Vitali's theorem in vector lattices

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Shozo Koshi

§1. Introduction

Let Ω be a measure space with finite measure μ . Then, Vitali's theorem announces: let f_n $(n=1, 2, \dots)$ be a sequence of summable functions on Ω with equi-absolutely continuous integrals and f_n converges to f in measure. Then,

$$\lim_{n\to\infty}\int_{a}f_n\,d\mu=\int_{a}f\,d\mu\,.$$

In this note, we shall generalize the Vitali's theorem to vector lattices.

§ 2. Convergences in vector lattices.

Let R be a σ -complete vector lattice i.e. $\bigcap_{n=1}^{\infty} a_n$ exists for every positive elements $0 \leq a_n \in R$ $(n=1, 2, \cdots)$. In the sequel, we assume that R is σ -complete. For $a_n \in R$ $(n=1, 2, \cdots)$, if $\bigcap_{m=1}^{\infty} (\bigcup_{n \geq m} a_n)$ and $\bigcup_{m=1}^{\infty} (\bigcap_{n \geq m} a_n)$ exist and equal to a, then we denote that

$$o-\lim_{n\to\infty}a_n=a\,.$$

In this case, we say that the sequence $\{a_n\}$ is order-convergent to a. It is easy to see that $o-\lim a_n = a$ iff there exist $b_n \downarrow 0$ (i. e. $b_1 \ge b_2 \ge \cdots \text{ with } \bigcap_{n=1}^{\infty} b_n = 0$) such that

$$|a_n-a|\leq b_n$$

where $|x| = x \cup (-x) = x^+ + x^-$ for $x \in R$.

We shall define star-order-convergence as follows: a sequence a_n (n = 1, 2, ...) is said to be *star-order-convergent* to a if for every subsequence of $\{a_n\}$, there exists its subsequence which is order-convergent to a. We shall denote

$$s-o-\lim a_n=a$$

if $a_n (n=1, 2, \cdots)$ is star-order-convergent to a.

For a subset M of R, we denote $M^{\perp} = \{a : |a| \cap |b| = 0 \text{ for all } b \in M\}$.

If we can decompose $a \in R$ into as follows:

$$(A) \qquad a = a_1 + a_2$$

with $a_1 \in M$ and $a_2 \in M^{\perp}$, then M is called normal.

If M is normal, then $M = M^{\perp \perp}$ and the decomposition (A) of a is uniquely determined. Namely,

 $a = a_1 + a_2, \quad a = a_1' + a_2', \quad a_1, a_1' \in M, \quad a_2, a_2' \in M^{\perp}$ $a_1 = a_1' \quad ext{and} \quad a_2 = a_2'.$

We see that the operator $[M]a = a_1$ is linear and lattice-homomorphic. [M] is called a projection operator.

The normal subsets of R (or equivalently projection operators) constitutes a Boolean lattice by the usual order.

Let R be σ -complete. For $0 \leq p \in R$, the subset $\{p\}^{\perp \perp}$ is normal and

$$\left[\{p\}^{\perp\perp}\right]a = \left(\text{denoted by } [p]a\right) = \bigcup_{n=1}^{\infty} (np \cap a) \quad \text{for} \quad a \ge 0.$$

In general, $[p]a=[p]a^+-[p]a^-$.

imply

 $\{[N]; [p] \ge [N]\}$ is σ -complete as a Boolean lattice and for every [N] with $[p] \ge [N]$ there exists $q \in R$ with [N] = [q].

For arbitrary $p \in R$, [p] = [|p|]. Let $[p_n]$ be a sequence of projection operators. $[P_n]$ is order-convergent to 0 if $\bigcap_{m=1}^{\infty} (\bigcup_{n \ge m} P_n) = 0$, i.e. there exists $[Q_n] \ge [P_n]$ with $[Q_1] \ge [Q_2] \ge \cdots$ and $\bigcap_{n=1}^{\infty} [Q_n] = 0$.

We shall write $[P_n] \downarrow 0$ if $[P_1] \ge [P_2] \ge \cdots$ and $\bigcap_{n=1}^{\infty} [P_n] = 0$.

