(k, �) β |u(β)
k,� −u|∞ order time |uk+�−u|∞ order time

(sec.) (sec.)

(3,0) 7.499082e-3 0.16 7.499082e-3 0.16

(3,1) 4 1.845814e-3 1.01 0.81 1.849162e-3 1.01 10

(3,2) 8 4.650403e-4 0.99 8.74 4.650610e-4 1.00 632
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In the next four examples, we combine the proposed block truncation
scheme, the quadrature rule and multilevel iterative scheme to solve
(2.1) with various domains E. The block truncation parameters are
taken as ri′i =

√
3, i′, i ∈ Zn+1. When the matrix entries are computed

numerically, the quadrature rule presented in Section 4 is adopted, and
the number of subdivision m used in the quadrature is taken as m = 9.
All the computations are done using parallel computing algorithms,
which will be discussed in detail in a separate paper.

Example 5.4. In this example, the domain E = Ω is the unit
triangle. The initial level k used for the multilevel iteration is chosen
as k = 3. Note that when the level n = k + � = 3 + 5 = 8, the matrix
size is 196608 × 196608. The results are listed in Table 5.4.

TABLE 5.4. Comparison of compressed solutions using multilevel

iteration method, with and without quadrature rule.

Results for the integral equation on the unit triangle Ω

(k, �) Without quadrature With quadrature

n=k+� L∞-error order m L∞-error order compression
rate

(1,0) 1.513187e-1 9 1.513184e-1 1.000000

(2,0) 3.599605e-2 1.04 9 3.599379e-2 1.04 1.000000

(3,0) 7.499082e-3 1.13 9 7.499123e-3 1.13 1.000000

(3,1) 1.850492e-3 1.01 9 1.850509e-3 1.01 0.431732

(3,2) 4.648565e-4 1.00 9 4.648294e-4 1.00 0.181965

(3,3) 1.171548e-4 0.99 9 1.174169e-4 0.99 0.067760

(3,4) 2.999366e-5 0.98 9 2.980252e-5 0.99 0.023004

(3,5) 8.010510e-6 0.95 9 7.920534e-6 0.96 0.007332

Example 5.5. In this example, we consider the triangle � with
three vertices (0, 0), (1, 0) and (0.5, 1) and take E = �. The results are
listed in Table 5.5.
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TABLE 5.5. Comparison of solutions obtained by the full collocation

method and by our compressed collocation method.

Results for the integral equation on an oblique triangle �
(k, �) Full collocation solution un Compressed solution ũn

n=k+� L∞-error order m L∞-error order compres-
sion rate

(1,0) 1.100676e-1 9 1.100676e-1 1.000000

(2,0) 2.081240e-2 1.20 9 2.081280e-2 1.20 1.000000

(2,1) 4.972866e-3 1.03 9 4.974875e-3 1.03 0.758301

(2,2) 1.285098e-3 0.98 9 1.285873e-3 0.98 0.416626

(2,3) 3.230465e-4 1.00 9 3.257940e-4 0.99 0.181021

(2,4) 9 7.869679e-5 1.02 0.067701

(2,5) 9 2.195469e-5 0.92 0.023000

(2,6) 9 7.829137e-6 0.74 0.007331

Example 5.6. In this example, we consider the quadrilateral E
with four vertices (0, 0), (1, 0), (2, 1.2), (0.5, 1), see Figure 5.1. The
computational results are listed in Table 5.6.

0 0.5 1 1.5 2
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0.6

0.8

1

1.2

1.4

−1 −0.5 0 0.5 1 1.5
0
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0.4
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0.8

1

1.2

1.4

FIGURE 5.1. Computational domains of Example 5.6 and Example 5.7.
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TABLE 5.6. Comparison of solutions obtained by the full collocation

method and by our compressed collocation method.

Results for the integral equation on a quadrilateral

(k, �) Full collocation solution un Compressed solution ũn

n=k+� mn L∞-error order m L∞-error order compression
rate

(1,0) 9 3.607234e-1 9 3.607234e-1 1.000000

(2,0) 9 9.443242e-2 0.97 9 9.443194e-2 0.97 1.000000

(2,1) 9 2.282575e-2 1.02 9 2.272426e-2 1.03 0.758301

(2,2) 9 5.735749e-3 1.00 9 5.891051e-3 0.97 0.416626

(2,3) 9 1.456519e-3 0.99 9 1.492354e-3 0.99 0.181021

Example 5.7. In this example, we consider the pentagon E with
five vertices (0,0), (1,0), (1.2,1), (0.4,1.2), (-0.7,0.6), see Figure 5.1.
The computational results are listed in Table 5.7.

TABLE 5.7. Comparison of solutions obtained by the full collocation

method and by our compressed collocation method.

Results for the integral equation on a pentagon

(k, �) Full collocation solution un Compressed solution ũn

n=k+� mn L∞-error order m L∞-error order compression
rate

(1,0) 9 2.015684e-1 2.01570e-1 1.000000

(2,0) 9 4.076680e-2 1.15 9 4.076633e-2 1.15 1.000000

(2,1) 9 1.017880e-2 1.00 9 1.019395e-2 1.00 0.758301

(2,2) 9 2.593854e-3 0.99 9 2.624460e-3 0.98 0.416626

(2,3) 9 6.440248e-4 1.00 9 6.675855e-4 0.99 0.181021

(2,4) 9 1.939918e-4 0.89 0.067701



METHOD FOR INTEGRAL EQUATIONS ON POLYGONS 329

REFERENCES

1. B.K. Alpert, A class of bases in L2 for the sparse representation of integral
operators, SIAM J. Math. Anal. 24 (1993), 246 262.

2. K.E. Atkinson, A survey of boundary integral equation methods for the
numerical solution of Laplace’s equation in three dimensions, in Numerical solution
of integral equations (M. Golberg, ed.), Plenum Press, New York, 1990.

3. , The numerical solution of integral equations of the second kind,
Cambridge Univ. Press, Cambridge, 1997.

4. K.E. Atkinson and G. Chandler, The collocation method for solving the
radiosity equation for unoccluded surfaces, J. Integral Equations Appl. 10 (1998),
253 290.

5. K.E. Atkinson and D. Chien, Piecewise polynomial collocation for boundary
integral equations, SIAM J. Sci. Comput. 16 (1994), 651 681.

6. , A fast matrix-vector multiplication method for solving the radiosity
equation, Adv. Comput. Math. 12 (2000), 151 174.

7. K.E. Atkinson, I. Graham and I. Sloan, Piecewise continuous collocation for
integral equations, SIAM J. Numer. Anal. 20 (1983), 172 186.

8. G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical
algorithms I, Comm. Pure Appl. Math. 44 (1991), 141 183.

9. Z. Chen, C.A. Micchelli and Y. Xu, The Petrov-Galerkin methods for second
kind integral equations II: Multiwavelet scheme, Adv. Comput. Math. 7 (1997),
199 233.

10. , A construction of interpolating wavelets on invariant sets, Math.
Comp. 68 (1999), 1569 1587.

11. , Fast collocation methods for second kind integral equations, SIAM J.
Numer. Anal. 40 (2002), 344 375.

12. , A multilevel method for solving operator equations, J. Math. Anal.
Appl. 262 (2001), 688 699.

13. Z. Chen, B. Wu and Y. Xu, Multilevel augmentation methods for solving
operator equations, Numer. Math. J. Chinese U. (English Ser.) 14 (2005), 31 55.

14. , Error control strategies for numerical integrations in fast collocation
methods, Northeast. Math. J. 21 (2005), 233 252.
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