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ROTATIONAL SYMMETRY OF RICCI SOLITONS

IN HIGHER DIMENSIONS

Simon Brendle

Abstract

Let (M, g) be a steady gradient Ricci soliton of dimension n ≥ 4
which has positive sectional curvature and is asymptotically cylin-
drical. Under these assumptions, we show that (M, g) is rotation-
ally symmetric. In particular, our results apply to steady gradient
Ricci solitons in dimension 4 which are κ-noncollapsed and have
positive isotropic curvature.

1. Introduction

This is a sequel to our earlier paper [4], in which we proved a unique-
ness theorem for the three-dimensional Bryant soliton. Recall that the
Bryant soliton is the unique steady gradient Ricci soliton in dimension
3, which is rotationally symmetric (cf. [6]). In [4], it was shown that the
three-dimensional Bryant soliton is unique in the class of κ-noncollapsed
steady gradient Ricci solitons:

Theorem 1.1 (Brendle [4]). Let (M,g) be a three-dimensional com-
plete steady gradient Ricci soliton which is non-flat and κ-noncollapsed.
Then (M,g) is rotationally symmetric, and is therefore isometric to the
Bryant soliton up to scaling.

Theorem 1.1 resolves a problem mentioned in Perelman’s first paper
[16].

In this paper, we consider similar questions in higher dimensions. We
will assume throughout that (M,g) is a steady gradient Ricci soliton
of dimension n ≥ 4 with positive sectional curvature. We may write
Ric = D2f for some real-valued function f . As usual, we put X = ∇f ,
and denote by Φt the flow generated by the vector field −X.

Definition. We say that (M,g) is asymptotically cylindrical if the
following holds:
(i) The scalar curvature satisfies Λ1

d(p0,p)
≤ R ≤ Λ2

d(p0,p)
at infinity, where

Λ1 and Λ2 are positive constants.
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(ii) Let pm be an arbitrary sequence of marked points going to infinity.
Consider the rescaled metrics

ĝ(m)(t) = r−1
m Φ∗

rmt(g),

where rmR(pm) = n−1
2 + o(1). As m → ∞, the flows (M, ĝ(m)(t), pm)

converge in the Cheeger-Gromov sense to a family of shrinking cylinders
(Sn−1 × R, g(t)), t ∈ (0, 1). The metric g(t) is given by

(1) g(t) = (n− 2)(2− 2t) gSn−1 + dz ⊗ dz,

where gSn−1 denotes the standard metric on Sn−1 with constant sec-
tional curvature 1.

We now state the main result of this paper. This result is moti-
vated in part by the work of Simon and Solomon [17], which deals with
uniqueness questions for minimal surfaces with prescribed tangent cones
at infinity.

Theorem 1.2. Let (M,g) be a steady gradient Ricci soliton of di-
mension n ≥ 4 which has positive sectional curvature and is asymptoti-
cally cylindrical. Then (M,g) is rotationally symmetric. In particular,
(M,g) is isometric to the n-dimensional Bryant soliton up to scaling.

In dimension 3, it follows from work of Perelman [16] that any com-
plete steady gradient Ricci soliton which is non-flat and κ-noncollapsed
is asymptotically cylindrical. Thus, Theorem 1.2 can be viewed as a
higher dimensional version of Theorem 1.1.

Theorem 1.2 has an interesting implication in dimension 4. A four-
dimensional manifold (M,g) has positive isotropic curvature if and only
if a1 + a2 > 0 and c1 + c2 > 0, where a1, a2, c1, c2 are defined as in [12].
The notion of isotropic curvature was first introduced by Micallef and
Moore [15] in their work on the index of minimal two-spheres. It also
plays a central role in the convergence theory for the Ricci flow in higher
dimensions (see e.g. [2], [3]).

Theorem 1.3. Let (M,g) be a four-dimensional steady gradient Ricci
soliton which is non-flat; is κ-noncollapsed; and satisfies the pointwise
pinching condition

0 ≤ max{a3, b3, c3} ≤ Λ min{a1 + a2, c1 + c2},
where a1, a2, a3, c1, c2, c3, b3 are defined as in Hamilton’s paper [12] and
Λ ≥ 1 is a constant. Then (M,g) is rotationally symmetric.

We note that various authors have obtained uniqueness results for
Ricci solitons in higher dimensions; see e.g. [7], [8], [9], and [11]. More-
over, Ivey [14] has constructed examples of Ricci solitons which are not
rotationally symmetric.

In order to prove Theorem 1.2, we will adapt the arguments in [4].
While many arguments in [4] directly generalize to higher dimensions,
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there are several crucial differences. In particular, the proof of the
roundness estimate in Section 2 is very different than in the three-
dimensional case. Moreover, the proof in [4] uses an estimate of Ander-
son and Chow [1] for the linearized Ricci flow system. This estimate
uses special properties of the curvature tensor in dimension 3, so we re-
quire a different argument to handle the higher dimensional case. This
will be discussed in Section 4.

Finally, to deduce Theorem 1.3 from Theorem 1.2, we show that a
steady gradient Ricci soliton (M,g) which satisfies the assumptions of
Theorem 1.3 must have positive curvature operator (cf. Corollary 6.4
below). The proof of this fact uses the pinching estimates of Hamilton
(see [12], [13]). Using results from [10], we conclude that (M,g) is
asymptotically cylindrical. Theorem 1.2 then implies that (M,g) is
rotationally symmetric.

Acknowledgments. The author was supported in part by the National
Science Foundation under grants DMS-0905628 and DMS-1201924.

2. The roundness estimate

By scaling, we may assume that R + |∇f |2 = 1. Since R → 0 at
infinity, we can find a point p0 where the scalar curvature attains its
maximum. Since (M,g) has positive sectional curvature, the Hessian of
f is strictly positive definite at each point in M . The identity ∇R(p0) =
0 implies ∇f(p0) = 0. Since f is strictly convex, we conclude that

lim infp→∞
f(p)

d(p0,p)
> 0. On the other hand, since |∇f |2 ≤ 1, we have

lim supp→∞
f(p)

d(p0,p)
< ∞.

Using the fact that (M,g) is asymptotically cylindrical, we obtain the
following result:

Proposition 2.1. We have f R = n−1
2 + o(1) and f Ric ≤

(

1
2 +

o(1)
)

g. Moreover, we have f2Ric ≥ c g for some positive constant c.

Proof. Since (M,g) is asymptotically cylindrical, we have ∆R =
o(r−2) and |Ric|2 = 1

n−1 R
2 + o(r−2). This implies

−〈X,∇R〉 = ∆R+ 2 |Ric|2 = 2

n− 1
R2 + o(r−2),

hence
〈

X,∇
( 1

R
− 2

n− 1
f
)〉

= o(1).

