NOTE ON DECOMPOSITION SETS OF
SEMI-PRIME RINGS
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Introduction. As has been observed by Jacobson the set B=(A) of
all primitive ideals of a ring A may be made into a topological space
endowed with Stone’s topology, and recently, concerning topological pro-
perties of the structure space, Sulinski [8] obtained some structure theo-
rems of a semi-simple ring which is represented as a subdirect sum of
simple rings with unity. ,

In this note, we shall extend his results to semi-prime fings and
give necessary and sufficient conditions for a semi-prime ring to have
a minimal decomposition set.

8§ 1. First of all, we shall prove the following extension of .[1,
Theorem 1]. :

Lemma 1. Let T be an ideal of a ring A.

(1) If p ©s a prime ideal of A them T ~p is a prime ideal of the
ring T and 1f moreover p does not contain T then (p~T: T)X=np.

(2)? If p, is a prime ideal of the ring T, then there exists a prime
ideal p of A such that p~T =p, and, if p,== T, then (p,: T)=np.

Proof. (1) By [6, Lemma 2], T ~p is a prime ideal of the ring 7.
Assume that p does not contain 7. Then T:-(p~T: T)S p implies (p~T: T)
Cp and hence we have (p~T: T)=np.

(2) Let B be the ideal of A generated by p, and let « be an arbi-
trary element of B~T. Since xTxTx"TBTZp, and p, is a prime ideal
in T, x belongs to p,, and hence T~B=p,. The complement C of p, in
T is an m-system (in T whence) in A and does not meet B. By Zorn’s
lemma, there exists a prime ideal »p of A containing B such that p does
not meet C and satisfies T~p=p,. Moreover, if p;5= 7T then p can not
contain 7', and hence, by (1), we have (p,: T)=0p.

A ring A is called a semi-prime ring if it is isomorphic to a sub-
direct sum of prime rings, i.e., if there exist prime ideals p. (acAd) of

1) We shall denote by (p—~T: T) the set {a€ A; TaSp~T}.
2) Cf. [38] and [7]. ‘
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A such that N P.=

aE A
As is easily seen, the annihilator® of a non-zero ideal in a semi-prime

ring is always represented as the intersection of all prime ideals which
contain the annihilator. However, we have

Corollary 1. A nmon-zero ideal T of a semi-prime ring A is a prime
ring if and only if the ammihilator (0: T') is a prime ideal in A.

Let A be an arbitrary ring and let 2=%2(A) be the set of all prime
ideals of A other than A. For any non-empty subset %t of £, we define
the closure %t of M as the totality of those prime ideals p in < which
contains I(N), where I(N) denotes the intersection of all prime ideals
belonging to M. £ becomes a topological space relative to this closure
operation ! —>N, and is called the structure space of the ring A.

For the lower radical R=I(Q) of A, we set T*=(R:T) for any
ideal T of A. If A is semi-prime, then the lower radical R of A is
equal to 0 and hence T* coincides with the right annihilator 7(7') of T
as well as the left annihilator I(T") of T.

Lemma 2. Let A be a ring. Then, for any subset M of 2, we have
I)*=I(D—N)*.

In particular, we have I(M)* ~I(N)=R.

Proof. I(N)-I(Q—F)SIO) ~I[(Q—N)=IR)~I(2—R)=I(Q)=R.
Conversely, for any prime ideal pe 2 —N, we have I(R)-I (‘R)*CRCp and
hence I(N)* < p, thus I(M)* S I(Q—N).

Lemma 3. Let A be a ring and let p be in . Then the followzng
conditions are equivalent:

(1) p*~R.

@) p*=p.

(8) - {p} contains a mon-empty open subset N of L.

Moreover, if this is the case, p is a minimal prime ideal of A.

Proof. (1)Z2(2). Assume that p*s~=R. Then p* & p and, since p*p**
CR<p, we have p**Tp and hence p**=p. Conversely, assume that
p**=p and p*=R. Then p=A, a contradiction.

(1) (3) p*“ﬁR means Q—{p}= Q. Thus, R=2—0—{p} (&{p}) is

3) In a semi-prime ring, the right annihilator »(T') of any ideal T commdes with its left
annihilator (7).

4) We shall denote by Q—% the set theoretical complement of % in Q.
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open. Conversely, let )t be a non-empty open subset of {p}. Then p*

=I(Q—{ph) 2 I(Q— %)¢R because T —N is closed. Thus p*z=R.

Now assume that p*=~ R and let p; be a prime ideal of A such that
pEp. Since p¢{p}, p*=I(Q—{p}))=p,, and hence p*<p, which is a
contradiction. | :

Corollary 2. Let A be a semi-prime ring and let p be a prime ideal
in A such that p*=~0. Then p* is a prime ring, and is maxrimal in
the set of those ideals of A which are prime as ring.

Proof. From.Lemma 8 and Corollary 1, p* is a prime ring. Let T
be an ideal in A which is prime as a ring and T'==2p*. Then T ~p and
p* are non zero ideals in the prime ring T and (T ~p)-p*=0. This is
a contradiction.