We shall denote $[P_n] \downarrow \downarrow 0$ if for every subsequence of $[P_n]$ there exists its subsequence order-convergent to 0.

Now, we shall consider a special convergence in a σ -complete vector lattice.

We shall denote

$$\circledast - \lim_{n \to \infty} a_n = a$$

if there exists $[P_m] \downarrow \downarrow 0$ such that $(I-[P_m])a_n$ is star-order-convergent to $(I-[P_m])a \ (m=1, 2, \cdots)$. In the case of L_1 -space (the totality of summable functions) $f_n \rightarrow f$ (in measure) implies $f_n \rightarrow f$ (in above sense).

It is easy to see that if $\bigotimes -\lim_{n \to \infty} a_n = a$, then there exists $[p_m] \downarrow \downarrow 0$ such that $p_m \in R$ $(m=1, 2, \cdots)$ and $(I-[p_m])a_n$ is star-order-convergent to $(I-[p_m])a$ for all $m=1, 2, \cdots$.

We see easily $[p_n] \downarrow 0$ and $[q_n] \downarrow 0$ imply $[p_n] \cup [q_n] \downarrow 0$. Hence, we see

S. Koshi

that if
$$\circledast -\lim_{n \to \infty} a_n = a$$
 and $\circledast -\lim_{n \to \infty} b_n = b$, then
 $\circledast -\lim_{n \to \infty} (a_n + b_n) = \circledast -\lim_{n \to \infty} a_n + \circledast -\lim_{n \to \infty} b_n$,
 $\circledast -\lim_{n \to \infty} (a_n \cup b) = a \cup b$, $\circledast -\lim_{n \to \infty} (a_n \cap b) = a \cap b$,
 $\circledast -\lim_{n \to \infty} |a_n - a| = 0$.

§ 3. Equi-continuous subsets

Let \bar{a} be a linear functional on R. \bar{a} is said to be *o*-continuous linear functional if $o - \lim a_n = a$ implies $\bar{a}(a_n) \rightarrow \bar{a}(a)$.

It is easy to see that if a is an o-continuous linear functional on R, then

$$\sup_{0 \leq b \leq |a|} |\bar{a}(b)| < +\infty \quad \text{for all} \quad a \in R \,.$$

The totality of o-continuous linear functionals is denoted by \overline{R} and is called an order-conjugate space of R. Since R is reduced to 0 in some occasion, we assume that R is not trivial in the sense that for every $a \neq 0$, there exists $\overline{a} \in \overline{R}$ with $\overline{a}(a) \neq 0$.

 $a \ge \overline{b}$ means that $\overline{a}(a) \ge \overline{b}(a)$ for all $a \ge 0$.

By this order, \overline{R} is a complete vector lattice. In the sequel, we assume that R is not trivial. A subset Γ of R is equi-continuous if for $\overline{a}_n \downarrow 0$, $\overline{a}_n \in \overline{R}$ and $\varepsilon > 0$, there exists a natural number n_0 with

$$\bar{a}_{n_a}(|a|) \leq \varepsilon$$
 for all $a \in \Gamma$.

By definition, if Γ is an equi-continuous subset of R, then $N[\Gamma] = \{b; |b| \leq |a| \text{ for some } a \in \Gamma\}$ is also an equi-continuous subset. It is known that Γ is equi-continuous iff Γ is relative compact by the weak topology induced by \overline{R} .

For $[P_n] \downarrow 0$ and $a \in R$, $a[P_n](a) = a([P_n]a)$ is also o-continuous linear functional for all n and $a[P_n] \downarrow 0$.

§4. Vitali's theorem

Vitali's theorem for summable functions can be formulated as follows in the case of vector lattices.

THEOREM 1. Let $a_n \in R$ $(n=1, 2, \cdots)$ be an equi-continuous sequences and $\bigotimes -\lim_{n \to \infty} a_n = a$. Then, a_n is weakly convergent to a (i.e. $\bar{a}(a_n) \to \bar{a}(a)$ for all $\bar{a} \in \bar{R}$).