Integrating this inequality along the integral curves of X gives

1

R
− 2

n− 1
f = o(r),

hence

f R =
n− 1

2
+ o(1).
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Moreover, we have Ric ≤
(

1
n−1+o(1)

)

Rg since (M,g) is asymptotically

cylindrical. Therefore, f Ric ≤
(

1
2 + o(1)

)

g.
In order to verify the third statement, we choose an orthonormal

frame {e1, . . . , en} such that en = X
|X| . Since (M,g) is asymptotically

cylindrical, we have

Ric(ei, ej) =
1

n− 1
Rδij + o(r−1)

for i, j ∈ {1, . . . , n− 1} and

2Ric(ei,X) = −〈ei,∇R〉 = o(r−
3
2 ).

Moreover, we have

2Ric(X,X) = −〈X,∇R〉 = ∆R+ 2 |Ric|2 = 2

n− 1
R2 + o(r−2).

Putting these facts together, we conclude that Ric ≥ cR2 g for some
positive constant c. From this, the assertion follows. q.e.d.

In the remainder of this section, we prove a roundness estimate. We
begin with a lemma:

Lemma 2.2. We have Rijkl ∂
lf = O(r−

3
2 ).

Proof. Using Shi’s estimate, we obtain

Rijkl ∂
lf = DiRicjk −DjRicik = O(r−

3
2 ).

This proves the assertion. q.e.d.

We next define

T = (n− 1)Ric −Rg +Rdf ⊗ df.

Note that

tr(T ) = −R2 = O(r−2),

T (∇f, ·) = (n− 1)Ric(∇f, ·)−R2∇f = O(r−
3
2 ),

T (∇f,∇f) = (n− 1)Ric(∇f,∇f)−R2 |∇f |2 = O(r−2).

Proposition 2.3. We have |T | ≤ O(r−
3
2 ).

Proof. The Ricci tensor of (M,g) satisfies the equation

∆Ricik +DXRicik = −2

n
∑

j,l=1

RijklRic
jl.

Moreover, using the identity ∆X +DXX = 0, we obtain

∆(Rgik −R∂if ∂kf) +DX(Rgik −R∂if ∂kf)

= (∆R+ 〈X,∇R〉) (gik − ∂if ∂kf) +O(r−
5
2 )

= −2 |Ric|2 (gik − ∂if ∂kf) +O(r−
5
2 ).
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Using Lemma 2.2, we conclude that

∆Tik +DXTik = −2

n−1
∑

j,l=1

Rijkl T
jl − 2RRicik

+ 2 |Ric|2 (gik − ∂if ∂kf) +O(r−
5
2 ),

hence

∆(|T |2) + 〈X,∇(|T |2)〉

= 2 |DT |2 − 4
n−1
∑

j,l=1

Rijkl T
ik T jl − 4R

n
∑

i,k=1

Ricik T
ik

+ 4 |Ric|2
n
∑

i,k=1

(gik − ∂if ∂kf)T
ik +O(r−

5
2 ) |T |

= 2 |DT |2 − 4
n−1
∑

j,l=1

Rijkl T
ik T jl − 4

n− 1
R |T |2

+ 4
(

|Ric|2 − 1

n− 1
R2

)

n
∑

i,k=1

(gik − ∂if ∂kf)T
ik +O(r−

5
2 ) |T |.

Since
∑n

i,k=1(gik − ∂if ∂kf)T
ik = O(r−2), we obtain

∆(|T |2) + 〈X,∇(|T |2)〉

≥ −4

n−1
∑

j,l=1

Rijkl T
ik T jl − 4

n− 1
R |T |2 −O(r−

5
2 ) |T | −O(r−4).

Moreover, since (M,g) is asymptotically cylindrical, we have

Rijkl =
1

(n − 1)(n− 2)
R (gik − ∂if ∂kf) (gjl − ∂jf ∂lf)

− 1

(n − 1)(n − 2)
R (gil − ∂if ∂lf) (gjk − ∂jf ∂kf)

+ o(r−1)

near infinity. This implies

n−1
∑

j,l=1

Rijkl T
ik T jl = − 1

(n− 1)(n − 2)
R |T |2 +O(r−

5
2 ) |T |+ o(r−1) |T |2,

hence

∆(|T |2) + 〈X,∇(|T |2)〉

≥ − 4(n− 3)

(n− 1)(n − 2)
R |T |2 − o(r−1) |T |2 −O(r−

5
2 ) |T | −O(r−4).
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We next observe that |DXRic| ≤ O(r−2) and |D2
X,XRic| ≤ O(r−

5
2 ).

This implies |DXT | ≤ O(r−2) and |D2
X,XT | ≤ O(r−

5
2 ). From this, we

deduce that

∆Σ(|T |2) + 〈X,∇(|T |2)〉

≥ −2(n− 3)

n− 2
f−1 |T |2 − o(r−1) |T |2 −O(r−

5
2 ) |T | −O(r−4),

where ∆Σ denotes the Laplacian on the level surfaces of f . Thus, we
conclude that

∆Σ(f
2 |T |2) + 〈X,∇(f2 |T |2)〉

≥ 2

n− 2
f |T |2 − o(r) |T |2 −O(r−

1
2 ) |T | −O(r−2) ≥ −O(r−2)

outside some compact set. Since f2 |T |2 → 0 at infinity, the parabolic
maximum principle implies that f2 |T |2 ≤ O(r−1). This completes the
proof. q.e.d.

In the following, we fix ε sufficiently small; for example, ε = 1
1000n will

work. By Proposition 2.3, we have |T | ≤ O(r
1

2(n−2)
− 3

2
−32ε

). Moreover, it

follows from Shi’s estimates that |DmT | ≤ O(r−
m+2

2 ) for each m. Using

standard interpolation inequalities, we obtain |DT | ≤ O(r
1

2(n−2)
−2−16ε

).
Using the identity

DkTik =
n− 3

2
∂iR+ 〈∇f,∇R〉 ∂if +R2 ∂if +RRicki ∂kf

=
n− 3

2
∂iR+O(r−2),

we conclude that |∇R| ≤ O(r
1

2(n−2)
−2−16ε

). This implies

|DRic| ≤ C |DT |+ C |∇R|+ C R |D2f | ≤ O(r
1

2(n−2)
−2−16ε

).

Using standard interpolation inequalities, we obtain

|D2Ric| ≤ O(r
1

2(n−2)
− 5

2
−8ε

).

Proposition 2.4. We have f R = n−1
2 +O(r

1
2(n−2)

− 1
2
−8ε

).

Proof. Using the inequality |T | ≤ O(r−
3
2 ), we obtain

|Ric| = 1

n− 1
R |g − df ⊗ df |+O(r−

3
2 ) =

1√
n− 1

R+O(r−
3
2 ),

hence

|Ric|2 = 1

n− 1
R2 +O(r−

5
2 ).

