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RADON TRANSFORM OVER CONES
AND RELATED DECONVOLUTION PROBLEMS

JEAN-FRANÇOIS CROUZET

ABSTRACT. We introduce a new kind of radon transform,
consisting in integrating a function (to be recovered) over a
special family of cones. It is in fact a formal generalization
of the “Coded-aperture gammagraphy” imaging method, en-
countered in medicine and astronomy. We show that it is a
natural geometric operation, but which does not have the fine
properties of similar integral transform. Nevertheless, several
inverse problems (like classical radon transform, deconvolu-
tion) are related to it, and also new kinds on integral trans-
forms : essentially the “Quasi-convolution”. After this study,
where we show that the problem is severely ill-posed (essen-
tially because of insufficient data), an inversion is performed
in the case of complete data.

1. Introduction.

1.1 Notations and tools. A point x ∈ Rn is written x = (x′, xn).
The Euclidean scalar product of x and y is x.y, and the associated norm
of x is |x|. We denote closed balls B(a, r) = {x ∈ Rn, |x − a| ≤ r} ,
spheres S(a, r) = {x ∈ Rn, |x− a| = r}. Let B(0, 1) = B, S(0, 1) = S,
and call S+, the half-unit sphere of Rn for positive xn.

We introduce Π(λ) = {x ∈ Rn, xn = λ} , and let Π(0) = Π, the
hyperplane delimiting the two open half-spaces Rn

+ = {x ∈ Rn, xn >
0} and Rn

− = {x ∈ Rn, xn < 0}. The set Π will be called the “plane of
the code,” and the previous half-spaces will respectively be the “region
of the source” and the “region of the detector.”

The characteristic function of a compact set K of Rn is denoted

χK(x) =
{

1 if x ∈ K,
0 if x /∈ K.

For x ∈ Rn and λ ∈ R, we write fλ(x) = λnf(λx).

1.1.1 The Fourier transform and the convolution. In the context of
the spaces Lp = {f : Rn �→ R ;

(∫
Rn |f(x)|p dx)1/p = ‖f‖p < +∞},
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for p ≥ 1, the Fourier transform of an L1 function and its adjoint
transform are written, as well as their extensions to the L2 space of
square integrable functions,

F f = f̂(ξ) =
∫
R

f(x)e−ix.ξ dx , F∗f(ξ) =
∫
R

f(x)eix.ξ dx .

(∗ will also denote the complex conjugation). We also write FXf the
Fourier transform along a set of variables X. (For a brief review of the
properties of the Fourier transform that we will need, see Appendix A
and also [23] or [25]).

The usual convolution operator of two functions f and g is denoted
f � g and represents the integral transform

f � g (y) =
∫
Rn

f(x) g(y − x) dx .

(If f ∈ Lp and g ∈ Lq, with 1/p + 1/q ≥ 1, then f � g ∈ Lr, with
1/r = 1/p + 1/q − 1.) If f is in L2 (typically the “source-function”
corresponding to the information on the body, that one aims to recover
in gammagraphy), and g ∈ L1 (typically g = χK, the characteristic
function of a compact “code” K ⊂ Π), the product f � g remains, so
that we can write f̂ � g = f̂ ĝ, and justify the existence of most of the
integrals encountered later.

1.1.2. The classical radon transforms over hyperplanes (RT). Let
θ ∈ S, s ∈ R, and f be, for sake of simplicity, a rapidly decreasing
Schwartz function (see Appendix A for a review of the definition). The
radon transform Rf represents the integral of f over the hyperplane
Π(θ, s) = {x ∈ Rn , x.θ = s} and reads

Rf(θ, s) = Rθf(s) =
∫
Π(θ,s)

f(x) dµ(x) ,

where dµ(x) is the Lebesgue measure on Π(θ, s).

We denote Z = S×R the unit cylinder, and Z+ = S+ ×R the
half unit cylinder on which Rf is completely defined (as soon as
Rf(−θ,−s) = Rf(θ, s)).
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Note that if the support of f , supp f , is inside B(O, r), then
Rf(θ, s) = 0, for |s| > r. The properties of the radon transform needed
later can be found in Appendix B, and also in [16] or [23].

1.2 The radon transforms over cones (RTC).

1.2.1 A general definition of the RTC.

Definition 1.1. Consider as a “source” a closed subset I ⊂ Rn
−, and

as a “detector” a closed subset D ⊂ Rn
+. Let f ∈ L2, supported in I,

be the “source function”, and C ∈ L1(Π) (typically C = χK, where K
is the compact “code”) the “code function”. The radon transform over
cones of f , defined on D, is denoted VCf , and has the following integral
expression:

(1.1)

VCf(y) = VCf(y′, yn)

=
∫
Rn

f(x′, xn) C
( −xn

−xn + yn
y′ +

yn
−xn + yn

x′
)

· dx′dxn

(−xn + yn)n−1
.

