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\S 0. Introduction.

The purpose of the present paper is to investigate the property of
a Riemannian space which admits a scalar field $\Phi$ characterised by the
property

$(0.1)$ $\Phi_{k;l}=\rho\Phi g_{kl}$ , $\rho=non$-zero constant,

(such a scalar field $\Phi$ is called the special concircular scalar field in this
def

paper) where $\Phi_{k}=\Phi_{;k}$ and $q_{kl}$ means the metric tensor of the space. In \S 1,
we consider a Riemannian space with certain special curvature tensor, and
prove the property that the space is of constant curvature. Next, in \S 2,
we give some corollaries of it.

The author wishes to express to Prof. Y. Katsurada and Dr. T. Nagai
his very sincere thanks for their kind guidance.

\S 1. Riemannian space with certain special curvature tensor.

We suppose an $n$-dimensional Riemannian space $M(n\geqq 3)$ of class
$C^{r}(r\geqq 3)$ which has local coordinates $x^{i}$ and admits the special concircular
scalar field $\Phi$ defined by the equation $(0.1)$ . First, substituting the relation
obtained from $(0.1)$ into the Ricci identity

$2\Phi_{i;[j;k]}=-R^{a_{ijk}}\Phi_{a}$ ,
we have
(1. 1) $\rho(\Phi_{k}g_{if}-\Phi_{j}g_{ik})=-R^{a_{ijk}}\Phi_{a}$ ,

from which, by covariant differentiation with respect to $x^{l}$ ,

$\rho(\Phi_{k;l}g_{ij}-\Phi_{j;l}g_{ik})=-R^{a_{ijk;l}}\Phi_{a}-R^{a_{ijk}}\Phi_{a;l}$ ,

and consequently, inserting the relation $(0.1)$ , we obtain

(1. 2) $\rho\Phi\{\rho(g_{kl}q_{ij}-g_{jl}g_{ik})+R_{lijk}\}=-R^{a_{ljk;l}}\Phi_{a}$ .
Moreover, on differentiating (1. 2) covariantly with respect to $x^{h}$ , we have
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$\rho\Phi_{h}\{\rho(g_{kl}g_{ij}-g_{jl}g_{ik})+R_{lijk}\}+\rho\Phi R_{lijk;h}$

$=-R^{a_{ijk;l;h}}\Phi_{a}-R^{a_{ijk;l}}\Phi_{a;h}$ ,

and inserting the values of $\Phi_{i;j}$ given by $(0.1)$ we obtain

$\rho\Phi_{h}\{\rho(g_{kl}g_{ij}-g_{jl}g_{ik})+R_{lij.Ii}\}$

(1. 3)
$=-R_{ijk;\iota;h}^{a}\Phi_{a}-\rho\Phi(R_{lijk;h}+R_{hijk;\iota})$ ,

so that multiplying the expression (1. 3) by $\Phi^{h}$ and summing with respect
to $h$ we get

$\rho(\Phi_{h}\Phi^{h})\{\rho(q_{kl}g_{ij}-g_{jl}g_{ik})+R_{u_{jk}}\}$

(1. 4)
$=-R^{a_{ljk;l;h}}\Phi_{a}\Phi^{h}-\rho\Phi(R_{lijk;h}+R_{hljk;l})\Phi^{h}$

Also, multiplying both sides of (1. 3) by $\Phi^{l}$ and summing with respect to $l$

we have
$\rho\Phi_{h}\{\rho(\Phi_{b}g_{ij}-\Phi_{j}g_{ik})+R_{lijk}\Phi^{l}\}$

$=-R^{a_{ijk;l;h}}\Phi_{a}\Phi^{l}-\rho\Phi(R_{lijk;h}+R_{hljk;l})\Phi^{l}$ .
From (1. 1), it is evident that the left hand side of these equations are equal
to zero, and consequently we get

$-R^{a_{ifk;l;/\iota}}\Phi_{a}\Phi^{l}-\rho\Phi(R_{lijk;h}+R_{hijk;l})\Phi^{l}=0$ ,

from which, by interchanging the indices $h$ and $l$, we obtain
(1. 5) $-R^{a_{ijk;h;l}}\Phi_{a}\Phi^{h}-\rho\Phi(R_{hifk;l}+R_{lijk;h})\Phi^{h}=0$ .
And subtracting from (1. 4) the equation (1. 5), we find

$\rho(\Phi_{h}\Phi^{h})\{\rho(g_{kl}g_{ij}-g_{jl}g_{ik})+R_{lijk}\}$

(1. 6)
$=(R^{a_{ijk;h;l}}-R^{a_{ijk;l;h}})\Phi_{a}\Phi^{h}$

Suppose that our space has the curvature tensor satisfying $R^{a_{ljk;\mathfrak{c}h;l\tilde{\lrcorner}}}=0$

([2], p. 222). Then, $\rho$ defined by $(0.1)$ being different from zero, the equa-
tion (1. 6) can be written as follows:

(1. 7) $(\Phi_{h}\Phi^{h})\{\rho(g_{kl}g_{if}-q_{jl}g_{ik})+R_{lijk}\}=0$ .