This implies

−〈X,∇R〉 = ∆R+ 2 |Ric|2 = 2

n− 1
R2 +O(r

1
2(n−2)

− 5
2
−8ε

),
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hence
〈

X,∇
( 1

R
− 2

n− 1
f
)〉

= O(r
1

2(n−2)
− 1

2
−8ε

).

Integrating this identity along the integral curves of X, we obtain

1

R
− 2

n− 1
f = O(r

1
2(n−2)

+ 1
2
−8ε

).

From this, the assertion follows. q.e.d.

Proposition 2.5. We have

f Rijkl =
1

2(n− 2)
(gik − ∂if ∂kf) (gik − ∂if ∂kf)

− 1

2(n − 2)
(gil − ∂if ∂lf) (gjk − ∂jf ∂kf)

+O(r
1

2(n−2)
− 1

2
−8ε

).

Proof. It follows from Proposition 2.10 in [3] that

−DXRijkl = D2
i,kRicjl −D2

i,lRicjk −D2
j,kRicil +D2

j,lRicik

+

n
∑

m=1

Ricmi Rmjkl +

n
∑

m=1

Ricmj Rimkl.

Using Lemma 2.2 and Proposition 2.3, we obtain
n
∑

m=1

Ricmi Rmjkl =
1

n− 1
R

n
∑

m=1

(δmi − ∂if ∂mf)Rmjkl +O(r−
5
2 )

=
1

n− 1
RRijkl +O(r−

5
2 ).

Thus, we conclude that

−DXRijkl =
2

n− 1
RRijkl +O(r

1
2(n−2)

− 5
2
−8ε

)

= f−1Rijkl +O(r
1

2(n−2)
− 5

2
−8ε

),

hence

|DX(f Rijkl)| ≤ O(r
1

2(n−2)
− 3

2
−8ε

).

On the other hand, the tensor

Sijkl =
1

2(n − 2)
(gik − ∂if ∂kf) (gjl − ∂jf ∂lf)

− 1

2(n − 2)
(gil − ∂if ∂lf) (gjk − ∂jf ∂kf)

satisfies
|DXSijkl| ≤ O(r−

3
2 ).

Putting these facts together, we obtain

|DX(f Rijkl − Sijkl)| ≤ O(r
1

2(n−2)
− 3

2
−8ε

).



198 S. BRENDLE

Moreover, we have |f Rijkl − Sijkl| → 0 at infinity. Integrating the
preceding inequality along integral curves of X gives

|f Rijkl − Sijkl| ≤ O(r
1

2(n−2)
− 1

2
−8ε

),

as claimed. q.e.d.

We next construct a collection of approximate Killing vector fields:

Proposition 2.6. We can find a collection of vector fields Ua, a ∈
{1, . . . , n(n−1)

2 }, on (M,g) such that |LUa
(g)| ≤ O(r

1
2(n−2)

− 1
2
−2ε

) and

|∆Ua +DXUa| ≤ O(r
1

2(n−2)
−1−2ε

). Moreover, we have

n(n−1)
2

∑

a=1

Ua ⊗ Ua = r
(

n−1
∑

i=1

ei ⊗ ei +O(r
1

2(n−2)
− 1

2
−2ε

)
)

,

where {e1, . . . , en−1} is a local orthonormal frame on the level set {f =
r}.

The proof of Proposition 2.6 is analogous to the arguments in [4],
Section 3. We omit the details.

3. An elliptic PDE for vector fields

Let us fix a smooth vector field Q on M with the property that

|Q| ≤ O(r
1

2(n−2)
−1−2ε

). We will show that there exists a vector field V

on M such that ∆V +DXV = Q and |V | ≤ O(r
1

2(n−2)
−ε

).

Lemma 3.1. Consider the shrinking cylinders (Sn−1 × R, g(t)), t ∈
(0, 1), where g(t) is given by (1). Let V (t), t ∈ (0, 1), be a one-parameter
family of vector fields which satisfy the parabolic equation

(2)
∂

∂t
V (t) = ∆g(t)V (t) + Ricg(t)(V (t)).

Moreover, suppose that V (t) is invariant under translations along the
axis of the cylinder, and

(3) |V (t)|g(t) ≤ 1

for all t ∈ (0, 12 ]. Then

inf
λ∈R

sup
Sn−1×R

∣

∣

∣
V (t)− λ

∂

∂z

∣

∣

∣

g(t)
≤ L (1− t)

1
2(n−2)

for all t ∈ [12 , 1), where L is a positive constant.

Proof. Since V (t) is invariant under translations along the axis of the
cylinder, we may write

V (t) = ξ(t) + η(t)
∂

∂z
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for t ∈ (0, 1), where ξ(t) is a vector field on Sn−1 and η(t) is a real-valued
function on Sn−1. The parabolic equation (2) implies the following
system of equations for ξ(t) and η(t):

∂

∂t
ξ(t) =

1

(n− 2)(2 − 2t)
(∆Sn−1ξ(t) + (n− 2) ξ(t)),(4)

∂

∂t
η(t) =

1

(n− 2)(2 − 2t)
∆Sn−1η(t).(5)

Furthermore, the estimate (3) gives

sup
Sn−1

|ξ(t)|g
Sn−1 ≤ L1,(6)

sup
Sn−1

|η(t)| ≤ L1(7)

for each t ∈ (0, 12 ], where L1 is a positive constant.
Let us consider the operator ξ 7→ −∆Sn−1ξ − (n − 2) ξ, acting on

vector fields on Sn−1. By Proposition A.1, the first eigenvalue of this
operator is at least −(n− 3). Using (4) and (6), we obtain

(8) sup
Sn−1

|ξ(t)|g
Sn−1 ≤ L2 (1− t)

− n−3
2(n−2)

for all t ∈ [12 , 1), where L2 is a positive constant. Similarly, it follows
from (5) and (7) that

(9) inf
λ∈R

sup
Sn−1

|η(t) − λ| ≤ L3 (1− t)
n−1

2(n−2)

for each t ∈ [12 , 1), where L3 is a positive constant. Combining (8) and
(9), the assertion follows. q.e.d.

Lemma 3.2 (cf. [4], Lemma 5.2). Let V be a smooth vector field
satisfying ∆V +DXV = Q in the region {f ≤ ρ}. Then

sup
{f≤ρ}

|V | ≤ sup
{f=ρ}

|V |+B ρ
1

2(n−2)
−2ε

for some uniform constant B ≥ 1.

The proof of Lemma 3.2 is similar to the proof of Lemma 5.2 in [4];
we omit the details.

