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\S 1. Introduction

Sazonov has shown that a cylinder set measure $\mu$ on the Hilbert space
$H$ is countably additive ffl $\mu$ is continuous relative to the nuclear topology.
In this note, we shall show that this fact is true in countable Hilbert spaces.
For this purpose, we shall define the nuclear topology in countable Hilbert
spaces.

Throughout this note, we shall suppose that Hilbert spaces and counta-
ble Hilbert spaces are separable with real coefficients.

Let $\Phi$ be a countable Hilbert space and $(\varphi, \psi)_{n}(n=1,2, \cdots)$ be its scalar
products, $\Phi_{n}$ be the completion of $\Phi$ with respect to $(\varphi, \psi)_{n}$ .

Let $\mathfrak{S}_{n}$ denote the family of all positive definite nuclear operators in $\Phi_{n}$ .
The class of sets $\{[\varphi\in\Phi;(T\varphi, \varphi)_{n}<1]T\in \mathfrak{S}_{n}\}(n=1, 2, )$ defines a system of
neighborhoods at the origin for a certain topology. We shall call this
topology the nuclear topology.

Now we introduce a condition for the countable additivity of measures
on the cylinder sets in adjoint spaces of countable Hilbert spaces.

THEOREM 1. $(c.f. [1], [2].)$

If $\mu$ is a countably additive cylinder set measure on the adjoint space
$\Phi^{*}$ of a countable Hilbert space $\Phi$ , then for any $\epsilon>0$ there is a ball $S_{n}(R)$

$=\{\Vert F\Vert_{-n}\leqq R\}$ such that the $\mu$-measure of its complement is less than $\epsilon$ .
THEOREM 1’. $(c.f. [1], [2].)$

Suppose that $\mu$ is a cylinder set measure on the adjoint space $\Phi^{*}$ of
a countable Hilbert space $\Phi$ . If for any $\epsilon>0$ there is a ball $S_{n}(R)$ in $\Phi^{*}$

such that the measure of any cylinder set lying outside $S_{n}(R)$ is less than
$\epsilon$ , then $\mu$ is countably additive.

Next we introduce the most important lemma for the proof of our main
theorem.

LEMMA (Minlos). $(c.f. [1], [2].)$

Let $\mu$ be a cylinder set measure on the adjoint space $\Phi^{*}=\bigcup_{n=1}\Phi_{n}^{*}$ of
a countable Hilbert space $\Phi=\bigcap_{n-- 1}\Phi_{n}$ . Let $Q$ be an ellipsoid in the Hilbert
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space $\Phi_{n}^{*}$ such that the sum of the squares of its principal semiaxes is equal
to $H^{2}$ , and the measure of any half space in $\Phi^{*}$ , not containing $Q$ , is less
than $\epsilon$ . If $S_{n}(R)=\{\Vert F\Vert_{-n}\leqq R\}$ is any ball in $\Phi_{n}^{*}$ containing $Q$ , then the

measure of any cylinder set $Z$, lying outside $S_{n}(R)$ , is less than $c(\epsilon+\frac{H^{2}}{R^{2}})$ ,

where $C$ is the absolute constant.

\S 2. Main theorem

In this section, we shall prove the following theorem.
THEOREM A. In order that a cylinder set measure $\mu$ on the adjoint

$\infty$

space $\Phi^{*}=\bigcup_{n=1}\Phi_{n}^{*}$ of a countable Hilbert space $\Phi=\bigcap_{n=1}\Phi_{n}$ is countably additive,

it is necessary and sufficient that $\mu$ is continuous relative to the nuclear
topology.

The continuity of $\mu$ means the following: For any $\epsilon>0$ there exist
$\delta>0,$ $n$ and positive definite nuclear operator $T$ in $\Phi_{n}$ such that the
inequality $(T\varphi, \varphi)_{n}\leqq\delta$ implies that $\mu(\Gamma_{\varphi})\leqq\epsilon$ , where $\Gamma_{\varphi}$ denotes the strip
defined by $|F(\varphi)|\geqq 1$ .

PROOF. First we prove the necessity of the condition. Suppose that
$\mu$ is countably additive. By Theorem 1, for any $\epsilon>0$ there is a ball $S_{n}(R)$

$=\{\Vert F\Vert_{-n}\leqq R\}$ such that the measure of its complement is less than $\frac{\epsilon}{2}$

We define $T$ by setting

$(T\varphi, \varphi)_{n}=\int_{s_{n}(R)}|F(\varphi)|^{2}d\mu(F)$ .