Lemma 4. Let A be a ring and let R={p.}.c, be a set of different
minimal prime ideals @n A, If IMM)=0 then r(p.)=Up.)=I(N—{p.}) for
each acd’.

Proof. Let p, be in M. Then for each p, in N, we have either
 p.Zps or r(p.)S=p, Since p, is a minimal prime ideal in A, r(pP.)=D,
for all p, with f=*a. Therefore r(p.) (=whence)=I(N—{p,}). Similarly,
we have U(p.)=I(N—{p.}). '

§ 2. Definition 1. Let A be a ring. We shall denote by D the set
of all prime ideals peQ such that p*7~ R, and call it the decomposition
set for A. ' , ,

Definition 2. Let A be a semi-prime ring. A subset N of T will
be called @ minimal decomposition set for A zf IM)=0 and I(M—{p})
#0 for all p in N (Goldie [1]).

In [4, Theorem 3], one of the present authors proved that a semi-
prime ring has at most one minimal decomposition set for A, and, if it

exists, it should coincide with .
Now we shall give necessary and sufficient condltlons for a semi-

prime ring to have a minimal decomposition set.

Theorem 1. If A is a semi-prime ring, then the followzng condi-
tions are equivalent: :

(1) There exists a minimal decomposition set M for A

(2) Every mon-zero ideal T of A contains a mon-zero ideal B of the
ring T which 1s prime as a ring.

(3) The annihilator of the ideal generated by all those momn-zero
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ideals of A which are prime as m'ng 18 zero.
(4) There exists a subset N of D such that I(MN)=0.

Proof. (1)->(2). Let T be any non-zero ideal of A. There exists
a prime ideal » in M such that T¢p. Then T-p* is a non-zero ideal
of the ring 7. For otherwise, »*~ R and so p**=p by Lemma 3, which
would imply T<p. Besides, T-p* is prime as a ring by Lemma 1 (1)
because of (T-p*)~p(T~p*)~p=T~(p*~p)=0. |
~ (2)—>(8). It is easily seen, by Corollaries 1 and 2, that the ideal
generated by all those non-zero ideals of A which are prime as ring
coincides with the ideal 3] p* generated by all p* with pe®d. Now
(I p*)*=Np*=Np=I(D) by Lemma 3.

- Next, suppose that I(D)7*0. Then, by our assumption, there exists
a non-zero ideal B of the ring I(®) which is prime as a ring. By
Lemma 1 (2), there exists a prime ideal p¢® such that 0=(p~I(D))~B
=p~B. B contains a non-zero ideal- B’ of A by [2, Proposition IV. 3.2].
Since B'~p=0, we have p* 2 B’5~0, which contradicts p¢®.

(8)—>(4). This is clear by the proof of (2)—(3).

(4)—(1). Since every prime ideal p belonging to ®© is a minimal
prime ideal by Lemma 3, Lemma 4 yields our implication.

Corresponding to [8, Theorem 5], we have

Theorem 2. Let A be a semi-prime ring and let T be a mon-zero
ideal of A. Then we have I(Dp)=I(D)~T, where D, denotes the de-
composition set for the rimg T.

Proof. Let M be the set of all p in & such that p27. Then we
have I(D)~T=I(D—(D~M)~L(D~AR)~T=I(D—(D~N))~T. Now as-
sume that p'eD—(D~N) and (T~p")*~T=0. Then (T~p')*&p" because
p' 2T contradicting p ¢®. Hence, (T ~p')* ~TF#0 and we have T~p €D,.
Thus I(D)~T=I(D—(D~RN~T2I(D,).

Conversely, let p, be in D,. Then there exists, by Lemma 1 (2), a
prime ideal » in £ such that T~p=p, and (T~p)*~T70. Since
((T~p)* ~T)~D)=(T~p)* (T~p)y’S(T~p)*-(T~p)=0, (T~p)*~T)
~p=0 and hence (T~p)*~T<p*. Thus p*z0, showing that I(D;)
contains T'~I(D). This completes our proof.

As a corollary of Theorem 2, we have the following second necessary
and sufficient condition for a semi-prime ring to have a minimal de-
composition set.

Corollary 3. A semi-prime ring A has a minimal decomposition set -
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1f and only if A has an ideal T such that T*—O and T has a minimal
decomposition set.

Proof. Let M be a minimal decomposition set for A and let T
=" p* with p,eM. Then T*=0 by Theorem 1 and for a5, p*~p}
& p¥ ~p,=0 since pf=I(M—{p})Sp. by Lemma 4. Thus for each a, T
=p*@®T, with T,=>..pF. Moreover, N T.= ) p.=I(M)=0. Hence,
T is isomorphic to a special subdirect sum of p} with p,eM, by [5,
Theorem 157]. Therefore, 7' has a minimal decomposition set for 7 by
[4, Corollary to Theorem 4 ].

Conversely, let T be an ideal of A such that 7*=0 and I(®,)=0.
By Theorem 2, I(D)~T=I(D,;)=0 and hence I(D)=0 because T*=0. By
Theorem 1 this completes our proof. i

Definition 3. Let A be a ring. We shall denote by D, the intersec-
tion of all dense subsets of Q0 and call it the minimal set fo'r A.
(Sulinski [87).