Here is its geometrical meaning: Take C = χK, where K is a compact
subset ofΠ, and, for sake of simplicity, replace D by Rn

+. From a point
y ∈ D the source function f is integrated over the cone emerging from
y and generated by K (playing the role of an aperture, as we will see in
next subsection). This is the reason why occurs the convex combination
η = (−xn/(−xn + yn))y′ + (yn/(−xn + yn))x′, which determines the
intersection of the plane Π with the half-line emerging from x ∈ I and
getting through y ∈ D:

Remark. The presence of the attenuation term 1/(−xn + yn)n−1 is
explained in the next subsection, but one can already notice that, as I
is closed, there exists a positive real number γ such that −xn ≥ γ > 0,
so that it remains bounded.

1.2.2 The original “coded aperture transform” in medical imaging.
The origins of the RTC are to be found in the “coded aperture
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transform” introduced in medical imaging in the 70’s ([4], [12], [14],
[15], [24]) and used also in astronomical measurements ([1], [17], [21]).

Let us first describe the medical imaging coded-aperture method from
a geometrical point of view and then make more physical considerations
(for more details see the original work in [4] and also [8]).

For n = 3 consider a three-dimensional compact source I ⊂ R3
− (for

instance, I = B(a, 1), with a3 < −1), that will be the body of interest,
supporting the unknown function f .

A detector is modeled by the whole plane Π(λ), with λ > 0. Between
those two objects, a third one is interposed onΠ: an opaque mask, with
an aperture (a sort of window, which is called, in fact, the “code”)
pierced in it, and corresponding to the compact K. Thus we have
C = χK, and the following RTC expression:

(1.2)

VCf(y′, λ) =
∫
R3

f(x′, x3) χK

( −x3

−x3 + λ
y′ +

λ

−x3 + λ
x′

)
dx′ dx3

(−x3 + λ)2
.

Technically, the body of interest (for example one myocardium of a
human heart) has previously received an injection of radioactive serum,
and now emits, in the whole space, gamma-rays corresponding to the
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serum fixation f in the tissue (lower if the tissue is sick). In order to
reconstruct this information f , this “coding” (of “filtering”) dispositive
thus was imaged in nuclear medicine ([4]). Figure 2 illustrates the
coding process and the conical nature of the measurements (here K is
a thin annular aperture).

The code can be an annular thin aperture ([5], [6], [7], [8]), or concen-
tric annular thin apertures (called a Fresnel-zone, [14]). Sometimes the
code function C is approximated by distributional measures, so that the
scope of the RTC is enlarged: In [1] or [24] authors use regular grids of
pinholes (modeled by ponctual Dirac δ measures). Systems of rectilign
slits, as in [11] and [15], are also studied (and even stochastic apertures
in [22]). Pinholes lead to the “divergent-beam transform” ([23]), and
rectilign slits lead to the usual radon transform over hyperplanes. In
both cases the data will of course be very incomplete (see Appendix B).

Remark. The attenuation term 1/(−xn +yn)n−1 now reads 1/(−x3 +
λ)2. It can be interpreted as a loss of energy of the gamma-rays, being
modeled by the classical “1/r2” law. It is in fact a good approximation
of the physical reality, which is much more distorted; see the thesis
again [4].
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2. Special cases and related deconvolution problems. The
integral transform VC , called RTC, does not have the usual linear
properties of the radon transform RT. Nevertheless, there are many
particular cases that lead to problems of interest. One of them is well
known (and now revisited in another context), and others are quite
new.

2.1. The case of (n−1)-dimensional sources. In this section
we consider sources that are supported by a hypersurface (that can be
typically written xn = s(x′)). The detector should, at least in this
paper, also be chosen as an (n−1)-dimensional hypersurface in order to
economize on onerous image registrations or numerical computations.
In the medical context of gammagraphy, the detector should then
classically be a hyperplane.

2.1.1. The convolution case. In this simple case, both source and
detector are parallel to the hyperplane Π of the code. Let us take for
instance I = Π(µ) and D = Π(λ), with µ < 0 < λ. Thus, the integral
expression of VCf becomes

VCf (y′, λ) =
∫
Rn−1

f(x′, µ) C
( −µ
−µ+ λ

y′ +
λ

−µ+ λ
x′

)
dx′

(−µ+ λ)n−1
,

which is the expression of a convolution. Indeed, after denoting
VCf (y′, λ) = VCf(y′) and f(x′, µ) = f(x′), we obtain

(2.1) VCf = (−µ)1−nfµ/λ � C−µ/(−µ+λ) .

