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\S 1. Introduction

Let $\Omega$ be a measure space with finite measure $\mu$ . Then, Vitali’s theorem
announces: let $f_{n}(n=1,2, \cdots)$ be a sequence of summable functions on $\Omega$

with equi-absolutely continuous integrals and $f_{n}$ converges to $f$ in measure.
Then,

$\lim_{n\rightarrow\infty}\int_{\rho}f_{n}d\mu=\int_{0}fd\mu$ .

In this note, we shall generalize the Vitali’s theorem to vector lattices.

\S 2. Convergences in vector lattices.

Let $R$ be a a-complete vector lattice $i.e.\bigcap_{n=1}a_{n}\infty$ exists for every positive

elements $0\leqq a_{n}\in R(n=1,2, \cdots)$ . In the sequel, we assume that $R$ is $\sigma-$

$\infty$

complete. For $a_{n}\in R(n=1,2, \cdots),$ if $\bigcap_{m\subset 1}(\bigcup_{n\geq m}a_{n})and\bigcup_{m=1}(\bigcap_{n\geq m}a_{n})$ exist and equal

to a, then we denote that
$o-\lim_{n\rightarrow\infty}a_{n}=a$ .

In this case, we say that the sequence $\{a_{n}\}$ is order-convergent to $a$. It is

easy to see that o-$\lim a_{n}=a$ ffl there exist $b_{n}\downarrow 0(i.e. b_{1}\geqq b_{2}\geqq\cdots with\bigcap_{n=1}b_{n}=0)$

such that
$|a_{n}-a|\leqq b_{n}$

where $|x|=x\cup(-x)=x^{+}+x^{-}$ for $x\in R$ .
We shall define star-order-convergence as follows: a sequence $a_{n}(n$

$=1,2,$ $\cdots$ ) is said to be star-order-convergent to $a$ if for every subsequence
of $\{a_{n}\}$ , there exists its subsequence which is order-convergent to $a$ . We
shall denote

$s-0-\lim a_{n}=a$

if $a$. $(n=1,2, -)$ is star-order-convergent to $a$.
For a subset $M$ of $R$ , we denote $M^{\perp}=$ {$a:|a|\cap|b|=0$ for all $b\in M$}.
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If we can decompose $a\in R$ into as follows:
(A) $a=a_{1}+a_{2}$

with $a_{1}\in M$ and $a_{2}\in M^{\perp}$ , then $M$ is called normal.
If $M$ is normal, then $M=M^{\perp\perp}$ and the decomposition $(A)$ of $a$ is

uniquely determined. Namely,

$a=a_{1}+a_{2}$ , $a=a_{1}^{\prime}+a_{2}^{\prime}$ , $a_{1},$
$a_{1}^{\prime}\in M$ , $a_{2},$

$a_{2}^{\prime}\in M^{\perp}$

imply $a_{1}=a_{1}^{\prime}$ and $a_{2}=a_{2}^{\prime}$ .
We see that the operator $[M]a=a_{1}$ is linear and lattice-homomorphic. $[M]$

is called a projection operator.
The normal subsets of $R$ (or equivalently projection operators) constitutes

a Boolean lattice by the usual order.
Let $R$ be $\sigma$-complete. For $0\leqq p\in R$ , the subset $\{p\}^{\perp\perp}$ is normal and

$[\{p\}^{\perp\perp}]a=$ (denoted by $[p]a)=\bigcup_{n=1}^{\infty}(np\cap a)$ for $a\geqq 0$ .
In general, $[p]a=[p]a^{+}-[p]a^{-}$ .

$\{[N];[p]\geqq[N]\}$ is a-complete as a Boolean lattice and for every $[N]$

with $[p]\geqq[N]$ there exists $q\in R$ with $[N]=[q]$ .
For arbitrary $p\in R,$ $[p]=[|p|]$ .

Let $[p_{n}]$ be a sequence of projection operators. $[P_{n}]$ is order-convergent to $0$

$\infty$

$if\bigcap_{m=1}(\bigcup_{n\geq m}P_{n})=0,$
$i.e$ . there exists $[Q_{n}]\geqq[P_{n}]$ with $[Q_{1}]\geqq[Q_{2}]\geqq\cdots and\bigcap_{n=1}[Q_{n}]=0$ .