We assume, moreover, that there exists no open set $U$ such that $\Phi=con-$

stant at any point of it. And then it follows that there exists no open set
$V$ such that $\Phi_{i}=0$ at any point of it. Under these assumptions, from (1. 7),
we obtain the following relation:

$R_{lijk}=\rho(g_{lj}g_{ik}-g_{lk}g_{ij})$ ,
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that is, our space is of constant curvature. Hence we have the following
THEOREM. Let $M$ be a Riemannian space of dimension $n$ which has

the curvature tensor satisfying

(1. 8) $R_{hijk;[l;m]}=0$

and admits the special concircular scalar field $\Phi$ defined by $(0.1)$ . Then
$M$ is of constant curvature.

\S 2. Some corollaries.

Suppose that a Riemannian space $M$ is symmetric. Then it is evident
that the condition (1. 8) is satisfied. Therefore we have

COROLLARY 1. Let $M$ be a symmetric Riemannian space which admits
the special concircular scalar field $\Phi$ . Then $M$ is of constant curvature.
([1])

Next we consider an n-dimensional Einstein space $M(n>2)$ which has
the scalar curvature $R\neq 0$ and admits a proper conformal Killing vector field
$\xi$ , that is, $\xi$ satisfies an equations:

(2. 1) L $g_{ij}$

\’e

$\equiv\xi_{i;j}+\xi_{j;l}=2\phi g_{lj}$ ([2], p. 32) ,

where L $g_{ij}$

\’e
means the Lie derivative of the metric tensor $g_{lf}$ with respect

to $\xi^{l}$ . Then the Lie derivative of the curvature tensor $R_{ijk}^{h}$ with respect to
the conformal Killing vector field $\xi^{i}$ is given by

(2. 2) $\ovalbox{\tt\small REJECT} R_{ljk}^{h}=\delta_{j}^{h}\phi_{i;k}-\delta_{k}^{h}\phi_{i;f}+g_{ik}\phi_{;j}^{h}-g_{f}\phi_{;k}^{h}$ , ([2], p. 160)
$\xi$

def def
where $\phi_{t}=\phi_{;i},$ $\phi^{l}=q^{ij}\phi_{j}$ and $\delta_{j}^{h}$ is the Kronecker delta. Since $M$ is an
Einstein space, we have

(2. 3) $R_{ij}=\frac{R}{n}g_{ij}$ $(R=constant)$ ,

where $R_{tj}$ is the Ricci tensor and $R$ the scalar curvature. On making use
of (2. 2) and (2. 3), after some calculations we obtain the following result:

(2. 4) $\phi_{i;j}=-\frac{R}{n(n-1)}\phi g_{lj}$

and, remembering the round brackets of (2. 3) and the assumption $R\neq 0$ , we
have $-=non\underline{R}$-zero constant.

$n(n-1)$

From (2. 4) we can see that the Einstein space $M$ admitting the proper
conformal Killing vector field $\xi^{i}$ must always admit the scalar field $\phi$ , which
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is the special concircular scalar field. Hence we have the following corollary:
COROLLARY 2. Let $M$ be an n-dimensional Einstein space $(n>2)$ which

has the scalar curvature $R\neq 0$ , the curvature tensor such that $R_{hijk;[l;m]}=0$

and admits a proper conformal Killing vector field $\xi^{i}$ . Then $M$ is of con-
stant curvature.

On the other hand, multiplying both sides of (1. 6) by $g^{lf}$ and summing
with respect to $i$ and $j$, we get

$\rho(\Phi_{h}\Phi^{h})\{\rho(n-1)g_{kl}+R_{kl}\}=(R_{ak;h;l}-R_{ak;l;h})\Phi^{a}\Phi^{h}$

When we think of the vecter field $\Phi_{h}$ as being provided with the assumption
with respect to $\Phi$ in the manner described in \S 1, we have the following

PROPOSITION. Let $M$ be a Riemannian space of dimension $n$ which
has the Ricci tensor such that
(2. 5) $R_{ak;[h;l]}=0$

and admits the special concircular scalar field $\Phi$ . Then $M$ is an Einstein
space.

Now, suppose that a Riemannian space $M$ is Ricci symmetric (definded
by $R_{if;k}=0$). Then it is evident that the condition (2. 5) is satisfied, and so
that we obtain

COROLLARY. Let $M$ be a Ricci symmetric space of dimension $n$ ad-
mitting a special concircular scalar field $\Phi$ . Then $M$ is an Einstein space.
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