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A BOUNDARY VALUE PROBLEM FOR MINIMAL

LAGRANGIAN GRAPHS

Simon Brendle & Micah Warren

Abstract

Let Ω and Ω̃ be uniformly convex domains in R
n with smooth

boundary. We show that there exists a diffeomorphism f : Ω →
Ω̃ such that the graph Σ = {(x, f(x)) : x ∈ Ω} is a minimal
Lagrangian submanifold of Rn × R

n.

1. Introduction

Consider the product Rn × R
n equipped with the Euclidean metric.

The product Rn × R
n has a natural complex structure, which is given

by

J
∂

∂xk
=

∂

∂yk
, J

∂

∂yk
= −

∂

∂xk
.

The associated symplectic structure is given by

ω =
n
∑

k=1

dxk ∧ dyk.

A submanifold Σ ⊂ R
n × R

n is called Lagrangian if ω|Σ = 0.
In this paper, we study a boundary value problem for minimal La-

grangian graphs in R
n×R

n. To that end, we fix two domains Ω, Ω̃ ⊂ R
n

with smooth boundary. Given a diffeomorphism f : Ω → Ω̃, we consider
its graph Σ = {(x, f(x)) : x ∈ Ω} ⊂ R

n × R
n. We consider the problem

of finding a diffeomorphism f : Ω → Ω̃ such that Σ is Lagrangian and
has zero mean curvature. Our main result asserts that such a map exists
if Ω and Ω̃ are uniformly convex:

Theorem 1.1. Let Ω and Ω̃ be uniformly convex domains in R
n with

smooth boundary. Then there exists a diffeomorphism f : Ω → Ω̃ such

that the graph

Σ = {(x, f(x)) : x ∈ Ω}

is a minimal Lagrangian submanifold of Rn × R
n.
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Minimal Lagrangian submanifolds were first studied by Harvey and
Lawson [6], and have attracted considerable interest in recent years.
Yuan [14] has proved a Bernstein-type theorem for minimal Lagrangian
graphs over R

n. A similar result was established by Tsui and Wang
[10]. Smoczyk and Wang have used the mean curvature flow to deform
certain Lagrangian submanifolds to minimal Lagrangian submanifolds
(see [8], [9], [13]). In [1], the first author studied a boundary value
problem for minimal Lagrangian graphs in H

2 × H
2, where H

2 denotes
the hyperbolic plane.

In order to prove Theorem 1.1, we reduce the problem to the solv-
ability of a fully nonlinear PDE. As above, we assume that Ω and Ω̃
are uniformly convex domains in R

n with smooth boundary. More-
over, suppose that f is a diffeomorphism from Ω to Ω̃. The graph
Σ = {(x, f(x)) : x ∈ Ω} is Lagrangian if and only if there exists a func-
tion u : Ω → R such that f(x) = ∇u(x). In that case, the Lagrangian
angle of Σ is given by F (D2u(x)). Here, F is a real-valued function on
the space of symmetric n×n matrices which is defined as follows: if M
is a symmetric n× n matrix, then F (M) is defined by

F (M) =
n
∑

k=1

arctan(λk),

where λ1, . . . , λn denote the eigenvalues of M .
By a result of Harvey and Lawson (see [6], Proposition 2.17), Σ has

zero mean curvature if and only if the Lagrangian angle is constant;
that is,

(1) F (D2u(x)) = c

for all x ∈ Ω. Hence, we are led to the following problem:

(⋆) Find a convex function u : Ω → R and a constant c ∈ (0, nπ2 ) such

that ∇u is a diffeomorphism from Ω to Ω̃ and F (D2u(x)) = c for all

x ∈ Ω.

Caffarelli, Nirenberg, and Spruck [3] have obtained an existence re-
sult for solutions of (1) under Dirichlet boundary conditions. In this
paper, we study a different boundary condition, which is analogous to
the second boundary value problem for the Monge-Ampère equation.

In dimension 2, P. Delanoë [4] proved that the second boundary value
problem for the Monge-Ampère equation has a unique smooth solution,
provided that both domains are uniformly convex. This result was gen-
eralized to higher dimensions by L. Caffarelli [2] and J. Urbas [11].
In 2001, J. Urbas [12] described a general class of Hessian equations
for which the second boundary value problem admits a unique smooth
solution.
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In Section 2, we establish a-priori estimates for solutions of (⋆). In
Section 3, we prove that all solutions of (⋆) are non-degenerate (that is,
the linearized operator is invertible). In Section 4, we use the continuity
method to show that (⋆) has at least one solution. From this, Theorem
1.1 follows. Finally, in Section 5, we prove a uniqueness result for (⋆).

Acknowledgments. The first author is grateful to Professors Philippe
Delanoë and John Urbas for discussions.

2. A priori estimates for solutions of (⋆)

In this section, we prove a-priori estimates for solutions of (⋆).

Let Ω and Ω̃ be uniformly convex domains in R
n with smooth bound-

ary. Moreover, suppose that u is a convex function such that ∇u is a
diffeomorphism from Ω to Ω̃ and F (D2u(x)) is constant. For each point
x ∈ Ω, we define a symmetric n×n-matrix A(x) = {aij(x) : 1 ≤ i, j ≤ n}
by

A(x) =
[

I + (D2u(x))2
]

−1
.

Clearly, A(x) is positive definite for all x ∈ Ω.

Lemma 2.1. We have

nπ

2
− F (D2u(x)) ≥ arctan

(

vol(Ω)1/n

vol(Ω̃)1/n

)

for all points x ∈ Ω.

