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ROTATIONAL SYMMETRY OF RICCI SOLITONS
IN HIGHER DIMENSIONS

SIMON BRENDLE

Abstract

Let (M, g) be a steady gradient Ricci soliton of dimension n > 4
which has positive sectional curvature and is asymptotically cylin-
drical. Under these assumptions, we show that (M, g) is rotation-
ally symmetric. In particular, our results apply to steady gradient
Ricci solitons in dimension 4 which are x-noncollapsed and have
positive isotropic curvature.

1. Introduction

This is a sequel to our earlier paper [4], in which we proved a unique-
ness theorem for the three-dimensional Bryant soliton. Recall that the
Bryant soliton is the unique steady gradient Ricci soliton in dimension
3, which is rotationally symmetric (cf. [6]). In [4], it was shown that the
three-dimensional Bryant soliton is unique in the class of k-noncollapsed
steady gradient Ricci solitons:

Theorem 1.1 (Brendle [4]). Let (M, g) be a three-dimensional com-
plete steady gradient Ricci soliton which is non-flat and k-noncollapsed.
Then (M, g) is rotationally symmetric, and is therefore isometric to the
Bryant soliton up to scaling.

Theorem 1.1 resolves a problem mentioned in Perelman’s first paper
[16].

In this paper, we consider similar questions in higher dimensions. We
will assume throughout that (M, g) is a steady gradient Ricci soliton
of dimension n > 4 with positive sectional curvature. We may write
Ric = D?f for some real-valued function f. As usual, we put X = V7,
and denote by ®; the flow generated by the vector field —X.

Definition. We say that (M, g) is asymptotically cylindrical if the
following holds:
(i) The scalar curvature satisfies m < R< % at infinity, where
A1 and Ay are positive constants.
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(ii) Let p,, be an arbitrary sequence of marked points going to infinity.
Consider the rescaled metrics

9" () = 1y, @7 4(9),

rmt

where 1, R(pm) = 252 + o(1). As m — oo, the flows (M, G (1), pim)
converge in the Cheeger-Gromov sense to a family of shrinking cylinders
(S"1 x R,g(t)), t € (0,1). The metric g(¢) is given by

(1) g(t)=(n—2)(2—2t) ggn—1 +dz @ dz,

where ggn-1 denotes the standard metric on S"~! with constant sec-
tional curvature 1.

We now state the main result of this paper. This result is moti-
vated in part by the work of Simon and Solomon [17], which deals with
uniqueness questions for minimal surfaces with prescribed tangent cones
at infinity.

Theorem 1.2. Let (M,g) be a steady gradient Ricci soliton of di-
mension n > 4 which has positive sectional curvature and is asymptoti-
cally cylindrical. Then (M, g) is rotationally symmetric. In particular,
(M, g) is isometric to the n-dimensional Bryant soliton up to scaling.

In dimension 3, it follows from work of Perelman [16] that any com-
plete steady gradient Ricci soliton which is non-flat and xk-noncollapsed
is asymptotically cylindrical. Thus, Theorem 1.2 can be viewed as a
higher dimensional version of Theorem 1.1.

Theorem 1.2 has an interesting implication in dimension 4. A four-
dimensional manifold (M, g) has positive isotropic curvature if and only
if a1 + a2 > 0 and ¢; + ¢ > 0, where aq, a9, ¢1, co are defined as in [12].
The notion of isotropic curvature was first introduced by Micallef and
Moore [15] in their work on the index of minimal two-spheres. It also
plays a central role in the convergence theory for the Ricci flow in higher
dimensions (see e.g. [2], [3]).

Theorem 1.3. Let (M, g) be a four-dimensional steady gradient Ricci
soliton which is non-flat; is k-noncollapsed; and satisfies the pointwise
pinching condition

0 < max{as, b3, cs} < A min{ay + az,c1 + 2},

where ay,ay, a3, c1,ca,c3,bs are defined as in Hamilton’s paper [12] and
A >1 is a constant. Then (M, g) is rotationally symmetric.

We note that various authors have obtained uniqueness results for
Ricci solitons in higher dimensions; see e.g. [7], [8], [9], and [11]. More-
over, Ivey [14] has constructed examples of Ricci solitons which are not
rotationally symmetric.

In order to prove Theorem 1.2, we will adapt the arguments in [4].
While many arguments in [4] directly generalize to higher dimensions,
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there are several crucial differences. In particular, the proof of the
roundness estimate in Section 2 is very different than in the three-
dimensional case. Moreover, the proof in [4] uses an estimate of Ander-
son and Chow [1] for the linearized Ricci flow system. This estimate
uses special properties of the curvature tensor in dimension 3, so we re-
quire a different argument to handle the higher dimensional case. This
will be discussed in Section 4.

Finally, to deduce Theorem 1.3 from Theorem 1.2, we show that a
steady gradient Ricci soliton (M, g) which satisfies the assumptions of
Theorem 1.3 must have positive curvature operator (cf. Corollary 6.4
below). The proof of this fact uses the pinching estimates of Hamilton
(see [12], [13]). Using results from [10], we conclude that (M, g) is
asymptotically cylindrical. Theorem 1.2 then implies that (M,g) is
rotationally symmetric.

Acknowledgments. The author was supported in part by the National
Science Foundation under grants DMS-0905628 and DMS-1201924.