This convolution becomes natural when considering the following 2D
illustration of two measurements (1) and (2) and applying the Thales
theorem.

Let us now follow the classical ideas of deconvolution, found in [2] and
[3]. Take a compact code, C = χK, and apply the Fourier transform to
the left and righthand side of 2.1. This yields

(2.2) V̂Cf = (−µ)1−nf̂µ/λ Ĉ−µ/(−µ+λ) .

As soon as the analytic function Ĉ−µ/(−µ+λ) vanishes infinitely many,
it is impossible to reconstruct analytically the function f̂ (and f). We
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are thus led to take two coded images in order to avoid the zeros of the
“transfer function”: One possible physical issue is, as soon as supp f
is compact, to construct a compact “double-code,” K = K1 ∪K2 with
C = χK = C1 +C2, such that the two corresponding images are disjoint:

supp (VC1f) ∩ supp (VC2f) = ∅ .

(It should always be possible as soon as K2 is “far enough” from K1).

Indeed, rewriting the former relation 2.1, VCf = f̃ �H, we have

VC1f = f̃ �H1 , VC2f = f̃ �H2 .

Then, the corresponding Fourier relation 2.2 V̂Cf = ̂̃f Ĥ splits into two
parts: V̂C1f = ̂̃f Ĥ1 and V̂C2f = ̂̃f Ĥ2. Choose two “deconvolutors” G1

and G2 such that the Bezout relation

(2.3) Ĥ1G1 + Ĥ2G2 = 1

is satisfied everywhere. For instance, compute the analytic functions

G1 =
Ĥ1

∗

|Ĥ1|2 + |Ĥ2|2
and G2 =

Ĥ2

∗

|Ĥ1|2 + |Ĥ2|2
.
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Then, the combination V̂C1f G1+V̂C2f G2 = ̂̃f , makes the computation
of f̃ and f possible.

Of course, one will aim for G1 and G2 to be the Fourier transform
of two compactly supported distributions, in order to perform good
numerical inversions and to construct in a practical way such decon-
volutors. In [2] and [3], the authors analytically compute, in terms
of simple mathematical operations, the analytic Fourier transforms G1

and G2 (band-limited Paley-Wiener functions) of two compactly sup-
ported distributions D1 and D1. Note that the corresponding Bezout
relation reads, in the space of compactly supported distributions,

(2.4) H1 �D1 + H2 �D2 = δ .

Remark. A remarkable necessary condition for obtaining 2.3 is that
Ĥ1 and Ĥ2 have no common zero. This could be, for example,
physically performed (with a good approximation) when using two
suitable concentric thin annular codes ([2], [3], [8]).

2.1.2. The mixed convolutions case. Let us complicate the coding
process and choose again a detector D = Π(λ) with λ > 0, but a
source with equation x1 = αxn + β. The previous Thales property has
clearly been lost: see Figure 3.

There, the integral expression of VCf reads

VCf (y′, λ) =
∫
Rn−1

f(αxn + β, x′′, xn) C(Z)
dx′′dxn

(−xn + λ)n−1
,

where we have denoted ξ′′ = (ξ2, . . . , ξn−1), and

Z = C
( −xn

−xn + λ
y1 +

λ

−xn + λ
(αxn +β) ,

−xn

−xn + λ
y′′ +

λ

−xn + λ
x′′

)
.

This is no more the expression of a convolution, but it is a combination
of additive and multiplicative convolutions. Indeed, if we again simplify
the expression and write VCf (y′, λ) = VCf(y′) = VCf (y1, y′′) and



RADON TRANSFORM 319

x’

xn

Π

Π(λ)D=

K

I

(1)

(2)

FIGURE 4.

f(αxn + β, x′′, xn) = f(x′′, xn), we obtain

VCf (y1 − λα+ β, y′′)

=
∫
Rn−1

f(x′′, xn) C
( −xn

−xn+λ
y1+β,

−xn

−xn+λ

(
y′′ − λ

xn
x′′

))

· dx′′dxn

(−xn+λ)n−1
.

Skipping all details, let us make (as in [8]) the change of variables
v′′ = λx′′/xn, u = (xn − λ)/xn, to derive an integral expression with
the following kernel:

C
(

1
u
y1 + β,

1
u

(y′′ − v′′)
)
.

It is thus possible to view the integral operation as a combination
of classical convolution (the term y′′ − v′′) and Mellin multiplicative
convolution (the term 1/u). Then, taking a suitable family of codes
C(x′) = Φ(x1)Ψ(x′′), a consecutive Fourier transform along y′′ and a
Mellin transform along y1 (as made in [8]) leads to reconstruction of
the function f .
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2.1.3. The “quasi-convolution” case. Let us now choose a general
(n−1)-dimensional source with equation xn = s(x′). The only restric-
tion should be a natural geometrical simplification: each ray emerging
from a point (y′, λ) of the detector and getting through the code should
meet the body (the support of the function f) not more than once, as
in Figure 4.

