Open Access
2011 Curvature Forms and Interaction of Fields
Stoil Donev, Maria Tashkova
J. Geom. Symmetry Phys. 21: 41-59 (2011). DOI: 10.7546/jgsp-21-2011-41-59


We work out the general idea that a composite continuous physical system can be mathematically modelled locally as a completely integrable geometric distribution on a manifold, the time-recognizable subsystems to be modelled by corresponding subdistributions, and any local interaction between two subsystems of the physical system to be described in terms of the nonintegrability of the two subdistributions making use of the corresponding two curvature forms. As an illustration we present the corresponding description of photon-like objects, based on the notion that photon-like objects are real, massless time-stable physical objects with intrinsically compatible translational-rotational dynamical structure. The spatial propagation of the system follows some external/shuffling symmetry of the distribution.


Download Citation

Stoil Donev. Maria Tashkova. "Curvature Forms and Interaction of Fields." J. Geom. Symmetry Phys. 21 41 - 59, 2011.


Published: 2011
First available in Project Euclid: 25 May 2017

zbMATH: 1235.58029
MathSciNet: MR2856235
Digital Object Identifier: 10.7546/jgsp-21-2011-41-59

Rights: Copyright © 2011 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

Back to Top