2. The roundness estimate

By scaling, we may assume that R + |Vf|> = 1. Since R — 0 at
infinity, we can find a point py where the scalar curvature attains its
maximum. Since (M, g) has positive sectional curvature, the Hessian of
f is strictly positive definite at each point in M. The identity VR(pg) =
0 implies Vf(po) = 0. Since f is strictly convex, we conclude that

liminf, o % > 0. On the other hand, since |Vf|*> < 1, we have

f(p)
d(po.p)
Using the fact that (M, g) is asymptotically cylindrical, we obtain the

following result:
Proposition 2.1. We have fR = "T_l + o(1) and fRic < (% +
0(1)) g. Moreover, we have f?Ric > cg for some positive constant c.

lim sup,,_, < 00.

Proof. Since (M,g) is asymptotically cylindrical, we have AR =
o(r~?) and |Ric|* = 15 R? + o(r~2). This implies
2
—(X,VR) =AR+2 |Ric|2 i R? + 0(7‘_2)7
hence

(2 ( - ) =t

Integrating this inequality along the integral curves of X gives

L2 o),

R n-1

hence
n—1

2

fR= +o(1).
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Moreover, we have Ric < (ﬁ +0(1)) R g since (M, g) is asymptotically
cylindrical. Therefore, f Ric < (1 4 o(1)) g.

In order to verify the third statement, we choose an orthonormal
frame {ei,...,e,} such that e, = % Since (M, g) is asymptotically
cylindrical, we have

1

Ric(e;, e5) = — Réij +o(r™h)
fori,j € {1,...,n—1} and

2Ric(e;, X) = —(e;, VR) = 0(7‘_%).
Moreover, we have

2
2Ric(X, X) = —(X,VR) = AR + 2|Ric|* = — R? + o(r™2).

Putting these facts together, we conclude that Ric > ¢ R? g for some
positive constant c. From this, the assertion follows. g.e.d.

In the remainder of this section, we prove a roundness estimate. We
begin with a lemma:

Lemma 2.2. We have R;j of= O(r‘g).
Proof. Using Shi’s estimate, we obtain
Riji @ f = D;Ricjp — DjRicy, = O(r%).
This proves the assertion. q.e.d.
We next define
T =(n—1)Ric— Rg+ Rdf ® df.
Note that
tr(T) = —R*> = O(r™2),
T(Vf,") = (n = ) Ric(Vf,) = R*Vf = O(r2),
T(Vf,Vf)=(n—1)Ric(Vf,Vf)— R*|Vf]* =O(r?).
Proposition 2.3. We have |T| < O(r‘g).
Proof. The Ricci tensor of (M, g) satisfies the equation
ARicy, + DxRicy, = —2 f: Ry Ric?',
=1
Moreover, using the identity AX + D X)j( = 0, we obtain
A(R gir, — RO f O f) + Dx (R gix, — RO: f O f)
— (AR+ (X, VR)) (g3 — 0if Of) + O %)
= —2|Ric|? (gir, — 0if Of) + O(r~3).
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Using Lemma 2.2, we conclude that

n—1
ATzk + DXTik = -2 Z Rijkl le — QRRiCZ‘k
Jil=1

+ 2|Ric? (gix — 0if Ouf) + O(r™2),

hence
A(TP) + (X, V(IT*))
n—1 n
=2|DT* 4> Ry T* T —4R > Ricy, T*
Gil=1 ik=1

n

+4[Ricl? > (i — 0if O f) T + O~ 3) ||

i k=1
n—1 4
_9 2 _ ikl % 2
|DT)| 4ZRMT T - —— R|T|
Jl=1
1 S : 5
.12 2 ik -3
+4 (!Rlc] — mR > Z (gik — Oif O f)T*" + O(r—2) |T.

ik=1
Since > 71 (gik — 0i f Ok f) T = O(r=?%), we obtain
A(IT?) + (X, V(ITF))
n—1
> —4) Ry T TV - % R|TI> = O(r=2)|T| = O(r™").
jl=1

Moreover, since (M, g) is asymptotically cylindrical, we have

1
Rijr = n—1(n—2) R (gi — 0if Okf) (g1 — 0; f Ouf)
1
oD t9a %S af) (96 = 0, Ok f)
+o(r™h)

near infinity. This implies

n—1

195

. kgl _ L 9 5 . )
jlz::l R 1T D) BIF 0072 [T+ ol HITT,
hence

A(TP) + (X, V(T]*)

4(n — 3)

— 2 _o(r7t 2 7’_% — r~h.
10 =g RITP = oGO ITP - 06 ~5)|T] - 06
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We next observe that |DxRic| < O(r~2) and |D§(7XRic| < O(r‘g).

This implies |DxT| < O(r~2) and ]D%XT] < O(r_%). From this, we
deduce that
As(IT) + (X, V(ITI*))
2(n—-3) ,_ _ _5 -
> 202D e o 1 - 06 1) - 06),
where Ay, denotes the Laplacian on the level surfaces of f. Thus, we
conclude that

As(f2TP) + (X, V(2 1T1%)
> 2 FITP — o) [T — 0G™3) [T] ~ 0(r?) > ~0(r™)

outside some compact set. Since f2|T|?> — 0 at infinity, the parabolic
maximum principle implies that f2|T'|> < O(r~!). This completes the
proof. q.e.d.

In the following, we fix ¢ sufficiently small; for example, € = m will

13
work. By Proposition 2.3, we have |T| < O(r2a-3 2% Moreover, it

follows from Shi’s estimates that |[D™T'| < O(r‘¥) for each m. Using

1 —)—
standard interpolation inequalities, we obtain |DT| < O(r2m-2) 2 165).

Using the identity

n —

2

=" Cart o6,

we conclude that |[VR| < O(r D)
|DRic| < C|DT|+C|VR|+CR ]sz‘ < O(T2(n172)—2—165).
Using standard interpolation inequalities, we obtain

|D?Ric| < O(r2<"1*2> _%_88).

