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EULER DECOMPOSITION PROBLEM IN R

3 AND R
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Presented by Ivaïlo M. Mladenov

Abstract. In this article we suggest a new method, partially based on earlier works

of Wohlhart [15], Mladenova and Mladenov [11], Brezov et al [3], that resolves

the generalized Euler decomposition problem (about arbitrary axes) using a system

of quadratic equations. The main contribution made here is that we manage to

decouple this system and express the solutions independently in a compact covariant

form. We apply the same technique to the Lorentz group in 2+1 dimensions and

discuss certain complications related to the presence of isotropic directions in R
2,1.
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1. Introduction

The problem of generalizing the classical Euler ZXZ and Bryan ZYX decom-

position settings to non-orthogonal axes has been on the table for decades now.

Real solutions are guaranteed as long as the second axis is normal to the other two

(the so-called Davenport condition [6, 14]) and in the generic case one needs a

non-negative discriminant relation to be satisfied [11, 13]. The standard procedure

is to solve a coupled system of quadratic equations for the scalar (angular) pa-

rameters and then sort out the actual solutions from the fake ones as has been done

in [11,15], or use Rodrigues’ formula to isolate the symmetric and skew-symmetric

parts of the rotations, thus obtaining the angles as proper quadrant inverse tan-

gents [13]. Unfortunately, one ends up with somewhat ambiguous expressions in

the former case and overwhelmingly complicated formulae in the latter. Exploiting

the vector-parameter representation briefly explained in Section 2, which reveals

some linear-fractional relations between the parameters in the decomposition, we

overcome these problems in [3,5]. All those methods, however, have the disadvan-

tage of using the solution to one of the equations as a parameter in the other two.

Here we manage to decouple the system and express all parameters independently

in terms of several matrix entries and determinants (or angles). As can be expected,

the method works also for the Lorentz group SO(2, 1) with a few modifications.

The formulae obtained in Section 4 significantly improve our previous results on

the problem [4, 5]. Moreover, we discover a light cone singularity: when all three

axes are normal to some null direction in R
2,1, the solutions are either infinitely

many or none, as shown in Section 4.3. Along with the many examples1, we pro-

vide a list of decomposition configurations applicable in special relativity [4,9] and

scattering theory [2, 4]. The method has been naturally adapted to moving frames

and quaternion (respectively split quaternion) decompositions in sections 5 and 6.

2. Quaternions and Vector-Parameters

We choose a basis in su(2) in the form

i =

(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i
i 0

)
(1)

and introduce the set of unit quaternions as

ζ = ζ0 + ζ1i+ ζ2j+ ζ3k, |ζ|2 = 1, ζμ ∈ R

1we also obtain a peculiar relation between the Euler and Bryan angles in this context
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with norm given by

| ζ |2 = 1

2
tr(ζζ̄) = det(ζ) =

3∑
μ=0

ζ2μ (2)

where ζ̄ = ζ0 − ζ1i − ζ2j − ζ3k stands for the conjugate quaternion. Next, we

associate with each vector x∈R
3 a skew-hermitian matrix by the rule (cf [8, 12])

x → Ψ = x1i+ x2j+ x3k

where xi are the Cartesian coordinates of x in the default basis and let SU(2)
act in its Lie algebra via the adjoint representation Adζ : Ψ → ζ Ψ ζ̄, which

can be viewed as a norm-preserving automorphism of R3. It is straightforward to

obtain the corresponding orthogonal transformation for the Cartesian coordinates

of three-dimensional vectors in the form

R(ζ) = (ζ20 − ζ2)I + 2ζ ⊗ ζt + 2ζ0ζ
× (3)

where ζ = �(ζ) ∈ R
3 stands for the imaginary (or vector) part of the quaternion

ζ = (ζ0, ζ) and ζ0 = �(ζ) is referred to as its real (scalar) part, I denotes the

identity matrix in R
3 and ζ× - the skew-symmetric transformation, associated with

ζ via Hodge duality, i.e., ζ×x = ζ×x for x ∈ R
3. The famous Rodrigues’ formula

R(ϕ,n) = cosϕ I + (1− cosϕ)n⊗ nt + sinϕn× (4)

follows directly with the substitution ζ0 = cos
ϕ

2
, ζ = sin

ϕ

2
n, where n is a vec-

tor with unit Euclidean norm, i.e., (n,n) = 1. Alternatively, we may project

ζ → c =
ζ

ζ0
= τn with τ = tan

ϕ

2
(the scalar parameter) and thus express the

matrix entries in (3) as rational functions of the vector-parameter c in the form

R(c) =
(1− c2) I + 2 c⊗ ct + 2 c×

1 + c2
· (5)

The inverse relation is given by the formula

c× =
R−Rt

1 + trR·

This projection, on the other hand, can be lifted back to the two-sheeted cover as

ζ±0 = ±(1 + c2)−
1

2 , ζ± = ζ±0 c. (6)
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Quaternion multiplication then gives the composition law for the vector-parameters

of two successive rotations R(〈c2, c1〉) = R(c2)R(c1) in the form

〈c2, c1〉 =
c2 + c1 + c2 × c1

1− (c2, c1)
(7)

and in the case of three transformations, i.e., c = 〈c3, 〈c2, c1〉〉 we have (see [7])

c =
c3 + c2 + c1 + c3×c2 + c3×c1 + c2×c1 + (c3×c2)×c1 − (c3, c2) c1

1− (c3, c2)− (c3, c1)− (c2, c1)− (c3, c2, c1)

where (c3, c2, c1)=(c3×c2, c1). The latter constitutes a representation with

〈c3, 〈c2, c1〉〉 = 〈〈c3, c2〉, c1〉, 〈 c, 0 〉 = 〈 0, c 〉 = c, 〈 c, −c 〉 = 0.

Among the advantages of vector parametrization are exact rational expressions for

the rotation matrix entries (5), more efficient composition of group elements (7) as

well as more accurate description of the orthogonal group’s topology SO(3)∼=RP
3.

Similarly, in sl(2,R) one has the split quaternion basis [1, 4]

ĩ =

(
0 1
1 0

)
, j̃ =

(
1 0
0 −1

)
, k̃ =

(
0 1

−1 0

)
(8)

which can be mapped to su(1, 1) via the isomorphism H2 → D : z → i
z − i

z + i
as

ĩ →
(
0 1
1 0

)
, j̃ →

(
0 i

−i 0

)
, k̃ →

(
i 0
0 −i

)
· (9)

Expansion in the above bases allows for an explicit isometry R
2,1 → sl(2,R) :

x → Ψ = x1ĩ + x2j̃ + x3k̃, x · x = −detΨ and the projection onto SO+(2, 1)
is given by the adjoint action of the group of unit split quaternions SL(2,R) ∼=
SU(1, 1) in its Lie algebra Ad ζ : Ψ → ζ Ψ ζ̄, which is a norm-preserving auto-

morphism. Using the familiar notation ζ = (ζ0, ζ), ζ̄ = (ζ0,−ζ), ζ ∈ R
2,1 we

write the pseudo-orthogonal matrix transforming the Cartesian coordinates of x as

Rh(ζ) = (ζ20 + ζ2)I − 2 ζ⊗ η ζ + 2 ζ0 ζ
� (10)

where η = diag(1, 1,−1) is the flat metric in R
2,1, (ζ⊗ η ζ)ij = ηjk ζ

iζk (sum-

mation over repeated indices is assumed) and ζ� = η ζ×, so that we also denote

ζ� ξ = ζ� ξ. Furthermore, we may introduce the hyperbolic vector-parameter in

the usual manner c =
ζ

ζ0
and write (10) as

Rh(c) =
(1 + c2)I − 2 c⊗ η c+ 2 c�

1− c2
(11)
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which allows for expressing c in terms of the matrix entries of Rh as

c� =
Rh − ηRt

hη

1 + trRh
·

The inverse transformation is given by

ζ±0 = ±(1− c2)−
1

2 , ζ± = ζ±0 c (12)

where the two signs correspond to different sheets of the spin cover.

From the multiplication rule of split quaternions we easily derive the composition

law of hyperbolic vector parameters in the form

〈c2, c1〉 =
c2 + c1 + c2 � c1

1 + c2 · c1
(13)

and for the case of three transformations c = 〈c3, c2, c1〉 we have (cf [4])

c =
c3 + c2 + c1 + (c3 · c2) c1 + c3 � c2 + c3 � c1 + c2 � c1 + (c3 � c2)� c1

1 + c3 · c2 + c3 · c1 + c2 · c1 + (c3, c2, c1)
·

Moreover, this construction constitutes a representation of SO(2, 1) as well, with

the advantages already discussed. Here we have several analogues of Rodrigues’

rotation formula (4) depending on the geometric type of the invariant axis (cf [4,5])

1. Hyperbolic: TrRh(ζ) > 3, ζ2 = ζ20 − 1 > 0 (space-like) ⇒ τ=th
ϕ

2

Rh(n, ϕ) = chϕ I + (1− chϕ)n⊗ η n+ shϕn�. (14)

2. Elliptic: TrRh(ζ) < 3, ζ2 < 0 (time-like) ⇒ τ = tan
ϕ

2

Rh(n, ϕ) = cosϕ I + (cosϕ− 1)n⊗ η n+ sinϕn�. (15)

3. Parabolic: TrRh(ζ) = 3, ζ2 = 0 (isotropic) ⇒ τ =
ϕ

2

Rh(n, ϕ) = I + ϕn� − ϕ2

2
n⊗ η n. (16)

4. Non-Orthochronous2: R33 < 0, ζ2 = ζ20 + 1 ⇒ τ = coth
ϕ

2

Rh(n, ϕ) = −chϕ I + (1 + chϕ)n⊗ η n− shϕn�. (17)

