
J . DIFFERENTIAL GEOMETRY
9 (1974) 109-122

ALMOST COTANGENT MANIFOLDS

R. S. CLARK & D. S. GOEL

1. The geometry of the cotangent manifold Ί*Jί of a differentiable mani-
fold Jί has been studied by K. Yano and E. M. Patterson [4], [5], [6]. Some
of their results can be extended to a manifold M of dimension In carrying a
G-structure whose group consists of all In X 2n matrices of the form

G (Λ
where A <= GL(Rn) and AιB = BιA. Such a structure is an almost cotangent
structure, and such a manifold M is an almost cotangent manifold (M. R.
Bruckheimer [1]).

Example 1.1. Suppose that Jί is a manifold of dimension π, and that
π: Γ * ^ —> Jί is the natural projection which takes a covector at m e ^ to
the point m. Any function / in Jί can be lifted to a function / o π in Γ * ^ but
we shall denote it by the same symbol /. If x is a chart of Jί with domain V,
we can define a standard chart (x, >>) of T*^# with domain π~ιV. Two such
charts (x, y), (x, y) with intersecting domains are related by a change of coor-
dinates whose Jacobian matrix has the form (1.1) with

(1.2) A --
dxb J ldxadxd dxb

where a, b, c, d = 1, , n. The natural moving frames associated with these
charts therefore define an almost cotangent structure on Ί*Jί.

Suppose that M is any almost cotangent manifold. We define a 2-form ω on
M by specifying its components to be

(1.3) u oJ

relative to any adapted frame of M. ω determines an almost symplectίc struc-
ture on M to which the given almost cotangent structure is subordinate. If
(θι, , θ2n) is any adapted moving coframe of M, then locally

ω = θa A θa+n (a = 1 , -",n) .

Communicated by K. Yano, October 2, 1972.
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The 1-forms θ1, , θn form a local cobasis for an rc-dimensional distribution
@ on M. This determines a G-structure on M to which the given almost cotan-
gent structure is subordinate. Its group consists of the 2n X 2n matrices of the
form

,1.4, β

where A, C e GL(Rn).
Conversely, we have
Proposition 1.1. // an n dimensional distribution and an almost symplectic

structure on a 2n-dimensional manifold have a common subordinate structure,
then this is an almost cotangent structure.

Proof. The group of the G-structure defined by the distribution consists
of 2n X 2n matrices of the form (1.4). If such a matrix also belongs to the
symplectic group, then

Lo σ\u o\lB c\ ~~ u o
which implies that ΛιB = BιΛ and C = (A'1)1. Consequently such a matrix
is of the form (1.1). q.e.d.

Let M be a difϊerentiable manifold carrying an almost symplectic structure
determined by a 2-form ω. Given any vector field X in M, we use ω to define
a 1-form Y •-• ω(X, Y) in M with the same domain. Since ω is nonsingular, it
maps independent vector fields to independent 1-forms.

Proposition 1.2. An n-dimensional distribution Q) and an almost symplec-
tic structure on a 2n-dimensional manifold M admit a common subordinate
structure iff ω maps each basis of Q) to a cobasis of Q).

Proof. Suppose that the two structures have a common subordinate struc-
ture. Choose any moving frame (X19 9X2n) adapted for this structure, and
let (θ\ , θ2n) be the dual moving coframe. Then Xa+n (a = 1, , ή) is a
local basis for ^ , and θa {a = 1, , ή) is a local cobasis. ω maps the vector
field Xa+n to the 1-form ψ α defined by

φ«(Xt) = ω(Xa+n, Xt) = δaί (i = 1, , 2ή) ,

and so ψa = θa. More generally, ω maps any local basis Ya+n(a = 1, > - ,ri)
for <& to a cobasis, since we can choose the moving frame so that locally

Yb+n = aa

bXa+n d e t α r ^ O .

This maps to a%θa which is a cobasis for Q).
Conversely, suppose that ω maps each basis for Q) to a cobasis. Choose any

moving frame (Y1? , Y2n) which is adapted for 3). The vector fields
Ya+n (a = 1, , n) form a basis for ^ , and so the 1-forms
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Y-+ω(Ya+n,Y) (a= l , . . , n )

form a cobasis. Consequently ω(Ya+n, Yb+n) = 0, and we may write the
matrix

where Pι = — P, and det Q = 0. We now construct a new moving frame

Lr> CJ

where 4̂ = Q"1, £ = ^{Q~ιYPQ'\ C = I. This too is adapted for the distri-
bution, and also for the almost symplectic structure since

' Bψ -Qψ °1 = [°
o CΛYQ O\YB C\ U o

Since we can find such a moving frame at each point of M, the two structures
have a common subordinate structure.