With the same notations as before we now have

VCf (y′)

=
∫
Rn−1

f(x′) C
( −s(x′)
−s(x′)+λ y

′ +
λ

−s(x′)+λx
′
)

dx′

(−s(x′)+λ)n−1
.

Let us authorize change of variables X ′ = λx′/s(x′) = φ(x′), and
denote

Ψ(X ′) = (s(x′) − λ)/s(x′),

g(X ′) = f(φ−1(X ′))
d

(
φ−1(X ′)

)
/dX ′

((−s (φ−1(X ′)) + λ))n−1

to obtain

VCf (y′) =
∫
Rn−1

g(X ′) C
(
y′ −X ′

Ψ(X ′)

)
dX ′ = f �̃Ψ C (y′) .
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The integral transform now reads like a new operation that has been
introduced in [8] and [9], called “quasi-convolution.” The kernel
C ((y′ −X ′)/Ψ(X ′)) indicates that the shape of the intersection be-
tween the emerging cones and the surface supporting the source is no
more constant, but depends on the function Ψ.

If s(x′) is affine, Ψ(X ′) is a rational function, and the quasi-
convolution can be regarded as a mixed multiplicative and additive
convolution, as in the previous section. Otherwise, the problem has
not yet been solved.

It is also worth studying the dual transform

f �Φ C (X ′) =
∫
Rn−1

f(y′) C
(
y′ −X ′

Φ(X ′)

)
dy′ ,

which may constitute the effective “quasi-convolution.” Indeed, Φ plays
the geometrical rule of a scaling function, and connections may be made
with wavelets, and even with convolutions in spaces with nonconstant
curvature (like hyperbolic spaces). Of course, one aims to follow the
classical deconvolution line, and try to derive a formula corresponding
to

F(g � C) = F(g)F(C) .

It should suffice here to find a Fourier-like operator FΦ such that

FΦ(g �Φ C) = GΦ(g)HΦ(C) ,

where GΦ is an invertible transform.

In fact, for nonaffine functions s (and rational Φ) only very particular
code functions C have yet provided results (see [8], [9]).

Remarks. For n = 3, this particular case of a 2D surface source
can, for instance, be the model of a myocardium in heart imaging.
It becomes rather thin when it ends its periodic cycles and can be
approximated by a half-ellipsoid. (It also should be correctly placed
in front of a sufficiently small code, in order to get the geometrical
hypothesis made at the beginning of this subsection).

One can also consider a nonplane detector, and thus enlarge the scope
of the integral transform. This yields, if one takes a detector with
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equation xn = q(x′), the expression

VCf (y′)

=
∫
Rn−1

f(x′) C
(

s(x′)
s(x′)+q(y′)

y′ +
q(y′)

s(x′)+q(y′)
x′

)
dx′

(s(x′)+q(y′))n−1
.

2.2. The case of n-dimensional sources.

2.2.1. The necessity of n-dimensional detectors. Let us go back to
the initial problem: the source I is now some closed subset of the half-
space Rn

−, and the detector some closed subset of the half-space Rn
+.

Take a source function f ∈ L2(I) and a code function C ∈ L1(Π), as in
Figure 6.

In the corresponding general expression,

VCf(y) =
∫
Rn

f(x′, xn) C
( −xn

−xn+yn
y′ +

yn
−xn+yn

x′
)

dx′dxn

(−xn+yn)n−1
,

one cannot make the economy of the yn variable any more, and thus
cannot decide to use a plane detector as in the previous cases. Indeed,
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if the unknown function f is an n-variable function (even with compact
support), it is clear that the data VCf of the integral transform must
also be one. Although the characterization of the null-space of the
transform is certainly difficult, one can, however, consider the following
intuitive example.

Let us take D = Π(λ), let Θ be any function in L2(Rn−1), and let
f be closed to the distribution (corresponding to two parallel plane
sources)

(2.5)
f̃(x′, xn) = δ(xn − µ1) (−µ1)n−1

[
Θλ/µ1 � C−µ2λ/((−µ2+λ)µ1)

]
(x′)

− δ(xn − µ2) (−µ2)n−1
[
Θλ/µ2 � C−µ1λ/((−µ1+λ)µ2)

]
(x′) .

Applying the relation 2.1 yields

VC f̃(y′, λ) =
[
Θ � C−µ2/(−µ2+λ)

]
� C−µ1/(−µ1+λ) (y′)

− [
Θ � C−µ1/(−µ1+λ)

]
� C−µ2/(−µ2+λ) (y′) = 0 .