2this case is not in the proper Lorentz group SO
+(2, 1) and is obtained via analytic continuation.
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3. The Decomposition Setting

We consider the generalized Euler decomposition

R(c) = R(c3)R(c2)R(c1) (18)

with respect to arbitrary axes3, determined by the unit vectors ĉk. We denote the

corresponding vector-parameters with ck = τkĉk, where τk = tan
ϕk

2
are the so-

called scalar parameters and ϕk - the generalized Euler angles of rotation about

ĉk. Considering appropriately chosen matrix entries of R(c) in the basis4 {ck},

obtained with the aid of formula (18) and taking into account that ĉk is an invariant

vector for R(ck), we come to a system of quadratic equations for the parameters

τk in the form (see [3] for more details on the derivation)

(r32 + g32 − 2g12r31) τ
2
1 − 2ω̃τ1 + r32 − g32 = 0

(r31 + g31 − 2g12g23) τ
2
2 + 2ωτ2 + r31 − g31 = 0 (19)

(r21 + g21 − 2g23r31) τ
2
3 − 2ω̃τ3 + r21 − g21 = 0

where we make use of the notation

gij = (ĉi, ĉj) , rij = (ĉi,R(c) ĉj) , ω = (ĉ1, ĉ2, ĉ3) (20)

and ω̃ = (R(c2) ĉ1, ĉ2, ĉ3). Note that since the second equation determines in the

generic case two solutions for τ2, ω̃ is actually a double-valued function

ω̃± =
(
R(τ±2 ĉ2) ĉ1, ĉ2, ĉ3

)
, ω̃−+ ω̃+ = 0. (21)

We also introduce the discriminants of the above equations (modulo a factor of 4)

Δ1 =

∣∣∣∣∣∣
1 g12 r31
g21 1 r32
r31 r32 1

∣∣∣∣∣∣ , Δ =

∣∣∣∣∣∣
1 g12 r31
g21 1 g23
r31 g32 1

∣∣∣∣∣∣ , Δ3 =

∣∣∣∣∣∣
1 r21 r31
r21 1 g23
r31 g32 1

∣∣∣∣∣∣ (22)

and let Δ2 = detg be the Gram determinant for the vector system {ĉk}. Denoting

ω1 =
(
ĉ1, ĉ2,Rt(c) ĉ3

)
, ω2 = ω, ω3 = (R(c) ĉ1, ĉ2, ĉ3) (23)

we obviously have Δk = ω2
k and Δ = ω̃2, which explains the property (21).

Hence, Δk ≥ 0 and the necessary and sufficient condition for the existence of real,

or rather RP1 solutions (with ∞ added) of (19) can be written in the compact form

Δ ≥ 0. (24)

3provided that ĉ2 is not parallel to any of the other two, so successive rotations are independent.
4strictly speaking, it is not always a basis, since the axes are allowed to be coplanar.
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Since the parameters τk in (19) satisfy certain linear-fractional relations as well

(cf [5]), it is clear that we typically have two solutions, rather than eight. Taking

into account some orientation arguments justified below, we obtain the formulae

τ±1 =
−ω1 ±

√
Δ

r32 + g32 − 2g12r31
, τ±2 =

−ω2 ±
√
Δ

r31 + g31 − 2g12r23 (25)

τ±3 =
−ω3 ±

√
Δ

r21 + g21 − 2g23r31

which can be simplified even further in the generic case rij �= gij for i > j.

Namely, applying the identity Δk−Δ=(ωk−
√
Δ)(ωk+

√
Δ) one easily obtains

τ±1 =
r32 − g32

ω1 ±
√
Δ
, τ±2 =

g31 − r31

ω2 ±
√
Δ
, τ±3 =

r21 − g21

ω3 ±
√
Δ
· (26)

On the other hand, if any of the relations

rij = gij , i > j (27)

holds, beside the trivial solution for the corresponding parameter5 εijkτk=0, there

is one more, which may be retrieved from (25) in the form

τ1 =
ω1

g12r31−g23
, τ2 =

ω2

g12g23−g13
, τ3 =

ω3

g23r31−g12
(28)

that becomes a decomposition of the identity transformation if all three of the above

relations take place simultaneously. In this case we have also ωk=ω and therefore

τ1 =
ω

g12g31−g23
, τ2 =

ω

g12g23−g13
, τ3 =

ω

g23g31−g12
· (29)

3.1. Half-Turns

The explicit form of (19) and (26) allows for a straightforward investigation of the

cases when a half-turn is present in (18), i.e., when some of the parameters become

infinite (ϕk=π ⇔ τk=∞). Namely, from (26) we easily obtain

Δk = Δ, rij �= gij , i > j ⇒ εijkτ
±
k = ∞,

gij − rij
2ωk

(30)

and obviously encounter a double root at infinity for Δ=0.

Note that the compound rotation may be a half-turn itself O(n) = 2n⊗nt−I, in

which case nothing changes about the above formulae, except that we may simplify

further by substituting rij = 2υiυj−gij , where υi = (n, ĉi). Half-turns are even

easier to explore in the two-axes decomposition setting considered below (cf [3,5]).

5here and below εijk denotes the Levi-Civita symbol and δij - the Kronecker one.
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3.2. The Case of Two Axes

When the condition (27) is satisfied, the trivial solution εijkτk = 0 yields a decom-

position with respect to only two axes. Alternatively, one may consider a setting

with only two gimbals to rotate about and try to obtain the decomposition

R(c) = R(c2)R(c1). (31)

Proceeding as in the case of three axes, we find the necessary and sufficient condi-

tion to be r21=g21 and from the quadratic equations for τk, obtain

τ1=±
√

1− r22
1 + r22 − 2r221

, τ2=±
√

1− r11
1 + r11 − 2r221

·

Actually, the solution in this case is only one and can be expressed by means of

ω̊1 =
(
ĉ1, ĉ2,Rt(c) ĉ2

)
, ω̊2 = (R(c) ĉ1, ĉ1, ĉ2) (32)

in the compact form

τ1 =
r22 − 1

ω̊1
, τ2 =

r11 − 1

ω̊2
· (33)

The above numerators are strictly negative for any non-trivial axis configuration.

Therefore, the condition for a half-turn ϕk = π ⇔ ω̊k = 0 is given simply by

1 + r22 = 2g212 ⇔ τ1 = ∞, 1 + r11 = 2g212 ⇔ τ2 = ∞ (34)

which generalizes a classical result asserting that each rotation is a composition of

two reflections with respect to axes (or planes), which make an angle, equal to half

the angle of compound rotation. In this case we may denote θij =�(ĉi,R(c) ĉj),
so θkk is the angle by which R(c) rotates ĉk and let γij =�(ĉi, ĉj) be the acute

angle between the two axes. Then, (34) yields cos θkk=cos 2γ12 meaning that

θ22 = ±2γ12 ⇔ ϕ1 = π, θ11 = ±2γ12 ⇔ ϕ2 = π. (35)

In particular, if the above relations are both satisfied, the axes lie in the plane of

rotation (normal to n) and if in addition they are mutually perpendicular, it follows

that θ11=θ22=π, so the compound transformation is a half-turn itself.

Note that all solutions obtained so far can easily be expressed solely in terms

of sine and cosine functions of certain known angles. For example, in (26) one

may substitute gij = cos γij and rij = cos θij , as well as ω1 = sin γ12 cos β̃123,

ω2 = sin γ12 cosβ0 and ω3 = sin γ23 cosβ123, where β̃ijk = �
(
ĉi×ĉj ,Rt(c) ĉk

)
,

βijk = �(R(c) ĉi, ĉj×ĉk) and β0 = �(ĉ1×ĉ2, ĉ3) . Similarly, in (33) we have

ω̊1 = sin γ12 cos β̃122, ω̊2 = sin γ12 cosβ112, so τk depend only on relative angles.
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3.3. Signs and Orientation

So far we avoided discussing our motivation for the particular choice of signs for

the determinants in (26) and (33), slipping out with the vague argument of “orien-

tation”, that is not even a real argument. In this paragraph, we finally pay our debt

to the reader, thus making the whole method rigorous. We start with the simpler

case of two axes and use an observation, pointed out by Davenport [6] and later

exploited (although not very efficiently) in this context by Piovan and Bullo [13].

Namely, if we consider a generic rotation in R
3 given by R(τn) : x → x̃, where

R(τn) =R(n, ϕ) is determined by (4) or (5), taking consecutive scalar products

with x and n×x allows for expressing trigonometric functions of the angle ϕ as

cosϕ =
(x, x̃)−(n,x)

x2−(n,x)
, sinϕ =

(n,x, x̃)

x2−(n,x)
, τ =

x2−(n,x)

(n,x, x̃)
· (36)

Applying the last formula above for the decomposition setting (31), where we have

R(τ2ĉ2) : ĉ1 −→ R(c) ĉ1, Rt(τ1ĉ1) : ĉ2 −→ Rt(c) ĉ2

and taking into account that all vectors are unit and Rt(τ1c1) = R(−τ1ĉ1), we

obtain exactly (33) and thus prove that the choice of signs made in (32) is correct.

As for the generic case of three axes (18), one may consider a situation, in which

r31=g31 and Δ=0. Although (26) fails to determine the value of τ2 for this case,

formula (28) yields a double vanishing root as long as the co-factor g12g23−g13 is

non-zero. Then, (33) predicts a single solution for τ1 and τ3 in the form

τ1 =
r32 − g32

ω1
, τ3 =

r21 − g21
ω3

·

Since the above is a two-gimbal decomposition, the choice of a third axis is arbi-

trary. In particular, we may set ĉ2 = ĉ3 for the first equation and ĉ2 = ĉ1 for the

second one, thus obtaining with the aid of (23) the two expressions

τ1 =
r33 − 1

(ĉ1, ĉ3,Rt(c) ĉ3)
, τ3 =

r11 − 1

(R(c) ĉ1, ĉ1, ĉ3)
(37)

which agree with formula (33). Although we proved the signs correct only in one

very specific case, since the solutions are continuous maps between two connected

compacts E : (c, {ĉk}) ∈ RP
3 × (S2)3 −→ {ϕk} ∈ T

3 on the whole semi-axis

Δ ≥ 0, no sign jumps are allowed for the determinants ωk.