Lemma 5. Let A be a ring. Then peD, if and‘only if {p} is open
wn .

Proof. If we assume that {p} is not open, then Q—{p}=%£, and
hence Q—{p}=2D,. Thus p¢D,.

Conversely, assume that {p} is open in Q and p3®D,. Then there
exists a dense subset N of 2 such that N3p. Accordingly RCQ—{p}
and Q=N —{p}=0—{p}. This contradiction shows peD,

In general, the minimal set D, is contained in the decomposition set
® by Lemmas 3 and 5. However, in case the structure space of A is
a T,-space, D coincides with D, '

The following is an extension of [8, Theorem 7].

Theorem 3. Let A be a semi-prime ring. Then the following condi-
tions are equivalent: ‘

1) D is empty. 4

(2) A has mo mon-zero ideal which is prime as a ring.

Proof. Assume that © is empty and there exists a non-zero ideal
T of A which is prime as a ring. Then, by Lemma 1 (2), there is a
prime ideal p of A such that 7~p=0. Hence p*2T+#0, a contradiction.

~ The converse is easy from Corollary 2.

§ 3. Finally, we shall consider the case where I(D)3%50 and DFg,
that is, the case where A is neither special nor completely non-special in
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Sulinski’s sense [8].

Lemma 6. Let A be a semi-prime ring and let T be a mon-zero
ideal of A such that T*=0.

(1) If the ring T has a minimal decomposition set, then the semi-
prime ring A/T*® has a minimal decomposition set too.

(2) If both T and T* have minimal decomposztwn sets, then the
ring A has a minimal decomposition set too.

Proof. Let % and % be the sets of all prime ideals peQ such that
p=>T and p=2T* respectively. Since T%0 and 7*=+0, both % and N’
are not empty, and N-"N'=2 and (D~N)~(D~N)=4¢.

Let P be a prime ideal in the ring A/T*. Then there exists a prime
ideal pe’ such that p/T*=7p, and p*®=0 if and only if (T*: p)=T*.

(1) Suppose that 7 has a minimal decomposition set. Then, by
Theorems 1 and 2, 0=I(D,)=I(D)~T=I(D—(D~N))~T as was seen in
the proof of Theorem 2 and these are equal to I(D~N')~T. Hence
I(D~N) (&T* whence)=T*. Now, let p be in D~N'. Then p*+0.
For otherwise, we would have p*&(T*: p)=T*Cp. Thus P is contained
in the decomposition set of the ring A/T*. Therefore I(D,,, ) SI(D~N')/T*
and hence we have I(D,,,.)=0. :

(2) Suppose that both 7" and 7* have minimal decomposition sets.
Then, 0=I(D;)=I(D)~T*=I(D)~I(D~N)=I(D) since T*=I(D~N)
as was seen above. Thus, 4 has a minimal decomposition set.

Combining Lemma 6 (1) with Theorem 2, we obtain a generalization
of [1, Theorem 6].

Lemma 7. Let A be a semi-prime ring and let T be a mon-zero
ideal of A such that T* 0.

(1) If the decomposition set of the ring T is empty, then that of the
semi-prime ring A/T* is also empty.

(2) If the decomposition sets of both T and T* are empty, then that
of the ring A 1is also empty.

Proof. (1) Suppose that D, is empty. Then by Theorem 2 I(D)
2I(D)~T=I(D;)=T and hence I(D)*ST*. Let N’ be as in the proof
of Lemma 6. Then D~N'=¢. For otherwise, there would exist a prime
ideal p such that pe® and p2T*. Then P T*2DI(D)*, and hence p*

5) Asisremarkedin §1, T*=I(n), "n={p€ Q: p2T *}, and hence the ring A/T* is semi-
prime.
6) Since no confusion can arise, we shall use this notation in the residue class ring A/T*.
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CI(D)Cp, because I(D)**=I1(D), which is a contradiction. Let p be in
N’. Then p-(T*: p) & T*, p-(T*: p)-T=0, (T*:p)- T p*=0 and hence
(T*: p) (=whence)=T*. This completes our proof.

(2) Suppose that both D, and D,. are empty. Then we have, by
Theorem 2, T=1I1(D,)= I(SD)ATCI(ED) and T*=I(D)=I(D)~T*<I(D).
Therefore I(D)2 T* 2D I(D)*, (I(D)*)*=0, and hence I(D)*=0. Thus I(D)
=I(®)**=A. This completes our proof.

As an easy consequence of Lemmas 6 and 7, we have the following

Theorem 4.. Let A be a semi-prime ring and let I(D)£0 and = A.
(1) The ring I(D)* has ¢ minimal decomposition set.
(2) The decomposition set of the rimg I(D) is empty.
(8)” The semi-prime ring A/I(D) has a minimal decomposition set.
(4)”  The decomposition set of the semi-prime ring A/I(D)* is empty.

- Proof. (1), (2) and (8), (4) follow from Theorem 2 and Lemmas 6
(1) and 7 (1) respectively.
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