Translator Disclaimer
2011 Geometric Interpretation of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $A_2$
Alexandar B. Yanovski
J. Geom. Symmetry Phys. 23(none): 97-111 (2011). DOI: 10.7546/jgsp-23-2011-97-111

Abstract

We consider the recursion operator approach to the soliton equations related to a generalized Zakharov-Shabat auxiliary linear system in pole gauge on the Lie algebra $A_2=\mathfrak{sl}(3,\mathbb{C})$ and show that the recursion operator can be identified with the dual to a Nijenhuis tensor for a Poisson-Nijenhuis structure on the manifold of potentials.

Citation

Download Citation

Alexandar B. Yanovski. "Geometric Interpretation of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $A_2$." J. Geom. Symmetry Phys. 23 97 - 111, 2011. https://doi.org/10.7546/jgsp-23-2011-97-111

Information

Published: 2011
First available in Project Euclid: 25 May 2017

zbMATH: 1235.35238
MathSciNet: MR2827538
Digital Object Identifier: 10.7546/jgsp-23-2011-97-111

Rights: Copyright © 2011 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

JOURNAL ARTICLE
15 PAGES


SHARE
Back to Top