3.4. Gimbal Lock

There is a singularity of E , known as gimbal lock, at which τ1 and τ3 cannot be

determined from (19) due to zero coefficients. It is characterized by the condition

ĉ3 = ±R(c) ĉ1 (38)
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that makes (24) equivalent to r21 = g21, since it yields Δ = −(r21 − g21)
2.

Note that with the aid of group conjugation

R(c)R(c̃)R−1(c) = R(R(c) c̃) (39)

the decomposition (18) can be expressed in this case also as

R(τ2ĉ2)R(τ1ĉ1) = R(∓τ3R(c) ĉ1)R(c) = R(c)R(∓τ3ĉ1)

which can easily be written in the form

R(c) = R(τ2ĉ2)R(〈τ1ĉ1,±τ3ĉ1〉) = R(τ2ĉ2)R(τ̃1ĉ1).

This yields a two-axes decomposition, so (7) and (33) provide the solution

τ2 =
r11 − 1

ω̊2
, τ̃1 =

τ1 ± τ3
1∓ τ1τ3

=
r22 − 1

ω̊1
(40)

which may also be written in terms of the generalized Euler angles as

ϕ2 = 2arctan
r11 − 1

ω̊2
, ϕ1 ± ϕ3 = 2arctan

r22 − 1

ω̊1
·

A well-known example is the gimbal lock one encounters in the classical ZXZ
Euler setting decomposing a half-turn about the OY axis. Note that if we consider

a similar situation in the two-gimbal case ĉ2=±R(c) ĉ1, the condition r21= g21
specifies that only the trivial decomposition, for which ĉ1∼ ĉ2∼n, is possible.

This concludes our construction. For an illustration of the algorithm see Fig. 1 on

the next page.

3.5. Two Familiar Examples

First, we consider the classical Euler ZXZ setting, in which g12=g23=0 , g31=1,

r32=R31, r31=R33 and r21=R13, as well as

Δ = 1−R2
33, ω1 = R32, ω2 = 0, ω3 = −R23

so the solutions are given, according to (26), in the form

τ±1 =
R31

R32±
√
1−R2

33

, τ±2 =±
√

1−R33

1 +R33
, τ±3 =− R13

R23∓
√
1−R2

33

·

Another famous example is Bryan’s XYZ decomposition with gij=δij , rij=Rij

Δ = 1−R2
31, ω1 = R33, ω2 = 1, ω3 = R11
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Figure 1. Decomposition flowchart in the Euclidean case.

that yields the solution in the form

τ±1 =
R32

R33±
√
1−R2

31

, τ±2 =− R31

1±
√
1−R2

31

, τ±3 =
R21

R11±
√
1−R2

31

·

The corresponding angles of rotation can be obtained directly as ϕ±
k =2arctan τ±k .

On the other hand, in the gimbal lock setting we have r11 = r22 = R33 = −1,

ω̊1=−R12=∓(ĉ1, ĉ1, ĉ2)=0 and ω̊2=−R23=0 in the Euler case, leading to

ϕ2 = π, ϕ1 − ϕ3 = π.

Similarly, for the Bryan decomposition considered above the singularity condition

(38) yields r11 = r22 = 0, ω̊1 = R23, ω̊2 = R31 = ±1, so we have

ϕ2 = ∓π/2, ϕ1 ± ϕ3 = −2 arctan(R23)
−1.

Denoting the Euler angles by {φ, ϑ, ψ} and the Bryan ones - by {φ̃, ϑ̃, ψ̃}, we have

two equivalent representations of the compound rotation R(φ, ϑ, ψ) = R(φ̃, ϑ̃, ψ̃),
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the former written explicitly as

R(φ, ϑ, ψ)=R(êz, ψ)R(êx, ϑ)R(êz, φ)

=

⎛⎝cosψ cosφ−sinψ cosϑ sinφ − cosψ sinφ−sinψ cosϑ cosφ sinψ sinϑ
sinψ cosφ+cosψ cosϑ sinφ cosψ cosϑ cosφ−sinψ sinφ − cosψ sinϑ

sinϑ sinφ sinϑ cosφ cosϑ

⎞⎠
where {êx, êy, êz} stand for the unit vectors along the coordinate axes and the

three rotations in the decomposition are constructed with the aid of formula (4).

Similarly, in the Bryan setting the compound matrix is given as

R(φ̃, ϑ̃, ψ̃)=R(êz, ψ̃)R(êy, ϑ̃)R(êx, φ̃)

=

⎛⎝ cosψ cos ϑ̃ cos ψ̃ sin ϑ̃ sin φ̃−sin ψ̃ cos φ̃ sin ψ̃ sin φ̃+cos ψ̃ sin ϑ̃ cos φ̃

sin ψ̃ cos ϑ̃ sin ψ̃ sin ϑ̃ sin φ̃−cos ψ̃ cos φ̃ sin ψ̃ sin ϑ̃ cos φ̃−cos ψ̃ sin φ̃

− sin ϑ̃ cos ϑ̃ sin φ̃ cos ϑ̃ cos φ̃

⎞⎠·

Then, we may derive the explicit relation between the two parameterizations by

expressing the matrix entries of R in one of these two sets of parameters and use

the decomposition formulae for the other. In this way, it is straightforward to obtain

φ̃± = 2arctan
cosφ sinϑ

cosϑ±
√
1− sin2φ sin2ϑ

ϑ̃± = −2 arctan
sinφ sinϑ

1±
√
1− sin2φ sin2ϑ

(41)

ψ̃± = 2arctan
cosφ sinψ + sinφ cosϑ cosψ

cosφ cosψ − sinφ cosϑ sinψ ±
√
1− sin2φ sin2ϑ

·

In the inverse direction we have respectively

φ± = −2 arctan
sin ϑ̃

sin φ̃ cos ϑ̃±
√
1− cos2φ̃ cos2ϑ̃

ϑ± = ±2 arctan

√
1− cos φ̃ cos ϑ̃

1 + cos φ̃ cos ϑ̃
(42)

ψ± = 2arctan
cos φ̃ sin ϑ̃ cos ψ̃ + sin φ̃ sin ψ̃

sin φ̃ cos ψ̃ − cos φ̃ sin ϑ̃ sin ψ̃ ±
√
1− cos2 φ̃ cos2 ϑ̃

·
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Note that substituting different solutions (corresponding to the same compound

matrix) for the angles in the righthand sides of the above equations still yields

the same result, as should be expected due to formula (21). From (42) and (43)

one may also derive interesting relations for a fixed value of certain parameter. For

example, a symmetric first factor in the Bryan decomposition φ̃ ∈ {0, π} yields for

the Euler case φ=∓π/2, ϑ ∈ ±{ϑ̃, π−ϑ̃} and ψ= ψ̃ ± π/2. Similarly, ϑ=±π/2

in the latter leads to φ̃ = ±π/2, ϑ̃ ∈ ∓{φ, π−φ} as well as ψ̃ = 2 (ψ ∓ φ)± π.

Both relations can be inverted for the constant parameter, i.e., if φ, respectively φ̃ is

a right angle, the above provide adequate expressions for the remaining parameters.

4. The Hyperbolic Case

In this section we study decompositions of the Lorentz group SO(2, 1) in the form

Rh(c) = Rh(c3)Rh(c2)Rh(c1) (43)

where we use the same notation c = τ n and ck = τk ĉk for the corresponding

vector-parameters and n, ĉk are the quasi-unit vectors with magnitude ±1 or 0.

It is convenient to introduce the coefficients ε = n · n = ±1 in the space-like,

respectively time-like case and ε=0 in the isotropic one, where the normalization

is arbitrary, so we may choose for example the Euclidean one setting (n,n) = 1.

Similar considerations hold for the coefficients εk = ĉk · ĉk. Let us also denote

rij = ĉi · Rhĉj , gij = ĉi · ĉj , ω = ĉ1 · ĉ2 � ĉ3 (44)

and point out that the hyperbolic triple product of vectors coincides with the Eu-

clidean one ω= ĉ1 · ĉ2�ĉ3=(ĉ1, ĉ2, ĉ3) and can also be expressed as determinant.

Next, we proceed just as in the previous section, considering different entries rij ,
calculated with the aid of (11) and the property that ĉk is an invariant eigenvector

of R(ck). This leads to the system of quadratic equations for the parameters τk

(ε1(r32 + g32)− 2g12r31) τ
2
1 + 2ω̃τ1 + g32 − r32 = 0

(ε2(r31 + g31)− 2g12g23) τ
2
2 − 2ωτ2 + g31 − r31 = 0 (45)

(ε3(r21 + g21)− 2g23r31) τ
2
3 + 2ω̃τ3 + g21 − r21 = 0

where ω̃± = (Rh(τ
±
2 ĉ2) ĉ1, ĉ2, ĉ3) is again double-valued with ω̃−+ ω̃+ = 0.