Proof. Since ∇u is a diffeomorphism from Ω to Ω̃, we have
∫

Ω
detD2u(x) dx = vol(Ω̃).

Therefore, we can find a point x0 ∈ Ω such that

detD2u(x0) ≤
vol(Ω̃)

vol(Ω)
.

Hence, if we denote by λ1 ≤ λ2 ≤ . . . ≤ λn the eigenvalues of D2u(x0),
then we have

λ1 ≤
vol(Ω̃)1/n

vol(Ω)1/n
.

This implies

nπ

2
− F (D2u(x0)) =

n
∑

k=1

arctan
( 1

λk

)

≥ arctan
( 1

λ1

)

≥ arctan

(

vol(Ω)1/n

vol(Ω̃)1/n

)

.
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Since F (D2u(x)) is constant, the assertion follows. q.e.d.

Lemma 2.2. Let x be an arbitrary point in Ω, and let λ1 ≤ λ2 ≤
. . . ≤ λn be the eigenvalues of D2u(x). Then

1

λ1
≥ tan

[

1

n
arctan

(

vol(Ω)1/n

vol(Ω̃)1/n

)]

.

Proof. Using Lemma 2.1, we obtain

n arctan
( 1

λ1

)

≥
n
∑

k=1

arctan
( 1

λk

)

=
nπ

2
− F (D2u(x))

≥ arctan

(

vol(Ω)1/n

vol(Ω̃)1/n

)

.

From this, the assertion follows easily. q.e.d.

By Proposition A.1, we can find a smooth function h : Ω → R such
that h(x) = 0 for all x ∈ ∂Ω and

(2)

n
∑

i,j=1

∂i∂jh(x)wi wj ≥ θ |w|2

for all x ∈ Ω and all w ∈ R
n. Similarly, there exists a smooth function

h̃ : Ω̃ → R such that h̃(y) = 0 for all y ∈ ∂Ω̃ and

(3)
n
∑

i,j=1

∂i∂j h̃(y)wi wj ≥ θ |w|2

for all y ∈ Ω̃ and all w ∈ R
n. For abbreviation, we choose a positive

constant C1 such that

C1 θ sin2
[

1

n
arctan

(

vol(Ω)1/n

vol(Ω̃)1/n

)]

= 1.

We then have the following estimate:

Lemma 2.3. We have
n
∑

i,j=1

aij(x) ∂i∂jh(x) ≥
1

C1

for all x ∈ Ω.

Proof. Fix a point x0 ∈ Ω, and let λ1 ≤ λ2 ≤ . . . ≤ λn be the
eigenvalues of D2u(x0). It follows from (2) that

n
∑

i,j=1

aij(x0) ∂i∂jh(x0) ≥ θ
n
∑

k=1

1

1 + λ2k
≥ θ

1

1 + λ21
.
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Using Lemma 2.2, we obtain

1

1 + λ21
≥ sin2

[

1

n
arctan

(

vol(Ω)1/n

vol(Ω̃)1/n

)]

=
1

C1 θ
.

Putting these facts together, the assertion follows. q.e.d.

In the next step, we differentiate the identity F (D2u(x)) = constant
with respect to x. To that end, we need the following well-known fact:

Lemma 2.4. Let M(t) be a smooth one-parameter family of sym-

metric n× n matrices. Then

d

dt
F (M(t))

∣

∣

∣

t=0
= tr

[

(I +M(0)2)−1M ′(0)
]

.

Moreover, if M(0) is positive definite, then we have

d2

dt2
F (M(t))

∣

∣

∣

t=0
≤ tr

[

(I +M(0)2)−1M ′′(0)
]

.

Proof. The first statement follows immediately from the definition of
F . To prove the second statement, we observe that

d2

dt2
F (M(t))

∣

∣

∣

t=0
= tr

[

(I +M(0)2)−1M ′′(0)
]

− 2 tr
[

M(0) (I +M(0)2)−1M ′(0) (I +M(0)2)−1M ′(0)
]

.

Since M(0) is positive definite and M ′(0) is symmetric, we have

tr
[

M(0) (I +M(0)2)−1M ′(0) (I +M(0)2)−1M ′(0)
]

≥ 0.

Putting these facts together, the assertion follows. q.e.d.

Proposition 2.5. We have

(4)

n
∑

i,j=1

aij(x) ∂i∂j∂ku(x) = 0

for all x ∈ Ω. Moreover, we have

(5)
n
∑

i,j,k,l=1

aij(x) ∂i∂j∂k∂lu(x)wk wl ≥ 0

for all x ∈ Ω and all w ∈ R
n.

Proof. Fix a point x0 ∈ Ω and a vector w ∈ R
n. It follows from

Lemma 2.4 that

0 =
d

dt
F
(

D2u(x0 + tw)
)

∣

∣

∣

t=0
=

n
∑

i,j,k=1

aij(x) ∂i∂j∂ku(x0)wk.

Moreover, since the matrix D2u(x0) is positive definite, we have

0 =
d2

dt2
F
(

D2u(x0 + tw)
)

∣

∣

∣

t=0
≤

n
∑

i,j,k,l=1

aij(x) ∂i∂j∂k∂lu(x0)wk wl.
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From this, the assertion follows. q.e.d.

Proposition 2.6. Fix a smooth function Φ : Ω× Ω̃ → R, and define

ϕ(x) = Φ(x,∇u(x)). Then

∣

∣

∣

∣

n
∑

i,j=1

aij(x) ∂i∂jϕ(x)

∣

∣

∣

∣

≤ C

for all x ∈ Ω. Here, C is a positive constant that depends only on the

second order partial derivatives of Φ.

