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A GENERALIZED HODGE THEORY

P. R. EISEMAN & A. P. STONE

1. Introduction

For a given nonsingular vector one-form A with vanishing Nijenhuis tensor,
there is an associated exterior derivative dh which satisfies a Poincare lemma
and hence provides an /^-dependent version of de Rham's theorem. The exterior
derivative dh also has an adjoint δh with respect to the usual global inner
product. This fact permits one to define a strongly elliptic self-adjoint second
order differential operator Δh which is a generalization of the Laplace-Beltrami
operator. Consequently one can then obtain a generalization of the classical
Hodge decomposition theorem.

2. Preliminaries

Let A denote the algebra of C°° functions on a compact orientable π-dimen-
sional Riemannian manifold M without boundary. Let E denote the A -module
of differential one-forms on M. A vector 1-form A e End^ (E) induces endmor-
phisms h{q) eΈnάA (f\pE) for any nonnegative integer q, and the h{q) are defined
by setting h(q) = 0 if q > p, and

/z(Q V Λ Λ ψp)

= - ί- Σ\π\{hφπil) Λ ••• Λ h φ π ^ } Λ φ π ( q + 1 ) A ••• A φ π { p )

(p — q)\q\ x.

if 0 < q < p, where ψι e E, π runs through all permutations of (1, , p) and
\π\ denotes the sign of the permutation. The transformation Λ(0) is taken to be
the identity mapping on /\ PE.

In the case where q = p < n, the operator h{p) is locally represented by an
(p) X (p) matrix [h(p)] relative to some local basis of p-forms. If [/?] denotes
an n x n matrix which locally represents h, then it can be shown that det [h{p)]

= (det [A]) p " 1 , and hence A is invertible on 1-forms if and only if h{p) is in-
vertible in p-forms. This fact will be of use later in this section.

An alternating derivation dh: f\E —> f\E is obtained as in [3] from A and
exterior derivation d by setting dh — hωd — dhω. Thus when A is the identity,
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dh reduces to d. The Nijenhuis tensor can be extended as a derivation on f\E.
On p-forms one thus obtains the formula

[h,h] = -h{2)d + dhh
w + dfr» ,

which appears in [12]. A short calculation then yields the formula dhodh =
d[h, h] + [/?, h]d, from which it is evident that a vanishing Nijenhuis tensor
implies that dh is an exterior derivation.

A Poincare lemma may be obtained for the operator dh when h is nonsingu-
lar and [h, h] = 0. In order to prove this fact, the following lemma is needed.

Lemma 2.1. // h is a vector 1-form with vanishing Nijenhuis tensor, then
h(p+1)d = dhh

{p) on p-forms.
Proof. Note that the result is trivial when p = 0 or p > n. If 1 < p < n,

one may proceed by induction on p. The case p = 1 follows immediately from
the vanishing of the Nijenhuis tensor. Suppose now that the proposition is true
for p-forms. Observe that if β is a (p + l)-form, then it is sufficient to let β =
φ A a, where φ is a 1-form and a is a p-form. Since h(p+l)β = h{p+l){ψ Λ a) =
hφ Λ h(p)a and dh is an exterior derivation, one obtains

dhh<*+1)β = dh{hψ A h^a) = (dhhφ) A h™a - hφ A dhh™a .

Hence the induction hypothesis yields

dhh
(P+l)β = (h™dφ) A h^a - hφ A dhh

{p)a

= h(P+2){dφ A a - φ A da} = h(p+2)dβ ,

and the lemma is established.
A Poincare lemma for the operator dh can now be proven.
Proposition 2.2. Let h be a nonsingular vector one-form with vanishing

Nijenhuis tensor. If dha = 0 for any p-form a on a contractible space U, then
there is a (p — \)-form β on U such that a = dhβ, for p > 1.

Proof. Since h is invertible on 1-forms if and only if h(p) is invertible on
p-forms, it follows from Lemma 2.1 that [/?, h] = 0 implies h{p+l)d(h-l){p)a =
0 and hence that d(h~ιyp)a = 0. Thus (h~iyp)a = dλ for some (p - l)-form
λ, and consequently a = h(p)dλ = dhh

{v~l)λ. The form β is obtained by letting
β = h{p-1]λ, and thus a = dhβ as asserted.