2. Suppose we are given two G-structures with a common subordinate
structure on a manifold M. If the subordinate structure is integrable, then so
are the given structures. The converse is not necessarily true, but in the case
of an almost cotangent structure we have

Proposition 2.1. An almost cotangent structure is integrable iff the under-
lying distribution and almost symplectic structure are both integrable.

Proof. Suppose that the underlying structures are both integrable. Choose
any point m&M. There exists a chart x at m adapted for the distribution.
Choose any moving coframe φ = (φι, , φ2n) at m adapted for the almost
cotangent structure. Since it is adapted for the distribution,

O (a, b = 1, ,π) .

The moving coframe θ at m defined by

θa = dxa , βa+n = Ab

aφ
b+n

is adapted for the almost cotangent structure. Suppose that

θa+n = aa

hdxb + β%dxb+n .

Since the almost symplectic structure is integrable, the canonical 2-form ω =
θa Λ θa+n is closed, and so
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χa A ί(^-dxc + J*jL(h*+n) A dxb

IV dxc dxc+n )
L dxc + -?Έ^-dxc+n) Adx
\ dxc dxc+n

One consequence of this is that

b+n) = 0
ί

dxc+n dxb + n

It follows that the equations

dχb+n

admit diίferentiable solution Ha(x\ , x2n) on a neighborhood of m. We use
them to construct a new chart y at m by defining

v α _ χa va + n _ //α/V . . . γ2raΛ

,/ Λ j ^ xjt \y\* y 5 Λ y

In terms of this chart

0α = d_yα , βa+n = ocldyb + ^yα + 7 1 ,
where al — a% — dHa/dxb.

Using these new coordinates, the condition dω = 0 implies that

(2.i) ^L+a^ -
+ + o

a^0 9yα 3 /

(2.2) ^ Γ < δ ί - «i) = 0 .

Consider the equations

d;Fα 5Fj'6

a^δ dy«

Equations (2.2) show that the right-hand side depends only on y\ , yn, and
equations (2.1) show that diίferentiable solutions Fa(y\ , yn) exist at m. We
define functions

za _ yd za + n _ ya + n _^_ fa(yl^ . . . ? - y W ) ( β = 1 ? • • - , « )

Since
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d z dy + y θ + (
dyb \ dyh

these functions z\ , z2n form a chart z at m. This chart is adapted for the
almost cotangent structure since dFa /dyb — a% is symmetric in α, b.

3. S. S. Chern [2] defined a structure tensor for any given G-structure on
a manifold M. This is determined by specifying its components relative to any
adapted moving coframe θ with domain U.

Let Z be the subspace of V = horn (Λw Λ Rn,Rn) consisting of elements
p such that

p{u, v) = (Su)v — (Sv)u

for all w, v e Rn, where L(G) is the Lie algebra of G and where S e
horn (Rn, L(G)). If matrices WA (A = 1, , r) form a basis for L(G), then the
elements p e Z have components

Pjk — Sj\.W A)k — Sky.™ A/j •>

where i,),k — 1, ,n and ξf e R. We have to define a subspace of V com-
plementary to Z. Given γ e V we impose sufficient linear conditions on γ + ô,
where /? e Z, so that ^ is determined uniquely. Then γ + p lies in a subspace
W of V complementary to Z and the canonical projection λ: F —> W is given

by r -> r + p
Suppose that

dθi = \γ)kθ
j A θk .

The coefficients γι

jk determine a function γ on U with values in V. The
structure tensor has components C = λoγ relative to the moving coframe θ.

Suppose that M is an almost cotangent manifold, and let θ be an adapted
moving coframe. We first calculate the structure tensor for the underlying
almost symplectic structure. The Lie algebra of the symplectic group consists
of 2n X 2n matrices

IB -Aι\

where the n X n matrices B, C are symmetric. This admits a basis consisting
of matrices

(Wi - Will), (Wrn + Wb

a

+n), (WUn + Wb

a+n), (a,b = 1, , n),

where the matrix W) (i, j = 1, , 2ή) has entry 1 in the (i, ;)th position and
zeros elsewhere. A straightforward calculation shows that we can define p so
that C — γ + p satisfies the linear conditions
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C a A f^a+n (\

be — u ? ^b+nc+n — u 5
r^a+n . r^b+n — Γ) f^a Λ. Γc — 0
^ δ c+n \ ^a c+n — ^ 5 *"& c+n ^ W a + n — u ?