Proof. The partial derivatives of the function ϕ(x) are given by

∂iϕ(x) =

n
∑

k=1

( ∂

∂yk
Φ
)

(x,∇u(x)) ∂i∂ku(x) +
( ∂

∂xi
Φ
)

(x,∇u(x)).

This implies

∂i∂jϕ(x) =

n
∑

k=1

( ∂

∂yk
Φ
)

(x,∇u(x)) ∂i∂j∂ku(x)

+

n
∑

k,l=1

( ∂2

∂yk∂yl
Φ
)

(x,∇u(x)) ∂i∂ku(x) ∂j∂lu(x)

+
n
∑

k=1

( ∂2

∂xj∂yk
Φ
)

(x,∇u(x)) ∂i∂ku(x)

+
n
∑

l=1

( ∂2

∂xi∂yl
Φ
)

(x,∇u(x)) ∂j∂lu(x)

+
( ∂2

∂xi∂xj
Φ
)

(x,∇u(x)).

Using (4), we obtain

n
∑

i,j=1

aij(x) ∂i∂jϕ(x)

=
n
∑

i,j,k,l=1

aij(x)
( ∂2

∂yk∂yl
Φ
)

(x,∇u(x)) ∂i∂ku(x) ∂j∂lu(x)

+ 2

n
∑

i,j,k=1

aij(x)
( ∂2

∂xj∂yk
Φ
)

(x,∇u(x)) ∂i∂ku(x)

+

n
∑

i,j=1

aij(x)
( ∂2

∂xi∂xj
Φ
)

(x,∇u(x)).
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We now fix a point x0 ∈ Ω. Without loss of generality, we may assume
that D2u(x0) is a diagonal matrix. This implies

n
∑

i,j=1

aij(x0) ∂i∂jϕ(x0) =

n
∑

k=1

λ2k
1 + λ2k

( ∂2

∂y2k
Φ
)

(x0,∇u(x0))

+ 2

n
∑

k=1

λk
1 + λ2k

( ∂2

∂xk∂yk
Φ
)

(x0,∇u(x0))

+

n
∑

k=1

1

1 + λ2k

( ∂2

∂x2k
Φ
)

(x0,∇u(x0)),

where λk = ∂k∂ku(x0). Thus, we conclude that
∣

∣

∣

∣

n
∑

i,j=1

aij(x0) ∂i∂jϕ(x0)

∣

∣

∣

∣

≤ C,

as claimed. q.e.d.

We next consider the function H(x) = h̃(∇u(x)). The following
estimate is an immediate consequence of Proposition 2.6:

Corollary 2.7. There exists a positive constant C2 such that
∣

∣

∣

∣

n
∑

i,j=1

aij(x) ∂i∂jH(x)

∣

∣

∣

∣

≤ C2

for all x ∈ Ω.

Proposition 2.8. We have H(x) ≥ C1C2 h(x) for all x ∈ Ω.

Proof. Using Lemma 2.3 and Corollary 2.7, we obtain
n
∑

i,j=1

aij(x) ∂i∂j(H(x)− C1C2 h(x)) ≤ 0

for all x ∈ Ω. Hence, the functionH(x)−C1C2 h(x) attains its minimum
on ∂Ω. Thus, we conclude that H(x)− C1C2 h(x) ≥ 0 for all x ∈ Ω.

q.e.d.

Corollary 2.9. We have

〈∇h(x),∇H(x)〉 ≤ C1C2 |∇h(x)|
2

for all x ∈ ∂Ω.

Proposition 2.10. Fix a smooth function Φ : Ω×Ω̃ → R, and define

ϕ(x) = Φ(x,∇u(x)). Then

|〈∇ϕ(x),∇h̃(∇u(x))〉| ≤ C

for all x ∈ ∂Ω. Here, C is a positive constant that depends only on

C1, C2, and the first order partial derivatives of Φ.
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Proof. A straightforward calculation yields

〈∇ϕ(x),∇h̃(∇u(x))〉 =

n
∑

k=1

( ∂

∂xk
Φ
)

(x,∇u(x)) (∂k h̃)(∇u(x))

+

n
∑

k=1

( ∂

∂yk
Φ
)

(x,∇u(x)) ∂kH(x)

for all x ∈ Ω. By Corollary 2.9, we have |∇H(x)| ≤ C1C2 |∇h(x)| for
all points x ∈ ∂Ω. Putting these facts together, the assertion follows.

q.e.d.

Proposition 2.11. We have

0 <

n
∑

k,l=1

∂k∂lu(x) (∂kh̃)(∇u(x)) (∂lh̃)(∇u(x))

≤ C1C2 〈∇h(x),∇h̃(∇u(x))〉

for all x ∈ ∂Ω.

Proof. Note that the function H vanishes along ∂Ω and is negative
in the interior of Ω. Hence, for each point x ∈ ∂Ω, the vector ∇H(x) is
a positive multiple of ∇h(x). Since u is convex, we obtain

0 <

n
∑

k,l=1

∂k∂lu(x) (∂kh̃)(∇u(x)) (∂lh̃)(∇u(x))

= 〈∇H(x),∇h̃(∇u(x))〉

=
〈∇h(x),∇H(x)〉

|∇h(x)|2
〈∇h(x),∇h̃(∇u(x))〉

for all x ∈ ∂Ω. In particular, we have 〈h(x),∇h̃(∇u(x))〉 > 0 for all
points x ∈ ∂Ω. The assertion follows now from Corollary 2.9. q.e.d.