The condition that h be nonsingular cannot be omitted from the statement
of the proposition. For example, in i£2 a singular h whose Nijenhuis tensor
vanishes can be defined by setting h(dx) = dy, and h{dy) = 0. Then clearly
dhdx = 0, and it is easily checked that there cannot exist a diίϊerentiable func-
tion / such that dx = dhf, as otherwise dx = 0.

The result of Proposition 2.2 can then be combined with the standard sheaf
theoretic proof (given in [5]) for de Rham's theorem to yield the following h
dependent version.
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Theorem 2.3. // h is a nonsίngular vector one-form with vanishing Nijenhuis
tensor, then the real cohomology of the cochain complex (/\*E, dh) is isomor-
phic to the real cohomology of the underlying manifold M.

3. The //-Laplacian

Let ω\ - - -, ωn be a local orthonormal basis of differential 1-forms, and sup-
pose that ω1 A - - - Aωn agrees with an orientation of M. Suppose also that
the vector one-form A is locally specified by setting hωj = h{ω\ where h{ <=. A
and 1 < /, / < n, and the Einstein summation convention has been invoked.
Since the orientation is specified, the Hodge star operator * : /\PE-+ /\n~pEis
determined by setting ^{ω11 A Λ ωίp) = εil...ίί)ω

 7'1 Λ Λ ωjn~p, where
/ ! < • • • < ip and j ι < < j n _ p are complementary sets of positive integers,
and εiim..ip is + 1 or — 1 according as the permutation (i\, , ip, j19 , jn_p)
of the integers (1, , ή) is even or odd respectively. In the sequel the trace
and the transpose of h will be denoted by tr h and ht respectively. The follow-
ing proposition states a result which is fundamental to the theory presented in
this paper.

Proposition 3.1. For any vector one-form h,

/z(1)* + */ι£1} = (tr A)* .

Proof. Because of linearity it will be sufficient to assume that any p-form
φ has the decomposition φ = ω1 A Λ ωp where the orthonormal basis ω1,
• , ωn could be relabeled to fit this ordering if necessary. The proof then
proceeds by calculation. Thus

h ω * φ = ha\ωp+1 A -•- Aωn)

= Σ o > p + 1 A ••• Λ A ω ' Λ ••• A ω n

hiωp+1A- Aωj-1AωaAωj+1A'-A ωn

and since for each / the sum on a produces a sum from 1 to p plus a term for
a = /, one obtains

hω*φ= Σ \hJjωp+1 A •• Aωn

j=p+l I
P Λ

+ Σ h{ωp+ι Λ Λ ωj~ι Λ ωι Λ ωJ + 1 A Λ ωn \ ,

and hence

A")*^ = Σ hfap+1 Λ Λ /

+ Σ Σ h{ωp+1 A - Aω^1 Aω1 Aωj+1 A- Aωn .
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In a similar fashion one may compute ^h{^φ and add it to the above result.
Corollary 3.2. Any vector one-form h is skew symmetric if and only if *

and hω commute.
Proof. If * and h(1) commute, then it is clear that ha) + h[1} = (tr h)hw on

p-forms. Hence, if p = n the above formula implies that that tr h vanishes,
and consequently the skew symmetry of h is established by taking p = 1. The
proof of the converse statement is obvious.

Since the manifold M is assumed to be compact, an inner product on f\ PE
is denned by setting

(a, β) = ί a A *β
JM

for any p-forms a and β. With respect to this inner product the adjoint of h(p)

can be found. Specifically one has the following result.
Proposition 3.3. // h is a vector 1-form on M, then h{q) and h[q) are adjoints

for q = 0 ,1 , . . .,/ί.
Proof. The proof will be carried out by an induction of q. Let a and β be

p-forms; then as a consequence of Proposition 3.1 one has

(a,hwβ)= f aΛ*Vl)β= - ί aΛhl1)*β+ ί (tr©αΛ*j8.
J M J M J M

Since hf is a derivation of degree zero, one also has

(α, hwβ) = - f Λ«(α Λ *β) + ί (Λ«"α) Λ *β + f (tr h)a A *β
J M J M J M

= f (Λί»α)Λ* i8 = (Aί»α,J8),
J M

because h?\a A *β) = (tr ht)(a A *β) = (tr h)(a A *β). Thus hω and h™ are
adjoints. Now assume that h(j) and h[j) are adjoints for / < q. If q > p, then
/z(Q) and h(

t

q) vanish, and the result is trivially true. If q < p, then Lemma 2.1
of [12] provides the formula

q j=o

from which the inductive result is obvious.
The codifϊerential δ is defined to be the adjoint of the exterior derivative d.