We shall write $[P_{n}]\downarrow 0$ if $[P_{1}]\geqq[P_{2}]\geqq\cdots$ and $\bigcap_{n=1}[P_{n}]=0$ .
We shall denote $[P_{n}]\downarrow\downarrow 0$ if for every subsequence of $[P_{n}]$ there exists

its subsequence order-convergent to $0$ .
Now, we shall consider a special convergence in a a-complete vector

lattice.
We shall denote

$O*-\lim_{n\rightarrow\infty}a_{n}=a$

if there exists $[P_{m}]\downarrow\downarrow 0$ such that $(I-[P_{m}])a_{n}$ is star-order-convergent to
$(I-[P_{m}])a(m=1,2, \cdots)$ . In the case of $L_{1}$-space (the totality of summable
functions) $f_{n}\rightarrow f$ (in measure) implies $f_{n}\rightarrow f$ (in above sense).

It is easy to see that if $C*-$ $\lim_{n\rightarrow\infty}a_{n}=a$, then there exists $[p_{m}]\downarrow\downarrow 0$ such
that $p.\in R(m=1,2, \cdots)$ and $(I-[p_{m}])a_{n}$ is star-order-convergent to $(I-[p_{m}])a$

for all $m=1,2,$ $\cdots$ .
We see easily $[p_{n}]\downarrow 0$ and $[q_{n}]\downarrow 0$ imply $[p_{n}]\cup[q_{n}]\downarrow 0$ . Hence, we see
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that if $O*-\lim_{n\rightarrow\infty}a_{n}=a$ and $C\star-\lim_{n\rightarrow\infty}b_{n}=b$ , then

$O*-\lim_{n\rightarrow\infty}(a_{n}+b_{n})=O*-\lim_{n\rightarrow\infty}a_{n}+O*-\lim_{n\rightarrow\infty}b_{n}$ ,

$O*-\lim_{n\rightarrow\infty}(a_{n}\cup b)=a\cup b$ , $O*$- $\lim(a_{n}\cap b)=a\cap b$ ,

$O*-\lim_{n\rightarrow\infty}|a_{n}-a|=0$ .

\S 3. Equi-continuous subsets

Let $a$ be a linear functional on R. $a$ is said to be o-continuous linear

functional if $0$– $\lim a_{n}=a$ implies $a(a_{n})\rightarrow a(a)$ .
It is easy to see that if $a$ is an o-continuous linear functional on $R$ ,

then
$\sup_{0\leq b\leqq|a|}|a(b)|<+\infty$ for all $a\in R$ .

The totality of o-continuous linear functionals is denoted by $\overline{R}$ and is called
an order-conjugate space of $R$ . Since $R$ is reduced to $0$ in some occasion,
we assume that $R$ is not trivial in the sense that for every $a\neq 0$ , there
exists $a\in\overline{R}$ with $a(a)\neq 0$ .
$\overline{a}\geqq\overline{b}$ means that $a(a)\geqq\overline{b}(a)$ for all $a\geqq 0$ .

By this order, $\overline{R}$ is a complete vector lattice. In the sequel, we assume
that $R$ is not trivial. $A$ subset $\Gamma$ of $R$ is equi-continuous if for $a_{n}\downarrow 0,$ $a_{n}\in\overline{R}$

and $\epsilon>0$, there exists a natural number $n_{0}$ with
$ a_{n_{0}}(|a|)\leqq\epsilon$ for all $ a\in\Gamma$ .

By definition, if $\Gamma$ is an equi-continuous subset of $R$ , then $N[\Gamma]=\{b$ ;
$|b|\leqq|a|$ for some $ a\in\Gamma$} is also an equi-continuous subset. It is known that

$\Gamma$ is equi-continuous ffl $\Gamma$ is relative compact by the weak topology induced
by $\overline{R}$ .

For $[P_{n}]\downarrow 0$ and $a\in R,$ $a[P_{n}](a)=a([P_{n}]a)$ is also o-continuous linear
functional for all $n$ and $a[P_{n}]\downarrow 0$ .

\S 4. Vitali’s theorem

Vitali’s theorem for summable functions can be formulated as follows
in the case of vector lattices.