Thus, the coding process may not detect such sources for a fixed
plane detector, and the variable yn has to vary in order to operate
reconstructions.

Guided by this example, we should now write the RTC in terms of
sums of convolutions: it was the historical way physicists handled the
gammagraphy problem ([5], [24]).

2.2.2. An approach by sums of convolutions. In fact, VCf can
be viewed as a continuous sum of convolutions; denote fxn,yn

(x′) =
(−xn)1−n fxn/yn

(x′, xn), and rewrite

VCf(y′, yn) =
∫
Rn

f(x′, xn) C−xn/(−xn+yn)

(
y′ − yn

xn
x′

)
dx′dxn

(−xn)n−1

=
∫
Rn

(−xn)1−n(xn/yn)n−1f((xn/yn)x′, xn)

· C−xn/(−xn+yn) (y′ − x′) dx′ dxn .

This provides

VCf(y′, yn) =
∫
R

[
fxn,yn

� C−xn/(−xn+yn)

]
(y′) dxn .
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In practice, this property leads one to take yn constant, the usual
plane detectors areΠ(λ), and to approximate the compactly supported
function f by parallel plane sources gi, considering that it is almost
constant on each thin slice [µi, µi+1], as in Figure 7.

Thus taking, for N large,

f(x′, xn) =
N∑

i=1

δ(xn − µi) gi(x′) ,

with fixed µi, this gives

VCf(y′, λ) =
N∑

i=1

gi
µi,λ � C−µi/(−µi+λ) (y′) .

Suppose λ is then assigned to vary in a discrete set Λ = {λ1, . . . , λM},
or, in other words, one makes several measurements, as in Figure 8,
and thus registers the family of images

VCf(y′, λj) =
N∑

i=1

gi
µi,λj

� C−µi/(−µi+λj) (y′), j = 1, . . . ,M .
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After rewriting this set of equalities,

Sj =
N∑

i=1

fi � Cij , j = 1, . . . ,M ,

the unknown source that we now aim to recover is now the set of plane
source functions

F = {f1, . . . , fN}
solution of a linear system of convolutions.

Of course, retrieving the set F with a large number of slices N could
ensure a good version of f as far as the problem is well posed in the
sense of Hadamard (see [23]), which is obviously not the case; the
inverse of the integral operator VC is certainly not continuous, and in
many cases should not even exist at all.

The previous example 2.5 now shows clearly the noninjectivity of the
(approximated) transform: when making the substitutions

fk ↪→ fk + Θ � Clj , fl ↪→ fl − Θ � Ckj ,

the data Sj remains unchanged:

Sj ↪→ Sj + Θ � Clj � Ckj − Θ � Ckj � Clj = Sj .
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This leads to the necessity of taking a detector D not reduced to a
single hyperplane, but to choose a large enough set {Π(λ), λ ∈ Λ }. We
examine this problem in the next subsection.

2.2.3. The “multi-deconvolution” problem. In other words, the
number M of registrations Sj should be large when the number N of
slices used to approximate the source functions is large, which should be
the case most of the time ([5]). This is actually the core of the problem
when one makes this approach. Nevertheless, let us first consider briefly
some empirical but cheap approximative methods of reconstruction.

After making severe restrictions on f (say F ), one should be allowed
to use only one or two plane detectors Π(λ). Indeed, let us first
consider the case when f is roughly approximated by a discrete set
of Dirac δ-measures (several isolated luminous peaks) placed at the
points (Xi, µi), i = 1, . . . , N . The data Sj = S then reads as the
combination of characteristic functions:

S(y′) =
N∑

i=1

αi C−µi/(−µi+λ) (y′ − λ/µiXi) ,

where the αi are given. Thus the inversion consists in the problem of
dissociating the different characteristic functions (in order to calculate
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(Xi, µi), i = 1, . . . , N), as in Figure 9, representing a 2D plane image
S when the code is a thin annulus.

If the source function cannot be so roughly approximated, the follow-
ing empirical deconvolutions methods are nevertheless worth looking
at.

Suppose indeed one has two registered images S1 and S2 (compactly
supported). Then construct (or compute) two deconvolutors Dk1 and
Dk2 such that the Bezout relation (as 2.4)

Ck1 � Dk1 + Ck2 � Dk2 = δ

is satisfied. For example, the deconvolutors are the following tempered
distributions

Dk1 = F−1

( Ĉk1

∗

|Ĉk1|2 + |Ĉk2|2
)
, Dk2 = F−1

( Ĉk2

∗

|Ĉk1|2 + |Ĉk2|2
)
.