As in [4], we choose a sequence of real numbers ρm → ∞. For each

m, we can find a vector field V (m) such that ∆V (m) +DXV (m) = Q in
the region {f ≤ ρm} and V (m) = 0 on the boundary {f = ρm}. We now
define

A(m)(r) = inf
λ∈R

sup
{f=r}

|V (m) − λX|

for r ≤ ρm.
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Lemma 3.3. Let us fix a real number τ ∈ (0, 12) so that τ−ε > 2L,
where L is the constant in Lemma 3.1. Then we can find a real number
ρ0 and a positive integer m0 such that

2 τ
− 1

2(n−2)
+ε

A(m)(τr) ≤ A(m)(r) + r
1

2(n−2)
−ε

for all r ∈ [ρ0, ρm] and all m ≥ m0.

Proof. We argue by contradiction. Suppose that the assertion is false.
After passing to a subsequence, there exists a sequence of real numbers
rm ≤ ρm such that rm → ∞ and

A(m)(rm) + r
1

2(n−2)
−ε

m ≤ 2 τ
− 1

2(n−2)
+ε

A(m)(τrm)

for all m. For each m, there exists a real number λm such that

sup
{f=rm}

|V (m) − λmX| = A(m)(rm).

Applying Lemma 3.2 to the vector field V (m) − λmX gives

sup
{f≤rm}

|V (m) − λmX| ≤ sup
{f=rm}

|V (m) − λmX|+B r
1

2(n−2)
−2ε

m

≤ A(m)(rm) + r
1

2(n−2)
−ε

m

if m is sufficiently large. We next consider the vector field

Ṽ (m) =
1

A(m)(rm) + r
1

2(n−2)
−ε

m

(V (m) − λmX).

The vector field Ṽ (m) satisfies

(10) sup
{f≤rm}

|Ṽ (m)| ≤ 1.

Let
ĝ(m)(t) = r−1

m Φ∗
rmt(g)

and

V̂ (m)(t) = r
1
2
mΦ∗

rmt(Ṽ
(m)).

Note that the metrics ĝ(m)(t) evolve by the Ricci flow. Moreover, the

vector fields V̂ (m)(t) satisfy the parabolic equation

∂

∂t
V̂ (m)(t) = ∆ĝ(m)(t)V̂

(m)(t) + Ricĝ(m)(t)(V̂
(m)(t))− Q̂(m)(t),

where

Q̂(m)(t) =
r

3
2
m

A(m)(rm) + r
1

2(n−2)
−ε

m

Φ∗
rmt(Q).

Using (10), we obtain

lim sup
m→∞

sup
t∈[δ,1−δ]

sup
{rm−δ−1

√
rm≤f≤rm+δ−1

√
rm}

|V̂ (m)(t)|ĝ(m)(t) < ∞
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for any given δ ∈ (0, 12). Moreover, the estimate |Q| ≤ O(r
1

2(n−2)
−1−2ε

)
implies that

lim sup
m→∞

sup
t∈[δ,1−δ]

sup
{rm−δ−1 √rm≤f≤rm+δ−1 √rm}

|Q̂(m)(t)|ĝ(m)(t) = 0

for any given δ ∈ (0, 12 ).
We now pass to the limit as m → ∞. To that end, we choose a

sequence of marked points pm ∈ M such that f(pm) = rm. The mani-

folds (M, ĝ(m)(t), pm) converge in the Cheeger-Gromov sense to a one-
parameter family of shrinking cylinders (Sn−1 × R, g(t)), t ∈ (0, 1),

where g(t) is given by (1). Furthermore, the rescaled vector fields r
1
2
mX

converge to the axial vector field ∂
∂z

on Sn−1×R. Finally, the sequence

V̂ (m)(t) converges in C0
loc to a one-parameter family of vector fields V (t),

t ∈ (0, 1), which satisfy the parabolic equation

∂

∂t
V (t) = ∆g(t)V (t) + Ricg(t)(V (t)).

As in [4], we can show that V (t) is invariant under translations along
the axis of the cylinder. Moreover, the estimate (10) implies that

|V (t)|g(t) ≤ 1

for all t ∈ (0, 12 ]. Hence, it follows from Lemma 3.1 that

(11) inf
λ∈R

sup
Sn−1×R

∣

∣

∣
V (t)− λ

∂

∂z

∣

∣

∣

g(t)
≤ L (1− t)

1
2(n−2)

for all t ∈ (0, 12 ]. Finally, we have

inf
λ∈R

sup
Φrm(τ−1)({f=τrm})

∣

∣

∣
V̂ (m)(1− τ)− λ r

1
2
mX

∣

∣

∣

ĝ(m)(1−τ)

= inf
λ∈R

sup
{f=τrm}

|Ṽ (m) − λX|g

=
1

A(m)(rm) + r
1

2(n−2)
−ε

m

inf
λ∈R

sup
{f=τrm}

|V (m) − λX|g

=
A(m)(τrm)

A(m)(rm) + r
1

2(n−2)
−ε

m

≥ 1

2
τ

1
2(n−2)

−ε
.

If we send m → ∞, we obtain

(12) inf
λ∈R

sup
Sn−1×R

∣

∣

∣
V (1− τ)− λ

∂

∂z

∣

∣

∣

g(1−τ)
≥ 1

2
τ

1
2(n−2)

−ε
.

Since τ−ε > 2L, the inequality (12) is in contradiction with (11). This
completes the proof of Lemma 3.3. q.e.d.
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If we iterate the estimate in Lemma 3.3, we obtain

sup
m

sup
ρ0≤r≤ρm

r
− 1

2(n−2)
+ε

A(m)(r) < ∞.

From this, we deduce the following result:

Proposition 3.4. There exists a sequence of real numbers λm such
that

sup
m

sup
{f≤ρm}

f
− 1

2(n−2)
+ε |V (m) − λmX| < ∞.

The proof of Proposition 3.4 is analogous to the proof of Proposition
5.4 in [4]. We omit the details. By taking the limit as m → ∞ of the
vector fields V (m) − λmX, we obtain the following result:

Theorem 3.5. There exists a smooth vector field V such that ∆V +

DXV = Q and |V | ≤ O(r
1

2(n−2)
−ε

). Moreover, |DV | ≤ O(r
1

2(n−2)
− 1

2
−ε

).

4. Analysis of the Lichnerowicz equation

Throughout this section, we will denote by ∆L the Lichnerowicz
Laplacian; that is,

∆Lhik = ∆hik + 2Rijkl h
jl − Ricli hkl − Riclk hil.

Lemma 4.1. Let us consider the shrinking cylinders (Sn−1×R, g(t)),
t ∈ (0, 1), where g(t) is given by (1). Let h(t), t ∈ (0, 1), be a one-
parameter family of (0, 2)-tensors which solve the parabolic equation

(13)
∂

∂t
h(t) = ∆L,g(t)h(t).