Next, we introduce the discriminants of the equations (45) in the form

Δ1=−

∣∣∣∣∣∣
ε1 g12 r31
g21 ε2 r32
r31 r32 ε3

∣∣∣∣∣∣ , Δ=−

∣∣∣∣∣∣
ε1 g12 r31
g21 ε2 g23
r31 g32 ε3

∣∣∣∣∣∣ , Δ3=−

∣∣∣∣∣∣
ε1 r21 r31
r21 ε2 g23
r31 g32 ε3

∣∣∣∣∣∣ · (46)
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We also let Δ2 = detg be the Gram determinant of the ordered vector system {ĉi}
and point out that ω̃2=Δ. The solutions in the regular case are thus given as

τ±1 =
ω1 ±

√
Δ

ε1(r32+g32)−2g12r31
, τ±2 =

ω2 ±
√
Δ

ε2(r31+g31)−2g12g23 (47)

τ±3 =
ω3 ±

√
Δ

ε3(r21+g21)−2g23r31

where we make use of the notation

ω1 =
(
ĉ1, ĉ2,R−1

h (c) ĉ3
)
, ω2 = ω, ω3 = (Rh(c) ĉ1, ĉ2, ĉ3) . (48)

Just as in the Euclidean setting, we may simplify further as long as rij �= gij , i > j
and express the above solutions in the form

τ±1 =
r32 − g32

ω1 ∓
√
Δ
, τ±2 =

g31 − r31

ω2 ∓
√
Δ
, τ±3 =

r21 − g21

ω3 ∓
√
Δ
· (49)

On the other hand, if any of the relations rij = gij , i > j takes place, formula (49)

shows that εijkτk = 0, but there is one more solution revealed by formula (47) as

τ1=
ω1

ε1g23−g12r31
, τ2=

ω2

ε2g31−g12g23
, τ3=

ω3

ε3g12−g23r31
· (50)

In particular, when R≡I all three conditions in (27) are satisfied and ωk =ω, in

which case the decomposition is determined by (see also [5])

τ1=
ω

ε1g23−g12g31
, τ2=

ω

ε2g31−g12g23
, τ3=

ω

ε3g12−g23g31
· (51)

4.1. Two-Axes Decompositions

Let us now investigate the much simpler case of two axes

Rh(c) = Rh(c2)Rh(c1) (52)

for which the necessary and sufficient condition is easily seen to be also r21 = g21,

the scalar products this time being calculated with respect to the Lorentz metric η.

From the expressions (11) for r11 and r22 one easily obtains the magnitudes of τk

τ1=±
√

r22 − ε1
ε2(r22 + ε1)− 2r221

, τ2=±
√

r11 − ε2
ε1(r11 + ε2)− 2r221

·

In order to determine the above signs, we exploit the Davenport technique, consid-

ered in the preceding section, this time for the pseudo-rotation Rh(τn) : x → x̃,
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where x, x̃ ∈ R
2,1. Although there are four analogues of Rodrigues’ formula in

this case (14) - (17), one could work directly with (11) in order to obtain

τ =
x2−x · x̃
n · x� x̃

(53)

which can be applied to the transformations

Rh(τ2ĉ2) : ĉ1 −→ Rh(c) ĉ1, R−1
h (τ1ĉ1) : ĉ2 −→ R−1

h (c) ĉ2.

In this way, we see that the solutions are uniquely determined by the expressions

τ1 =
r22 − ε2

ω̊1
, τ2 =

r11 − ε1
ω̊2

(54)

where the denominators are defined just as in the Euclidean case

ω̊1 =
(
ĉ1, ĉ2,R−1

h (c) ĉ2
)
, ω̊2 = (Rh(c) ĉ1, ĉ1, ĉ2) . (55)

Note that the numerators in (54) are strictly positive, so the scalar parameters have

the signs of the determinants ω̊k. Moreover, the same argument we used in the

previous section shows that the signs of ωk are properly chosen. Considering the

case r31 = g31 and ĉ2 = α ĉ1+β ĉ3, i.e., Δ= ω = 0, we make sure that only the

two-gimbal decomposition (54) takes place. On the other hand, (49) are correct as

well (even when the expression for τ2 is undetermined). Then, since the second

axis is irrelevant, we may set α= 0 for the first expression in (49) and β = 0 for

the second one, respectively. This yields a coincidence between (49) and (54) (the

latter is also written for ĉ1 and ĉ3) for this particular configuration. Since ωk is

a continuous function of c and ĉk, and so are the matrix entries in (11) on each

connected component of SO(2, 1), the corresponding signs are chosen correctly.

4.2. Half-Turns, Time-Reversing Boosts and Locked Gimbals

Just as in the Euclidean case, (45) and (49) provide the solutions involving infinite

parameters directly in the form (with a a double root at infinity if Δ=0)

Δk = Δ, rij �= gij , i > j =⇒ εijkτ
±
k = ∞,

gij − rij
2ωk

· (56)

We also note that the hyperbolic analogue of an Euclidean half-turn is somewhat

ambiguous. By the formula Oh(n) = 2 εn⊗nt−I, i.e., rij = 2ευiυj − gij
with υi = n · ĉi, we understand different things for ε=−1 (time-like direction), in

which case we are dealing with an actual half-turn, and ε=1 (space-like direction),

related to a non-proper Lorentz transformation (time-reversing boost). Finally, for
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ε=0 we obtain a divergent matrix in (11). Therefore τ → ∞ will not be allowed

for null directions in the same way we have the restriction |τ | �= 1 for space-like

ones, since (11) is ill-defined in this case as well, so our parameters need to satisfy

ε = 0 ⇒ |τ | �= ∞, ε = 1 ⇒ |τ | �= 1. (57)

Since the non-negative discriminant condition Δ ≥ 0 cannot guarantee that the

letter are satisfied, we consider it only necessary and generically insufficient. There

are two more counterexamples considered bellow - the degenerate gimbal lock

setting and the light cone singularity. Both these configurations almost certainly

satisfy the discriminant condition, but allow solutions only on a zero measure set.

Degenerate Solutions. The hyperbolic case of gimbal lock is quite similar to the

Euclidean one. In particular, it is defined by the same condition

ĉ3 = ±Rh(c) ĉ1 (58)

and we may resort to the same technique, using the identity (39) in order to obtain

Rh(c) = Rh(τ2ĉ2)Rh(〈τ1ĉ1,±τ3ĉ1〉) = Rh(τ2ĉ2)Rh(τ̃1ĉ1).

This leads to a decomposition with respect to two axes and formula (54) yields

τ2 =
r11 − ε1

ω̊2
, τ̃1 =

τ1 ± τ3
1± ε1τ1τ3

=
r22 − ε2

ω̊1
(59)

as long as the relation r21 = g21 holds. Note that the latter is not guaranteed by

Δ ≥ 0, since in this case we always have Δ=ε1(r21−g21)2 ≥ 0 for space-like and

null ĉ1, so it should be considered as a replacement for the discriminant condition

in the gimbal lock setting. If ĉ1 is time-like, on the other hand, it follows naturally.

Note, on the other hand, that gimbal lock in this setting is only possible if ε1 = ε3.

4.3. Light Cone Singularities

Although the analogy between R
3 and R

2,1 has been close so far, there are crucial

differences. Above all, the discriminant condition Δ ≥ 0 in the latter case is a

necessary, but generally not sufficient for the existence of (43), as we already dis-

cussed. Here we investigate another degenerate setting that is typical only for the

hyperbolic case - a singularity, present when all axes lie in the normal complement

of a null vector in R
2,1. First, we prove the following

Lemma 1. Let c0 ∈ R
2,1 be a null vector (c20 = 0) and c⊥0 denote its orthogonal

complement with respect to η. Then c⊥0 is closed under the composition (13) and
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for each c ∈ c⊥0 the transformation Rh(c) preserves c⊥0 , and in particular, the
c0-direction, i.e.,

c, c̃ ∈ c⊥0 ⇒ 〈c, c̃〉 ∈ c⊥0 , Rh(c) : c
⊥
0 → c⊥0 , Rh(c) c0 ∼ c0.

Proof: First, we note that c⊥0 is two-dimensional, so one has c̃ ∈ span{c, c0}.

Next, if we take into account that c0 ∈ c⊥0 and c � c̃ ∼ c0, the first part follows

directly from formula (13) and the second one - from (11). Finally, span{c0} is

the only null direction in c⊥0 and Rh(c) is norm-preserving, hence the last relation.

�

There is a light-cone singularity for (43), as shown by the following

Proposition 2. Let {ĉk} ∈ c⊥0 for some null vector c0 ∈ R
2,1. Then, Rh(c) has

the representation (43) or (52) if and only if c ∈ c⊥0 and in the case of three axes
the solutions form a degenerate one-parameter set.

Proof: Lemma 1 shows that c⊥0 is closed under the composition 〈·, ·〉, which proves

the necessity of the condition c ∈ c⊥0 . As we show in a while, it also implies that

for arbitrary (non-coincident) axes ĉ1, ĉ2 ∈ c⊥0 there exist τ1, τ2 ∈ RP
1, such that

Rh(c) = Rh(τ2ĉ2)Rh(τ1ĉ1). The proof is constructive and actually provides the

solution. First, we see that for c ∈ c⊥0 all coefficients in (45) vanish, so the method

described above fails on any tangent plane6 to the light cone in R
2,1. In particular,

the three axes are coplanar, so we have ω = 0 and ωk = ω̃ = 0, since c ∈ c⊥0
implies Rh(c) : c

⊥
0 → c⊥0 , which also yields ω̊k =0 in (54). Moreover, it allows

for expanding cj = αjc + βjc0, so that we have Rh(c) cj = αjc + β̃jc0, where

the second term does not contribute to the scalar products in c⊥0 , hence rij = gij ,
and in the case of two axes, rkk = εk. Next, since the condition r21 = g21 is

always satisfied as long as c ∈ c⊥0 , we may use (13) to write c2 = 〈c,−c1〉 and

c1 = 〈−c2, c〉 with the usual notation ck = τkĉk. We multiply the first equation

by ĉ�1 and the second one - by ĉ�2 (which effectively projects on the null direction)

and then consider Euclidean scalar product with c0. Denoting x◦ = (x, c0) for

arbitrary x ∈ R
2,1, we obtain the solution in the form

τ1=
(ĉ2�n)◦τ

υ2ĉ◦1τ − g12n◦τ − (ĉ1�ĉ2)◦
, τ2=

(ĉ1�n)◦τ

(ĉ1�ĉ2)◦ + g12n◦τ − υ1ĉ◦2τ
· (60)

Lemma 1 also guarantees that the numerators are non-zero, unless n is collinear

with one of the axes, in which case the decomposition is trivial. The denominators,

6
c
⊥

0 may be considered as a projective plane (with ±ĉk identified), or a sphere (with ∞ added).
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on the other hand, are allowed to vanish in the space-like case, since ∞ is admis-

sible value for the scalar parameter. However, it can be seen from the composition

law (13) that the above solutions are regular in the sense (57) as long as Rh(c) is.