DIy = "2 Ok 4 (VS VR)O,f + B2 0,f + RRick 0,/

_2_165). This implies

1 1
Proposition 2.4. We have f R = 251 + 0(7‘2(”*@_5_85).

Proof. Using the inequality |T| < O(r_%), we obtain
1 3 1 3
R ifed N _3
Ric| = —— Rlg—df @ df| + 0~ }) = ———R+0(~}),
hence )
|RiC|2 = m R2 + O('r'_g)
This implies

—(X,VR) = AR + 2|Ric|* = %R2 + O(rm—%—&),
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hence 1 5 X X
53— L)) o0t
< v R n-1 / (r )
Integrating this identity along the integral curves of X, we obtain
1 2 1 41 g
— = 0(r2z—> "2 )
7 aog/ =00 )
From this, the assertion follows. q.e.d.

Proposition 2.5. We have

f Rijr = ﬁ (gik — 0if Ok f) (gir — Oif O f)

ot
2(n —2)
Lo I,
Proof. Tt follows from Proposition 2.10 in [3] that
—Dx Rijiy = D} Ricj; — D} Ricji, — D ;Ricy + D3 Ricy

(g — 0if OLf) (gjx — Oj f Onf)

n n
+ Z Ricgn ijkl + Z RiC}n Rimkl'
m=1 m=1

Using Lemma 2.2 and Proposition 2.3, we obtain

n 1 n
Z Rici" Rijr = R Z (0;" = 0y f O™ f) Rmjrt + O(r‘g)
m=1

-1
m=1 n

1 _3
= n_1 RRijkl —I—O(r 2).

Thus, we conclude that

2 _ 1 __5_gg
—Dx Riji = —— B Riju + O(r2=2"7)

= [ Riju + O(rz(n—l—m—%—&)’
hence o
IDx(f Riyw)| < O(r2=2 375,
On the other hand, the tensor
1
m (9ik — 0if Ok f) (g0 — 05 f OLf)
1

_ m (ga — Oif O f) (gjk - 0;f nf)

Sijkl =

satisfies ,
‘DXSijkl’ < O(T_Q).
Putting these facts together, we obtain

Dx(f Riirg — Siir)| <O rm_%—gf ‘
J J
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Moreover, we have |f Rjjr — Sijii| — 0 at infinity. Integrating the
preceding inequality along integral curves of X gives
1 1
s — 18

|f Rijii — Siji| < O(r2e=27277),

as claimed. q.e.d.
We next construct a collection of approximate Killing vector fields:

Proposition 2.6. We can find a collection of vector fields U,, a €

{1,...,@}, on (M,g) such that | Ly, (9)| < O(Tm_%_%) and
|AU, + DxU,| < O(rz(n—lﬂ)_l_%). Moreover, we have

nn—) - o

S UueUs=r (Y ei@ei+ 0@z 27%)),

a=1 i=1
where {e1,...,en—1} is a local orthonormal frame on the level set {f =

r}.
The proof of Proposition 2.6 is analogous to the arguments in [4],
Section 3. We omit the details.

3. An elliptic PDE for vector fields

Let us fix a smooth vector field Q on M with the property that

1

Q| < O(T2(n*2)_1_2€). We will show that there exists a vector field V’
1
on M such that AV + DxV = Q and |[V| < O(r2=-2"°).
Lemma 3.1. Consider the shrinking cylinders (S~ ! x R,g(t)), t €
(0,1), where g(t) is given by (1). Let V(t), t € (0,1), be a one-parameter
family of vector fields which satisfy the parabolic equation

(2) %V(t) = Ag(t)V(t) + Rng(t) (V(t))

Moreover, suppose that V(t) is invariant under translations along the
axis of the cylinder, and

3) V(t)lgw <1
for allt € (0,3]. Then

0

1
—)\—‘ <LO-H)TD
0zlgt) — ( )

inf su ‘V t
AER Sn—IIiR ( )

forallt e [%, 1), where L is a positive constant.

Proof. Since V/(t) is invariant under translations along the axis of the
cylinder, we may write

V(1) = &) + (1) o

z
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for t € (0,1), where £(t) is a vector field on S"~! and 7(t) is a real-valued
function on S"~!'. The parabolic equation (2) implies the following
system of equations for £(t) and n(t):

@ 560 = g e+ (1= 2) (),
(5) %ﬂ(t) = m Agn-1m(t).

Furthermore, the estimate (3) gives

(6) ;kgi\i(tﬂgsnflt§<L1,

(7) sup )] < Ly

for each ¢ € (0, %], where L is a positive constant.

Let us consider the operator £ — —Agn—1£ — (n — 2) &, acting on
vector fields on S"~!. By Proposition A.1, the first eigenvalue of this
operator is at least —(n — 3). Using (4) and (6), we obtain

_ _n—3
(8) SUp, €(B)lggms < Lo (1 —1)720°9

for all t € [%, 1), where Ly is a positive constant. Similarly, it follows
from (5) and (7) that

9)

n—1
inf t) = A < L3(1—1t)20=2
jnf sup n(t) —Al < Ly (1 -1)
for each t € [%, 1), where L3 is a positive constant. Combining (8) and
(9), the assertion follows. q.e.d.

Lemma 3.2 (cf. [4], Lemma 5.2). Let V be a smooth vector field
satisfying AV + DxV = Q in the region {f < p}. Then
sup [V| < sup |V|+ BT =
{£<p} {f=r}

for some uniform constant B > 1.

The proof of Lemma 3.2 is similar to the proof of Lemma 5.2 in [4];
we omit the details.