Proposition 2.12. There exists a positive constant C4 such that

〈∇h(x),∇h̃(∇u(x))〉 ≥
1

C4

for all x ∈ ∂Ω.

Proof. We define a function χ(x) by

χ(x) = 〈∇h(x),∇h̃(∇u(x))〉.

By Proposition 2.6, we can find a positive constant C3 such that
∣

∣

∣

∣

n
∑

i,j=1

aij(x) ∂i∂jχ(x)

∣

∣

∣

∣

≤ C3
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for all x ∈ Ω. Using Lemma 2.3, we obtain

n
∑

i,j=1

aij(x) ∂i∂j(χ(x)− C1C3 h(x)) ≤ 0

for all x ∈ Ω. Hence, there exists a point x0 ∈ ∂Ω such that

inf
x∈Ω

(χ(x)− C1C3 h(x)) = inf
x∈∂Ω

χ(x) = χ(x0).

It follows from Proposition 2.11 that χ(x0) > 0. Moreover, we can find
a nonnegative real number µ such that

∇χ(x0) = (C1C3 − µ)∇h(x0).

A straightforward calculation yields

〈∇χ(x),∇h̃(∇u(x))〉 =
n
∑

i,j=1

∂i∂jh(x) (∂ih̃)(∇u(x)) (∂j h̃)(∇u(x))

+

n
∑

i,j=1

(∂i∂jh̃)(∇u(x)) ∂ih(x) ∂jH(x)(6)

for all x ∈ ∂Ω. Using (2), we obtain

n
∑

i,j=1

∂i∂jh(x) (∂ih̃)(∇u(x)) (∂j h̃)(∇u(x)) ≥ θ |∇h̃(∇u(x))|2

for all x ∈ ∂Ω. Since ∇H(x) is a positive multiple of ∇h(x), we have

n
∑

i,j=1

(∂i∂jh̃)(∇u(x)) ∂ih(x) ∂jH(x) ≥ 0

for all x ∈ ∂Ω. Substituting these inequalities into (6) gives

〈∇χ(x),∇h̃(∇u(x))〉 ≥ θ |∇h̃(∇u(x))|2

for all x ∈ ∂Ω. From this, we deduce that

(C1C3 − µ)χ(x0) = (C1C3 − µ) 〈∇h(x0),∇h̃(∇u(x0))〉

= 〈∇χ(x0),∇h̃(∇u(x0))〉

≥ θ |∇h̃(∇u(x0))|
2.

Since µ ≥ 0 and χ(x0) > 0, we conclude that

χ(x0) ≥
θ

C1C3
|∇h̃(∇u(x0))|

2 ≥
1

C4

for some positive constant C4. This completes the proof of Proposition
2.12. q.e.d.
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Lemma 2.13. Suppose that

n
∑

k,l=1

∂k∂lu(x)wk wl ≤M |w|2

for all x ∈ ∂Ω and all w ∈ Tx(∂Ω). Then

n
∑

k,l=1

∂k∂lu(x)wk wl ≤M

∣

∣

∣

∣

w −
〈∇h(x), w〉

〈∇h(x),∇h̃(∇u(x))〉
∇h̃(∇u(x))

∣

∣

∣

∣

2

+ C1C2C4 〈∇h(x), w〉
2

for all x ∈ ∂Ω and all w ∈ R
n.

Proof. Fix a point x ∈ ∂Ω and a vector w ∈ R
n. Moreover, let

z = w −
〈∇h(x), w〉

〈∇h(x),∇h̃(∇u(x))〉
∇h̃(∇u(x)).

Clearly, 〈∇h(x), z〉 = 0; hence z ∈ Tx(∂Ω). This implies
n
∑

k,l=1

∂k∂lu(x) (∂kh̃)(∇u(x)) zl = 〈∇H(x), z〉 = 0.

From this we deduce that
n
∑

k,l=1

∂k∂lu(x)wk wl −
n
∑

k,l=1

∂k∂lu(x) zk zl

=
〈∇h(x), w〉2

〈∇h(x),∇h̃(∇u(x))〉2

n
∑

k,l=1

∂k∂lu(x) (∂kh̃)(∇u(x)) (∂lh̃)(∇u(x)).

It follows from Proposition 2.11 and Proposition 2.12 that

〈∇h(x), w〉2

〈∇h(x),∇h̃(∇u(x))〉2

n
∑

k,l=1

∂k∂lu(x) (∂kh̃)(∇u(x)) (∂lh̃)(∇u(x))

≤ C1C2
〈∇h(x), w〉2

〈∇h(x),∇h̃(∇u(x))〉
≤ C1C2C4 〈∇h(x), w〉

2.

Moreover, we have
n
∑

k,l=1

∂k∂lu(x) zk zl ≤M |z|2

by definition of M . Putting these facts together, the assertion follows.
q.e.d.

Proposition 2.14. There exists a positive constant C9 such that

n
∑

k,l=1

∂k∂lu(x)wk wl ≤ C9 |w|
2
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for all x ∈ ∂Ω and all w ∈ Tx(∂Ω).

Proof. Let

M = sup

{ n
∑

k,l=1

∂k∂lu(x) zk zl : x ∈ ∂Ω, z ∈ Tx(∂Ω), |z| = 1

}

.

By compactness, we can find a point x0 ∈ ∂Ω and a unit vector w ∈
Tx0

(∂Ω) such that
n
∑

k,l=1

∂k∂lu(x0)wk wl =M.