Finally, we consider the case of three axes (43), which can be described the vector-

parameter composition c = 〈c3, c2, c1〉, where c, ck ∈ c⊥0 . Denoting c∗ =
〈c2, c1〉, we point out that by the result just proved, for any pair of fixed direction

ĉ3, ĉ
∗ there are appropriate scalar parameters τ3, τ

∗, such that c = 〈τ3ĉ3, τ∗ĉ∗〉.
On the other hand, by the same argument we have c∗ = τ∗ĉ∗ = 〈τ2ĉ2, τ1ĉ1〉 and

since the direction of ĉ∗ can be arbitrary (in c⊥0 ), the solutions are infinitely many.

�

Apart from the above described method for obtaining the infinite set of solu-

tions we may write explicit formulae for τk using a technique developed in [4, 5].

Namely, we express the decomposition (43) in a vector parameter form as c1 =
〈−c2,−c1, c〉 or c3 = 〈c,−c1,−c2〉. Then, multiplying the first equality on the

left by ĉ�1 and the second one - by ĉ�3 , we eliminate one of the unknown scalar

parameters and project on the null direction c0. Therefore, considering Euclidean

dot product with c0 transforms the vector equations into scalar ones without loss

of information and thus yields a pair of linear-fractional expressions for τ1 and τ3
in terms of the undetermined parameter τ2 in the form

τ1 =
(σ32 + (υ3ĉ

◦
2 − g23n

◦)τ) τ2 − ρ3τ

(g13ĉ◦2 − g23ĉ◦1 + (σ13υ2 − σ23υ1 + g12ρ3)τ) τ2 − (υ3ĉ◦1 − g13n◦)τ + σ13

(61)

τ3 =
(σ12 − (υ1ĉ

◦
2 − g12n

◦)τ) τ2 − ρ1τ

(g12ĉ◦3 − g13ĉ◦2 + (σ12υ3 − σ13υ2 + g23ρ1)τ) τ2 + (υ1ĉ◦3 − g13n◦)τ + σ31

where we denote

σij = (ĉi�ĉj)
◦ = (ĉi�ĉj , c0), ρk = (ĉk�n)◦ = (ĉ3�n, c0).

Clearly, similar (invertible) relations hold for each pair τi, τj (see [5] for details),

so one may equivalently set τ1 or τ3 as a free parameter and express the other two.

We note one more peculiar property of null planes. Namely, for arbitrary normal-

ized ĉi, ĉj ∈ c⊥0 the scalar product ĉi · ĉj is equal to either 0 (if at least one of the

vectors is null) or ±1 (if they are both space-like7). By the hyperbolic polar change

(ĉi · ĉj)2= ĉ2i ĉ
2
j+(ĉi�ĉj)

2=1, since ĉi � ĉj∼c0. Moreover, from the property

that n�c0=λ c0 for some λ∈R, which yields n�(n�c0) = λ2c0 = n2c0 = c0,

we see that for each unit space-like vector n ∈ c⊥0 we have n � c0=±c0. Then,

by induction (n�)nc0=±c0 and the sign is positive for n=2k.

7there are no time-like directions in c
⊥

0 - only space-like ones and c0 itself, since a null and a
time-like vector cannot be normal to each other and neither can be two non-parallel isotropic ones.
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4.4. Configurations of Axes

In order to obtain all configurations of axes in R
2,1 that guarantee the decomposi-

tion (43) for arbitrary pseudo-rotation R(c), we may adapt the Davenport condi-
tion ĉ2⊥ ĉ1,3 (g12= g23=0) from the Euclidean case and set ε2=1, while ε1 and

ε3 can be −1 and 0, −1 and 1, or 0 and 1 (as long as g13 �= 0). More generally

ε1 = ε2 = 1, ε3 ≤ 0, g12 = 0 ⇒ Δ = g223 + r231 − ε3 ≥ 0

ε2 = ε3 = 1, ε1 ≤ 0, g23 = 0 ⇒ Δ = g212 + r231 − ε1 ≥ 0.

The coefficients εk, on the other hand, allow for providing more configurations,

reliable away from the gimbal lock setting, for example

• ĉ2 is space-like and normal to ĉ1 or ĉ3, which is null and {ĉk} is a basis

ε1 = g12 = 0 or ε3 = g23 = 0, ω �= 0 ⇒ Δ = r231 ≥ 0.

• ĉ2 is time-like and normal to both ĉ1 and ĉ3, which are space-like

ε2 = −1, ε1 = ε3 = 1, g12 = g23 = 0 ⇒ Δ = 1− r231 ≥ 0.

• ĉ2 - time-like or null, with equal in absolute value (non-zero) projections on

ĉ1 and ĉ3, which are both space-like

g12 = ±g23 �= 0, ε2 ≤ 0, ε1 = ε3 = 1

⇒ Δ = ε2(r
2
31 − 1) + 2g212(1∓ r31) ≥ 0.

At the end of this section we provide a Lorentz analogue of the Bryan decom-

position about the axes ZYX (the first one is bound to be time-like, so that the

condition Δ ≥ 0 is sufficient even in the gimbal lock setting). We have in this case

Δ = 1 +R2
13, ω1 = −R11, ω2 = −1, ω3 = −R33

where Rij are the matrix entries in the XYZ reference frame8 and thus

τ̃±1 =− R12

R11 ±
√

1 +R2
13

, τ̃±2 =
R13

1±
√
1 +R2

13

, τ̃±3 =− R23

R33 ±
√
1 +R2

13

·

Similarly, one may consider decomposition about ZYW , where the axis OW is

determined by the null vector ĉ3 = (1, 0, 1)t = êx + êz , so we have

r32 = R12 −R32, r31 = R13 −R33, r21 = R23, g31 = −1
8we write Rij instead of Ri

j in order to avoid confusion with powers.
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Δ = (R13 −R33)
2, ω1 = R31 −R11, ω2 = −1, ω3 = R13 −R33

and thus the unique solution satisfying (57) is given in the form

τ1 =
R12−R32

R31+R13−R11−R33
, τ2 =

1 +R13−R33

1−R13+R33
, τ3 =

R23

2(R13−R33)
·

Note that when lifted back to the spin cover, the above corresponds to the well-

known Iwasawa decomposition of SL(2,R) = NAK (cf [1]). Working in the

standard basis (8), with the aid of (12) and some basic trigonometry one obtains

1√
1− c2

(
1+c2 c1+c3
c1−c3 1−c2

)
=

(
1 λ
0 0

)(
exp β

2 0

0 exp−β
2

)(
cos θ

2 sin θ
2

− sin θ
2 cos θ

2

)
where we exploit the notation θ = 2arctan τ1, β = 2arcth τ2 and λ = 2τ3.

Denoting the Bryan parameters with φ̃=2arctan τ̃1 for the angle of rotation about

OZ and respectively ϑ̃= 2arcth τ̃2, ψ̃ = 2arcth τ̃3 for the rapidities of the two

boosts, we may use either (11) or the representations (14)-(17) for the factors in

each decomposition of the compound transformation Rh(θ, β, λ) = Rh(φ̃, ϑ̃, ψ̃).
For the Bryan ZYX setting this yields

Rh=

⎛⎝ cos φ̃ ch ϑ̃ − sin φ̃ ch ϑ̃ sh ϑ̃

sin φ̃ ch ψ̃ − cos φ̃ sh ϑ̃ sh ψ̃ cos φ̃ ch ψ̃ + sin φ̃ sh ϑ̃ sh ψ̃ −ch ϑ̃ sh ψ̃

cos φ̃ sh ϑ̃ sh ψ̃ − sin φ̃ sh ψ̃ − cos φ̃ sh ψ̃ − sin φ̃ sh ϑ̃ ch ψ̃ ch ϑ̃ ch ψ̃

⎞⎠
while in the Iwasawa case we have

Rh(θ, β, λ)=

⎛⎝ μ cos θ − λ sin θ −μ sin θ − λ cos θ eβ − μ
λe−β cos θ + sin θ cos θ − λe−β sin θ −λe−β

(μ−e−β) cos θ − λsin θ (e−β−μ) sin θ − λcos θ 2 chβ − μ

⎞⎠
with the notation μ(λ, β) = chβ − λ2

2
e−β .

We may substitute the matrix entries of Rh(φ̃, ϑ̃, ψ̃) in the expressions obtained

above for the Iwasawa decomposition or, alternatively, use the entries of Rh(θ, β, λ)
in the formulae defining the Bryan scalar parameters just as in the Euclidean case.