Obviously $T$ is a positive definite operator in $\Phi_{n}$ . To show that it is
nuclear, we note that for any orthonormal basis $\{\varphi_{k}\}$ in $\Phi_{n}$ one has

$\sum_{k=1}^{\infty}(T\varphi_{t}, \varphi_{k})_{n}=\int_{S_{n}(R)}\sum_{k=1}^{\infty}|F(\varphi_{k})|^{2}d\mu(F)$

$=\int_{S_{h}(R)}\Vert F||_{-n}^{2}d\mu(F)\leqq R^{2}$

In other words, the series $\sum_{k=1}^{\infty}(T\varphi_{k}, \varphi_{k})_{n}$ converges for any orthonormal basis
$\{\varphi_{k}\}$ in $\Phi_{n}$ . It follows that $T$ is a nuclear operator in $\Phi_{n}$ .

Now consider any element $\varphi$ such that $(T\varphi, \varphi)_{n}\leqq\frac{\epsilon}{2}$ , and let us estimate

the measure of the strip $\Gamma_{\varphi}$ defined by $|F(\varphi)|\geqq 1$ . Obviously
$\mu(\Gamma_{\varphi})=\mu(\Gamma_{\varphi}^{\prime})+\mu(\Gamma_{\varphi}^{\prime\prime})$

where $\Gamma_{\varphi}^{\prime}$ is that part of $\Gamma_{\varphi}$ contained in the ball $S_{n}(R)$ , and $\Gamma_{\Phi}^{\prime\prime}$ is that part
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lying outside $S_{n}(R)$ . In view of the choice of $S_{n}(R)$ we have $\mu(\Gamma_{\Phi}^{\prime\prime})\leqq\frac{\epsilon}{2}$ .
On the other hand, from the inequality $|F(\varphi)|\geqq 1$ , which holds for all
$F\in\Gamma_{\varphi}$ and therefore for all FE $\Gamma_{\varphi}^{\prime}$, it follows that

$\mu(\Gamma_{\varphi}^{\prime})=\int_{\Gamma_{\varphi}^{\prime}}d\mu(F)\leqq\int_{r_{\varphi}^{\prime}}|F(\varphi)|^{2}d\mu(F)$

$\leqq\int_{s_{n}(R)}|F(\varphi)|^{2}d\mu(F)=(T\varphi, \varphi)_{n}\leqq\frac{\epsilon}{2}$ .

Hence $\mu(\Gamma_{\varphi})\leqq\epsilon$ .
Thus we have the assertion.
Next we prove the sufficiency of the condition. Suppose that $\mu$ is

continuous relative to the nuclear topology. By Theorem 1’, to prove the
countable additivity of $\mu$ it suffices to show that for any $e>0$ one can find
$n$ and $R$ such that the measure of any cylinder set lying outside the ball
$S_{n}(R)=\{\Vert F\Vert_{-n}\leqq R\}$ is less than $\epsilon$ .

Since $\mu$ is continuous relative to the nuclear topology, for any $\epsilon>0$ there
exist $n,$ $a>0$ and positive definite nuclear operator $T$ in $\Phi_{n}$ such that

$\mu\{|F(\varphi)|\geqq 1\}<\frac{\epsilon}{2C}$ for $\varphi\in U=\{(T\varphi, \varphi)_{n}^{g}<a\}$

where $C$ is the same constant in Lemma (Minlos).

Case 1. Let $T$ be the strictly positive definite nuclear operator. In
this case, $\Vert\varphi\Vert_{n}^{T}=(T\varphi, \varphi)^{\frac{1}{n2}}$ is a Hilbertian norm. Putting $\rho=\frac{1}{a}$, there exists
a ball $S_{n}^{T}(\rho)=\{\Vert F\Vert_{-n}^{T}\leqq\rho\}$ such that the measure of any half space in $\Phi^{*}$

which does not intersect $S_{n}^{T}(\rho)$ has measure less than $\frac{\epsilon}{2C}$ Let $\Phi_{n}^{r}$ be the
completion of $\Phi$ with respect to $\Vert\varphi\Vert_{n}^{T}$. Let $j$ be a canonical mapping of $\Phi_{n}$

into $\Phi_{n}^{r}$. Since $T$ is a nuclear operator, $j$ is a Hilbert-Schmidt operator of
$\Phi_{n}$ into $\Phi_{n}^{T}$. Therefore its adjoint $j^{*}$ is a Hilbert-Schmidt operator of $(\Phi_{n}\gamma*$

into $\Phi_{n}^{*}$ . Thus $j^{*}S_{n}^{T}(\rho)$ is an ellipsoid, and the sum of the squares of its
principal semiaxes is finite.