C a+n fb+n f^c+n f a Γ^b /^c

be — ^ca — ^ α δ > ^b+n c+n — ^c+n a + n — ^a+n

and that these conditions determine p uniquely. The components C of the struc-
ture tensor relative to the coframe θ are given by

W 1 / We — U ' ^b+nc+n — u ?

C\ I) fa+n — Ura+n yb + n yc \
\->"^s ^b c + n — 2v/δ c+n fa c+n lab) ?

\3 3) C δ c + n = jyfb c+n γb a + n + fa+n c + n' ?

0.4) ctr = mr + fdn + f«r),

V ^ " ^ ^ ^^δ + w c + n — 3V/δ + 7zc + rc ~Γ I c+n a + n ~T~ I a + n b + n/

Proposition 3.1. The underlying almost symplectic structure on M is inte-
grable iff its structure tensor is zero.

Proof. The structure is integrable if dω = 0, and this condition is satisfied
locally if

k%θ3 A θk A θa+n - \ya^nθa A θj A θk = 0 .

Equations ( 3 . 2 ) , . . . , (3.5) show that this is true if C = 0. q.e.d.
We next calculate the structure tensor for the underlying distribution on the

almost cotangent manifold M. The Lie algebra for the distribution group con-
sists of the 2n X 2n matrices

and it admits a basis

W α TMa + n \λ/a + n
'' b ? δ ? b + n *

In this case we can define p in just one way so that C = γ + p satisfies the
linear conditions

r^ί _ o r^a+n _ o
^bk — w J ^b + n c+n — w *

The components C of the structure tensor relative to the coframe θ are then
all zero except

Cϊ fΛ fa v α
\+>.\)j y^f) + n c + n — i b + n c + n
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Proposition 3.2. The underlying distribution on M is integrable i f f  its struc- 
ture tensor is zero. 

Proof. 01, . . , O n  is a local cobasis for the distribution. If C = 0 ,  it follows 
from equation (3.6) that 

and Frobenius Theorem shows that the distribution is integrable. q.e.d. 
Finally we calculate the structure tensor for the almost cotangent structure 

on M. The Lie algebra for the almost cotangent group consists of the 2n X 2n 
matrices 

where the n x n matrix B is symmetric. It  admits a basis consisting of the 
matrices 

We can define p in just one way so that C = r + p satisfies the linear 
conditions 

The components C of the structure tensor relative to the coframe 6' are then 
given by equations (3.1), (3.2), (3.3), (3.4),  (3 .6) .  From this we deduce 

Proposition 3.3. The structure tensor o f  an almost cotangent structure is 
zero iff the structure tensors of the underlying distribution and almost symplec- 
tic structure are both zero. 

Propositions 2.1, 3.1, 3.2, 3.3 now lead to 
Proposition 3.4. An  almost cotangent structure is integrable i f f  its structure 

tensor is zero. 
Any G-structure is said to be almost transitive if its structure tensor is con- 

stant. If the group G includes an element aI, where the real number a is not 
1, such a structure tensor is necessarily zero. Since the almost cotangent group 
includes the element - I, we have 

Proposition 3.5. A n  almost cotangent structure is almost transitive iff it 
is integrable. 

4. A nondegenerate Riemannian metric S on a manifold M defines a class 
of conjugate structures on M. S is said to be related to a given G-structure on 
M if one of these conjugate structures has a common subordinate structure 
with the given G-structure. 



116 R. S. CLARK & D. S .  GOEL 

Among the conjugate structures is included one Os(Rn) structure, the com- 
ponents of S relative to any adapted frame of this structure being 

If this Os(Rn) structure has a common subordinate structure with the given 
G-structure, then the metric S is called a G-metric. 

A positive-definite G-metric on an almost cotangent manifold will be called 
an almost cotangent metric. Such metrics are studied in this section. 

Lemma 4.1. If S is a positive-definite Riemannian metric on an almost 
cotangent manifold M, then there exists an adapted moving frame ,u at any given 
point m E M relative to which S has components of the form 

Proof. Choose any adapted moving frame a at m, and suppose that, rela- 
tive to a, S has components 

Because this matrix is positive-definite, we can choose a differentiable function 
A at m with values in GL(Rn) such that AAt = R. We then define 

The moving frame 

satisfies our requirements, since it is adapted for the almost cotangent struc- 
ture on M and the components of S relative to p 

reduce to the form (4.1). q.e.d. 
A Riemannian metric on a manifold determines a scalar product on each 

tangent space and each cotangent space. We denote both of these by the same 
symbol ( .). 