Thus, we derive the relation between the two parameterizations in the form

θ = 2arctan
sin φ̃(ch ϑ̃− sh ϑ̃ ch ψ̃)− cos φ̃ sh ψ̃

cos φ̃(ch ϑ̃− sh ϑ̃ ch ψ̃) + sin φ̃ sh ψ̃ + ch ϑ̃ ch ψ̃ − sh ϑ̃
(62)

β = 2arcth
1 + sh ϑ̃− ch ϑ̃ ch ψ̃

1− sh ϑ̃+ ch ϑ̃ ch ψ̃
, λ =

sh ψ̃

ch ψ̃ − th ϑ̃
·
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In the reverse direction it is

φ̃± = 2arctan
2λeβ cos θ + (e2β + 1− λ2) sin θ

(e2β + 1− λ2) cos θ − 2λeβ sin θ ∓
√
D

(63)

ϑ̃± = 2arcth
λ2 + e2β − 1

2eβ ±
√
D

, ψ̃± = 2arcth
2λ

λ2 + e2β + 1±
√
D

where we make use of the notation D = λ4 + 2λ2(e2β − 1) + (e2β + 1)2.

Note also that in the Iwasawa decomposition we only have one regular solution, so

the other one, which is easily seen to occur at th ϑ̃ = ch ψ̃, will be divergent.

Figure 2. Decomposition flowchart in the hyperbolic case.
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Moreover, the above representations provide a convenient tool to study the way

certain parameters in one decomposition affect those in the other. For example, it

is straightforward to see that in the case λ = 0 both decompositions coincide, i.e.,

ψ̃ = 0, ϑ̃ = β and φ̃ = θ. Similarly, we have

φ̃=0 → θ = −2 tan−1

(
eϑ̃ th

ψ̃

2

)
, φ̃=π → θ = 2 tan−1

(
e−ϑ̃ coth

ψ̃

2

)

and finally, for ϑ̃ = 0 the correspondence is

θ = 2 tan−1 sin φ̃− cos φ̃ sh ψ̃

cos φ̃+ sin φ̃ sh ψ̃ + ch ψ̃
, β = −2 th−1

(
th2

ψ̃

2

)
, λ = th ψ̃ .

The algorithm for a generic pseudo-rotation is illustrated in Fig. 2 on previous

page.

5. Transition to Moving Frames

So far we obtained all possible decompositions of three-dimensional rotations and

pseudo-rotations with respect to fixed axes. For the applications, however, it is

often preferable to consider axes, attached to the moving object. Both in classical

mechanics and relativity it is more natural to work in the “frame at rest” of a mov-

ing particle or a rotating rigid body. As shown in [5], the decompositions in the

static {ck} and the dynamic {c′k} systems of axes are related via the formula9

R(c) = R(c′3)R(c′2)R(c′1) = R(c1)R(c2)R(c3) (64)

and in the case of two axes R(c) = R(c′2)R(c′1) = R(c1)R(c2), respectively.

Note that the norm-preserving property of the operators involved yields τ ′
k = τk.

Moreover, one may think of the system {ck} as representing {c′k} before the trans-

formation has begun. Then, as it undergoes a series of rotations, we have

ĉ′1 = ĉ1, ĉ′2 = R(c′1) ĉ2, ĉ′3 = R(c) ĉ3 (65)

which yields, with the notation g′ij = (ĉ′i, ĉ
′
j) and r′ij = (ĉ′i,R(c) ĉ′j), the relations

g′12 = g12, g′23 = g23, g′13 = r13, r′31 = g31.

As a straightforward consequence we derive the relations between the volume ele-

ment in one of the systems and the discriminant in the other D = ω2 and Δ = ω′2,

9although the notation is borrowed from the Euclidean case, all results here apply also to R
2,1.
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which guarantees, at least in the Euclidean case, that the decomposition is justified

in {c′k} as long as it is in {ck} and vice versa. In the hyperbolic one we easily see

that the gimbal lock condition in one of the systems yields zero volume element in

the other and the light cone singularity is either present in both systems, or in none.

Next, we multiply (64) with R(−c′3) on the left, which leads to

〈−c′3, c 〉 = 〈c′2, c′1 〉 ⇒ 〈−R(c) c3, c 〉 = 〈R(c1) c2, c1 〉

in accordance with (65). Then, applying formula (39), that may also be written as

〈 c, c̃ 〉 = 〈R(c) c̃, c 〉 = 〈 c̃,R(−c̃) c 〉, we obtain the desired result

〈c,−c3〉 = 〈c1, c2〉 ⇒ c = 〈c1, c2, c3〉.

Similarly, in the case of two axes we have c = 〈c′2, c′1〉 = 〈c′1,R(−c′1) c
′
2〉 =

〈c1, c2〉. The above result can be generalized to an arbitrary number of factors by

induction. In fact, it applies to arbitrary groups and parameterizations. The proof

is a combination of the braiding property of groups (easily obtained by induction)

R1R2 . . .Rn=R′
nR′

n−1 . . .R′
1, R′

k=R1R2 . . .Rk−1RkR−1
k−1 . . .R−1

2 R−1
1

and conjugation f [g(x)] = g ◦ f(x) ◦ g−1, applied to the parameters ck. Thus, if

the transformations Rk constitute a representation of some group G, we have

R(c1)R(c2) . . .R(cn)=R(c′n)R(c′n−1) . . .R(c′1), c′k=R1R2 . . .Rk−1 ck.

6. Quaternion and Split Quaternion Decompositions

As explained in the beginning, the vector-parameter technique is based on project-

ing a quaternion (or split quaternion) construction from the spin covering group

and this makes it, apart from its other merits, very appropriate for emphasizing the

relation between the corresponding projective group and its spin cover. In partic-

ular, lifting up our solutions is almost straightforward using the correspondence

(6) in the Euclidean and (12) in the hyperbolic case. Let us now consider a de-

composition problem that is initially formulated for the spin cover, starting with

the compact case. Namely, we are given a generic unit quaternion ζ ∈ SU(2)

and three purely imaginary ones ξ̂k ∈ su(2) ∩ S
3 ∼= S

2 to determine the axes of

rotation. In the spin representation we rely on the Killing form induced metric

(ζ, ξ) =
1

2
tr (ζξ̄), ζ, ξ ∈ SU(2) (66)

and the formula (6). Used together with (5), these two yield

rij − gij = 2
[
(ζ, ξ̂i)(ζ, ξ̂j) + (ζ20 − 1)(ξ̂i, ξ̂j)− ζ0(ζ,�(ξ̂i ξ̂j))

]
(67)
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where ζ0 = �(ζ) = 1

2
tr ζ and we may denote κk = εijk(gij − rij) for i > j.

The correspondence between conjugations in su(2) and rotations in R
3 then yields

ω1 = (�(ξ̂1 ξ̂2), ζ̄ ξ̂3 ζ), ω2 = (�(ξ̂1 ξ̂2), ξ̂3), ω3 = (ζ ξ̂1 ζ̄,�(ξ̂2 ξ̂3))

and finally, the discriminant of the second equation in (19) can be written as

Δ = ω2
2 − κ2(2G31 + κ2), G31 = g12g23 − g31 = (�(ξ̂1 ξ̂2),�(ξ̂2 ξ̂3)).

Then, the condition Δ ≥ 0 is still relevant and the solutions (26) are given as

τ±i =
κi

ωi ±
√
Δ
· (68)

In the case of two axes, as long as g21 = (ξ̂2, ξ̂1) = (ξ̂2, ζ ξ̂1 ζ̄) = r21 is satisfied,

formula (33) provides the unique solution with

rkk − 1

2
= ζ20 + (ζ, ξ̂k)

2 − 1, ω̊1 = (�(ξ̂1 ξ̂2), ζ̄ ξ̂2 ζ), ω̊2 = (ζ ξ̂1 ζ̄,�(ξ̂1 ξ̂2))

that we also use in (40) for the gimbal lock setting ξ̂3 = ±ζ ξ̂1 ζ̄.

Once we have determined the scalar parameters, the quaternions ξk in the decom-

position ζ = ξ3 ξ2 ξ1 are obtained with the aid of formula (6) as10

ξk = ± 1√
1 + τ2k

(
σ0 + τkξ̂k

)
, σ0 =

(
1 0
0 1

)
· (69)

In the hyperbolic case we consider a generic unit split quaternion ζ ∈ SL(2,R)

and three purely imaginary ones11 ξ̂k ∈ su(2,R), then define the scalar product as

ζ · ξ = −1

2
tr (ζξ̄), ζ, ξ ∈ SL(2,R). (70)

From the relation (12) and formula (11) we easily obtain

rij − gij = −2
[
(ζ · ξ̂i)(ζ · ξ̂j) + (1− ζ20 ) ξ̂i · ξ̂j + ζ0 ζ · �(ξ̂i ξ̂j)

]
. (71)

Moreover, the correspondence between pseudo-rotations in R
2,1 and conjugations

in su(2,R),i.e., the adjoint action of Spin(2, 1) ∼= SL(2,R), yields

ω1 = �(ξ̂1 ξ̂2) · ζ̄ ξ̂3 ζ, ω2 = �(ξ̂1 ξ̂2) · ξ̂3, ω3 = ζ ξ̂1 ζ̄ · �(ξ̂2 ξ̂3)
10each separate ξk may be taken with either “+” or “−”, but the three signs must agree, e.g., if we

choose “+” for ξ1 and ξ2, the third one is determined by ξ3 = ζ ξ̄1 ξ̄2.
11we assume that the R

2,1 images of ξ̂k are quasi-unit in the sense specified above.
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and for the discriminant of the second equation in (45) we have

Δ = ω2
2 − κ2(2G31 − ε2κ2), G31 = �(ξ̂1 ξ̂2) · �(ξ̂2 ξ̂3).

With the notation κk = εijk(gij − rij) for i > j we write the solutions (49) as

τ±i =
κi

ωi ∓
√
Δ

(72)

and the factors ξk in the decomposition ζ = ξ3 ξ2 ξ1 are given by (12) in the form

ξ±k = ± 1√
1− εkτ

2
k

(
σ0 + τkξ̂k

)
(73)

with εk = −det ζ̂k in accordance with our previous definitions. Just as in the

Euclidean case, we may choose arbitrary signs for two of the three spinors, while

the third one is fixed, e.g., ξ3 = ζ ξ̄1 ξ̄2. For this reason, one has four times more

solutions in the spin cover compared to the corresponding projective group.