As in [4], we choose a sequence of real numbers p,, — co. For each
m, we can find a vector field V("™ such that AV™ 4+ Dx V(™ = Q in
the region {f < p;n} and V™ = 0 on the boundary {f = p,,}. We now
define

A™) () = inf vim _xXx
(r) igR{?EH’

for r < pp,.
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Lemma 3.3. Let us fiz a real number T € (0, %) so that 77 > 2L,
where L is the constant in Lemma 3.1. Then we can find a real number
po and a positive integer mg such that

27 27+ ) (rr) < A™ () + I
for all v € [po, pm] and all m > my.

Proof. We argue by contradiction. Suppose that the assertion is false.
After passing to a subsequence, there exists a sequence of real numbers

m < pm such that r,, — oo and
1

AP () 4 27 <o 7 e g(m) (T7m)
for all m. For each m, there exists a real number \,, such that
sup [V —\, X = A (r,,).
{f=rm}
Applying Lemma 3.2 to the vector field V(™ — X\, X gives

14
sup |V(m) — )\mX| < sup |V(m) _ )\mX| -I-Brfnf"’z) e
{fsrm) {f=rm}

< A ) 177

if m is sufficiently large. We next consider the vector field
1

vm — . (Vi —\, X).
sy —€
Am) () gt
The vector field V(™) satisfies
(10) sup |V <1.
{fS?“m}
Let
g (t) =yt @7 4 (9)
and

. 1 .

V@) = 1, 07, (7))
Note that the metrics §0™)(t) evolve by the Ricci flow. Moreover, the
vector fields V(™) (t) satisfy the parabolic equation

0 - m Cr(m : 7 (m H(m
a7 ") = By VI (1) + Ricgom (o (VI (1) = QU (1),
where
%
QU(t) = ) (Q).

A7) (7)) 4 2D

Using (10), we obtain

limsup sup sup |V (m) ()| g0m () < 00
M09 t€[31-0] {rm =81 T <f<rmtd! T}
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1
for any given ¢ € (0, %) Moreover, the estimate |Q| < 0(7‘2(”*@_1_26)
implies that
limsup sup sup |Q(m) (t)|g(7n>(t) =0

m—=00 ¢€[§,1=8] {rm—0"1 /T <f<rm+6—1 /rm}

for any given 4 € (0, 3).

We now pass to the limit as m — oo. To that end, we choose a
sequence of marked points p,, € M such that f(p,,) = . The mani-
folds (M, 3™ (t),py,) converge in the Cheeger-Gromov sense to a one-
parameter family of shrinking cylinders (S"~! x R,g(t)), t € (0{1),
where g(t) is given by (1). Furthermore, the rescaled vector fields r3, X
converge to the axial vector field % on S" ! x R. Finally, the sequence

V(™) (t) converges in CY) , to a one-parameter family of vector fields V(t),
t € (0,1), which satisfy the parabolic equation

0 — — ) —

EV(Z?) = Ag(t)V(t) + Rle(t)(V(t)).

As in [4], we can show that V/(¢) is invariant under translations along

the axis of the cylinder. Moreover, the estimate (10) implies that
V()5 <1

for all t € (0, %] Hence, it follows from Lemma 3.1 that

_ 0 1
11 inf ‘Vt—)\—‘ <L(1-t)TD
(an P o L
for all ¢t € (0, %] Finally, we have
. 1
inf sup ‘V(m)(l —7)=Arp X
)\GR <I)rm(‘rfl)({f:7_r’"l}) g(m)(l_T)

— inf vim A x
AR {filifm} | o

1
= - inf sup |V(m)—/\X|g

A () 4 2 NS ()
A (1r,)

2(n172) —€

Alm) (rm) + Tm

1
> — 72(r-2) -

N =

If we send m — 00, we obtain

(12) inf sup |V(1-—7)—A 9 >

1 1.
XER gn-1yR Ozlg(1-r) — 2

T72(n=2)"

Since 77¢ > 2L, the inequality (12) is in contradiction with (11). This
completes the proof of Lemma 3.3. q.e.d.



202 S. BRENDLE

If we iterate the estimate in Lemma 3.3, we obtain
1
sup sup r 202 AM () < oo
m po<r<pm
From this, we deduce the following result:
Proposition 3.4. There exists a sequence of real numbers A, such
that

— 5oy e |1/ (m)
sup sup f 297 [V — X\ X| < oc.

The proof of Proposition 3.4 is analogous to the proof of Proposition
5.4 in [4]. We omit the details. By taking the limit as m — oo of the
vector fields V™ — )\, X, we obtain the following result:

Theorem 3.5. There exists a smooth vector field V such that AV +
1 1 1
DxV =Q and |V| < O(r2»=3"%). Moreover, |[DV| < O(r2n-"27°),

4. Analysis of the Lichnerowicz equation

Throughout this section, we will denote by Ay the Lichnerowicz
Laplacian; that is,
ALhz’k = Ahzk + 2 Rijkl hjl — Rici- hkl — Ric% h,’l.
Lemma 4.1. Let us consider the shrinking cylinders (S"~1 xR, g(t)),

t € (0,1), where g(t) is given by (1). Let h(t), t € (0,1), be a one-
parameter family of (0,2)-tensors which solve the parabolic equation

(13) %ﬁ(t) = Apgmh(t).

Moreover, suppose that h(t) is invariant under translations along the
axis of the cylinder, and

(14) P(t)lge < (1 1)~

for allt € (0,3]. Then

inf sup |h(t) — ARicgy)| N((1-1) M 2

o<
AER gn—1yR g(t) =

for all t € [%, 1), where N is a positive constant.