Moreover, suppose that h̄(t) is invariant under translations along the
axis of the cylinder, and

(14) |h(t)|g(t) ≤ (1− t)−2

for all t ∈ (0, 12 ]. Then

inf
λ∈R

sup
Sn−1×R

∣

∣h(t)− λRicg(t)
∣

∣

g(t)
≤ N (1− t)

1
2(n−2)

− 1
2

for all t ∈ [12 , 1), where N is a positive constant.

Proof. Since h(t) is invariant under translations along the axis of the
cylinder, we may write

h(t) = χ(t) + dz ⊗ σ(t) + σ(t)⊗ dz + β(t) dz ⊗ dz

for t ∈ (0, 1), where χ(t) is a symmetric (0, 2) tensor on Sn−1, σ(t) is
a one-form on Sn−1, and β(t) is a real-valued function on Sn−1. The
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parabolic Lichnerowicz equation (13) implies the following system of
equations for χ(t), σ(t), and β(t):

∂

∂t
χ(t) =

1

(n− 2)(2 − 2t)
(∆Sn−1χ(t)− 2(n− 1)

o
χ(t)),(15)

∂

∂t
σ(t) =

1

(n− 2)(2 − 2t)
(∆Sn−1σ(t)− (n− 2)σ(t)),(16)

∂

∂t
β(t) =

1

(n− 2)(2 − 2t)
∆Sn−1β(t).(17)

Here,
o
χ(t) denotes the trace-free part of χ(t) with respect to the stan-

dard metric on Sn−1. Using the assumption (14), we obtain

sup
Sn−1

|χ(t)|g
Sn−1 ≤ N1,(18)

sup
Sn−1

|σ(t)|g
Sn−1 ≤ N1,(19)

sup
Sn−1

|β(t)| ≤ N1(20)

for each t ∈ (0, 12 ], where N1 is a positive constant.

We next analyze the operator χ 7→ −∆Sn−1χ+ 2(n − 1)
o
χ, acting on

symmetric (0, 2)-tensors on Sn−1. The first eigenvalue of this operator is
equal to 0, and the associated eigenspace is spanned by gSn−1 . Moreover,
the other eigenvalues of this operator are at least n− 1 (cf. Proposition
A.2 below). Hence, it follows from (15) and (18) that

(21) inf
λ∈R

sup
Sn−1

|χ(t)− λ gSn−1 |g
Sn−1 ≤ N2 (1− t)

n−1
2(n−2)

for all t ∈ [12 , 1), where N2 is a positive constant. We now consider the

operator σ 7→ −∆Sn−1σ + (n − 2)σ, acting on one-forms on Sn−1. By
Proposition A.1, the first eigenvalue of this operator is at least n − 1.
Using (16) and (19), we deduce that

(22) sup
Sn−1

|σ(t)|g
Sn−1 ≤ N3 (1− t)

n−1
2(n−2)

for all t ∈ [12 , 1), where N3 is a positive constant. Finally, using (17)
and (20), we obtain

(23) sup
Sn−1

|β(t)| ≤ N4

for all t ∈ [12 , 1), where N4 is a positive constant. If we combine (21),
(22), and (23), the assertion follows. q.e.d.

We now study the equation ∆Lh+ LX(h) = 0 on (M,g), where ∆L

denotes the Lichnerowicz Laplacian defined above.
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Lemma 4.2. Let h be a solution of the Lichnerowicz-type equation

∆Lh+ LX(h) = 0

on the region {f ≤ ρ}. Then

sup
{f≤ρ}

|h| ≤ C ρ2 sup
{f=ρ}

|h|

for some uniform constant C which is independent of ρ.

Proof. It suffices to show that

(24) h ≤ C ρ2
(

sup
{f=ρ}

|h|
)

g

for some uniform constant C. Indeed, if (24) holds, the assertion follows
by applying (24) to h and −h.

We now describe the proof of (24). By Proposition 2.1, we have
f2Ric ≥ c g for some positive constant c. Therefore, the tensor Ric −
c
2 ρ

−2 g is positive definite in the region {f ≤ ρ}. Let θ be the smallest

real number with the property that θ (Ric − c
2 ρ

−2 g) − h is positive
semi-definite at each point in the region {f ≤ ρ}. There exists a point
p0 ∈ {f ≤ ρ} and an orthonormal basis {e1, . . . , en} of Tp0M such that

θRic(e1, e1)−
θ c

2
ρ−2 − h(e1, e1) = 0

at the point p0. We now distinguish two cases:

Case 1: Suppose that p0 ∈ {f < ρ}. In this case, we have

θ (∆Ric)(e1, e1)− (∆h)(e1, e1) ≥ 0

and

θ (DXRic)(e1, e1)− (DXh)(e1, e1) = 0

at the point p0. Using the identity ∆Lh+ LX(h) = 0, we obtain

0 = (∆h)(e1, e1) + (DXh)(e1, e1) + 2

n
∑

i,k=1

R(e1, ei, e1, ek)h(ei, ek)

≤ θ (∆Ric)(e1, e1) + θ (DXRic)(e1, e1) + 2

n
∑

i,k=1

R(e1, ei, e1, ek)h(ei, ek)

= −2

n
∑

i,k=1

R(e1, ei, e1, ek) (θRic(ei, ek)− h(ei, ek))

= −θ c ρ−2 Ric(e1, e1)

− 2

n
∑

i,k=1

R(e1, ei, e1, ek)
(

θRic(ei, ek)−
θ c

2
ρ−2 g(ei, ek)− h(ei, ek)

)



RICCI SOLITONS IN HIGHER DIMENSIONS 205

at the point p0. Since (M,g) has positive sectional curvature, we have

n
∑

i,k=1

R(e1, ei, e1, ek)
(

θRic(ei, ek)−
θ c

2
ρ−2 g(ei, ek)− h(ei, ek)

)

≥ 0.

Consequently, θ ≤ 0. This implies h ≤ 0 at each point in the region
{f ≤ ρ}. Therefore, (24) is satisfied in this case.

Case 2: Suppose that p0 ∈ {f = ρ}. Since f2Ric ≥ c g, we have

θ c

2
≤ θ ρ2Ric(e1, e1)−

θ c

2
= ρ2 h(e1, e1) ≤ ρ2 sup

{f=ρ}
|h|.

Since h ≤ θ (Ric− c
2 ρ

−2 g), we conclude that

h ≤ C ρ2
(

sup
{f=ρ}

|h|
)

g

at each point in the region {f ≤ ρ}. This proves (24). q.e.d.

Lemma 4.3. Let h be a solution of the Lichnerowicz-type equation

∆Lh+ LX(h) = 0

on the region {f ≤ ρ}. Then

sup
{f≤ρ}

f2 |h| ≤ B ρ2 sup
{f=ρ}

|h|,

where B is a positive constant that does not depend on ρ.