We define a function ψ : Ω → R by

ψ(x) =

n
∑

k,l=1

∂k∂lu(x)wk wl

for all x ∈ Ω. Moreover, we define functions ϕ1 : Ω → R and ϕ2 : Ω → R

by

ϕ1(x) =

∣

∣

∣

∣

w −
〈∇h(x), w〉

η(〈∇h(x),∇h̃(∇u(x))〉)
∇h̃(∇u(x))

∣

∣

∣

∣

2

and
ϕ2(x) = 〈∇h(x), w〉2

for all x ∈ Ω. Here, η : R → R is a smooth cutoff function satisfying
η(s) = s for s ≥ 1

C4
and η(s) ≥ 1

2C4
for all s ∈ R.

The inequality (5) implies that
n
∑

i,j=1

aij(x) ∂i∂jψ(x) ≥ 0

for all x ∈ Ω. Moreover, by Proposition 2.6, there exists a positive
constant C5 such that

∣

∣

∣

∣

n
∑

i,j=1

aij(x) ∂i∂jϕ1(x)

∣

∣

∣

∣

≤ C5

and
∣

∣

∣

∣

n
∑

i,j=1

aij(x) ∂i∂jϕ2(x)

∣

∣

∣

∣

≤ C5

for all x ∈ Ω. Hence, the function

g(x) = ψ(x) −M ϕ1(x)− C1C2C4 ϕ2(x)

+ C1C5 (M + C1C2C4)h(x)

satisfies

(7)
n
∑

i,j=1

aij(x) ∂i∂jg(x) ≥ 0
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for all x ∈ Ω.
It follows from Proposition 2.12 that

ϕ1(x) =

∣

∣

∣

∣

w −
〈∇h(x), w〉

〈∇h(x),∇h̃(∇u(x))〉
∇h̃(∇u(x))

∣

∣

∣

∣

2

for all x ∈ ∂Ω. Using Lemma 2.13, we obtain

ψ(x) ≤M ϕ1(x) + C1C2C4 ϕ2(x)

for all x ∈ ∂Ω. Therefore, we have g(x) ≤ 0 for all x ∈ ∂Ω. Using the
inequality (7) and the maximum principle, we conclude that g(x) ≤ 0
for all x ∈ Ω.

On the other hand, we have ϕ1(x0) = 1, ϕ2(x0) = 0, and ψ(x0) =M .
From this, we deduce that g(x0) = 0. Therefore, the function g attains
its global maximum at the point x0. This implies ∇g(x0) = µ∇h(x0)
for some nonnegative real number µ. From this, we deduce that

(8) 〈∇g(x0),∇h̃(∇u(x0))〉 = µ 〈∇h(x0),∇h̃(∇u(x0))〉 ≥ 0.

By Proposition 2.10, we can find a positive constant C6 such that

|〈∇ϕ1(x),∇h̃(∇u(x))〉| ≤ C6

for all x ∈ ∂Ω. Hence, we can find positive constants C7 and C8 such
that

〈∇g(x),∇h̃(∇u(x))〉 = 〈∇ψ(x),∇h̃(∇u(x))〉

−M 〈∇ϕ1(x),∇h̃(∇u(x))〉

− C1C2C4 〈∇ϕ2(x),∇h̃(∇u(x))〉(9)

+ C1C5 (M + C1C2C4) 〈∇h(x),∇h̃(∇u(x))〉

≤ 〈∇ψ(x),∇h̃(∇u(x))〉 + C7M + C8

for all x ∈ ∂Ω. Combining (8) and (9), we conclude that

(10) 〈∇ψ(x0),∇h̃(∇u(x0))〉+ C7M + C8 ≥ 0.

A straightforward calculation shows that

n
∑

k,l=1

∂k∂lH(x0)wk wl

=

n
∑

i,k,l=1

(∂ih̃)(∇u(x0)) ∂i∂k∂lu(x0)wk wl(11)

+

n
∑

i,j,k,l=1

(∂i∂j h̃)(∇u(x0)) ∂i∂ku(x0) ∂j∂lu(x0)wk wl.
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Since H vanishes along ∂Ω, we have
n
∑

k,l=1

∂k∂lH(x0)wk wl = −〈∇H(x0), II(w,w)〉,

where II(·, ·) denotes the second fundamental form of ∂Ω at x0. Using
the estimate |∇H(x0)| ≤ C1C2 |∇h(x0)|, we obtain

n
∑

k,l=1

∂k∂lH(x0)wk wl ≤ C1C2 |∇h(x0)| |II(w,w)|.

Moreover, we have
n
∑

i,k,l=1

(∂ih̃)(∇u(x0)) ∂i∂k∂lu(x0)wk wl = 〈∇ψ(x0),∇h̃(∇u(x0))〉.

Finally, it follows from (3) that
n
∑

i,j,k,l=1

(∂i∂jh̃)(∇u(x0)) ∂i∂ku(x0) ∂j∂lu(x0)wk wl

≥ θ

n
∑

i,j,k,l=1

∂i∂ku(x0) ∂j∂lu(x0)wi wj wk wl = θM2.

Substituting these inequalities into (11), we obtain

C1C2 |∇h(x0)| |II(w,w)| ≥

n
∑

k,l=1

∂k∂lH(x0)wk wl

≥ 〈∇ψ(x0),∇h̃(∇u(x0))〉+ θM2

≥ θM2 − C7M − C8.

Therefore, we have M ≤ C9 for some positive constant C9. This com-
pletes the proof of Proposition 2.14. q.e.d.

Corollary 2.15. There exists a positive constant C10 such that

n
∑

k,l=1

∂k∂lu(x)wk wl ≤ C10 |w|
2

for all x ∈ ∂Ω and all w ∈ R
n.