Proof. Since h(t) is invariant under translations along the axis of the
cylinder, we may write

ht) =x(t) +dz®o(t)+ot) ®dz + B(t)dz @ dz

for t € (0,1), where x(t) is a symmetric (0,2) tensor on S, o(t) is
a one-form on S"7!, and j(t) is a real-valued function on S"~!. The
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parabolic Lichnerowicz equation (13) implies the following system of
equations for x(t), o(t), and B(t):
x(t) =

(15) (Agn1x(t) = 2(n = 1) X(1)),

ot (n—2)2—2t)

(16) (Agn-10(t) = (n = 2) o (t)),

(a7 o8 =

(
1

2’ V= e
t AgnrB(8).

(n—2)(2-2t)

Here, )O((t) denotes the trace-free part of x(¢) with respect to the stan-
dard metric on S"~1. Using the assumption (14), we obtain

(18) sup IX(D)]ggnr < N1,
(19) sup lo(®)lggn—1 < N1,
(20) sup |30 < M

for each ¢ € (0, 3], where Nj is a positive constant.

We next analyze the operator x — —Agn-1x + 2(n — 1) Y, acting on
symmetric (0, 2)-tensors on S"~!. The first eigenvalue of this operator is
equal to 0, and the associated eigenspace is spanned by ggn—1. Moreover,
the other eigenvalues of this operator are at least n — 1 (cf. Proposition
A.2 below). Hence, it follows from (15) and (18) that

(21) inf sup [x(t) = Agsn1lyg, s < Na (1= )67

AER gn—
for all ¢t € [%, 1), where Nj is a positive constant. We now consider the
operator o — —Agn-10 + (n — 2)o, acting on one-forms on S"~!. By
Proposition A.1, the first eigenvalue of this operator is at least n — 1.
Using (16) and (19), we deduce that

n—1
(22) sup |o(t)gg,_; < N3 (1 —1t)202
Sn—1

for all t € [%, 1), where N3 is a positive constant. Finally, using (17)
and (20), we obtain

(23) Sup |B(t)] < Ny

for all ¢ € [1,1), where Ny is a positive constant. If we combine (21),
(22), and (23), the assertion follows. q.e.d.

We now study the equation Aph + Zx(h) =0 on (M, g), where Ap,
denotes the Lichnerowicz Laplacian defined above.
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Lemma 4.2. Let h be a solution of the Lichnerowicz-type equation
Aph+Zx(h) =0
on the region {f < p}. Then
sup |h| < Cp* sup |h]
{f<r} {f=nr}

for some uniform constant C' which is independent of p.

Proof. 1t suffices to show that

(24) h < Cp? < sup |h|) g

{f=nr}
for some uniform constant C'. Indeed, if (24) holds, the assertion follows
by applying (24) to h and —h.

We now describe the proof of (24). By Proposition 2.1, we have
f?Ric > cg for some positive constant c. Therefore, the tensor Ric —
5 p~2 g is positive definite in the region {f < p}. Let @ be the smallest
real number with the property that 6 (Ric — £ p~2g) — h is positive
semi-definite at each point in the region {f < p}. There exists a point
po € {f < p} and an orthonormal basis {ej,...,e,} of T, M such that

fc

0 Ric(eq,e1) — - p~2—hler,e1) =0

at the point py. We now distinguish two cases:
Case 1: Suppose that pg € {f < p}. In this case, we have
0 (ARic)(e1,e1) — (Ah)(e1,e1) >0
and
0 (DxRic)(e1,e1) — (Dxh)(e1,e1) =0
at the point pg. Using the identity Aph 4+ Zx(h) = 0, we obtain

0= (AR)(e1,e1) + (Dxh)(er,en) +2 Y Rler, e er,ex) hlei ex)
k=1

< 0 (ARic)(er,e1) + 0 (DxRic)(er, e1) + 2 Z R(e1, e, e1,ex) hiei, er)
ik=1

= -2 Z R(e1,ei,e1,er) (0 Ric(e;, er) — h(e;,ex))
ik=1

= —fcp ?Ric(er, er)

- . bc _
-2 Z R(el,Ei,el,ek) <9 Rlc(eiaek‘) - 7 1Y 2g(ei7€k) - h(ei,Ek)>
i,k=1
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at the point pg. Since (M, g) has positive sectional curvature, we have

- 0
> Rer,ei e, er) (9 Ric(e;, ex) — 761?_2 g(ei ex) — h(%%)) > 0.
i k=1

Consequently, # < 0. This implies h < 0 at each point in the region
{f < p}. Therefore, (24) is satisfied in this case.

Case 2: Suppose that pg € {f = p}. Since f2Ric > cg, we have
0 0
’e < 6 p* Ric(eq, 1) — 7 p* hier,e1) < p® sup |hl.
2 2 -
{f=r}
Since h < 0 (Ric — § p~2g), we conclude that
h < Cp? ( sup ]h\)g
{f=r}

at each point in the region {f < p}. This proves (24). q.e.d.

Lemma 4.3. Let h be a solution of the Lichnerowicz-type equation

Aph+Zx(h) =0

on the region {f < p}. Then

sup f*|h| < Bp® sup |hl,
{f<p} {f=nr}

where B is a positive constant that does not depend on p.