Proposition 4.2. A positive-definite Riemannian metric S on an almost 
cotangent manifold M is an almost cotangent metric ifJ 



ALMOST COTANGENT MANIFOLDS 117

(4.3) (ωX ωY) = (X-Y)

for all vector fields X and Y in M, where ω is the canonical 2-form on M.
Proof. The condition (4.3) can be expressed in tensor form as

(4.4) ω = -Sω-'S .

If S is an almost cotangent metric, then at any given point of M there is a frame
relative to which S and ω have components

|7 01 ro -π
Lo iϊii oJ

respectively. The tensor relation (4.4) is therefore satisfied on M.
Conversely, suppose that (4.4) is satisfied. Choose a special adapted moving

frame p (as defined in Lemma 4.1) at a given point mζM. Evaluating the rela-
tion (4.4) in terms of p shows that

ii oJ Y-b i\Y-i o\Y-b n

It follows that b — 0 and a — I. Consequently p is adapted for the O(R2n)
structure defined by S as well as for the almost cotangent structure. These two
structures therefore have a common subordinate structure, q.e.d.

That almost cotangent metrics exist on any paracompact almost cotangent
manifold follows from

Proposition 4.3. Any given positive-definite Riemannian metric S on an
almost cotangent manifold M determines an almost cotangent metric on M.

Proof. Lemma 4.1 shows that there exists a set of special adapted moving
frames for the almost cotangent structure whose domains cover M and for
which S has components (4.1). Any two such moving frames p, ~p with inter-
secting domains U, U are related by

PY

where AιB = BιA. Since the components of S relative to p are given on
U ΓiUby

\At Bt π a b ψ ° 1
Lo A-ΛY-b UYB (A-yi

it follows that A € O{Rn) and B = 0. Consequently the special adapted mov-
ing frames also define an 0CR2rO-structure on M. The associated metric on M
is an almost cotangent metric, q.e.d.
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We continue with the problem of constructing an almost cotangent metric.
An easy calculation using Proposition 4.2 leads to

Propositon 4.4. A positive-definite Riemannian metric on an almost cotan-
gent manifold M is an almost cotangent metric iff its components relative to
any adapted frame of M are of the form

(4.5) \R + QRW QΛ
L ρ ί

 R\L

where R is a positive-definite n X n matrix and RQ is symmetric.
This proposition shows that if σ is an adapted moving frame of M with

domain U we can construct an almost cotangent metric on U when we are
given differentiable n X n matrix-valued functions Q, R on U such that R is
positive-definite and RQ is symmetric. If σ is an adapted moving frame on U
such that

= σ\

with corresponding functions Q, R, and if

(4.6) RAι = A-'R , QAι = AιQ + BιR ,

then the two metrics agree on U Π Ό. We use this result in
Example 4.1. Starting from a positive-definite metric g on a manifold Jί

we construct an almost cotangent metric on Ύ*Jί. If x is a chart of JC, the
moving frame σ associated with the standard chart {x, y) is adapted for the
almost cotangent structure on Ί*Jl. Suppose that gab are the components of
g"1 associated with the chart x, and that Γ%c are the corresponding Christoίϊel
symbols. We use these to define matrix-valued functions

Q = [-g^Γd

cayd-\ , R = [g«b]

on the domain U of σ. Since R is positive-definite and RQ is symmetric, we
have an almost cotangent metric on U with components (4.5) relative toσ. The
corresponding functions Q, R on U are related to Q, R by equations (4.6),
where A and B are defined in (1.2).

5. An almost cotangent metric is an example of a related metric. We now
describe another related metric on an almost cotangent manifold M.

A Riemannian metric on M such that
(i) (ωX ωY) = - (X - Y) for all vector fields X, Y in M,
(ii) (X, Y) = 0 for all vector fields X, Y in M tangent to the distribution 2

will be said to be skew invariant. That such metrics always exist on a para-
compact almost cotangent manifold follows from

Proposition 5.1. Any given positive-definite Riemannian metric S on an
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almost cotangent manifold M determines a skew inv orient metric S on M.
Proof. Suppose that σ is any adapted moving frame of M, and that, rela-

tive to σ, 5" has components (4.2). We define a (2,0) tensor field locally by tak-
ing its components relative to σ to be

\RιQι + QR+ QR'1 Π
I oJ '

It is easy to verify that such local fields agree on the intersection of their do-
mains, and so they define a (2,0) tensor field S on M. S is a skew invariant
metric.