Let $H^{2}$ be denote the sum of the squares of the principal semiaxes of
the ellipsoid $j^{*}S_{n}^{T}(\rho)$ in $\Phi_{n}^{*}$ , and choose $R$ so large that the ball $S_{n}(R)$ in $\Phi_{n}^{*}$

contains the ellipsoid $j^{*}S_{n}^{T}(\rho)$, and also $\frac{H^{2}}{R^{2}}\leqq\frac{\epsilon}{2C}$ . By Lemma (Minlos), for
any cylinder set $Z$ in $\Phi^{*}$ lying outside $S_{n}(R)$ one has the estimate

$\mu(Z)\leqq c(\frac{\epsilon}{2C}+\frac{H^{2}}{R^{2}})\leqq\epsilon$ .
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Thus we have found a ball $S,$ $(R)$ such that the measure of any cylinder
set $Z$ which lies outside $S_{n}(R)$ has $\mu$-measure not exceeding the given value
$\epsilon>0$ . Hence Theorem 1’ implies that the measure $\mu$ is countably additive.

Case 2. Let $T$ be not necessarily strictly positive definite. In this case,
by considering its associated Hilbert space instead of $\Phi_{n}^{r}$, we can prove as
case 1. Q.E.D.

Let $\Phi$ be a countable Hilbert space and $\mu$ be a cylinder set measure
on the adjoint space $\Phi^{*}$ . We define the Fourier transform of $\mu$ as the
functional $\hat{\mu}(\varphi)$ defined on $\Phi$ by

$\hat{\mu}(\varphi)=\int e^{iF(\varphi)}d\mu(F)$ .

REMARK. In the above theorem, we can suppose that the nuclear
topology is metrizable. In this case, the following holds: $\mu$ is countably
additive ffl $\hat{\mu}(\varphi)$ is continuous relative to the nuclear topology.

In general case, in order that $\mu$ is countably additive, it is necessary
that $\hat{\mu}(\varphi)$ is continuous relative to the nuclear topology.

COROLLARY. In order that the Gaussian measure $\mu$ , defined in the
adjoint space $\Phi^{*}$ of a countable Hilbert space $\Phi$ by a continuous scalar
product $(\varphi, \psi)$, is countably additive, it is necessary and sufficient that there
exist $n$ and positive definite nuclear operator $T$ in $\Phi_{n}$ such that

$(\varphi, \psi)=(T\varphi, \psi)_{n}$ for all $\varphi,$
$\psi\in\Phi$ .

PROOF. First we prove the necessity of the condition. Suppose that

$\mu$ is countably additive. By the above Remark, $\hat{\mu}(\varphi)=\exp[-\frac{\Vert\varphi||^{2}}{2}]$ is con-

tinuous relative to the nuclear topology, and therefore $||\varphi||=(\varphi, \varphi)^{\frac{1}{z}}$ is con-
tinuous relative to the nuclear topology. From this, there exist $n,$ $C>0$ and
positive definite nuclear operator $S$ in $\Phi_{n}$ such that

$(\varphi, \varphi)\leqq C(S\varphi, \varphi)_{n}$ for all $\varphi\in\Phi$ .

From this, we can easily show that there exists a positive definite nuclear
operator $T$ in $\Phi_{n}$ such that

$(\varphi, \psi)=(T\varphi, \psi)_{n}$ for all $\varphi,$
$\psi\in\Phi$ .

Sufficiency is obvious. Q.E.D.

\S 3. Other theorem

The following theorem is well known.
THEOREM 2. Let $H_{1}$ and $H_{2}$ be Hilbert spaces, and let $T$ be a Hilbert-
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Schmidt operator of $H_{1}$ into $H_{2}$. Suppose that $\mu$ is a cylinder set measure,
satisfying the continuity condit.ion in $H_{1}$ . Then the measure in $H_{2}$ induced
by $T$ and $\mu$ is countably additive.