PROOF. Let $[p_n] \downarrow \downarrow 0$ and $0 \leq a \in \vec{R}$. We shall prove that we can find

134

a natural number n_0 such that

$$\bar{a}([p_n]|a_m|) \leq \varepsilon \quad \text{for} \quad n \geq n_0 \quad \text{and} \quad m = 1, 2, \cdots$$

If not, we find $\varepsilon > 0$ and $m_{\nu} \leq m_{\nu+1} \leq \cdots$ and $n_{\nu} \leq n_{\nu+1} \leq \cdots \text{such}^{\tau}$ that

$$\bar{a}([p_{n_{\nu}}]|a_{m_{\nu}}|) \geq \varepsilon \qquad \nu = 1, 2, \cdots.$$

By assumption, there exists a subsequence $[q_{\nu}]$ of $[p_{n\nu}](\nu=1, 2, \cdots)$ orderconvergent to 0 such that

$$\bar{a}([q_{\nu}]|a_{m_{\nu}}|) \geq \varepsilon.$$

This contradicts to the equi-continuity of $\Gamma = \{a_n\}$.

We shall prove that $s = 0 - \lim a_n = a$ implies $\bar{a}(a_n) \rightarrow \bar{a}(a)$.

If not, there exists $n_{\nu}(\nu=1, 2, \cdots)$ such that

 $|\bar{a}(a_{n_{\nu}}-a)| \ge \varepsilon$ for some $\varepsilon > 0$.

By assumption, we find a subsequence of $\{a_{n_{\nu}}\}$ order-convergent to a. This is a contradiction, since \bar{a} is continuous by order-convergence.

Let $\circledast -\lim_{n \to \infty} a_n = a$. There exists $[a] \ge [p_m] \downarrow \downarrow 0$ such that

$$s-o-\lim_{n\to\infty} (\mathbf{I}-[p_m]) a_n = (\mathbf{I}-[p_m]) a$$
.

Hence, choosing m such that $|\bar{a}([p_m](a_n-a)| < \varepsilon$, we have

$$|\bar{a}(a_n) - \bar{a}(a)| \leq |\bar{a}([p_m](a_n - a))| + |\bar{a}((\mathbf{I} - [p_m])(a_n - a))| \leq 2\varepsilon$$

for sufficient large n.

This proves Theorem 1.

COROLLARY. Let $\circledast -\lim_{n \to \infty} a_n = a$. $\{a_n\}$ is weakly convergent to a if and only if $\{a_n\}$ is equi-continuous.

§ 5. |w|-convergence.

By definition,

 $|w| - \lim_{n \to \infty} a_n = a$ iff $\lim_{n \to \infty} \bar{a}(|a_n - a|) = 0$ for all $\bar{a} \in \bar{R}$. $|w| - \lim_{n \to \infty} a_n = a$ implies that a_n is weakly convergent to a. But, in general the converse is not true.

THEOREM 2. Under the assumption of Theorem 1, we have

$$|w| - \lim_{n \to \infty} a_n = a.$$

PROOF. If $\{a_n\}$ is equi-continuous, then $\{x_n\}$ is equi-continuous where $x_n = |a_n - a|$. We see easily

$$\circledast - \lim_{n \to \infty} a_n = a \quad \text{iff} \quad \circledast - \lim_{n \to \infty} x_n = \circledast - \lim_{n \to \infty} |a_n - a| = 0 .$$

S. Koshi

By Theorem 1, $\{x_n\}$ is weakly convergent to 0. But this means that

$$|w| - \lim_{n \to \infty} a_n = a \, .$$

REMARK. If R is a space of summable functions defined on a finite measure space, under the assumption of Theorem 1, we have $\lim_{n\to\infty} ||a_n-a||=0$ by Theorem 2.

Department of Mathematics Hakkaido University

References.

- [1] H. NAKANO: Modulared semi-ordered linear spaces, Maruzen, Tokyo, 1950.
- [2] I. NATANSON: Theory of functions of a real variable, (English translation) Ungar, New York, 1955.

(Received August 20, 1971)

136