In the case of two axes the scalar parameters are given by formula (54) with

rkk−εk=2(ζ20−1)εk−2(ζ · ξ̂k)2, ω̊1=�(ξ̂1 ξ̂2) · ζ̄ ξ̂2 ζ, ω̊3=ζ ξ̂1 ζ̄ · �(ξ̂1 ξ̂2)

as long as the condition ξ̂2 · ξ̂1 = ξ̂2 · ζ ξ̂1 ζ̄ is satisfied. The latter is also relevant in

the gimbal lock setting ξ̂3 = ±ζ ξ̂1 ζ̄, in which the solutions are provided by (59).

The singular solutions (61) may also be obtained in this way by introducing Wick

rotation. Namely, if we expand the null direction as c0 → c01 ĩ + c02 j̃ − c03 k̃,

calculating the Euclidean scalar products σij , ρk, ĉ◦k and n◦ is straightforward.

Back to the Classics. We consider once more the classical Euler decomposition,

this time for the spin covering group. Applying formula (6) in the basis (1) yields

1√
1+c2

(
1+ic1 c2+ic3
ic3−c2 1−ic1

)
=

(
cos ψ

2 i sin ψ
2

i sin ψ
2 cos ψ

2

)(
ei

ϑ
2 0

0 e−iϑ
2

)(
cos φ

2 i sin φ
2

i sin φ
2 cos φ

2

)
for the Euler case and for the Bryan one we have similarly

1√
1+c2

(
1+ic1 c2+ic3
ic3−c2 1−ic1

)
=

(
cos ψ̃

2 i sin ψ̃
2

i sin ψ̃
2 cos ψ̃

2

)(
cos ϑ̃

2 sin ϑ̃
2

− sin ϑ̃
2 cos ϑ̃

2

)(
ei

φ̃
2 0

0 e−iφ̃
2

)
·

Using the standard notation for the components of ζ and formula (71) we obtain

κ1 = 2 (ζ1ζ3 − ζ0ζ2) , κ2 = 2
(
1− ζ23 − ζ20

)
, κ3 = 2 (ζ1ζ3 + ζ0ζ2)
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as well as Δ = κ2(2− κ2) = 4(1− ζ23 − ζ20 )(ζ
2
3 + ζ20 ) and finally

ω1 = 2 (ζ2ζ3 + ζ0ζ1) , ω2 = 0, ω3 = 2 (ζ0ζ1 − ζ2ζ3) .

The solution is then retrieved by substituting the above expressions in (68), namely

τ±1 =
ζ1ζ3−ζ0ζ2

ζ2ζ3 + ζ0ζ1 ±
√
Ds

, τ±2 =±
√

ζ21+ζ22
ζ23+ζ20

, τ±3 =
ζ1ζ3+ζ0ζ2

ζ0ζ1−ζ2ζ3 ±
√
Ds

with Ds=(1−ζ23−ζ20 )(ζ
2
3+ζ20 ) and in terms of the vector-parameter components

τ±1 =
c1c3−c2

c2c3+c1 ±
√
Dv

, τ±2 =±
√

c21+c22
c23+1

, τ±3 =
c1c3+c2

c1−c2c3 ±
√
Dv

where Dv=(c21+c22)(c
2
3+1). Similarly, in the Bryan XYZ setting we have

κ1 = 2 (ζ2ζ3 + ζ0ζ1) , κ2 = 2 (ζ0ζ2 − ζ1ζ3) , κ3 = 2 (ζ1ζ2 + ζ0ζ3)

the discriminant is given by Δ = 1− κ2
2 and ωk can be written as

ω1 = 2
(
ζ23 + ζ20

)
− 1, ω2 = 1, ω3 = 2

(
ζ21 + ζ20

)
− 1.

Hence, our method yields for the scalar parameters

τ±1 =
2 (ζ2ζ3+ζ0ζ1)

2
(
ζ23+ζ20

)
−1±

√
Ds

, τ±2 =
2 (ζ0ζ2−ζ1ζ3)

1±
√
Ds

, τ±3 =
2 (ζ1ζ2+ζ0ζ3)

2
(
ζ21+ζ20

)
−1±

√
Ds

where Ds=1−4 (ζ1ζ3−ζ0ζ2)
2, or in terms of c and Dv= (1+c2)2−4 (c1c3−c2)

2

τ±1 =
2 (c2c3+c1)

1−c21−c22+c23±
√
Dv

, τ±2 =
2 (c2−c1c3)

1+ c2±
√
Dv

, τ±3 =
2 (c1c2+c3)

1+c21−c22−c23±
√
Dv

·

Alternatively, we may work directly with the matrix entries Rij expressed in terms

of the corresponding quaternion parameters by means of formula (3), namely as

R(ζ) =

⎛⎝ 1− 2(ζ22 + ζ23 ) 2(ζ1 ζ2 − ζ0 ζ3) 2(ζ1 ζ3 + ζ0 ζ2)
2(ζ1 ζ2 + ζ0 ζ3) 1− 2(ζ21 + ζ23 ) 2(ζ2 ζ3 − ζ0 ζ1)
2(ζ1 ζ3 − ζ0 ζ2) 2(ζ2 ζ3 + ζ0 ζ1) 1− 2(ζ21 + ζ22 )

⎞⎠·

Next, we derive the quaternion representations via scalar parameters for the Euler

and Bryan decompositions, denoting the former with τk and the latter - with τ̃k.

The vector-parameter composition law (7) yields in the Euler case

c =
1

1− τ1τ3

(
τ2(1 + τ1τ3), τ2(τ3 − τ1), τ3 + τ1

)t
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which gives, according to (6) and with the notation E(τ1, τ2, τ3) =
3∏

k=1

√
1 + τ2k

ζ =
1− τ1τ3

E(τ1, τ2, τ3)
+

τ2(1 + τ1τ3)

E(τ1, τ2, τ3)
i+

τ2(τ3 − τ1)

E(τ1, τ2, τ3)
j+

τ3 + τ1
E(τ1, τ2, τ3)

k.

Similarly, in the Bryan setting we have

c =
1

1 + τ̃1τ̃2τ̃3

(
τ̃1 − τ̃2τ̃3, τ̃2 + τ̃1τ̃3, τ̃3 − τ̃1τ̃3

)t
and thus the quaternion representation takes the form

ζ =
1 + τ̃1τ̃2τ̃3
E(τ̃1, τ̃2, τ̃3)

+
τ̃1 − τ̃2τ̃3

E(τ̃1, τ̃2, τ̃3)
i+

τ̃2 + τ̃1τ̃3
E(τ̃1, τ̃2, τ̃3)

j+
τ̃3 − τ̃1τ̃3

E(τ̃1, τ̃2, τ̃3)
k.

Using the Euler representation of the quaternion ζ and the solution (68) for the

Bryan case, we may express the parameters τ̃k as functions of the τk’s in the form

τ̃±1 =
2τ2(1−τ21 )

(1−τ22 )(1+τ 21 )±
√
D
, τ̃±2 =

−4τ1τ2

(1+τ21 )(1+τ 22 )±
√
D

(74)

τ̃±3 =
2τ1(1−τ22 )(1−τ 23 ) + 2τ3(1−τ21 )(1+τ 22 )

(1−τ21 )(1+τ 22 )(1−τ 23 )−4τ1τ3(1−τ22 )± (1+τ 23 )
√
D

with D = (1+τ 21 )
2(1+τ22 )

2−(4τ1τ2)
2 and in the inverse direction12

τ±1 = − τ̃2(1+τ̃ 21 )

τ̃1(1−τ̃ 22 )±
√
(τ̃21+τ̃22 )(1+τ̃ 21 τ̃

2
2 )

, τ±2 = ±
√

τ̃21+τ̃22
1+τ̃21 τ̃

2
2

(75)

τ±3 =
τ̃2(1−τ̃ 21 )(1−τ̃ 23 )+2τ̃1τ̃3(1+τ̃ 22 )

τ̃1(1+τ̃ 22 )(1−τ̃ 23 )−2τ̃2τ̃3(1−τ̃ 21 )± (1+τ̃ 23 )
√

(τ̃21+τ̃22 )(1+τ̃ 21 τ̃
2
2 )

·

Next, we obtain the relations between the solutions for the two examples consid-

ered above in the hyperbolic case using similar technique, i.e., express the parame-

ters τ̃k in the ZYX Bryan setting in terms of those for the Iwasawa decomposition

denoted by τk and vice versa. Applying the method to the former case we obtain

κ1 = −2 (ζ1ζ2 + ζ0ζ3) , κ2 = −2 (ζ0ζ2 + ζ1ζ3) , κ3 = 2 (ζ2ζ3 − ζ0ζ1)

as well as ω1 = 2
(
ζ21 − ζ20

)
+1, ω2 = −1, ω3 = 1−2

(
ζ23 + ζ20

)
and Δ = 1+κ2

2,

where we use the standard notation ζ1 = (̃i, ζ), ζ2 = (̃j, ζ) and ζ3 = −(k̃, ζ).