Proof. As above, it suffices to show that

(25) f2 h ≤ C ρ2
(

sup
{f=ρ}

|h|
)

g

for some uniform constant C. We now describe the proof of (25). By
Proposition 2.1, we can find a compact set K such that f Ric < (1 −
3 f−1 |∇f |2) g onM \K. Let us consider the smallest real number θ with
the property that θ f−2 g − h is positive semi-definite at each point in
the region {f ≤ ρ}. By definition of θ, there exists a point p0 ∈ {f ≤ ρ}
and an orthonormal basis {e1, . . . , en} of Tp0M such that

θ f−2 − h(e1, e1) = 0

at the point p0. Let us distinguish two cases:

Case 1: Suppose that p0 ∈ {f < ρ} \K. In this case, we have

θ∆(f−2)− (∆h)(e1, e1) ≥ 0

and

θ 〈X,∇(f−2)〉 − (DXh)(e1, e1) = 0
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at the point p0. Using the identity ∆Lh+ LX(h) = 0, we obtain

0 = (∆h)(e1, e1) + (DXh)(e1, e1) + 2
n
∑

i,k=1

R(e1, ei, e1, ek)h(ei, ek)

≤ θ∆(f−2) + θ 〈X,∇(f−2)〉+ 2
n
∑

i,k=1

R(e1, ei, e1, ek)h(ei, ek)

= −2θ f−3 (1− 3 f−1 |∇f |2 − f Ric(e1, e1))

− 2
n
∑

i,k=1

R(e1, ei, e1, ek) (θ f
−2 g(ei, ek)− h(ei, ek))

at the point p0. Since (M,g) has positive sectional curvature, we have
n
∑

i,k=1

R(e1, ei, e1, ek) (θ f
−2 g(ei, ek)− h(ei, ek)) ≥ 0,

hence
0 ≤ −2θ f−3 (1− 3 f−1 |∇f |2 − f Ric(e1, e1)).

On the other hand, we have f Ric(e1, e1) < 1 − 3 f−1 |∇f |2 since p0 ∈
M \K. Consequently, we have θ ≤ 0. This implies that h ≤ 0 at each
point in the region {f ≤ ρ}, and (25) is trivially satisfied.

Case 2: We next assume that p0 ∈ {f = ρ} ∪K. Using Lemma 4.2,
we obtain

θ = f2 h(e1, e1) ≤ sup
{f=ρ}∪K

f2 |h| ≤ C ρ2 sup
{f=ρ}

|h|.

Since f2 h ≤ θ g, we conclude that

f2 h ≤ C ρ2
(

sup
{f=ρ}

|h|
)

g

at each point in the region {f ≤ ρ}. This proves (25). q.e.d.

Theorem 4.4. Suppose that h is a solution of the Lichnerowicz-type
equation

∆Lh+ LX(h) = 0

with the property that |h| ≤ O(r
1

2(n−2)
− 1

2
−ε

). Then h = λRic for some
constant λ ∈ R.

Proof. Let us consider the function

A(r) = inf
λ∈R

sup
{f=r}

|h− λRic|.

Clearly, A(r) ≤ sup{f=r} |h| ≤ O(r
1

2(n−2)
− 1

2
−ε

). We consider two cases:

Case 1: Suppose that there exists a sequence of real numbers rm → ∞
such that A(rm) = 0 for all m. In this case, we can find a sequence of
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real numbers λm such that h − λmRic = 0 on the level surface {f =
rm}. Using Lemma 4.3, we conclude that h− λmRic = 0 in the region
{f ≤ rm}. Therefore, the sequence λm is constant. Moreover, h is a
constant multiple of the Ricci tensor.

Case 2: Suppose now that A(r) > 0 when r is sufficiently large. Let
us fix a real number τ ∈ (0, 12) such that τ−ε > 2N B, where N and
B are the constants in Lemma 4.1 and Lemma 4.3, respectively. Since

A(r) ≤ O(r
1

2(n−2)
− 1

2
−ε

), there exists a sequence of real numbers rm → ∞
such that

A(rm) ≤ 2 τ
1
2
− 1

2(n−2)
+ε

A(τrm)

for all m. For each m, we can find a real number λm such that

sup
{f=rm}

|h− λmRic| = A(rm).

Applying Lemma 4.3 to the tensor

h̃(m) =
1

A(rm)
(h− λmRic)

gives
(26)

sup
{f=r}

|h̃(m)| ≤ B r2m
r2

sup
{f=rm}

|h̃(m)| = B r2m
r2A(rm)

sup
{f=rm}

|h−λmRic| = B r2m
r2

for r ≤ rm.
At this point, we define

ĝ(m)(t) = r−1
m Φ∗

rmt(g)

and

ĥ(m)(t) = r−1
m Φ∗

rmt(h̃
(m)).

The metrics ĝ(m)(t) evolve by the Ricci flow, and the tensors ĥ(m)(t)
satisfy the parabolic Lichnerowicz equation

∂

∂t
ĥ(m)(t) = ∆L,ĝ(m)(t)ĥ

(m)(t).

Using (26), we obtain

lim sup
m→∞

sup
t∈[δ,1−δ]

sup
{rm−δ−1

√
rm≤f≤rm+δ−1

√
rm}

|ĥ(m)(t)|ĝ(m)(t) < ∞

for any given δ ∈ (0, 12 ).
We now pass to the limit as m → ∞. Let us choose a sequence

of marked points pm ∈ M satisfying f(pm) = rm. The manifolds
(M, ĝ(m)(t), pm) converge in the Cheeger-Gromov sense to a one-param-
eter family of shrinking cylinders (Sn−1 ×R, g(t)), t ∈ (0, 1), where g(t)

is given by (1). The vector fields r
1
2
mX converge to the axial vector field
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∂
∂z

on Sn−1 ×R. Furthermore, the sequence ĥ(m)(t) converges to a one-

parameter family of tensors h(t), t ∈ (0, 1), which solve the parabolic
Lichnerowicz equation

∂

∂t
h(t) = ∆L,g(t)h(t).

As in [4], we can show that h(t) is invariant under translations along
the axis of the cylinder. Using (26), we obtain

|h(t)|g(t) ≤ B (1− t)−2

for all t ∈ (0, 12 ]. Hence, Lemma 4.1 implies that

(27) inf
λ∈R

sup
Sn−1×R

∣

∣h(t)− λRicg(t)
∣

∣

g(t)
≤ N B (1− t)

1
2(n−2)

− 1
2

for all t ∈ [12 , 1). On the other hand, we have

inf
λ∈R

sup
Φrm(τ−1)({f=τrm})

∣

∣

∣
ĥ(m)(1− τ)− λRicĝ(m)(1−τ)

∣

∣

∣

ĝ(m)(1−τ)

= inf
λ∈R

sup
{f=τrm}

|h̃(m) − λRicg|g

=
1

A(rm)
inf
λ∈R

sup
{f=τrm}

|h− λRicg|g

=
A(τrm)

A(rm)

≥ 1

2
τ

1
2(n−2)

− 1
2
−ε

.