Proof. As above, it suffices to show that
(25) fPh<Cp? ( sup \h[) g
{f=p}

for some uniform constant C. We now describe the proof of (25). By
Proposition 2.1, we can find a compact set K such that fRic < (1 —
3f71|Vf|?)gon M\K. Let us consider the smallest real number § with
the property that 6 f~2 g — h is positive semi-definite at each point in
the region {f < p}. By definition of 6, there exists a point py € {f < p}
and an orthonormal basis {ey,..., ey} of T, M such that

02— hler,e1) =0
at the point py. Let us distinguish two cases:
Case 1: Suppose that pg € {f < p} \ K. In this case, we have
OA(f7%) — (Ah)(er,e1) 2 0

and
0(X,V(f7?)) — (Dxh)(e1,e1) = 0
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at the point py. Using the identity Aph + Zx(h) = 0, we obtain

0= (Ah)(e1,e1) + (Dxh)(e1,e1) +2 Z R(ei,e;,e1,ex) hiei,er)
ik=1

SOA(F2)+0(X, V(D)) +2 > Rler,eirer,ex) hiei, ex)
i,k=1

=—20f3 (1 =31 |Vf* - fRic(er,e1))

—2 > Rer,ei,e1,ex) (0 f 2 glei ex) — h(ei, er))
i k=1

at the point pg. Since (M, g) has positive sectional curvature, we have

n

Z R(elaeiyelyek) (9 f_2 g(ei7ek) - h(Ei,Ek)) > 07
i,k=1

hence

0<—20f3(1—3f1|Vf|? - fRicler,e1)).
On the other hand, we have f Ric(e,e1) < 1 — 3 f~1|Vf|? since py €
M \ K. Consequently, we have § < 0. This implies that ~ < 0 at each
point in the region {f < p}, and (25) is trivially satisfied.

Case 2: We next assume that py € {f = p} U K. Using Lemma 4.2,

we obtain
0 =f*h(er,e1) < sup f?|h| < Cp® sup |hl.
{f=p}uK {f=r}
Since f2h < @ g, we conclude that
fPh<Cp? ( sup |h|> 9
{f=r}

at each point in the region {f < p}. This proves (25). q.e.d.

Theorem 4.4. Suppose that h is a solution of the Lichnerowicz-type

equation
Aph+Zx(h) =0

1 1
with the property that |h| < O(r2=2"2"%). Then h = ARic for some
constant A € R.

Proof. Let us consider the function

A(r) = inf sup |h — ARic|.
AR {f=r}

Clearly, A(r) < supys_, [h| < O(TQ("I*Q)_%_E). We consider two cases:

Case 1: Suppose that there exists a sequence of real numbers r,,, — oo
such that A(r,,) = 0 for all m. In this case, we can find a sequence of
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real numbers ), such that h — A\, Ric = 0 on the level surface {f =
Tm}. Using Lemma 4.3, we conclude that h — A,,, Ric = 0 in the region
{f < rm}. Therefore, the sequence A, is constant. Moreover, h is a
constant multiple of the Ricci tensor.

Case 2: Suppose now that A(r) > 0 when r is sufficiently large. Let
us fix a real number 7 € (0,1) such that 77° > 2N B, where N and
B are the constants in Lemma 4.1 and Lemma 4.3, respectively. Since

11
A(r) < O(r2=2"27) there exists a sequence of real numbers 7,,, — 00
such that

1L +e
A(rp) <272 2027 A(771))
for all m. For each m, we can find a real number A, such that
sup |h — Ay, Ric| = A(ry).
{f=rm}
Applying Lemma 4.3 to the tensor

A(rm)
gives
(26) 2 2 2
sup |l~1(m)| < Bri sup |l~1(m)| = _Brm sup |h—A, Ric| = B
{r=r} 2 {f=rm) r2 A(Tm) {f=rm} r?
for r < ry,.

At this point, we define

g™ =r o5 (9)
and
A () = rt@r (R,

The metrics §(™ () evolve by the Ricci flow, and the tensors (™ (t)
satisfy the parabolic Lichnerowicz equation

2 - m 7 (m
Eh( () = AL,Q(M)(t)h( (1)

Using (26), we obtain

limsup sup sup \}}(m) (t)\g(m) (1) <00
m—=00 t€[6,1=8] {rm—6—1 \/Fm<f<rm+6=1/fm}

for any given 4 € (0, 3).

We now pass to the limit as m — oo. Let us choose a sequence
of marked points p,, € M satisfying f(pm) = rm. The manifolds
(M, G (t), pm) converge in the Cheeger-Gromov sense to a one-param-
eter family of shrinking cylinders (S"~! x R, g(t)), t € (0,1), where g(t)

1

is given by (1). The vector fields r2, X converge to the axial vector field
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% on S™ ! x R. Furthermore, the sequence h(m) (t) converges to a one-

parameter family of tensors h(t), t € (0,1), which solve the parabolic
Lichnerowicz equation

o _ _
ST = A gy h(t)

As in [4], we can show that h(t) is invariant under translations along
the axis of the cylinder. Using (26), we obtain

[R(t)lge < B(1—1)77
for all ¢t € (0, %] Hence, Lemma 4.1 implies that

(27) inf sup ‘E(t) — ARicg <NB(1- t)ﬁ_%

AER gnoiyg )50

for all ¢ € [1,1). On the other hand, we have
inf sup ‘ﬁ(m)(l —7) — ARic;om)(1_,
AER (I)rm(ffl)({f:T'rm}) g ( )

~jeh I ARl

1 . .
) Atk Sup | h = ARyl

30m (1-7)

(
(

1 1.
> _ 722 27

If we send m — oo, we obtain
—&

. T . 1 1 1
(28) )1\161{% SiuIIiR |h(1—7)— ARlc§(1_7)|§(1_T) > 3 T2 2

Since 77° > 2N B, the inequality (28) contradicts (27). This completes
the proof of Theorem 4.4. q.e.d.