In countable Hilbert spaces, the above theorem is true in the following
sense. First we shall define Hilbert-Schmidt operators in countable Hilbert
spaces.

Let $\Phi$ and $\Psi$ be countable Hilbert spaces, and let $T$ be a continuous
linear operator of $\Phi$ into $\Psi$. If for any $m$ there exists $n$ such that operator
$T$ of $\Phi_{n}$ into $\Psi_{m}$ is a Hilbert-Schmidt operator in Hilbert spaces, we call
such operator $T$ the Hilbert-Schmidt operator in countable Hilbert spaces.

Then, we can prove the following theorem.
THEOREM B. Let $\Phi$ and $\Psi$ be countable Hilbert spaces, and let $T$ be

a continuous linear operator of $\Psi$ into $\Phi$ . Then the following three con-
ditions are equivalent.

(1) $T$ is a Hilbert-Schmidt operator of $\Psi$ into $\Phi$ .
(2) For any continuous cylinder set measure $\mu$ in $\Phi^{*}$ , the measure

$ T^{*}\mu$ in $\Psi^{*}$ induced by $T$ and $\mu$ is countably additive.
(3) Let $\mu_{n}$ be the Gaussian measure, defined in $\Phi^{*}$ by $(\varphi, \psi)_{n}^{\theta}$ , then for

any $n$ , the measure $T^{*}\mu_{n}$ in $\Psi^{*}$ induced by $T$ and $\mu_{n}$ is countably
additive.

PROOF. (1) $\Rightarrow(2)$

As in the proof of Theorem $A$ , from the continuity condition of $\mu$ , for
any $\epsilon>0$ there exists a ball $S_{m}(\rho)=\{\Vert F\Vert_{-m}\leqq\rho\}$ such that the measure of
any half space in $\Phi^{*}$ which does not intersect $S_{m}(\rho)$ is less than $\frac{\epsilon}{2C}$ Since
$T$ is a Hilbert-Schmidt operator of $\Psi$ into $\Phi$ , there exists $n$ such that $T$ is
a Hilbert-Schmidt operator of $\Psi_{n}$ into $\Phi_{m}$ , and therefore its adjoint $T^{*}$ is
a Hilbert-Schmidt operator of $\Phi_{m}^{*}$ into $\Psi_{n}^{*}$ . Then, $T^{*}S_{m}(\rho)$ is an ellipsoid
in $\Psi_{n}^{*}$ , and the sum of the squares of its principal semiaxes is finite. From
this, using Lemma (Minlos), we can easily show that $ T^{*}\mu$ is countably
additive.

(2) $\Rightarrow(3)$ is obvious.
(3) $\Rightarrow(1)$

Suppose that $T^{*}\mu_{m}$ is countably additive for any $m$ . Then, by the
Remark of Theorem $A$, its Fourier transform $ T^{*}\mu_{m}(\varphi)\wedge$ is continuous relative
to the nuclear topology. By easy caluculations, we have

$T^{*}\mu_{m}(\varphi)=\exp\wedge[-\frac{(T\varphi,T\varphi)_{n}^{\phi}}{2}]$
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where $(\varphi, \psi)_{m}^{\Phi}$ is a scalar product in $\Phi$ .
Therefore there exist $n,$ $C>0$ and positive definite nuclear operator $S$

in $\Psi_{n}$ such that
$(T\varphi, T\varphi)_{m}^{\phi}\leqq C(S\varphi, \varphi)_{n}^{F}$ for all $\varphi\in\Psi$ .

To show that $T$ is a Hilbert-Schmidt operator of $\Psi_{n}$ into $\Phi_{m}$ , we note
that for any orthonormal basis $\{\varphi_{k}\}$ in $\Psi_{n}$ one has

$\sum_{k=1}^{\infty}(T\varphi_{k}, T\varphi_{k})_{m}^{\Phi}\leqq C\sum_{k=1}^{\infty}(S\varphi_{k}, \varphi_{k})_{n}^{7}<\infty$ .

In other words, the series $\sum_{k=1}^{\infty}(T\varphi_{k}, T\varphi_{k})_{m}^{\Phi}$ converges for any orthonormal
basis $\{\varphi_{i}\}$ . It follows that $T$ is a Hilbert-Schmidt operator of $\Psi_{n}$ into $\Phi_{m}$ .
By definition, $T$ is a Hilbert-Schmidt operator of $\Psi$ into $\Phi$ . Q.E.D.
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