Now compute what one could call a “focalization” on the slice k:

S1 � Dk1 + S2 � Dk2 = fk � δ +
N∑

i �=k,i=1

fi � [Ci1 � Dk1 + Ci2 � Dk2]

= fk + εk .

The idea is now that the additional term εk should be a negligible
“blur” in front of the function fk. In other words, fk (for example a
“peak”) should be extractible from the focused image fk + εk. After
removing the contributions of the level fk, one thus continues to focus
on another level k′ in S1 − fk � Ck1 and S2 − fk � Ck2.

This is an empirical scenario which could work in practice, possibly
with the help of a priori knowledge, but which is mathematically
inconsistent. Indeed, in Fourier space, the terms Ĉi1 D̂k1 + Ĉi2 D̂k2 have
no reason to be small.

The same scenario (originating in [5]) can be followed with only one
image S, multiplying its Fourier transform Ŝ by the “Pseudo-Wiener”
deconvolutor

D̂k =
Ĉk

∗

|Ĉk|2 + ε2
,
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where ε is small. This yields

ŜD̂k =
|Ĉk|2

|Ĉk|2 + ε2
f̂k +

N∑
i �=k,i=1

Ĉi Ĉk

∗

|Ĉk|2 + ε2
f̂i � f̂k + ηk .

Here again, the “blur” ηk should be small in front of f̂k, which seems,
at least mathematically, impossible.

A third idea is to use, for numerical purposes, a linear least-square
inversion: At each point of a regular grid of

(
Rn−1

)N , we know

Ŝj =
N∑

i=1

f̂i Ĉij j = 1, . . . ,M ,

and thus we can compute the best approximation in the Euclidean
norm (using for example a singular value decomposition [23]) of the
set {f̂1, . . . , f̂N}. Then, we can use the Shannon sampling theorem,
see [25], on the grid to reconstruct an approximation of the source
F = {f1, . . . , fN}.

This approximation will be better if M is large, which was supposed
to be an obvious requirement at the beginning of this section. If
M = N , one could try to approach a Cramer system with square
matrix [Ĉij ; i, j = 1, . . . , N ], and perform a stable numerical method,
like the P.O.C.S. iterative method (see [18]).

Our idea in the next section is to use a completely different approach.
We write the RTC transform VCf in terms of the classical radon trans-
form Rf , and then perform an inversion when the data is considered
as complete.

3. Inversion in the case of complete data. We recall the
expression

(3.1)

VCf(y) =
∫
Rn

f(x′, xn) C
(

xn

xn + yn
y′ +

yn

xn + yn
x′

)
dx′dxn

(xn + yn)n−1
,

of the RTC, and we suppose now that the data is complete, in the sense
that VCf(y) is known on the whole half-space Rn

+. We have the two
following results for n ≥ 3.
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Theorem 3.1. Let f ∈ L2(I), where I is a closed subset of the open
half-space Rn

−, n ≥ 3, and let C ∈ L1(Π) ∩ L2(Π). Suppose that the
n and n − 1 dimensional radon transform Rf and RC exist. Denote
f0(x) = f(x)/(−xn)n−2 and, for sake of simplicity, also denote VCf
the extension of VCf vanishing for negative values of yn. For ρ ∈ R,
s ∈ R and θ ∈ S+, we have the following relations:

ρV̂Cf(ρθ) = f̂0(ρθ) �ρ Ĉ(ρθ′)(3.2)

F∗
ρ

(
ρV̂Cf(ρθ)

)
(s) = Rf0(θ, s) RC (θ′/|θ′|, s/|θ′|) /|θ′|.

(3.3)

Remarks. The existence of the two radon transforms is the minimal
requirement, and demands, as it is the case in practice, localized and
regular enough functions f and C.

For n = 2 the formulae may also be valid, but in the sense of tempered
distributions.

Theorem 3.2. With the same hypothesis as in Theorem 3.1, let us
suppose that C = χK, where the code K is a compact set of Π with the
following property:

There exist real numbers r such that each affine hyperplane intersect-
ing B(O, r) also intersects K on a set of positive n−1 dimensional
Lebesgue measure.

Denote α the supremum of the positive real numbers r. Suppose also
that f is compactly supported in I, and denote β the infimum of the
real numbers b such that I ⊂ B(a, b), with a = (0, . . . , b).

Then, if α > β, the source function f can be reconstructed.

Remark. In practice the code should be an n−1-dimensional set,
somehow centered at the origin, as in the following examples.

The source may also be centered along the xn-axis, near the origin,
and the hypothesis roughly means that, the code K (with “diameter”
α) has to be “larger” than the source support I (with “diameter” β).
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A large code will provide a large α and, in fact, lead to a much better
posed problem (which is in general severely ill-posed, as we will see in
the proof).