If we send m → ∞, we obtain

(28) inf
λ∈R

sup
Sn−1×R

∣

∣h(1− τ)− λRicg(1−τ)

∣

∣

g(1−τ)
≥ 1

2
τ

1
2(n−2)

− 1
2
−ε

.

Since τ−ε > 2N B, the inequality (28) contradicts (27). This completes
the proof of Theorem 4.4. q.e.d.

5. Proof of Theorem 1.2

Combining Theorems 3.5 and 4.4, we obtain the following symmetry
principle:

Theorem 5.1. Suppose that U is a vector field on (M,g) such that

|LU (g)| ≤ O(r
1

2(n−2)
− 1

2
−2ε

) and |∆U + DXU | ≤ O(r
1

2(n−2)
−1−2ε

) for

some small constant ε > 0. Then there exists a vector field Û on
(M,g) such that L

Û
(g) = 0, [Û ,X] = 0, 〈Û ,X〉 = 0, and |Û − U | ≤

O(r
1

2(n−2)
−ε

).
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Proof. In view of Theorem 3.5, the equation

∆V +DXV = ∆U +DXU

has a smooth solution which satisfies the bounds |V | ≤ O(r
1

2(n−2)
−ε

) and

|DV | ≤ O(r
1

2(n−2)
− 1

2
−ε

). Hence, the vector field W = U − V satisfies
∆W +DXW = 0. Using Theorem 4.1 in [4], we conclude that the Lie
derivative h = LW (g) satisfies the Lichnerowicz-type equation

∆Lh+ LX(h) = 0.

Since |h| ≤ O(r
1

2(n−2)
− 1

2
−ε

), Theorem 4.4 implies that h = λRic for some

constant λ ∈ R. Consequently, the vector field Û := U−V − 1
2 λX must

be a Killing vector field. The identities [Û ,X] = 0 and 〈Û ,X〉 = 0 follow
as in [4]. q.e.d.

To complete the proof of Theorem 1.2, we apply Theorem 5.1 to
the vector fields Ua constructed in Proposition 2.6. Consequently, there

exist vector fields Ûa, a ∈ {1, . . . , n(n−1)
2 }, on (M,g) such that L

Ûa
(g) =

0, [Ûa,X] = 0, and 〈Ûa,X〉 = 0. Moreover, we have

n(n−1)
2

∑

a=1

Ûa ⊗ Ûa = r
(

n−1
∑

i=1

ei ⊗ ei +O(r
1

2(n−2)
− 1

2
−ε

)
)

,

where {e1, . . . , en−1} is a local orthonormal frame on the level set {f =
r}. This shows that (M,g) is rotationally symmetric.

6. Proof of Theorem 1.3

We now describe how Theorem 1.3 follows from Theorem 1.2. Let
(M,g) be a four-dimensional steady gradient Ricci soliton which is non-
flat; is κ-noncollapsed; and satisfies the pointwise pinching condition

0 ≤ max{a3, b3, c3} ≤ Λ min{a1 + a2, c1 + c2}
for some constant Λ ≥ 1. In particular, (M,g) has nonnegative isotropic
curvature. Moreover, since the sum R + |∇f |2 is constant, the scalar
curvature of (M,g) is bounded from above; consequently, (M,g) has
bounded curvature.

We next show that (M,g) has positive curvature operator. To that
end, we adapt the arguments in [12] and [13]. We note that pinching
estimates for ancient solutions to the Ricci flow were established in [5].

Lemma 6.1. We have a3 ≤ (6Λ2 + 1) a1 and c3 ≤ (6Λ2 + 1) a1.

Proof. Using the inequalities

∆a1 + 〈X,∇a1〉 ≤ −2a2a3
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and
∆a3 + 〈X,∇a3〉 ≥ −a23 − 2a1a2 − b23,

we obtain

∆((6Λ2 + 1) a1 − a3) + 〈X,∇((6Λ2 + 1) a1 − a3)〉
≤ a23 + 2a1a2 + b23 − (12Λ2 + 2) a2a3

≤ a23 + b23 − 12Λ2 a2a3

≤ a23 + b23 − 3Λ2 (a1 + a2)
2

≤ −a23.

Hence, the Omori-Yau maximum principle implies that (6Λ2 + 1) a1 −
a3 ≥ 0. The inequality (6Λ2 + 1) c1 − c3 ≥ 0 follows similarly. q.e.d.

Lemma 6.2. We have 4b23 ≤ (a1 + a2) (c1 + c2).

Proof. Suppose that γ = supM
2b3√

(a1+a2) (c1+c2)
> 1. The function

u = 1
2

√

(a1 + a2) (c1 + c2) satisfies

∆u+ 〈X,∇u〉

≤ −u

[

a3 + c3 +
a21 + a22 + b21 + b22

2(a1 + a2)
+

c21 + c22 + b21 + b22
2(c1 + c2)

]

.

On the other hand, we have

∆b3 + 〈X,∇b3〉 ≥ −b3(a3 + c3)− 2b1b2.

Putting these facts together, we obtain

∆(γu− b3) + 〈X,∇(γu − b3)〉

≤ −γu

[

a3 + c3 +
a21 + a22 + b21 + b22

2(a1 + a2)
+

c21 + c22 + b21 + b22
2(c1 + c2)

]

+ b3(a3 + c3) + 2b1b2

= −γu
(a1 − b1)

2 + (a2 − b2)
2 + 2a2(b2 − b1)

2(a1 + a2)

− γu
(c1 − b1)

2 + (c2 − b2)
2 + 2c2(b2 − b1)

2(c1 + c2)

− (γu− b3) (a3 + c3 + 2b1)− 2b1(b3 − b2).

Note that γu − b3 ≥ 0 by definition of γ. Since γ > 1, we can find a
positive constant δ such that

3δ |Ric|2 ≤ γu
(a1 − b1)

2 + (a2 − b2)
2 + 2a2(b2 − b1)

2(a1 + a2)

+ γu
(c1 − b1)

2 + (c2 − b2)
2 + 2c2(b2 − b1)

2(c1 + c2)

+ (γu− b3) (a3 + c3 + 2b1) + 2b1(b3 − b2).
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This implies

∆(γu− b3) + 〈X,∇(γu − b3)〉 ≤ −3δ |Ric|2,
hence

∆(γu− b3 − δ R) + 〈X,∇(γu − b3 − δ R)〉 ≤ −δ |Ric|2.
Using the Omori-Yau maximum principle, we conclude that γu − b3 −
δ R ≥ 0. This contradicts the definition of γ. Thus, γ ≤ 1, as claimed.
q.e.d.

Proposition 6.3. We have b23 ≤ a1c1.