The adjoint of dh = ha)d - dhω is then easily seen to be δh = δh? - h^δ.
The operator δh is called the Λ-codiίϊerential. As a consequence of Stokes'
theorem one obtains the relation δ = (—l)np+n+1*d* on p-forms. The corres-
ponding expression for δh is obtained in the following proposition.



A GENERALIZED HODGE THEORY 173

Proposition 3.4. If h is a vector 1-form, then on p-forms

δh = (-l)nv+n+1*{dh + d(χτh)A}* .

Proof. On p-forms one obtains

_ h

and thus Proposition 3.1 may then be applied to yield

{ h* - A(1)*] - [*tr A -

= (-1)^ + W + I {*d(tr A)* -

For any given vector one-form A a generalization J Λ of the classical Laplace-
Beltrami operator Δ = dδ + δd can be defined by setting Δh = dhδh + δhdh.
The operator Δh will be called the A-Laplace Beltrami operator. It is self-
adjoint and reduces to the classical Laplace-Beltrami operator when A is the
identity.

4. A-Hodge Theory

In this section a Hodge theory is developed in a way which depends on a
vector 1-form A through the A-Laplace Beltrami operator of the previous
section. Since a standard decomposition theorem for elliptic operators will be
used, the immediate task is to determine when the operator Δh is elliptic. A
necessary and sufficient condition for (strong) ellipticity is thus given in Propo-
sition 4.2. The proof of this proposition is modeled on the proof, which
appears in [13], of the ellipticity of Δ.

Definition 4.1. Let D : / \ E — > / \ E b e a g-th order differential operator.
The symbol σD of D at a point m e M is a linear transformation of (/\E)m,
the exterior algebra of differential forms at m, defined by

σD(dg)(a(m)) = D(g*a)(m)

for any p-ίoτm a and any C°° real valued function g on M such that g{rri) = 0
and dg(m) Φ 0. The operator D is said to be elliptic whenever σD is an isomor-
phism, and strongly elliptic whenever σD is either positive definite or negative
definite and when q is even.

Let ξ: f\E -* /\E denote the map which is left exterior multiplication by a
one-form ξ. An inner product on f\vE is given by (a, /3) = *(α Λ *β) for p-
forms a and β. With respect to this inner product it can be shown as in [13]
that
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(f + adj ξ) adj (f + adj ξ) = (-l)»^-»f*f* + (-1)»**£*£

is an isomorphism and hence positive definite on /\ PE if and only if ξ is a non-
zero 1-form.

Proposition 4.2. 4̂ vector ί-form h is nonsingular on M if and only if the
second order operator Δh is strongly elliptic on M.

Proof. Select any point m e M, and consider any C°° real valued function
g which vanishes at m and has nonvanishing exterior derivative at m. Let ξ =
(dhg)(m) = (hdg)(m). If ω is a p-form, then Proposition 3.4 may be applied
to obtain

{δhdhg
2ω}(m) = (-l)»*+1{*[dΛ + d(tr 4 ) Λ ] * [ 2 ^ ) Λ o ) + g2dhω\}im)

Λ *(dΛg)(m) Λ

and similarly

{dhδhg
2ω}(m) = ( -

Thus

which is negative definite if and only if ξ is a nonnegative one-form for all such
g and consequently if and only if h is nonsingular.

Corollary 4.3. Let h be a vector 1-form. Then the first order differential
operator dh + δh which maps even forms to odd forms and odd forms to even
forms is elliptic if and only if h is nonsingular.

Proof. By the last corollary of § 4 of Chapter 4 in [11] it follows that dh

+ δh is elliptic if and only if (dh + δh)
2 = (dh + δh) adj (dh + δh) is strongly

elliptic. But it is easy to check that the symbol of (dh + δh)
2 is equal to the

symbol of Δh even if d\ does not vanish. Consequently dh + δh is elliptic if
and only if h is nonsingular.