5. Proof of Theorem 1.2

Combining Theorems 3.5 and 4.4, we obtain the following symmetry
principle:

Theorem 5.1. Suppose that U is a vector field on (M, g) such that

1 1 1
1% (g)] < O™ 27%) and |AU + DxU| < O %) for
some small constant ¢ > 0. AThen there exists a vector ﬁgld U on
(M, g) such that Z;(g) =0, [U,X] =0, (U,X) =0, and |[U - U| <

O@r7m2 %),
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Proof. In view of Theorem 3.5, the equation

AV—I—D)(V :AU—I—D)(U

1
has a smooth solution which satisfies the bounds |V| < O(r2-2 %) and

|DV| < O(r2<"1*2>_%_8). Hence, the vector field W = U — V satisfies
AW + DxW = 0. Using Theorem 4.1 in [4], we conclude that the Lie
derivative h = Ly (g) satisfies the Lichnerowicz-type equation

Aph+ Zx(h) = 0.

1 1
Since |h| < O(r?@=2"2") Theorem 4.4 implies that h = A Ric for some
constant A € R. Consequently, the vector field U := U -V — % A X must

be a Killing vector field. The identities [/, X] = 0 and (U, X) = 0 follow
as in [4]. q.e.d.

To complete the proof of Theorem 1.2, we apply Theorem 5.1 to
the vector fields U, constructed in Proposition 2.6. Consequently, there

exist vector fields U, a € {1,..., w}, on (M, g) such that .Z; (g9) =
0, [ﬁa,X] =0, and (ﬁa,X> = 0. Moreover, we have

n(n—1)
2 n—1
. . T
E Ua®Ua:r( E €i®€i+0(7‘2("72) 2 6))7
a=1 =1
where {ej,...,e,—1} is a local orthonormal frame on the level set {f =

r}. This shows that (M, g) is rotationally symmetric.

6. Proof of Theorem 1.3

We now describe how Theorem 1.3 follows from Theorem 1.2. Let
(M, g) be a four-dimensional steady gradient Ricci soliton which is non-
flat; is k-noncollapsed; and satisfies the pointwise pinching condition

0 < max{as, bs,cs} < A min{a; + ag,c1 + 2}

for some constant A > 1. In particular, (M, g) has nonnegative isotropic
curvature. Moreover, since the sum R + |V f|? is constant, the scalar
curvature of (M, g) is bounded from above; consequently, (M, g) has
bounded curvature.

We next show that (M, g) has positive curvature operator. To that
end, we adapt the arguments in [12] and [13]. We note that pinching
estimates for ancient solutions to the Ricci flow were established in [5].

Lemma 6.1. We have a3 < (6A% +1)a; and c3 < (6A% + 1) ay.
Proof. Using the inequalities
Aaq + (X, Va1> < —2asa3
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and
Aag + (X, Vaz) > —a3 — 2a1a3 — b3,

we obtain

A((6A% 4 1) ay — az) + (X, V((6A? + 1) a; — a3))

< a3 + 2ajag + b3 — (12A% + 2) azas

< a3 + b3 — 12A% agas

< a3 + b3 — 3A% (a1 + az)?

< —ag.
Hence, the Omori-Yau maximum principle implies that (6A% + 1)a; —
az > 0. The inequality (6A% +1)¢; — 3 > 0 follows similarly. g.e.d.

Lemma 6.2. We have 4b3 < (a1 + a2) (c1 + c2).

Proof. Suppose that v = supy, m
U= % \/(al + ag) (c1 + ¢2) satisfies

Au+ (X, Vu)

> 1. The function

< [a3+cg+a%+a§+b%+b§ c%+c§+b%+b§}
2(ay + az) 2(c1 + c2)
On the other hand, we have
Abs + <X, Vb3> > —bg(ag + ¢3) — 2b1bo.
Putting these facts together, we obtain
A(yu = bs) + (X, V(yu — b3))
a? + a3 + b3 + b3 c%+c§+b%+b§]
2(ay + as) 2(c1 + c2)

< —yu |:CL3 +c3 +

+ bs(as + c3) + 2b1bo
(a1 — b1)2 + (CLQ — 52)2 + 2a9(by — by)
2(a1 + az)
" (Cl — b1)2 + (62 — b2)2 + 262(b2 — bl)
2(c1 4 ¢2)
— (yu — b3) (as + c3 + 2b1) — 2b1(bs — b2).

Note that yu — b3 > 0 by definition of ~. Since v > 1, we can find a
positive constant § such that

(a1 — b1)2 + (CLQ — b2)2 + 2&2(b2 — bl)

38 |Ric|? <
[Ricl” < yu 2(a1 + az)
—b1)? — b9)2 4+ 2¢9(by — b
o (c1 —b1)% + (c2 — b2)” + 2¢2(b2 — by)
2(e1 + ¢2)

+ (’yu — bg) (ag +c3 + 2b1) + 2b1(b3 — bg).
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This implies
A(yu —b3) + (X, V(yu — b3)) < =36 [Ric|?,
hence
A(yu—bs — 6 R) + (X, V(yu — b3 — § R)) < —6 |Ric|?.

Using the Omori-Yau maximum principle, we conclude that yu — b3 —
0 R > 0. This contradicts the definition of v. Thus, v < 1, as claimed.
q.e.d.