12these results may also be derived from (42) and (43) using the Euler trigonometric substitution.
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With this result it is straightforward to derive expressions for the scalar parameters

in the decomposition in terms of the corresponding split quaternion components

τ̃±1 =
2 (ζ1ζ2+ζ0ζ3)

2
(
ζ20−ζ21

)
−1±

√
Ds

, τ̃±2 =
2 (ζ0ζ2+ζ1ζ3)

1±
√
Ds

, τ̃±3 =
2 (ζ0ζ1−ζ2ζ3)

2
(
ζ20+ζ23

)
−1±

√
Ds

where Ds=1+4 (ζ0ζ2+ζ1ζ3)
2 and the above gives, by projection ζ → c

τ̃±1 =
2 (c1c2+c3)

1−c21+c22−c23±
√
Dv

, τ̃±2 =
2 (c2+c1c3)

1−c2±
√
Dv

, τ̃±3 =
2 (c1−c2c3)

1+c21+c22+c23±
√
Dv

with the notation Dv=(1−c2)2+4 (c2+c1c3)
2.

Similarly, for the Iwasawa decomposition considered above, our method gives

κ1=2(ζ1 − ζ3)(ζ0 − ζ2), κ2=2(ζ21 + ζ22 − ζ1ζ3 − ζ0ζ2), κ3=2(ζ2ζ3 − ζ0ζ1)

along with Δ = (1 + κ2)
2, ω1 = 2(ζ0ζ2 − ζ1ζ3 − ζ22 + ζ23 ) − 1, ω2 = −1 and

ω3 = −κ2 − 1. Hence, the scalar parameters in this case can be written also as

τ1=
ζ1−ζ3
ζ2−ζ0

, τ2=
ζ1ζ3+ζ0ζ2−ζ21−ζ22
ζ23+ζ20−ζ1ζ3−ζ0ζ2

, τ3=
ζ2ζ3−ζ0ζ1

2(ζ1ζ3+ζ0ζ2−ζ23−ζ20 )+1

and in vector-parameter notation they take the form

τ1=
c1−c3
c2−1

, τ2=
c1c3+c2−c21−c22
c23−c1c3−c2+1

, τ3=
c2c3−c1

2(c1c3+c2)−c21−c22−c23−1
·

These same results may also be obtained from the matrix entries Rij expressed in

terms of the corresponding split quaternion parameters by (10), namely as

Rh(ζ) =

⎛⎝ 1 + 2(ζ22 − ζ23 ) −2(ζ1 ζ2 + ζ0 ζ3) 2(ζ1 ζ3 + ζ0 ζ2)
2(ζ0 ζ3 − ζ1 ζ2) 1 + 2(ζ21 − ζ23 ) 2(ζ2 ζ3 − ζ0 ζ1)
2(ζ0 ζ2 − ζ1 ζ3) −2(ζ2 ζ3 + ζ0 ζ1) 1 + 2(ζ21 + ζ22 )

⎞⎠ ·

Both here and in the Euclidean case this alternative approach (which is actually

easier) may serve as a test for the consistency of our methods.

Denoting τk the scalar parameters in the Iwasawa decomposition and τ̃k - the ones

in the Bryan case and using the composition law (13) we obtain for the latter

c =
1

1 + τ̃1τ̃2τ̃3

(
τ̃3 + τ̃1τ̃2, τ̃2 − τ̃1τ̃3, τ̃1 − τ̃2τ̃3

)t
which can be lifted up to the spin cover as

ζ =
1 + τ̃1τ̃2τ̃3

H1(τ̃1, τ̃2, τ̃3)
+

τ̃3 + τ̃1τ̃2
H1(τ̃1, τ̃2, τ̃3)

ĩ+
τ̃2 − τ̃1τ̃3

H1(τ̃1, τ̃2, τ̃3)
j̃+

τ̃1 − τ̃2τ̃3
H1(τ̃1, τ̃2, τ̃3)

k̃.
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with the notation H1(τ̃1, τ̃2, τ̃3) =
√
(1+τ̃ 21 )(1−τ̃ 22 )(1−τ̃ 23 ).

Similarly, in the Iwasawa setting we have the representation

c =
1

1−τ1τ3(1−τ2)

(
τ1τ2 + τ3(1− τ2), τ2 − τ1τ3(1− τ2), τ1 + τ3(1− τ2)

)t
or in split quaternion terms

ζ =
1−τ1τ3+τ1τ2τ3
H2(τ1, τ2, τ3)

+
τ1τ2+τ3(1−τ2)

H2(τ1, τ2, τ3)
ĩ+

τ2−τ1τ3(1−τ2)

H2(τ1, τ2, τ3)
j̃+

τ1+τ3(1−τ2)

H2(τ1, τ2, τ3)
k̃

where we denote H2(τ1, τ2, τ3) =
√
(1+τ 21 )(1−τ 22 ).

Proceeding exactly as in the Euclidean case, we derive a set of explicit relations be-

tween the scalar parameters of the hyperbolic Bryan and Iwasawa decompositions

in the form

τ̃±1 =2
τ3(1−τ21 )(1−τ22 )+τ1

(
1+τ22−2τ23 (1−τ2)

2
)

(1−τ21 )
(
1+τ22−2τ23 (1−τ2)2

)
−4τ1τ3(1−τ22 )±(1 + τ 21 )

√
D̃

(76)

τ̃±2 =2
τ2+τ23 (1−τ2)

2

1−τ22 ±
√
D̃

, τ̃±3 =
2τ3(1−τ2)

2

2τ23 (1−τ2)2+1+τ22 ±
√
D̃

with the notation D̃=(1−τ 22 )
2+4

(
τ2+τ23 (1−τ2)

2
)2

and in the reverse direction

τ1 = − τ̃2(τ̃3+τ̃1)+τ̃3−τ̃1
τ̃1τ̃3(1+τ̃2)+1−τ̃2

, τ2 =
τ̃2(1−τ̃ 23 )−τ̃22−τ̃23
1+τ̃22 τ̃

2
3−τ̃2(1−τ̃ 23 )

(77)

τ3 =
τ̃3(1+τ̃ 22 )

(1+τ̃ 22 )(1+τ̃ 23 )−2τ̃2(1−τ̃ 23 )
·

This technique may be used to obtain such relations between each pair of decom-

positions, both Euclidean and hyperbolic, as long as they are well-defined.

7. Numerical Examples

We start with a purely numerical example in the spirit of [15]. The unit vectors ĉk
and n are given in spherical coordinates (measuring the azimuthal angle from the

equator) as x(θ, ϑ) = (cos θ cosϑ, cos θ sinϑ, sin θ)t. Let us choose, for instance

ĉ1(22.62
◦, 67.38◦), ĉ2(46.4

◦, 43.6◦), ĉ3(61.93
◦, 28.07◦) and n(36.87◦, 53.13◦)

with ϕ = 33◦. Applying the algorithm described in Section 3 we obtain

{ϕ+
k } = {52.81◦,−78.05◦, 66.67◦}, {ϕ−

k } = {9.47◦, 32.35◦,−8.69◦}.
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A typical example for a gimbal lock is the Euler ZXZ decomposition of a half-turn

about the OY axis. Formula (40) yields {ϕk}={ϑ, π, ϑ−π} with ϑ ∈ R and the

corresponding matrix decomposition is given by⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠=

⎛⎝− cosϑ sinϑ 0
− sinϑ − cosϑ 0

0 0 1

⎞⎠⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠⎛⎝cosϑ − sinϑ 0
sinϑ cosϑ 0
0 0 1

⎞⎠·

In particular, the two-gimbal decompositions obtained for ϑ=0 and ϑ=π present

the compound half-turn as a product of two reflections in the XZ-plane. Alterna-

tively, one may decompose into a half-turn ϕ2=π and two quarter-turns at ϑ=π/2.

For the Lorentz case we choose a decomposition that takes place entirely on the

light cone: ĉ1=(5, 12, 13)t, ĉ2=(21, 20, 29)t, ĉ3=(15, 8, 17)t and n=(3, 4, 5)t

with τ=11/7. Our method easily provides the exact solutions in the form

{τ+k } = {−43/36, 13/84,−17/27}, {τ−k } = {−11/18, 11/42, 11/27}.

Let us also consider the more exotic example of a massless particle with relativistic

momentum p̂ = (3, 4, 5)t, boosted by Rh(c), where c = (5/2, 5/2, 7/2)t. We

decompose with respect to the axes ĉ1 = p̂ = (3, 4, 5)t, ĉ2 = (0, 5/3, 4/3)t and

ĉ3 = (5/4, 0, 3/4)t. Formula (61) yields the one-parameter solution

τ1 =

(
5

12

)
2s+ 3

s+ 1
, τ2 = s, τ3 =

2s+ 1

s+ 2
, s ∈ R/{±1}

where s �= ±1 due to (57). Normalization in the null direction ĉ1 is arbitrary, since

the light cone is scale invariant and if we choose (ĉ1, ĉ1) = 1 for example, i.e.,

multiply ĉ1 by
√
2/10, the pre-factor in the expression for τ1 becomes 25

√
2/12.

Our last example is the Iwasawa decomposition of the split quaternion

ζ =

(
1 1
2 3

)
= 2 +

3

2
ĩ− j̃− 1

2
k̃.

By the results in the previous section we obtain τk={−2/3,−6/7, 5/13} and thus

ξ1 =
1√
13

(
3 −2
2 3

)
, ξ1 =

1√
13

(
1 0
0 13

)
, ξ1 =

(
1 5

13
0 1

)
·
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Final Remarks

The method provided here can easily be generalized to other low-dimensional Lie

groups (cf [8]), such as SO(4), SO(3, 1), SO(2, 2) and SO∗(4), for which vector

parametrization is still available in some form [7]. Moreover, the compact solutions

we obtain make it appropriate also for the study of continuous transformations in

rigid body mechanics [10,12]. On the other hand, as shown in Section 6, the corre-

spondence between (split) quaternions and vector-parameters lifts up all results to

the spin covering groups SU(2) and SU(1, 1) ∼= SL(2,R), which play central role

both in classical and quantum mechanics in the description of symplectic maps,

deformable media, qubit systems, scattering and many other areas.
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