THEOREM 1. Let $a_{n}\in R(n=1,2, \cdots)$ be an equi-continuous sequences
and $O*$ -lim $a_{n}=a$. Then, $a_{n}$ is weakly convergent to a $(i.e$. $ae(a_{n})\rightarrow a(a)$

$ n\rightarrow\infty$

for all $a\in R$).

PROOF. $Let[p_{n}]\downarrow\downarrow 0$ and $0\leqq a\in\overline{\hat{R}}$ . We shall prove that we can find
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a natural number $n_{0}$ such that
$\overline{a}([p_{n}]|a_{m}|)\leq\epsilon$ for $n\geqq n_{0}$ and $m=1,2,$ $\cdots$ .

If not, we find $\epsilon>0$ and $ m_{\nu}\leqq m_{\nu+1}\leqq\cdots$ and $n_{\nu}\leqq n_{\nu+1}\leqq\cdots such^{\leftarrow}that$

$ a([p_{n_{\nu}}]|a_{m_{\nu}}|)\geqq\epsilon$ $\nu=1,2,$ $\cdots$ .
By assumption, there exists a subsequence $[q_{\nu}]$ of $[p_{n\nu}](\nu=1,2, \cdots)$ order-

convergent to $0$ such that
$ a([q_{\nu}]|a_{m_{\nu}}|)\geqq\epsilon$ .

This contradicts to the equi-continuity of $\Gamma=\{a_{n}\}$ .
We shall prove that $s-O$- $\lim a_{n}=a$ implies $a(a_{n})\rightarrow a(a)$ .
If not, there exists $n_{\nu}(\nu=1,2, \cdots)$ such that

$|a(a_{n_{\nu}}-a)|\geqq\epsilon$ for some $\epsilon>0$ .
By assumption, we find a subsequence of $\{a_{n_{\nu}}\}$ order-convergent to $a$ .

This is a contradiction, since $a$ is continuous by order-convergence.
Let $O*-\lim_{n\rightarrow\infty}a_{n}=a$. There exists $[a]\geqq[p_{m}]\downarrow\downarrow 0$ such that

$s-0-\lim_{n\rightarrow\infty}(I-[p_{m}])a_{n}=(I-[p_{m}])a$ .

Hence, choosing $m$ such that $|a([p_{m}](a_{n}-a)|<\epsilon$ , we have
$|a(a_{n})-a(a)|\leqq|a([p_{m}](a_{n}-a))|+|\sigma((I-[p_{m}])(a_{n}-a))|\leqq 2\epsilon$

for sufficient large $n$ .
This proves Theorem 1.
COROLLARY. Let $O*-\lim_{n\rightarrow\infty}a_{n}=a$. $\{a_{n}\}$ is weakly convergent to a $\iota f$

and only $\iota f\{a_{n}\}$ is equi-continuous.

\S 5. $|w|$ -convergence.

By definition,
$|w|-\lim_{n\rightarrow\infty}a_{n}=a$ ffl $\lim_{n\rightarrow\infty}a(|a_{n}-a|)=0$ for all $a\in\overline{R}$ . $|w|-\lim_{n\rightarrow\infty}a_{n}=a$ implies

that $a_{n}$ is weakly convergent to $a$. But, in general the converse is not true.
THEOREM 2. Under the assumption of Theorem 1, we have

$|w|-\lim_{n\rightarrow\infty}a_{n}=a$.
PROOF. If $\{a_{n}\}$ is equi-continuous, then $\{x_{n}\}$ is equi-continuous where

$x_{n}=|a_{n}-a|$ . We see easily

$C*-\lim_{n\rightarrow\infty}a_{n}=a$ iff $O*-\lim_{n\rightarrow\infty}x_{n}=O*-\lim_{n\rightarrow\infty}|a_{n}-a|=0$ .
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By Theorem 1, $\{x_{n}\}$ is weakly convergent to $0$ . But this means that

$|w|-\lim_{n\rightarrow\infty}a_{n}=a$ .

REMARK. If $R$ is a space of summable functions defined on a finite
measure space, under the assumption of Theorem 1, we have $\lim_{n\rightarrow\infty}\Vert a_{n}-a\Vert=0$

by Theorem 2.
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