Proposition 6.3. We have b% <ac.-

Proof. Suppose that v = sup,, bs _ ~ 1. The function v = /aic

aici

satisfies

2 9 9 )
Av+ (X, Vv) < —v af + 2asag + by La + 2c9c3 +b1]'

2&1 261
This implies

A(yv —b3) + (X, V(yv — b3))
[a? + 2aza3 + b3 3 + 2coc3 + bq

_|_
L 2a1 201
+ bs(ag + c3) + 2b1bo
—(al — b1)2 + 2(&2 — al)ag (61 — b1)2 + 2(62 — 61)63
+

L 2(11 261

— (’yv — b3) (ag + ¢34 2b1) — 2b1(bs — ba).
Note that yv — b3 > 0 by definition of 7. Using Lemma 6.2 and the
inequality v > 1, we obtain an estimate of the form
(al — b1)2 + 2(@2 — CL1)CL3 (Cl — 51)2 + 2(62 — 01)63

+
2a1 261

+ (yv — b3) (ag + c3 + 2b1) + 2b1(bs — ba)

< -

= —’Y'Z}

30 |Ric|? < v

for some positive constant §. From this, we deduce that
A(yv — bs) 4+ (X, V(yv — b3)) < —36 |Ric|?,
hence
A(yv —b3 — S R) + (X, V(yv — bg — 6 R)) < —& |Ric|>.

As above, the Omori-Yau maximum principle implies that yv—b3—9d R >
0. This contradicts the definition of 7. Consequently, v < 1, which
proves the assertion. q.e.d.

Corollary 6.4. The manifold (M, g) has positive curvature operator.
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Proof. The inequality b2 < ajc; implies that (M, g) has nonnega-
tive curvature operator. If (M,g) has generic holonomy group, then
the strict maximum principle (cf. [12]) implies that (M, g) has positive
curvature operator. On the other hand, if (M, g) has non-generic ho-
lonomy group, then (M, g) locally splits as a product. In this case, we
can deduce from Proposition 6.3 that (M, g) is isometric to a cylinder.
This contradicts the fact that (M, g) is a steady soliton. q.e.d.

Note that (M, g) satisfies restricted isotropic curvature pinching con-
dition in [10]. Using the compactness theorem for ancient s-solutions
in [10], we obtain:

Proposition 6.5 (Chen and Zhu [10]). Let p,, be a sequence of
points going to infinity. Then |(X,VR)| < O(1)R? at the point py,.
Moreover, if d(po, pm)? R(pm) — o0, then we have |VR| < o(1) R: and
(X,VR)+ 2 R?| < o(1) R? at the point pp,.

Proof. The first statement follows immediately from Proposition 3.3
in [10]. To prove the second statement, we consider a sequence of points
pm such that d(po, pm)? R(pm) — co. Combining the compactness the-
orem for ancient solutions (cf. [10, Corollary 3.7]) with the splitting
theorem (cf. [10, Lemma 3.1]), we conclude that |VR| < o(1) R%,
|AR| < o(1) R?, and 3 |Ric|? = (14 0(1)) R?. From this, we deduce that
—(X,VR) = AR+ 2|Ric|? = (3 + 0(1)) R?, as claimed. q.e.d.

Using Proposition 6.5, it is not difficult to show that & — 0 at infinity.
Consequently, there exists a unique point pg € M where the scalar
curvature attains its maximum. The point pg must be a critical point
of the function f. Since f is strictly convex, we conclude that f grows
linearly near infinity. If we integrate the inequality (X, VR)| < O(1) R?
along integral curves of X, we obtain R > W outside a compact set,

where A is a positive constant. Hence, Proposition 6.5 gives [(X, VR)+
%R2| < o(1) R%. Integrating this inequality along integral curves of X,

we obtain R < % outside a compact set. Using Lemma 3.1 in [10]

again, we conclude that (M, g) is asymptotically cylindrical. Hence,
(M, g) must be rotationally symmetric by Theorem 1.2.

Appendix A. The eigenvalues of some elliptic
operators on S" !

In this section, we analyze the eigenvalues of certain elliptic operators
on S"~!. In the following, ggn-1 will denote the standard metric on S™~!
with constant sectional curvature 1.

Proposition A.1. Let o be a one-form on S"~ ! satisfying

Agn-10 4+ po =0,
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where Agn-1 denotes the rough Laplacian and p € (—o0,1) is a constant.
Then o = 0.

Proof. For any smooth function u, we have

/S  ulge(do) = / (A(Agnr). o)

Sn—1

= /S7L1<Asn1(du),a> —(n—2) /Sn1<du’ o)
= —(n—24p) /5n1<du’a>

:—(n—2+u)/ ud’o.
Sn—1
Since w is arbitrary, we conclude that

Agn-1(d*o)+ (n—2+pu)d*oc =0.

Since n — 2+ p < n — 1, it follows that d*o is constant. Consequently,
d*o = 0 by the divergence theorem.
We next consider the tensor S;, = D;or + Dpo;. Then

1
(n—2—p)o; =Agn10; + (n—2)o; = D*Sy, — §Di(tr5).

Using the identity d*o = 0, we obtain

o 2 _ kg, Lo i__l/ 2
(=2 [ o= [ (DSu-gDits))oi=—5 [ 1sP

Since n — 2 — u > 0, we conclude that o = 0, as claimed. q.e.d.

Proposition A.2. Let x be a symmetric (0,2)-tensor on S"~1 sat-
1sfying
Agn-ix —2(n — 1) X + pux =0,

where )(2 denotes the trace-free part of x and p € (—oo,n — 1) is a
constant. Then x is a constant multiple of ggn—1.

Proof. The trace of x satisfies

Agn-1(trx) + p(try) = 0.

Since 4 < m — 1, we conclude that try is constant. Moreover, the
trace-free part of y satisfies

AgnaX + (n—2(n—1)) X = 0.

Since u — 2(n — 1) < 0, it follows that ¥ = 0. Putting these facts
together, the assertion follows. q.e.d.
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