Proposition 4.4. Let L: /\PE —» /\PE be an elliptic operator on the space
of smooth p-forms on M. Then the space Ker {L: f\pE-+f\PE} is finite dimen-
sional and one has an orthogonal direct sum decomposition of f\ PE given by

f\pE = Im {adj L: /\PE -> /\PE} 0 Ker {L: /\PE -+ f\pE) .

A proof of this proposition can be obtained from a modification of the proof
of the Hodge decomposition theorem given in [13].

Definition 4.5. For any vector one-form h, elements of the space K\ =
Ker {Δh: f\pE —> f\pE] are called h-harmonic p-forms. Similarly, elements of
dh/\p~ιE and δh/\p+1E are called h-exact and h-coexact p-forms respectively.
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Since (Δha, a) = (dha, dhά) + (δha, δhά) for any p-ioτm a, it is obvious that
a is /z-harmonic if and only if dha = δha = 0. Hence /z-harmonic forms are
orthogonal to /z-exact and /z-coexact forms, since dh and δh are adjoints. If the
Nijenhuis tensor of h vanishes, then for p-forms a and β one has

(dha, δhβ) = {d\a, β) = ({[4, h]d + d[h, h]}a, β) = 0 .

Thus /z-exact and /z-coexact forms are orthogonal when [h, h] = 0. One is then
led to the following generalization of the classical Hodge decomposition
theorem.

Theorem 4.6. Let h be a nonsingular vector 1-form with vanishing Nijen-
huis tensor. Then for each integer p with 0 < p < n, the space Kv

h of h-harmonic
forms is finite dimensional and the space f\vE of smooth p-forms on M has a
unique orthogonal direct sum decomposition

/\*E = dh{f\*-ιE) Θ <UΛ P + 1 £) θ K*

into h-exact, h-coexact, and h-harmonic spaces respectively.
Proof. Since h is nonsingular on M, the operator Δh is elliptic. Con-

sequently an application of Proposition 4.4 implies that the space Kv

h of har-
monic p-forms is finite dimensional and that one has the orthogonal direct sum
decomposition f\pE = Δhf\

vE®Kl. It is then obvious that f\vE is spanned
by /z-exact, Λ-coexact, and Λ-harmonic forms respectively. The mutual orthogo-
nality of the summands then implies the uniqueness of the direct sum decom-
position.

Corollary 4.7. The equation a = Δhω has a solution ω e /\PE if and only
if the p-form a is orthogonal to the space K% of h-harmonic forms.

A standard argument using the orthogonality of the forms concerned can be
used to establish the following theorem.

Theorem 4.8. // h is a nonsingular vector l-form with vanishing Nijenhuis
tensor, then there is precisely one h-harmonic form in each cohomology class
of the cochain complex (/\*E, dh).

Corollary 4.9. // h is a nonsingular vector l-form with vanishing Nijenhuis
tensor, then the number of linearly independent h-harmonic p-forms is equal
to the p-th betti number of M for 0 < p < n.

Remark 1. With precisely one A-harmonic form in each cohomology class
of (/\*E, dh), the cohomology of the underlying manifold M can be obtained
in as many ways as there are nonsingular endomorphisms h with vanishing
Nijenhuis tensor [h,h\. This fact allows one to study the topology of manifolds
which admit certain one-one tensor fields. The study of manifolds which admit
a prescribed polynomial structure can be topologically analyzed with these
tools. Some structures, such as the /-structure studied by Blair, Goldberg,
Ludden, Yano and others, are singular, and consequently the methods presented
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here can give only information concerning the topology of submanifolds where

/ is nonsingular.

The theory described here for a nonsingular h is applicable to complex

structures, Kahler structures, structures defined by the condition that h be

covariant constant, and so forth. In addition the complex Laplacians studied

by K. Kodaira, D. C. Spencer, Y. Ogawa, C. C. Hsiung and J. J. Levko III

can all be extended to /ι-complex Laplacians.

Remark 2. For nonsingular h with vanishing Nijenhuis tensor it is also easy

to see that the analytic index ia (cf. [11]) of the operator dh + δh (from

Corollary 4.3) is equal to the Euler characteristic of M.
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