The same kinds of results may, of course, be obtained with a wider
class of compact codes and with weaker hypotheses on the support
I of f .

Proof of Theorem 3.1. Let us proceed in four steps. We shall first
prove that VCf ∈ L2(Rn), then calculate its Fourier transform and,
finally, establish the two equations.

i) Applying the Cauchy-Scwharz inequality yields

|VCf(y′, yn)|2

≤
∫
Rn

f2(x′, xn) C2

( −xn

−xn + yn
y′ +

yn
−xn + yn

x′
)

dx′dxn

(−xn + yn)2n−2
.

Thus, thanks to the Fubini rule,∫
Rn−1

|VCf(y′, yn)|2 dy′

≤
∫
Rn

f2(x′, xn)
[ ∫

Rn−1
C2

( −xn

−xn + yn
y′ +

yn
−xn + yn

x′
) ]

dx′dxn

(−xn + yn)2n−2
.

Then, after the change of variable

Y =
−xn

−xn + yn
y′ +

yn
−xn + yn

x′ ,
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we get, as there exists a positive real number γ such that −xn > γ in
the integral (I is closed),∫
Rn−1

|VCf(y′, yn)|2 dy′ ≤ ‖C‖2
2

∫
Rn

f2(x′, xn)
dx′dxn

(−xn)n−1(−xn + yn)n−1
.

This provides the inequality

|VCf |22 ≤ ‖C‖2
2

∫
Rn

f2(x′, xn)
[ ∫

R+

dyn

(−xn + yn)n−1

]
dx′dxn

(−xn)n−1
,

which is finite, as soon as −xn > γ > 0, n ≥ 3, and f ∈ L2.

ii) Let us calculate at the point ξ the Fourier transform of VCf along
y. We first take the Fourier transform along y′. This yields

Fy′ (VCf)(ξ′, yn)

=
∫
Rn

f(x′, xn) e−i(yn/xn)ξ′.x′ Ĉ
((

1 − yn
xn

)
ξ′

)
dx′dxn

(−xn)n−1
.

This integral can be written

−
∫
Rn

f0(x′, xn) e−i(yn/xn)ξ′.x′ Ĉ
((

1 − yn

xn

)
ξ′

)
dx′dxn

xn
,

and thus

Fy′ (VCf) (ξ′, yn) =−
∫
R

Fx′ (f0)
(
yn
xn
ξ′, xn

)
Ĉ

((
1 − yn

xn

)
ξ′

)
dxn

xn
.

Denote t = yn/xn. As dxn/xn = −dt/t, we get

Fy′ (VCf) (ξ′, yn) =
∫
R

Fx′ (f0)
(
tξ′,

yn
t

)
Ĉ ((1 − t) ξ′) dt

t
.

Finally take the Fourier transform along yn at the point ξn, to obtain

V̂Cf(ξ′, ξn) =
∫
R

f̂0(tξ′, tξn) Ĉ ((1 − t) ξ′) dt ,

which reads
V̂Cf(ξ) =

∫
R

f̂0(tξ) Ĉ ((1 − t) ξ′) dt .
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iii)Write now ξ in polar coordinates, ξ = ρθ with ρ ∈ R and θ ∈ S+.
We have

ρ V̂Cf(ξ′, ξn) =
∫
R

f̂0(tρθ) Ĉ (ρθ′ − tρθ′) ρ dt =
∫
R

f̂0(tθ) Ĉ ((ρ− t)θ′) dt .

This means that the Fourier transform of VCf along the direction θ
reads like the 1D convolution of the Fourier transform of f0 along
the same direction, and of the Fourier transform of C along the same
direction projected on the hyperplane Π.

This is the expected formula 3.2:

ρV̂Cf(ρθ) = f̂0(ρθ) �ρ Ĉ(ρθ′) .

iv) After having recalled the classical results on the radon transform
collected in Appendix B, take the adjoint Fourier transform along ρ on
each side of equation 3.2. This gives, in the sense of the L2-space, and
for s ∈ R,

F∗
ρ

(
ρV̂Cf(ρθ)

)
(s) = F∗

ρ

(
f̂0(ρθ)

)
(s) F∗

ρ

(
Ĉ(ρθ′)

)
(s) .