Example 5.1. We use the above proposition to construct a skew invariant
metric S on Ί*Jt starting from the almost cotangent metric S described in
Example 4.1. The components of S relative to the natural moving frame asso-
ciated with the chart (x, y) reduce to

\-2Γ*abyc Π

L / oJ "
Consequently S is the Riemann extension of the Riemannian connection of the
metric g on Jί as denned by E. M. Patterson and A. G. Walker [3]. The Rie-
mannian connection may be replaced by any symmetric linear connection on
Jί.

Not every skew invariant metric arises in the way we have described in Pro-
position 5.1, and in general we have

Proposition 5.2. A Riemannian metric on an almost cotangent manifold
is skew invariant iff its components related to every adapted frame are of the
form

where P is a symmetric n X n matrix, Q2 — I and QPQ1 — P.
Proof. A metric S has components (4.2) relative to an adapted frame. Sup-

pose that S is skew invariant. Condition (ii) implies that R = 0, and then con-
dition (i) implies that

P Q
oJL—/ OJLQ* OJ I - / OJ

This shows that Q2 = / and QPQ1 = P. The converse result is proved in a
similar way. q.e.d.

Next we show that a skew invariant metric on a connected almost cotangent
manifold is a related metric.
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Lemma 5.3. // S is a skew invariant metric on an almost cotangent manifold
M, then there exists an adapted moving frame p at any given point m e M rela-
tive to which S has components

where K is some diagonal n X n matrix of the form

d i a g { l , l , - . - , 1 , — 1 , — 1 , .--, — 1 } .

Proof. Let σ be an adapted moving frame at m, and suppose that S has
components (5.1) relative to σ. The differentiable matrix-valued function Q
satisfies Q2 = /, and so we can find a differentiable function A on some con-
nected neighborhood U of m such that ΛQA~ι = K where K = diag{l, 1,
• , - 1 } . If we define B on U by PA1 + 2QB = 0, then, since QPQ1 = P,

P =
0 1A

is also an adapted moving frame at m. It has the property required, q.e.d.
As a simple consequence of the above lemma we have
Proposition 5.4. Every skew invariant metric on a In-dimensional almost

cotangent manifold has signature (n,n).
Proposition 5.5. Any skew invariant metric on a connected almost cotan-

gent manifold is related to the almost cotangent structure.
Proof. Suppose that p, ~p are two moving frames as described in Lemma 5.3

and that the corresponding components of the metric S are

ro κi ro κi
lκ oJ'ϋr oJ '

Suppose that the domains of these moving frames intersect, and that

9Y
A °
B (A-ιy

Then A~ιKA = K. Since the matrices K, K have the same trace, they are equal.
Because M is connected, we can find a set of such adapted moving frames p
whose domains cover M and with respect to which the components of S are the
same. It follows that these moving frames are also adapted to one of the G-
structures defined by S.

6. Suppose that a manifold M carries a G-structure. A connection on the
adapted frame bundle P(M, G) determines a linear connection on M called a
G-connection. Any linear connection on M is a G-connection iff the local con-
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nection forms which correspond to adapted moving frames of M have values 
in the Lie algebra of G. It is sufficient if this connection is satisfied for a set of 
adapted moving frames whose domains cover M. When M is an almost cotan- 
gent manifold this leads to 

Proposition 6.1. A linear connection on an almost cotangent manifold is 
an almost cotangent connection i f f  it is a connection for both the underlying 
distribution and almost symplectic structure. 

Since the Lie algebra of the almost cotangent group consists of the 2n x 2n 
matrices of the form (3.7), we deduce 

Proposition 6.2. A linear connection on an almost cotangent manifold is 
an almost cotangent connection ifl its coeficients relative to each adapted mov- 
ing coframe satisfy the conditions 

w h e r e a , ~  = 1 ,  . . . ,  n ;  j =  1, . . . ,  2n. 
Example 6.1. Let V be any symmetric linear connection on a manifold A, 

The Riemann extension of V (Example 5.1) is a metric on T * A .  The 
Riemannian connection P of this metric is called the complete lift of V .  K .  
Yano and E. M. Patterson [5]  show that its components relative to any 
standard chart (x, y) are given by 

where a, b, c,  d,  e = 1, ., n. It  follows that if V has zero curvature, then P 
is an almost cotangent connection. 

Example 6.2. Starting from a symmetric connection V on A, the same 
authors [6 ]  have defined another connection p on T * A  called the horizontal 
lift of V .  Its components relative to any standard chart (x, y) only differ from 
the corresponding components of the complete lift by 

p is therefore always an almost cotangent connection. 
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