Proof. It follows from Lemma 2.13 that
n
∑

k,l=1

∂k∂lu(x)wk wl ≤ C9

∣

∣

∣

∣

w −
〈∇h(x), w〉

〈∇h(x),∇h̃(∇u(x))〉
∇h̃(∇u(x))

∣

∣

∣

∣

2

+ C1C2C4 〈∇h(x), w〉
2

for all x ∈ ∂Ω and all w ∈ R
n. Hence, the assertion follows from

Proposition 2.12. q.e.d.
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Using Corollary 2.15 and (5), we obtain uniform bounds for the sec-
ond derivatives of the function u:

Proposition 2.16. We have

n
∑

k,l=1

∂k∂lu(x)wk wl ≤ C10 |w|
2

for all x ∈ Ω and all w ∈ R
n.

Proof. Fix a unit vector w ∈ R
n, and define

ψ(x) =
n
∑

k,l=1

∂k∂lu(x)wk wl.

The inequality (5) implies that

n
∑

i,j=1

aij(x) ∂i∂jψ(x) ≥ 0

for all x ∈ Ω. Using the maximum principle, we obtain

sup
x∈Ω

ψ(x) = sup
x∈∂Ω

ψ(x) ≤ C10.

This completes the proof. q.e.d.

Once we have a uniform C2 bound, we can show that u is uniformly
convex:

Corollary 2.17. There exists a positive constant C11 such that

n
∑

k,l=1

∂k∂lu(x)wk wl ≥
1

C11
|w|2

for all x ∈ Ω and all w ∈ R
n.

Proof. By assumption, the map f(x) = ∇u(x) is a diffeomorphism

from Ω to Ω̃. Let g : Ω̃ → Ω denote the inverse of f . Then Dg(y) =
[

Df(x)
]

−1
, where x = g(y). Since the matrix Df(x) = D2u(x) is

positive definite for all x ∈ Ω, we conclude that the matrix Dg(y) is

positive definite for all y ∈ Ω̃. Hence, there exists a convex function v :
Ω̃ → R such that g(y) = ∇v(y). The function v satisfies F (D2v(y)) =
nπ
2 −F (D2u(x)), where x = g(y). Since F (D2u(x)) is constant, it follows

that F (D2v(y)) is constant. Applying Proposition 2.16 to the function
v, we conclude that the eigenvalues of D2v(y) are uniformly bounded
from above. From this, the assertion follows. q.e.d.

In the next step, we show that the second derivatives of u are uni-
formly bounded in Cγ(Ω). To that end, we use results of G. Lieberman
and N. Trudinger [7]. In the remainder of this section, we describe
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how the problem (⋆) can be rewritten so as to fit into the framework of
Lieberman and Trudinger.

We begin by choosing a smooth cutoff function η : R → [0, 1] such
that











η(s) = 0 for s ≤ 0

η(s) = 1 for 1
C11

≤ s ≤ C10

η(s) = 0 for s ≥ 2C10.

There exists a unique function ψ : R → R satisfying ψ(1) = π
4 , ψ

′(1) =
1
2 , and ψ′′(s) = − 2s

(1+s2)2
η(s) ≤ 0 for all s ∈ R. Clearly, ψ(s) =

arctan(s) for 1
C11

≤ s ≤ C10. Moreover, it is easy to see that 1
1+4C2

10

≤

ψ′(s) ≤ 1 for all s ∈ R. If M is a symmetric n× n matrix, we define

Ψ(M) =
n
∑

k=1

ψ(λk),

where λ1, . . . , λn denote the eigenvalues of M . Since ψ′′(s) ≤ 0 for all
s ∈ R, it follows that Ψ is a concave function on the space of symmetric
n× n matrices.

We next rewrite the boundary condition. For each point x ∈ ∂Ω,
we denote by ν(x) the outward-pointing unit normal vector to ∂Ω at

x. Similarly, for each point y ∈ ∂Ω̃, we denote by ν̃(y) the outward-

pointing unit normal vector to ∂Ω̃ at y. By Proposition 2.12, there
exists a positive constant C12 such that

(12) 〈ν(x), ν̃(∇u(x))〉 ≥
1

C12

for all x ∈ ∂Ω.
We define a subset Γ ⊂ ∂Ω ×R

n by

Γ =
{

(x, y) ∈ ∂Ω× R
n : y + t ν(x) ∈ Ω̃ for some t ∈ R

}

.

For each point (x, y) ∈ Γ, we define

τ(x, y) = sup
{

t ∈ R : y + t ν(x) ∈ Ω̃
}

and

Φ(x, y) = y + τ(x, y) ν(x) ∈ ∂Ω̃.

If (x, y) lies on the boundary of the set Γ, then

〈ν(x), ν̃(Φ(x, y))〉 = 0.

We now define a function G : ∂Ω× R
n → R by

G(x, y) = 〈ν(x), y〉 − χ
(

〈ν(x), ν̃(Φ(x, y))〉
) [

〈ν(x), y〉 + τ(x, y)
]

for (x, y) ∈ Γ and

G(x, y) = 〈ν(x), y〉
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for (x, y) /∈ Γ. Here, χ : R → [0, 1] is a smooth cutoff function satisfying
χ(s) = 1 for s ≥ 1

C12
and χ(s) = 0 for s ≤ 1

2C12
. It is easy to see that G

is smooth. Moreover, we have

G(x, y + t ν(x)) = G(x, y) + t

for all (x, y) ∈ ∂Ω ×R
n and all t ∈ R. Therefore, G is oblique.