In terms of radon transform, we have

F∗
ρ

(
f̂0(ρθ)

)
(s) = Rf0(θ, s) ,

while

F∗
ρ

(
Ĉ(ρθ′)

)
(s) =

∫
R

Ĉ(ρθ′) eiρs dρ

=
∫
R

Ĉ(ρ|θ′|φ) eiρs dρ

=
1
|θ′|

∫
R

Ĉ(ρφ) eiρs/|θ′| dρ ,

where φ = θ′/|θ′| is an element of the unit sphere of Rn−1. (In fact θ′

varies in the unit ball of Π, which is the projection of S+, the positive
half unit sphere of Rn, while φ varies in the corresponding (n − 2)-
dimensional unit sphere).
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Thus, applying again the Fourier-slice formula, we get F∗
ρ

(
Ĉ(ρθ′)

)
(s)

= RC (θ′/|θ′| , s/|θ′|) /|θ′| . Finally, formula (3.3) is proved:

(3.4) F∗
ρ

(
ρV̂Cf(ρθ)

)
(s) = Rf0(θ, s) RC (θ′/|θ′| , s/|θ′|) /|θ′|

Proof of Theorem 3.2. Because of formula (3.3), Rf0(θ, s) is known
on the set of points (θ, s) such that RC (θ′/|θ′| , s/|θ′|) �= 0. The
hypothesis on K means that RC(θ, s) �= 0 for all θ ∈ S+ and for
all s < α, so that the previous set of point consists in the torus
{(θ, s) ∈ S+ × R,−α|θ′| < s < α|θ′|}. As, by hypothesis, the
radon transform of f0 (and f) has its support included in the ellipsoid
{(θ, s) ∈ S+×R, β(−1+|θn|}) < s < β(1+|θn|)}, it can be computed in
the following cone of Rn: {x = (x′, xn) ∈ Rn−1×R, |x′| > tanφ |xn|},
where φ is the angle represented in Figure 11.

In other words, f can be reconstructed by using a method of inversion
of the Limited angle radon transform, as soon as Rf0(θ, s) is known on
a cone, as well as the analytic function f̂0 (see again the Fourier-slice
formula in Appendix B).
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The illustration also shows that a larger code provides a larger set
of data for the radon transform, so that the problem tends to be well
posed.

4. Perspectives. As shown by the previous results, numerical
computations should be heavy and unstable in the most general case
of 3D bodies. Nevertheless, the RTC is of theoretical interest. Indeed,
taking its origin in a simple and natural geometric operation, as a
luminous source filtered by clouds, it leads to several integral transform
problems, corresponding to many fields of applications.

Many things remain to be cleared up. For instance the range and
the null-space of the quasi-convolution, or of the RTC in the cases of
incomplete data.

Appendix

A. Review of the Fourier transform. The Schwartz space S (R)
of rapidly decreasing functions is the linear space of infinitely derivable
functions for which

|f |k,l =
∑
k′≤k

sup
x∈R

|xk′
Dlf(x)|

is finite for all positive multi-indices k, l (Dlf is the derivative of order
l).

The space S ′ (R) is the space of linear functionals T over S (R) which
are continuous in the sense that a positive constant C and two multi-
indices k, l exist such that |Tf | ≤ C|f |k,l for all f ∈ S (R).

We also have to recall the simple inversion formula F∗Ff = f , which
is valid on S (R), or, for instance only if both f and Ff belong to L1.

Moreover, both previous operators can be extended to the L2 space
of square integrable functions, where the Fourier transform becomes an
isometry.

Furthermore, the extension can be made on S ′ (R), the space of
tempered distributions, where it is defined by 〈T̂ , f〉 = 〈T , f̂〉, for
all tempered distributions T and all Schwartz test-functions f .
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B. Review of the radon transform. Let us denote Γaf the
function x �→ f(x − a). Then we have RΓaf(θ, s) = Rf(θ, s − a.θ) .
If Rf is known on the unit half cylinder Z+, the radon transform is
said to be with “complete data”. In this case f is recoverable by a
well-known inversion formula (see [16], [23]).

Otherwise the transform is “with incomplete data” ([13], [20], [23],
[26], and many other works). In particular, we are interested in this
paper in the “Limited angle radon transform” (LART) ([10], [23]),
where Rf(θ, s) is known for (θ, s) ∈ Ω ×R, where Ω is a strict subset
of the half unit sphere S+.

In this case, a compactly supported L2 function f is recoverable,
because f̂ is analytic, thanks to the following Fourier-slice formula,
indicating that f̂ is known on a cone.

Fourier-slice formula:

R̂θf(λ) = f̂(λθ), ∀ θ ∈ S+, ∀λ ∈ R.

We also need the connected equality

F∗
λ(f̂(λθ)) (s) = Rf(θ, s), ∀ θ ∈ S+, ∀λ ∈ R, ∀ s ∈ R,

valid, for example, for compactly supported L2 functions f .

Remark. The recovering of the function f from its LART is an ill-
posed problem that has provided a lot of studies ([23], for example). In
fact, the Singular Value Decomposition (SVD) gives better numerical
results than the extrapolation of band-limited analytic function. More-
over, the singular functions of the LART can be explicitly calculated,
as in [19].
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