Proof. Suppose that γ = supM
b3√
a1c1

> 1. The function v =
√
a1c1

satisfies

∆v + 〈X,∇v〉 ≤ −v

[

a21 + 2a2a3 + b21
2a1

+
c21 + 2c2c3 + b21

2c1

]

.

This implies

∆(γv − b3) + 〈X,∇(γv − b3)〉

≤ −γv

[

a21 + 2a2a3 + b21
2a1

+
c21 + 2c2c3 + b21

2c1

]

+ b3(a3 + c3) + 2b1b2

= −γv

[

(a1 − b1)
2 + 2(a2 − a1)a3
2a1

+
(c1 − b1)

2 + 2(c2 − c1)c3
2c1

]

− (γv − b3) (a3 + c3 + 2b1)− 2b1(b3 − b2).

Note that γv − b3 ≥ 0 by definition of γ. Using Lemma 6.2 and the
inequality γ > 1, we obtain an estimate of the form

3δ |Ric|2 ≤ γv

[

(a1 − b1)
2 + 2(a2 − a1)a3
2a1

+
(c1 − b1)

2 + 2(c2 − c1)c3
2c1

]

+ (γv − b3) (a3 + c3 + 2b1) + 2b1(b3 − b2)

for some positive constant δ. From this, we deduce that

∆(γv − b3) + 〈X,∇(γv − b3)〉 ≤ −3δ |Ric|2,
hence

∆(γv − b3 − δ R) + 〈X,∇(γv − b3 − δ R)〉 ≤ −δ |Ric|2.
As above, the Omori-Yau maximum principle implies that γv−b3−δ R ≥
0. This contradicts the definition of γ. Consequently, γ ≤ 1, which
proves the assertion. q.e.d.

Corollary 6.4. The manifold (M,g) has positive curvature operator.
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Proof. The inequality b23 ≤ a1c1 implies that (M,g) has nonnega-
tive curvature operator. If (M,g) has generic holonomy group, then
the strict maximum principle (cf. [12]) implies that (M,g) has positive
curvature operator. On the other hand, if (M,g) has non-generic ho-
lonomy group, then (M,g) locally splits as a product. In this case, we
can deduce from Proposition 6.3 that (M,g) is isometric to a cylinder.
This contradicts the fact that (M,g) is a steady soliton. q.e.d.

Note that (M,g) satisfies restricted isotropic curvature pinching con-
dition in [10]. Using the compactness theorem for ancient κ-solutions
in [10], we obtain:

Proposition 6.5 (Chen and Zhu [10]). Let pm be a sequence of
points going to infinity. Then |〈X,∇R〉| ≤ O(1)R2 at the point pm.

Moreover, if d(p0, pm)2 R(pm) → ∞, then we have |∇R| ≤ o(1)R
3
2 and

|〈X,∇R〉+ 2
3 R

2| ≤ o(1)R2 at the point pm.

Proof. The first statement follows immediately from Proposition 3.3
in [10]. To prove the second statement, we consider a sequence of points
pm such that d(p0, pm)2 R(pm) → ∞. Combining the compactness the-
orem for ancient solutions (cf. [10, Corollary 3.7]) with the splitting

theorem (cf. [10, Lemma 3.1]), we conclude that |∇R| ≤ o(1)R
3
2 ,

|∆R| ≤ o(1)R2, and 3 |Ric|2 = (1+o(1))R2. From this, we deduce that
−〈X,∇R〉 = ∆R+ 2 |Ric|2 =

(

2
3 + o(1)

)

R2, as claimed. q.e.d.

Using Proposition 6.5, it is not difficult to show that R → 0 at infinity.
Consequently, there exists a unique point p0 ∈ M where the scalar
curvature attains its maximum. The point p0 must be a critical point
of the function f . Since f is strictly convex, we conclude that f grows
linearly near infinity. If we integrate the inequality |〈X,∇R〉| ≤ O(1)R2

along integral curves of X, we obtain R ≥ Λ1
d(p0,p)

outside a compact set,

where Λ1 is a positive constant. Hence, Proposition 6.5 gives |〈X,∇R〉+
2
3 R

2| ≤ o(1)R2. Integrating this inequality along integral curves of X,

we obtain R ≤ Λ2
d(p0,p)

outside a compact set. Using Lemma 3.1 in [10]

again, we conclude that (M,g) is asymptotically cylindrical. Hence,
(M,g) must be rotationally symmetric by Theorem 1.2.

Appendix A. The eigenvalues of some elliptic

operators on Sn−1

In this section, we analyze the eigenvalues of certain elliptic operators
on Sn−1. In the following, gSn−1 will denote the standard metric on Sn−1

with constant sectional curvature 1.

Proposition A.1. Let σ be a one-form on Sn−1 satisfying

∆Sn−1σ + µσ = 0,
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where ∆Sn−1 denotes the rough Laplacian and µ ∈ (−∞, 1) is a constant.
Then σ = 0.

Proof. For any smooth function u, we have
∫

Sn−1

u∆Sn−1(d∗σ) =
∫

Sn−1

〈d(∆Sn−1u), σ〉

=

∫

Sn−1

〈∆Sn−1(du), σ〉 − (n− 2)

∫

Sn−1

〈du, σ〉

= −(n− 2 + µ)

∫

Sn−1

〈du, σ〉

= −(n− 2 + µ)

∫

Sn−1

u d∗σ.

Since u is arbitrary, we conclude that

∆Sn−1(d∗σ) + (n− 2 + µ) d∗σ = 0.

Since n − 2 + µ < n − 1, it follows that d∗σ is constant. Consequently,
d∗σ = 0 by the divergence theorem.

We next consider the tensor Sik = Diσk +Dkσi. Then

(n− 2− µ)σi = ∆Sn−1σi + (n− 2)σi = DkSik −
1

2
Di(trS).

Using the identity d∗σ = 0, we obtain

(n− 2−µ)

∫

Sn−1

|σ|2 =

∫

Sn−1

(

DkSik −
1

2
Di(trS)

)

σi = −1

2

∫

Sn−1

|S|2.

Since n− 2− µ > 0, we conclude that σ = 0, as claimed. q.e.d.

Proposition A.2. Let χ be a symmetric (0, 2)-tensor on Sn−1 sat-
isfying

∆Sn−1χ− 2(n − 1)
o
χ+ µχ = 0,

where
o
χ denotes the trace-free part of χ and µ ∈ (−∞, n − 1) is a

constant. Then χ is a constant multiple of gSn−1 .

Proof. The trace of χ satisfies

∆Sn−1(trχ) + µ (trχ) = 0.

Since µ < n − 1, we conclude that trχ is constant. Moreover, the
trace-free part of χ satisfies

∆Sn−1
o
χ+ (µ− 2(n − 1))

o
χ = 0.

Since µ − 2(n − 1) < 0, it follows that
o
χ = 0. Putting these facts

together, the assertion follows. q.e.d.
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