Proposition 2.18. Suppose that u : Ω → R is a convex function

such that ∇u is a diffeomorphism from Ω to Ω̃ and F (D2u(x)) = c for

all x ∈ Ω. Then Ψ(D2u(x)) = c for all x ∈ Ω. Moreover, we have

G(x,∇u(x)) = 0 for all x ∈ ∂Ω.

Proof. It follows from Proposition 2.16 and Corollary 2.17 that the
eigenvalues of D2u(x) lie in the interval [ 1

C11
, C10]. This implies

Ψ(D2u(x)) = F (D2u(x)) = c for all x ∈ Ω.
It remains to show that G(x,∇u(x)) = 0 for all x ∈ ∂Ω. In order

to verify this, we fix a point x ∈ ∂Ω, and let y = ∇u(x) ∈ ∂Ω̃. By
Proposition 2.11, we have 〈ν(x), ν̃(y)〉 > 0. From this, we deduce that
(x, y) ∈ Γ and τ(x, y) = 0. This implies Φ(x, y) = y. Therefore, we
have

G(x, y) = 〈ν(x), y〉 − χ
(

〈ν(x), ν̃(y)〉
)

〈ν(x), y〉.

On the other hand, it follows from (12) that χ(〈ν(x), ν̃(y)〉) = 1. Thus,
we conclude that G(x, y) = 0. q.e.d.

In view of Proposition 2.18 we may invoke general regularity results
of Lieberman and Trudinger. By Theorem 1.1 in [7], the second deriva-
tives of u are uniformly bounded in Cγ(Ω) for some γ ∈ (0, 1). Higher
regularity follows from Schauder estimates.

3. The linearized operator

In this section, we show that all solutions of (⋆) are non-degenerate.
To prove this, we fix a real number γ ∈ (0, 1). Consider the Banach
spaces

X =

{

u ∈ C2,γ(Ω) :

∫

Ω
u = 0

}

and

Y = Cγ(Ω)× C1,γ(∂Ω).

We define a map G : X ×R → Y by

G(u, c) =
(

F (D2u)− c, (h̃ ◦ ∇u)|∂Ω

)

.

Hence, if (u, c) ∈ X × R is a solution of (⋆), then G(u, c) = (0, 0).
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Proposition 3.1. Suppose that (u, c) ∈ X × R is a solution to (⋆).
Then the linearized operator DG(u,c) : X × R → Y is invertible.

Proof. The linearized operator B = DG(u,c) is given by

B : X × R → Y, (w, a) 7→ (Lw − a,Nw).

Here, the operator L : C2,γ(Ω) → Cγ(Ω) is defined by

Lw(x) = tr
[

(

I + (D2u(x))2
)

−1
D2w(x)

]

for x ∈ Ω. Moreover, the operator N : C2,γ(Ω) → C1,γ(∂Ω) is defined
by

Nw(x) = 〈∇w(x),∇h̃(∇u(x))〉

for x ∈ ∂Ω. Clearly, L is an elliptic operator. Since u is a solution of (⋆),

Proposition 2.11 implies that 〈∇h(x),∇h̃(∇u(x)) > 0 for all x ∈ ∂Ω.
Hence, the boundary condition is oblique.

We claim that B is one-to-one. To see this, we consider a pair (w, a) ∈
X ×R such that B(w, a) = (0, 0). This implies Lw(x) = a for all x ∈ Ω
and Nw(x) = 0 for all x ∈ ∂Ω. Hence, the Hopf boundary point lemma
(cf. [5], Lemma 3.4) implies that w = 0 and a = 0.

It remains to show that B is onto. To that end, we consider the
operator

B̃ : X × R → Y, (w, a) 7→ (Lw,Nw + w + a).

It follows from Theorem 6.31 in [5] that B̃ is invertible. Moreover, the
operator

B̃ − B : X × R → Y, (w, a) 7→ (a,w + a)

is compact. Since B is one-to-one, it follows from the Fredholm alter-
native (cf. [5], Theorem 5.3) that B is onto. This completes the proof.

q.e.d.

4. Existence of a solution to (⋆)

In this section, we prove the existence of a solution to (⋆). To that

end, we employ the continuity method. Let Ω and Ω̃ be uniformly
convex domains in R

n with smooth boundary. By Proposition A.1, we
can find a smooth function h : Ω → R with the following properties:

• h is uniformly convex
• h(x) = 0 for all x ∈ ∂Ω
• If s is sufficiently close to infΩ h, then the sub-level set {x ∈ Ω :
h(x) ≤ s} is a ball.

Similarly, there exists a smooth function h̃ : Ω̃ → R such that:

• h̃ is uniformly convex
• h̃(y) = 0 for all y ∈ ∂Ω̃
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• If s is sufficiently close to infΩ̃ h̃, then the sub-level set {y ∈ Ω̃ :

h̃(y) ≤ s} is a ball.

Without loss of generality, we may assume that infΩ h = infΩ̃ h̃ = −1.
For each t ∈ (0, 1], we define

Ωt = {x ∈ Ω : h(x) ≤ t− 1} , Ω̃t =
{

y ∈ Ω̃ : h̃(y) ≤ t− 1
}

.

Note that Ωt and Ω̃t are uniformly convex domains in R
n with smooth

boundary. We then consider the following problem (cf. [1]):

(⋆t) Find a convex function u : Ω → R and a constant c ∈ (0, nπ2 )

such that ∇u is a diffeomorphism from Ωt to Ω̃t and F (D
2u(x)) = c for

all x ∈ Ωt.

If t ∈ [0, 1) is sufficiently small, then Ωt and Ω̃t are balls in R
n. Con-

sequently, (⋆t) is solvable if t ∈ (0, 1] is sufficiently small. In particular,
the set

I = {t ∈ (0, 1] : (⋆t) has at least one solution}

is non-empty. It follows from the a-priori estimates in Section 2 that I
is a closed subset of (0, 1]. Moreover, Proposition 3.1 implies that I is
an open subset of (0, 1]. Consequently, I = (0, 1]. This completes the
proof of Theorem 1.1.

5. Proof of the uniqueness statement

In this final section, we show that the solution to (⋆) is unique up to
addition of constants. To that end, we use a trick that we learned from
J. Urbas.

As above, let Ω and Ω̃ be uniformly convex domains in R
n with

smooth boundary. Moreover, suppose that (u, c) and (û, ĉ) are solutions
to (⋆). We claim that the function û− u is constant.

Suppose this is false. Without loss of generality, we may assume that
ĉ ≥ c. (Otherwise, we interchange the roles of u and û.) For each point
x ∈ Ω, we define a symmetric n×n-matrix B(x) = {bij(x) : 1 ≤ i, j ≤ n}
by

B(x) =

∫ 1

0

[

I +
(

sD2û(x) + (1− s)D2u(x)
)2
]

−1
ds.

Clearly, B(x) is positive definite for all x ∈ Ω. Moreover, we have
n
∑

i,j=1

bij(x) (∂i∂j û(x)− ∂i∂ju(x))

= F (D2û(x))− F (D2u(x)) = ĉ− c ≥ 0

for all x ∈ Ω. By the maximum principle, the function û− u attains its
maximum at a point x0 ∈ ∂Ω. By the Hopf boundary point lemma (see
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[5], Lemma 3.4), there exists a real number µ > 0 such that ∇û(x0)−
∇u(x0) = µ∇h(x0). Using Proposition 2.11, we obtain

〈∇û(x0)−∇u(x0),∇h̃(∇u(x0))〉 = µ 〈∇h(x0),∇h̃(∇u(x0))〉 > 0.

On the other hand, we have

〈∇û(x0)−∇u(x0),∇h̃(∇u(x0))〉 ≤ h̃(∇û(x0))− h̃(∇u(x0)) = 0

since h̃ is convex. This is a contradiction. Therefore, the function û−u
is constant.

Appendix A. The construction of the boundary defining

function

The following result is standard. We include a proof for the conve-
nience of the reader.

Proposition A.1. Let Ω be a uniformly convex domain in R
n with

smooth boundary. Then there exists a smooth function h : Ω → R with

the following properties:

• h is uniformly convex

• h(x) = 0 for all x ∈ ∂Ω
• If s is sufficiently close to infΩ h, then the sub-level set {x ∈ Ω :
h(x) ≤ s} is a ball.

Proof. Let x0 be an arbitrary point in the interior of Ω. We define a
function h1 : Ω → R by

h1(x) =
d(x, ∂Ω)2

4 diam(Ω)
− d(x, ∂Ω).

Since Ω is uniformly convex, there exists a positive real number ε such
that h1 is smooth and uniformly convex for d(x, ∂Ω) < ε. We assume
that ε is chosen so that d(x0, ∂Ω) > ε. We next define a function
h2 : Ω → R by

h2(x) =
ε d(x0, x)

2

4 diam(Ω)2
−
ε

2
.

For each point x ∈ ∂Ω, we have h1(x) = 0 and h2(x) ≤ − ε
4 . Moreover,

if d(x, ∂Ω) ≥ ε, then h1(x) ≤ −3ε
4 and h2(x) ≥ − ε

2 .
Let Φ : R → R be a smooth function satisfying Φ′′(s) ≥ 0 for all

s ∈ R and Φ(s) = |s| for |s| ≥ ε
16 . We define a function h : Ω → R by

h(x) =
h1(x) + h2(x)

2
+ Φ

(h1(x)− h2(x)

2

)

.

If x is sufficiently close to ∂Ω, then we have h(x) = h1(x). In particular,
we have h(x) = 0 for all x ∈ ∂Ω. Moreover, we have h(x) = h2(x) for
d(x, ∂Ω) ≥ ε. Hence, the function h is smooth and uniformly convex for
d(x, ∂Ω) ≥ ε.
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We claim that the function h is smooth and uniformly convex on all
of Ω. To see this, we consider a point x with d(x, ∂Ω) < ε. The Hessian
of h at the point x is given by

∂i∂jh(x)

=
1

2

[

1 + Φ′

(h1(x)− h2(x)

2

)]

∂i∂jh1(x)

+
1

2

[

1− Φ′

(h1(x)− h2(x)

2

)]

∂i∂jh2(x)

+
1

4
Φ′′

(h1(x)− h2(x)

2

)

(∂ih1(x)− ∂ih2(x)) (∂jh1(x)− ∂jh2(x)).

Note that |Φ′(s)| ≤ 1 and Φ′′(s) ≥ 0 for all s ∈ R. Since h1 and h2 are
uniformly convex, it follows that h is uniformly convex.

It remains to verify the last statement. The function h attains its
minimum at the point x0. Therefore, we have infΩ h = − ε

2 . Suppose
that s is a real number satisfying

−
ε

2
< s <

ε (d(x0, ∂Ω)− ε)2

4 diam(Ω)2
−
ε

2
.

Then we have {x ∈ Ω : h(x) ≤ s} = {x ∈ Ω : h2(x) ≤ s}. Consequently,
the set {x ∈ Ω : h(x) ≤ s} is a ball. This completes the proof of
Proposition A.1. q.e.d.
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